1
|
Lord KA, Larson G, Allaby RG, Karlsson EK. A universally applicable definition for domestication. Proc Natl Acad Sci U S A 2025; 122:e2413207122. [PMID: 40372471 DOI: 10.1073/pnas.2413207122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
The process of domestication is commonly perceived as a human achievement, and domestic species are typically assumed to be those under human control. Domestic species have emerged from a greater diversity of interactions than this perspective allows, and none of the many definitions proposed for domestication can readily, reliably, and consistently distinguish domestic and nondomestic populations. Here, we propose that the process of domestication should instead be defined solely as evolution of a nonhuman population in response to an anthropogenic niche and that a domestic population is one that cannot sustain itself outside of an anthropogenic niche. As a result, this definition does not require comparisons with a presumed and largely unobservable ancestor. Instead, it focuses on the observable relationship between a nonhuman population and humans. It also avoids making assumptions about how domestication happens, thus enabling an exploration of the mechanisms underlying the process of adaptation to an anthropogenic niche. By applying this definition to plants, animals, and microbes, we illustrate its utility for investigating the evolution of the relationship between humans and other species and for anticipating which species are likely to survive in an increasingly human-influenced world. Domestication is simply an evolutionary process resulting from the interaction between two species, one of which is human. As we work to protect Earth's biodiversity, this definition allows us to understand why, in response to the conditions human societies create, some species survive and thrive, while others struggle and go extinct.
Collapse
Affiliation(s)
- Kathryn A Lord
- Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford OX1 3TG, United Kingdom
| | - Robin G Allaby
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Elinor K Karlsson
- Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
2
|
Carrier TJ, Elder H, Macrander J, Dimond JL, Bingham BL, Reitzel AM. Symbiont-Mediated Metabolic Shift in the Sea Anemone Anthopleura elegantissima. Mol Ecol 2025; 34:e17722. [PMID: 40091861 PMCID: PMC11974494 DOI: 10.1111/mec.17722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Coral reefs and their photosynthetic algae form one of the most ecologically and economically impactful symbioses in the animal kingdom. The stability of this nutritional mutualism and this ecosystem is, however, at risk due to increasing sea surface temperatures that cause corals to expel their symbionts. Symbioses with these microeukaryotes have independently evolved multiple times, and non-coral cnidarians (e.g., sea anemones) serve as a valuable and insightful comparative system due to their ease of husbandry in the laboratory and their ability to shuffle different strains of their photosymbionts to acclimate to thermal conditions. This breadth of symbiont shuffling is exemplified by the sea anemone Anthopleura elegantissima , which naturally occurs in symbiosis with the dinoflagellate Breviolum muscatinei (formerly Symbiodinium) or the chlorophyte Elliptochloris marina as well as being aposymbiotic. Here, we assembled a draft genome and used multi-omics to characterise multiple physiological levels of each phenotype. We find that A. elegantissima has symbiont-specific transcriptional and metabolomic signatures, but a similar bacterial community dominated by a single Sphingomonas species that is commonly found in the cnidarian microbiome. Symbiosis with either eukaryotic symbiont resulted in differential gene expression and metabolic abundance for diverse processes spanning metabolism and immunity to reproduction and development, with some of these processes being unique to either symbiont. The ability to culture A. elegantissima with its phylogenetically divergent photosymbionts and perform experimental manipulations makes A. elegantissima another tractable sea anemone system to decode the symbiotic conversations of coral reef ecosystems and aid in wider conservation efforts.
Collapse
Affiliation(s)
- Tyler J. Carrier
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
- Center for Computational Intelligence to Predict Health and Environmental RisksUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Holland Elder
- Department of Integrative BiologyOregon State UniversityCorvallisORUSA
- Australian Institute of Marine ScienceTownsvilleAustralia
| | - Jason Macrander
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
- Biology DepartmentFlorida Southern CollegeLakelandFLUSA
| | - James L. Dimond
- Shannon Point Marine CenterWestern Washington UniversityAnacortesWAUSA
| | - Brian L. Bingham
- Shannon Point Marine CenterWestern Washington UniversityAnacortesWAUSA
- Department of Environmental SciencesWestern Washington UniversityBellinghamWAUSA
| | - Adam M. Reitzel
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
- Center for Computational Intelligence to Predict Health and Environmental RisksUniversity of North Carolina at CharlotteCharlotteNCUSA
| |
Collapse
|
3
|
Nguyen AA, Rodriguez Curras M, Egerstedt M, Pauli JN. Mutualisms as a framework for multi-robot collaboration. Front Robot AI 2025; 12:1566452. [PMID: 40224566 PMCID: PMC11985437 DOI: 10.3389/frobt.2025.1566452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Biology has inspired robotics since its inception as an academic discipline. However, the use of ecological principles in robotics is still relatively rare and in this paper, we explore how such principles can not only be of relevance to robotics, but can reciprocally lead to new insights into ecology. In particular, we investigate how mutualisms-jointly beneficial interactions between members of different species-can inform collaborative architectures for multi-robot systems comprised of different types of robots. To better understand how mutualisms can have practical relevance in robotics, we present a case study where the landscape heterogeneity, i.e., the configuration of the landscape, is varied, and we measure the efficiency of robots functioning independently or involved in a mutualism. We show that landscape composition impacts the benefits of forming mutualisms, which, in turn, has implications for mutualism emergence and stability in ecology. Moreover, through this case study, the concept of fitness and its components can be introduced for engineered systems, leading to notions of longevity, task fecundity, and, ultimately, robot fitness.
Collapse
Affiliation(s)
- Alexander A. Nguyen
- Samueli School of Engineering, University of California Irvine, Irvine, CA, United States
| | - Mauriel Rodriguez Curras
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Magnus Egerstedt
- Samueli School of Engineering, University of California Irvine, Irvine, CA, United States
| | - Jonathan N. Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
4
|
Chen Y, Cui H, Xu T, Chen L. Contrasting Effects of Mutualistic Ants ( Solenopsis invicta) and Predatory Ladybugs on the Proportion of Dark Green Morphs of Cotton Aphids. INSECTS 2025; 16:271. [PMID: 40266780 PMCID: PMC11943279 DOI: 10.3390/insects16030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 04/25/2025]
Abstract
Cotton aphids, Aphis gossypii, are an important pest worldwide and have evolved mutualistic relationships with the invasive fire ant Solenopsis invicta. Their body color varies from pale yellow to dark green, with an increase in body size and fecundity. The body color composition in a cotton aphid colony can be influenced by biotic interactions with mutualistic ants and predatory ladybugs. However, since the distribution of nutrients varies across host plant organs, there may exist special effects of biotic interactions on the body color composition of the aphids on different plant parts. In the present study, we found that, under constant laboratory conditions, the proportions of dark green morphs varied among the cotton aphids distributed on different parts of a cotton seedling, with significantly higher proportions on the stems, petioles, and sprouts (SPSs) than on leaves. The presence of mutualistic fire ants significantly increased the proportion of dark green morphs in the cotton aphid colony, but with a reduction in aphid body size, compared to the untended individuals. In contrast, the introduction of a predatory seven-spotted ladybug, Coccinella septempunctata, dramatically decreased the proportion of dark green morphs on SPSs, but not on leaves, leading to a reduction in the proportion of the whole colony. These results illustrate a spatial variation in the proportions of dark green morphs on host plants in cotton aphids, which may be an adaptive strategy used by the aphids to gain benefits and/or minimize costs in the interactions with mutualistic ants and predatory ladybugs.
Collapse
Affiliation(s)
- Yao Chen
- College of Life Sciences, Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China; (Y.C.); (H.C.)
| | - Hejun Cui
- College of Life Sciences, Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China; (Y.C.); (H.C.)
| | - Tian Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Li Chen
- College of Life Sciences, Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China; (Y.C.); (H.C.)
| |
Collapse
|
5
|
Wang Y, Du Y. Hypothesis for Molecular Evolution in the Pre-Cellular Stage of the Origin of Life. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70001. [PMID: 39832384 DOI: 10.1002/wrna.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Life was originated from inorganic world and had experienced a long period of evolution in about 3.8 billion years. The time for emergence of the pioneer creations on Earth is debatable nowadays, and how the scenario for the prebiotic molecular interactions is still mysterious. Before the spreading of cellular organisms, chemical evolution was perhaps prevailing for millions of years, in which inorganic biosynthesis was ultimately replaced by biochemical reactions. Understanding the major molecular players and their interactions toward cellular life is fundamental for current medical science and extraterrestrial life exploration. In this review, we propose a road map for the primordial molecular evolution in early Earth, which probably occurred adjacent to hydrothermal vents with a strong gradient of organic molecules, temperature, and metal contents. Natural selection of the macromolecules with strong secondary structures and catalytic centers is associated with decreasing of overall entropy of the biopolymers. Our review may shed lights into the important selection of gene-coding RNA with secondary structures from large amounts of random biopolymers and formation of ancient ribosomes with biological machines supporting the basic life processes. Integration of the free environmental ribosomes by the early cellular life as symbiotic molecular machines is probably the earliest symbiosis on Earth.
Collapse
Affiliation(s)
- Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Yiling Du
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| |
Collapse
|
6
|
Iwai S. A simple model and rules for the evolution of microbial mutualistic symbiosis with positive fitness feedbacks. Theor Popul Biol 2024; 160:14-24. [PMID: 39384161 DOI: 10.1016/j.tpb.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
The evolution of microbe-microbe mutualistic symbiosis is considered to be promoted by repeated exchanges of fitness benefits, which can generate positive fitness feedbacks ('partner fidelity feedback') between species. However, previous evolutionary models for mutualism have not captured feedback dynamics or coupling of fitness between species. Here, a simple population model is developed to understand the evolution of mutualistic symbiosis in which two microbial species (host and symbiont) continuously grow and exchange fitness benefits to generate feedback dynamics but do not strictly control each other. The assumption that individual microbes provide constant amounts of resources, which are equally divided among interacting partner individual, enables us to reveal a simple rule for the evolution of costly mutualism with positive fitness feedbacks: the product of the benefit-to-cost ratios for each species exceeds one. When this condition holds, high cooperative investment levels are favored in both species regardless of the amount invested by each partner. The model is then extended to examine how symbiont mutation, immigration, or switching affects the spread of selfish or cooperative symbionts, which decrease and increase their investment levels, respectively. In particular, when a host associates with numerous symbionts without enforcement, neither mutation nor immigration but rather random switching would allow the spread of cooperative symbionts. Examples using symbiont switching for evolution would include large ciliates hosting numerous intracellular endosymbionts. The simple model and rules would provide a basis for understanding the evolution of microbe-microbe mutualistic symbiosis with positive fitness feedbacks and without enforcement mechanisms.
Collapse
Affiliation(s)
- Sosuke Iwai
- Department of Biology, Faculty of Education, Hirosaki University, Hirosaki 036-8560, Japan.
| |
Collapse
|
7
|
Bourne ME, Lucas-Barbosa D, Verhulst NO. Host location by arthropod vectors: are microorganisms in control? CURRENT OPINION IN INSECT SCIENCE 2024; 65:101239. [PMID: 39067510 DOI: 10.1016/j.cois.2024.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Vector-borne microorganisms are dependent on their arthropod vector for their transmission to and from vertebrates. The 'parasite manipulation hypothesis' states that microorganisms are likely to evolve manipulations of such interactions for their own selective benefit. Recent breakthroughs uncovered novel ecological interactions initiated by vector-borne microorganisms, which are linked to different stages of the host location by their arthropod vectors. Therefore, we give an actualised overview of the various means through which vector-borne microorganisms impact their vertebrate and arthropod hosts to ultimately benefit their own transmission. Harnessing the directionality and underlying mechanisms of these interactions driven by vector-borne microorganisms may provide tools to reduce the spread of pathogenic vector-borne microorganisms.
Collapse
Affiliation(s)
- Mitchel E Bourne
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstrasse 266A, 8057 Zürich, Switzerland.
| | - Dani Lucas-Barbosa
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstrasse 266A, 8057 Zürich, Switzerland; Research Institute of Organic Agriculture FiBL, Ackerstrasse 113, 5070 Frick, Switzerland
| | - Niels O Verhulst
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstrasse 266A, 8057 Zürich, Switzerland.
| |
Collapse
|
8
|
Agarwal R, Gupta M, Sen R, Panchal A, E S N, Raychoudhury R. Investigation into how Odontotermes obesus maintains a predominantly Termitomyces monoculture in their fungus combs suggests a potential partnership with both fungi and bacteria. Commun Biol 2024; 7:1010. [PMID: 39154098 PMCID: PMC11330501 DOI: 10.1038/s42003-024-06708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Fungus-growing termites, like Odontotermes obesus, cultivate Termitomyces as their sole food source on fungus combs which are continuously maintained with foraged plant materials. This necessary augmentation also increases the threat of introducing non-specific fungi capable of displacing Termitomyces. The magnitude of this threat and how termites prevent the invasion of such fungi remain largely unknown. This study identifies these non-specific fungi by establishing the pan-mycobiota of O. obesus from the fungus comb and termite castes. Furthermore, to maximize the identification of such fungi, the mycobiota of the decaying stages of the unattended fungus comb were also assessed. The simultaneous assessment of the microbiota and the mycobiota of these stages identified possible interactions between the fungal and bacterial members of this community. Based on these findings, we propose possible interactions among the crop fungus Termitomyces, the weedy fungus Pseudoxylaria and some bacterial symbiotes. These possibilities were then tested with in vitro interaction assays which suggest that Termitomyces, Pseudoxylaria and certain potential bacterial symbiotes possess anti-fungal capabilities. We propose a multifactorial interaction model of these microbes, under the care of the termites, to explain how their interactions can maintain a predominantly Termitomyces monoculture.
Collapse
Affiliation(s)
- Renuka Agarwal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Manisha Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Ruchira Sen
- PG Department of Zoology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Aanchal Panchal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Nimisha E S
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Rhitoban Raychoudhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India.
| |
Collapse
|
9
|
Domahovski AC, Paladini A. Pharsalus repandus Melichar, 1906 (Hemiptera, Ricaniidae): first record of ant-attendance in the family, ethological notes, and new records from Brazil. Zootaxa 2024; 5477:563-570. [PMID: 39646064 DOI: 10.11646/zootaxa.5477.5.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Indexed: 12/10/2024]
Abstract
Ant attendance or trophobiosis is widely distributed in Auchenorrhyncha and can be defined as a disjunctive association, an interspecific relationship between two symbiotic organisms. Aggregation behavior with or without ant mutualism has been documented for nymphs and adults in a few families of Fulgoromorpha whereas ant-attendance is reported for all planthopper families except for Ricaniidae. Based on field observations of Pharsalus repandus Melichar, 1906, the present work aims to record the first mutualistic interaction of ant-attendance in a species of the family Ricaniidae, report its aggregation behavior, its host plant, and expand its known distribution to the states of Paraná and Minas Gerais. Two ants were attending the planthoppers at the same time, identified as Camponotus (Myrmotrhix) rufipes (Fabricius, 1775) and Camponotus (Myrmobrachys) crassus Mayr, 1862. We noted direct contact and observed the ants employing antennal palpation behavior to stimulate the planthoppers to deliver honeydew.
Collapse
Affiliation(s)
- Alexandre Cruz Domahovski
- Departamento de Zoologia; Instituto de Biologia; Universidade Federal do Rio de Janeiro; RJ; Brazil.
| | - Andressa Paladini
- Departamento de Zoologia; Universidade Federal do Paraná; Curitiba; PR; Brazil.
| |
Collapse
|
10
|
Kulkarni M, Naik NV, Borges RM. Who holds the reins? Context-dependent resource allocation in the mutualism between fig trees and their fig wasp pollinators. Oecologia 2024; 205:215-227. [PMID: 38801540 DOI: 10.1007/s00442-024-05566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Mutualisms are consumer-resource interactions, in which goods and services are exchanged. Biological market theory states that exchanges should be regulated by both partners. However, most studies on mutualisms are one-sided, focusing on the control exercised by host organisms on their symbionts. In the brood-site pollination mutualism between fig trees and their symbiont wasp pollinators, galled flowers are development sites for pollinator larvae and are exchanged for pollination services. We determined if pollinator galls influenced resource allocation to fig inflorescences called syconia and considered feedbacks from the host tree. We experimentally produced syconia containing only seeds (S), only pollinator galls (G) or seeds and galls (SG) with varying number of introduced female pollinator wasps, i.e., foundress wasps. Biomass allocation to syconia was affected by foundress numbers and treatment groups; SG treatments received highest biomass allocation at low foundress numbers, and both G and SG treatments at high foundress numbers. Seeds are important determinants of allocation at low foundress numbers; galls are likely more influential at high foundress numbers. Most allocation in the G and SG treatment was to the syconium wall, likely as protection from parasitoids and temperature/humidity fluctuations. Dry mass of individual seeds and wasps (except at low foundress numbers) was unchanged between treatment groups, indicating seeds and wasps regulate resource flow into them, with lower flow into galls containing the smaller males compared to females commensurate with sexual dimorphism. We demonstrate the importance of considering the direct role of symbionts in accessing resources and controlling exchanges within mutualisms.
Collapse
Affiliation(s)
- Manasa Kulkarni
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, 560012, India
| | - Nehal Vijay Naik
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, 560012, India
- Department of Biology (Ecology and Evolutionary Biology), University of Toronto Mississauga, Mississauga, ON, Canada
| | - Renee M Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
11
|
De Dreu CKW, Gross J, Romano A. Group Formation and the Evolution of Human Social Organization. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:320-334. [PMID: 37450408 PMCID: PMC10913362 DOI: 10.1177/17456916231179156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Humans operate in groups that are oftentimes nested in multilayered collectives such as work units within departments and companies, neighborhoods within cities, and regions within nation states. With psychological science mostly focusing on proximate reasons for individuals to join existing groups and how existing groups function, we still poorly understand why groups form ex nihilo, how groups evolve into complex multilayered social structures, and what explains fission-fusion dynamics. Here we address group formation and the evolution of social organization at both the proximate and ultimate level of analysis. Building on models of fitness interdependence and cooperation, we propose that socioecologies can create positive interdependencies among strangers and pave the way for the formation of stable coalitions and groups through reciprocity and reputation-based partner selection. Such groups are marked by in-group bounded, parochial cooperation together with an array of social institutions for managing the commons, allowing groups to scale in size and complexity while avoiding the breakdown of cooperation. Our analysis reveals how distinct group cultures can endogenously emerge from reciprocal cooperation, shows that social identification and group commitment are likely consequences rather than causes of group cooperation, and explains when intergroup relations gravitate toward peaceful coexistence, integration, or conflict.
Collapse
Affiliation(s)
| | - Jörg Gross
- Department of Psychology, University of Zurich
| | | |
Collapse
|
12
|
Chien SC, Krumins JA. Anthropogenic effects on global soil nitrogen pools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166238. [PMID: 37586519 DOI: 10.1016/j.scitotenv.2023.166238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
The amount of nitrogen stored in terrestrial soils, its "nitrogen pool", moderates biogeochemical cycling affecting primary productivity, nitrogen pollution and even carbon budgets. The soil nitrogen pools and the transformation of nitrogen forms within them are heavily influenced by environmental factors including anthropogenic activities. However, our understanding of the global distribution of soil nitrogen with respect to anthropogenic activity and human land use remains unclear. We constructed a meta-analysis from a global sampling, in which we compare soil total nitrogen pools and the driving mechanisms affecting each pool across three major classifications of human land use: natural, agricultural, and urban. Although the size of the nitrogen pool can be similar across natural, agricultural and urban soils, the ecological and human associated drivers vary. Specifically, the drivers within agricultural and urban soils as opposed to natural soils are more complex and often decoupled from climatic and soil factors. This suggests that the nitrogen pools of those soils may be co-moderated by other factors not included in our analyses, like human activities. Our analysis supports the notion that agricultural soils act as a nitrogen source while urban soils as a nitrogen sink and informs a modern understanding of the fates and distributions of anthropogenic nitrogen in natural, agricultural, and urban soils.
Collapse
Affiliation(s)
- Shih-Chieh Chien
- Doctoral Program in Environmental Science and Management, Montclair State University, Montclair, NJ, 07043, USA.
| | | |
Collapse
|
13
|
Leal-Dutra CA, Yuen LM, Guedes BAM, Contreras-Serrano M, Marques PE, Shik JZ. Evidence that the domesticated fungus Leucoagaricus gongylophorus recycles its cytoplasmic contents as nutritional rewards to feed its leafcutter ant farmers. IMA Fungus 2023; 14:19. [PMID: 37715276 PMCID: PMC10503033 DOI: 10.1186/s43008-023-00126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
Leafcutter ants farm a fungal cultivar (Leucoagaricus gongylophorus) that converts inedible vegetation into food that sustains colonies with up to millions of workers. Analogous to edible fruits of crops domesticated by humans, L. gongylophorus has evolved specialized nutritional rewards-swollen hyphal cells called gongylidia that package metabolites and are consumed by ant farmers. Yet, little is known about how gongylidia form, and thus how fungal physiology and ant provisioning collectively govern farming performance. We explored the process of gongylidium formation using advanced microscopy to image the cultivar at scales of nanometers, and both in vitro experiments and in silico analyses to examine the mechanisms of gongylidia formation when isolated from ant farmers. We first used transmission electron, fluorescence, and confocal microscopy imaging to see inside hyphal cells. This imaging showed that the cultivar uses a process called autophagy to recycle its own cellular material (e.g. cytosol, mitochondria) and then shuttles the resulting metabolites into a vacuole whose continual expansion displaces other organelles and causes the gongylidium cell's bulging bulb-like appearance. We next used scanning electron microscopy and light microscopy to link this intracellular rearrangement to the external branching patterns of gongylidium cells as they clump together into edible bundles called staphyla. We next confirmed that autophagy plays a critical role in gongylidium formation both: (1) in vitro as gongylidium suppression occurred when isolated fungal cultures were grown on media with autophagy inhibitors, and (2) in silico as differential transcript expression (RNA-seq) analyses showed upregulation of multiple autophagy gene isoforms in gongylidia relative to undifferentiated hyphae. While autophagy is a ubiquitous and often highly derived process across the tree of life, our study reveals a new role for autophagy as a mechanism of functional integration between ant farmers and their fungal crop, and potentially as a signifier of higher-level homeostasis between uniquely life-time committed ectosymbionts.
Collapse
Affiliation(s)
- Caio Ambrosio Leal-Dutra
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| | - Lok Man Yuen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Department of Biology, ETH Zürich, Universitätsstrasse 16, Zürich, 8092, Switzerland
| | - Bruno Augusto Maciel Guedes
- Departamento de Ciências Básicas da Vida, Universidade Federal de Juiz de Fora, Campus Governador Valadares, Governador Valadares, MG, 35020-360, Brazil
| | - Marta Contreras-Serrano
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jonathan Zvi Shik
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
14
|
Alencar CLDS, Nogueira A, Vicente RE, Coutinho ÍAC. Plant species with larger extrafloral nectaries produce better quality nectar when needed and interact with the best ant partners. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4613-4627. [PMID: 37115640 DOI: 10.1093/jxb/erad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
Few studies have explored the phenotypic plasticity of nectar production on plant attractiveness to ants. Here, we investigate the role of extrafloral nectary (EFN) size on the productivity of extrafloral nectar in three sympatric legume species. We hypothesized that plant species with larger EFNs (i) have higher induced nectar secretion after herbivory events, and (ii) are more likely to interact with more protective (i.e. dominant) ant partners. We target 90 plants of three Chamaecrista species in the field. We estimated EFN size and conducted field experiments to evaluate any differences in nectar traits before and after leaf damage to investigate the phenotypic plasticity of nectar production across species. We conducted multiple censuses of ant species feeding on EFNs over time. Plant species increased nectar descriptors after leaf damage, but in different ways. Supporting our hypothesis, C. duckeana, with the largest EFN size, increased all nectar descriptors, with most intense post-herbivory-induced response, taking its place as the most attractive to ants, including dominant species. EFN size variation was an excellent indicator of nectar productivity across species. The higher control over reward production in plants with larger sized EFNs reflects an induction mechanism under damage that reduces costs and increases the potential benefits of indirect biotic defences.
Collapse
Affiliation(s)
- Cícero Luanderson da Silva Alencar
- Universidade Federal do Ceará, campus do Pici, Centro de Ciências, Departamento de Biologia, Laboratório de Morfoanatomia Funcional de Plantas, Programa de Pós-graduação em Ecologia e Recursos Naturais, Fortaleza, CE, Brazil
| | - Anselmo Nogueira
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Ricardo Eduardo Vicente
- Instituto Nacional da Mata Atlântica, Ministério da Ciência, Tecnologia e Inovações, Santa Teresa, ES, Brazil
| | - Ítalo Antônio Cotta Coutinho
- Universidade Federal do Ceará, campus do Pici, Centro de Ciências, Departamento de Biologia, Laboratório de Morfoanatomia Funcional de Plantas, Programa de Pós-graduação em Ecologia e Recursos Naturais, Fortaleza, CE, Brazil
| |
Collapse
|
15
|
Hao K, Liu T, Hembry DH, Luo S. Trait matching in a multi-species geographic mosaic of leafflower plants, brood pollinators, and cheaters. Ecol Evol 2023; 13:e10228. [PMID: 37408629 PMCID: PMC10318581 DOI: 10.1002/ece3.10228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
Trait matching between mutualistic species is usually expected to maintain mutualism, but empirical studies of trait complementarity and coadaptation in multi-species assemblages-which represent the reality of most interactions in nature-are few. Here, we studied trait matching between the leafflower shrub Kirganelia microcarpa and three associated seed-predatory leafflower moths (Epicephala spp.) across 16 populations. Behavioral and morphological observations suggested that two moths (E. microcarpa and E. tertiaria) acted as pollinators while a third (E. laeviclada) acted as a cheater. These species differed in ovipositor morphology but showed trait complementarity between ovipositor length and floral traits at both species level and population level, presumably as adaptations to divergent oviposition behaviors. However, this trait matching varied among populations. Comparisons of ovipositor length and floral traits among populations with different moth assemblages suggested an increase of ovary wall thickness where the locular-ovipositing pollinator E. microcarpa and cheater E. laeviclada were present, while stylar pit depth was less in populations with the stylar pit-ovipositing pollinator E. tertiaria. Our study indicates that trait matching between interacting partners occurs even in extremely specialized multi-species mutualisms, and that although these responses vary, sometimes non-intuitively, in response to different partner species. It seems that the moths can track changes in host plant tissue depth for oviposition.
Collapse
Affiliation(s)
- Kai Hao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of ScienceGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - Ting‐Ting Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of ScienceGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - David H. Hembry
- Department of BiologyUniversity of Texas Permian BasinOdessaTexasUSA
| | - Shi‐Xiao Luo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of ScienceGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| |
Collapse
|
16
|
Andersson C, Czárán T. The transition from animal to human culture-simulating the social protocell hypothesis. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210416. [PMID: 36688383 PMCID: PMC9869448 DOI: 10.1098/rstb.2021.0416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/26/2022] [Indexed: 01/24/2023] Open
Abstract
The origin of human cumulative culture is commonly envisioned as the appearance (some 2.0-2.5 million years ago) of a capacity to faithfully copy the know-how that underpins socially learned traditions. While certainly plausible, this story faces a steep 'startup problem'. For example, it presumes that ape-like early Homo possessed specialized cognitive capabilities for faithful know-how copying and that early toolmaking actually required such a capacity. The social protocell hypothesis provides a leaner story, where cumulative culture may have originated even earlier-as cumulative systems of non-cumulative traditions ('institutions' and 'cultural lifestyles'), via an emergent group-level channel of cultural inheritance. This channel emerges as a side-effect of a specific but in itself unremarkable suite of social group behaviours. It is independent of faithful know-how copying, and an ancestral version is argued to persist in Pan today. Hominin cultural lifestyles would thereby have gained in complexity and sophistication, eventually becoming independent units of selection (socionts) via a cultural evolutionary transition in individuality, abstractly similar to the origin of early cells. We here explore this hypothesis by simulating its basic premises. The model produces the expected behaviour and reveals several additional and non-trivial phenomena as fodder for future work. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
Affiliation(s)
- Claes Andersson
- Department of Space, Earth and Environment, Division for Physical Resource Theory, Complex System Group, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- European Centre for Living Technology, University of Venice Ca’ Foscari, Ca' Bottacin, Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy
| | - Tamás Czárán
- Evolutionary Systems Research Group, ELKH Centre for Ecological Research, Karolina Road 29, H-1113 Budapest, Hungary
- Institute of Evolution, ELKH Centre for Ecological Research, Karolina Road 29, H-1113 Budapest, Hungary
- ELKH-ELTE Theoretical Biology and Evolutionary Research Group, Eötvös Loránd University, Egyetem tér 1–3, H-1053 Budapest, Hungary
| |
Collapse
|
17
|
Muñoz E, Carneiro J. Plant-microbe symbiosis widens the habitability range of the Daisyworld. J Theor Biol 2022; 554:111275. [PMID: 36099938 DOI: 10.1016/j.jtbi.2022.111275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/14/2023]
Abstract
Plant-microbe symbiosis is pervasive in the Earth's ecosystems and dates back to the early land colonisation by plants. Mutualistic partnership with rhizobia bacteria and mycorrhizal fungi promotes plant nutrition, growth and diversity, impacting important ecosystem functions. However, how the global behaviour and dynamical properties of an ecosystem are modified by plant-microbe symbiosis is still unclear. To tackle this theoretical question, we resorted to the Daisyworld as a toy model of the global ecosystem. We redesigned the original model to allow accounting for seed production, spreading, germination, and seedling development to mature seed-producing plants to describe how symbiotic and non-symbiotic daisy species differ in these key processes. Using the steady-state and bifurcation analysis of this model, we demonstrate that symbiosis with microbes broadens the habitability range of the Daisyworld by enhancing plant growth and/or facilitating plant access to otherwise uninhabitable nutrient-poor regions.
Collapse
Affiliation(s)
- Estefanía Muñoz
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; Biology by Numbers Postdoctoral Programme, Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | - Jorge Carneiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova, Oeiras, Portugal
| |
Collapse
|
18
|
Abstract
Hereditary symbioses have the potential to drive transgenerational effects, yet the mechanisms responsible for transmission of heritable plant symbionts are still poorly understood. The leaf symbiosis between Dioscorea sansibarensis and the bacterium Orrella dioscoreae offers an appealing model system to study how heritable bacteria are transmitted to the next generation. Here, we demonstrate that inoculation of apical buds with a bacterial suspension is sufficient to colonize newly formed leaves and propagules, and to ensure transmission to the next plant generation. Flagellar motility is not required for movement inside the plant but is important for the colonization of new hosts. Further, tissue-specific regulation of putative symbiotic functions highlights the presence of two distinct subpopulations of bacteria in the leaf gland and at the shoot meristem. We propose that bacteria in the leaf gland dedicate resources to symbiotic functions, while dividing bacteria in the shoot tip ensure successful colonization of meristematic tissue, glands, and propagules. Compartmentalization of intrahost populations together with tissue-specific regulation may serve as a robust mechanism for the maintenance of mutualism in leaf symbiosis.
Collapse
|
19
|
Vertebrate growth plasticity in response to variation in a mutualistic interaction. Sci Rep 2022; 12:11238. [PMID: 35851041 PMCID: PMC9293916 DOI: 10.1038/s41598-022-14662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Vertebrate growth can be phenotypically plastic in response to predator–prey and competitive interactions. It is unknown however, if it can be plastic in response to mutualistic interactions. Here we investigate plasticity of vertebrate growth in response to variation in mutualistic interactions, using clown anemonefish and their anemone hosts. In the wild, there is a positive correlation between the size of the fish and the size of the anemone, but the cause of this correlation is unknown. Plausible hypotheses are that fish exhibit growth plasticity in response to variation in food or space provided by the host. In the lab, we pair individuals with real anemones of various sizes and show that fish on larger anemones grow faster than fish on smaller anemones. By feeding the fish a constant food ration, we exclude variation in food availability as a cause. By pairing juveniles with artificial anemones of various sizes, we exclude variation in space availability as a single cause. We argue that variation in space availability in conjunction with host cues cause the variability in fish growth. By adjusting their growth, anemonefish likely maximize their reproductive value given their anemone context. More generally, we demonstrate vertebrate growth plasticity in response to variation in mutualistic interactions.
Collapse
|
20
|
Bunbury F, Deery E, Sayer AP, Bhardwaj V, Harrison EL, Warren MJ, Smith AG. Exploring the onset of B 12 -based mutualisms using a recently evolved Chlamydomonas auxotroph and B 12 -producing bacteria. Environ Microbiol 2022; 24:3134-3147. [PMID: 35593514 PMCID: PMC9545926 DOI: 10.1111/1462-2920.16035] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 12/01/2022]
Abstract
Cobalamin (vitamin B12 ) is a cofactor for essential metabolic reactions in multiple eukaryotic taxa, including major primary producers such as algae, and yet only prokaryotes can produce it. Many bacteria can colonize the algal phycosphere, forming stable communities that gain preferential access to photosynthate and in return provide compounds such as B12 . Extended coexistence can then drive gene loss, leading to greater algal-bacterial interdependence. In this study, we investigate how a recently evolved B12 -dependent strain of Chlamydomonas reinhardtii, metE7, forms a mutualism with certain bacteria, including the rhizobium Mesorhizobium loti and even a strain of the gut bacterium E. coli engineered to produce cobalamin. Although metE7 was supported by B12 producers, its growth in co-culture was slower than the B12 -independent wild-type, suggesting that high bacterial B12 provision may be necessary to favour B12 auxotrophs and their evolution. Moreover, we found that an E. coli strain that releases more B12 makes a better mutualistic partner, and although this trait may be more costly in isolation, greater B12 release provided an advantage in co-cultures. We hypothesize that, given the right conditions, bacteria that release more B12 may be selected for, particularly if they form close interactions with B12 -dependent algae.
Collapse
Affiliation(s)
- Freddy Bunbury
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Andrew P Sayer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Vaibhav Bhardwaj
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Ellen L Harrison
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NH, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
21
|
Seed Dispersal by Ants in Three Early-Flowering Plants. INSECTS 2022; 13:insects13040386. [PMID: 35447828 PMCID: PMC9024485 DOI: 10.3390/insects13040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Myrmecochory is seed dispersal of numerous plant species mediated by ants. We investigate ant–plant interactions under field conditions across two study sites in Central Europe. Three obligatory myrmecocohrous plants are chosen for the experiments: snowdrop Galanthus nivalis, hollow root Corydalis cava and European wild ginger Asarum europaeum. We experimentally alter diaspore morphology and record seed removal rates across five treatments: elaiosomes without seeds, diaspore without elaiosome, 1/2 elaiosome + diaspore, 1/2 diaspore + elaiosome and control. Elaiosomes of European wild ginger constitute about 30% of diaspore weight, elaiosomes of snowdrop constitute 13% and elaiosomes of hollow root constitute only 7.5%. Diaspore/elaiosome removal rates are highest in European wild ginger (34%), followed by hollow root (26%) and snowdrop (10%). Only two ants interact with diaspores, the acorn ant Temnothorax crassispinus and the red ant Myrmica ruginodis. Ants respond to elaiosome/seed ratio by removing elaiosomes without diaspores most frequently, followed by 1/2 diaspore + elaiosome, control, diaspores without elaiosomes and 1/2 elaiosome with diaspore. Plants do not effectively manipulate ant behavior and no dispersal benefits from interactions with ants are observed. Abstract Interactions between ants and plants vary from being occasionally beneficial to neutral and negative. Ant-mediated dispersal of obligatory myrmecochorous plants is considered mutualistic interaction, providing benefits to plants in terms of seed dispersal. Ants are rewarded by providing elaiosome, sugar, lipid and protein-rich appendages attached to seeds (diaspores). We experimentally examine rates of diaspore removal rates among three species of plants (snowdrop Galanthus nivalis, hollow root Corydalis cava and European wild ginger Asarum europaeum) under field conditions in two study sites in Central Europe. Diaspore morphology is altered by manipulating both elaiosome and seed size. The small-sized acorn ant Temnothorax crassispinus interacts with the snowdrop and hollow root and the moderately-sized red ant Myrmica ruginodis interacts with European wild ginger. Experimental manipulation with elaiosomes yields largely non-significant results. Diaspore removal rates are generally low (snowdrop 10%, hollow root 26%, European wild ginger 34%) probably due to the small size of ants relative to heavy diaspores. Many ants are observed to consume elaiosomes in situ (cheating). We conclude that ant–plant relationships in this case are not mutualistic but rather neutral/slightly negative, because the plants do not obtain any apparent benefits from their interactions with ants.
Collapse
|
22
|
Xu T, Xu M, Lu Y, Zhang W, Sun J, Zeng R, Turlings TCJ, Chen L. A trail pheromone mediates the mutualism between ants and aphids. Curr Biol 2021; 31:4738-4747.e4. [PMID: 34496221 DOI: 10.1016/j.cub.2021.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Mutualisms, such as the ones between ants and aphids, evolve and persist when benefits outweigh the costs from the interactions between the partners. We show here that the trail pheromone of the red imported fire ant, Solenopsis invicta, can enhance these benefits by suppressing aphid dispersal and stimulating their reproduction. The ant's mutualistic partner, the cotton aphid Aphis gossypii, was found to readily perceive and respond to two specific trail pheromone components. Two pheromone components, Z,E-α-farnesene and E,E-α-farnesene, both suppressed walking dispersal of apterous aphids, whereas only the major pheromone component, Z,E-α-farnesene, also increased aphid reproduction rate. The ants, as well as the aphids, benefit from this inter-species function of the trail pheromone. For the ants it increases and prolongs the availability of honeydew as a key food source, whereas the aphid colony benefits from faster population growth and continuous ant-provided protection. These findings reveal a hitherto unknown mechanism by which ants and aphids both increase the benefits that they provide to each other, thereby likely enhancing the stability of their mutualistic relationship.
Collapse
Affiliation(s)
- Tian Xu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Meng Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yongyue Lu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Wenqian Zhang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.
| | - Rensen Zeng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China.
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Li Chen
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China; Laboratory of Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
23
|
Boutry J, Tissot S, Ujvari B, Capp JP, Giraudeau M, Nedelcu AM, Thomas F. The evolution and ecology of benign tumors. Biochim Biophys Acta Rev Cancer 2021; 1877:188643. [PMID: 34715267 DOI: 10.1016/j.bbcan.2021.188643] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/12/2022]
Abstract
Tumors are usually classified into two main categories - benign or malignant, with much more attention being devoted to the second category given that they are usually associated with more severe health issues (i.e., metastatic cancers). Here, we argue that the mechanistic distinction between benign and malignant tumors has narrowed our understanding of neoplastic processes. This review provides the first comprehensive discussion of benign tumors in the context of their evolution and ecology as well as interactions with their hosts. We compare the genetic and epigenetic profiles, cellular activities, and the involvement of viruses in benign and malignant tumors. We also address the impact of intra-tumoral cell composition and its relationship with the tumoral microenvironment. Lastly, we explore the differences in the distribution of benign and malignant neoplasia across the tree of life and provide examples on how benign tumors can also affect individual fitness and consequently the evolutionary trajectories of populations and species. Overall, our goal is to bring attention to the non-cancerous manifestations of tumors, at different scales, and to stimulate research on the evolutionary ecology of host-tumor interactions on a broader scale. Ultimately, we suggest that a better appreciation of the differences and similarities between benign and malignant tumors is fundamental to our understanding of malignancy both at mechanistic and evolutionary levels.
Collapse
Affiliation(s)
- Justine Boutry
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Sophie Tissot
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin, University, Vic., Australia
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Mathieu Giraudeau
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France; LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
24
|
Steidinger BS, Peay KG. Optimal Allocation Ratios: A Square Root Relationship between the Ratios of Symbiotic Costs and Benefits. Am Nat 2021; 198:460-472. [PMID: 34559611 DOI: 10.1086/716182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAll organisms struggle to make sense of environmental stimuli in order to maximize their fitness. For animals, the responses of single cells and superorganisms to stimuli are generally proportional to stimulus ratios, a phenomenon described by Weber's law. However, Weber's law has not yet been used to predict how plants respond to stimuli generated from their symbiotic partners. Here we develop a model for quantitatively predicting the ratios of carbon (C) allocation to symbionts that provide nutrients to their plant host. Consistent with Weber's law, our model demonstrates that the optimal ratio of resources allocated to a less beneficial relative to a more beneficial symbiont scale to the ratio of the growth benefits of the two strains. As C allocation to symbionts increases, the ratio of C allocation to two strains approaches the square root of the ratio of symbiotic growth benefits (e.g., a worse symbiont providing one-fourth the benefits gets 1/4=1/2 the C of a better symbiont). We document a compelling correspondence between our square root model prediction and a meta-analysis of experimental literature on C allocation. This type of preferential allocation can promote coexistence between more beneficial and less beneficial symbionts, offering a potential mechanism behind the high diversity of microbial symbionts observed in nature.
Collapse
|
25
|
Camacho LF, Avilés L. Resource exchange and partner recognition mediate mutualistic interactions between prey and their would-be predators. Biol Lett 2021; 17:20210316. [PMID: 34376075 DOI: 10.1098/rsbl.2021.0316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animals may develop mutualistic associations with other species, whereby prey offer resources or services in exchange for protection from predators. Alternatively, prey may offer resources or services directly to their would-be predators in exchange for their lives. The latter may be the case of hemipterans that engage in mutualistic interactions with ants by offering a honeydew reward. We test the extent to which a honeydew offering versus partner recognition may play a role as proximate mechanisms deterring ants from predating upon their hemipteran partners. We showed that, when presented with a choice between a hemipteran partner and an alternative prey type, mutualist ants were less likely to attack and more likely to remain probing their hemipteran partners. This occurred even in the absence of an immediate sugary reward, suggesting either an evolved or learned partner recognition response. To a similar extent, however, ants were also less likely to attack the alternative prey type when laced with honey as a proxy for a honeydew reward. This was the case even after the honey had been depleted, suggesting an ability of ants to recognize new potential sources of sugars. Either possibility suggests a degree of innate or learned partner recognition.
Collapse
Affiliation(s)
- Luis F Camacho
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Leticia Avilés
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
26
|
The evolution of parasitism from mutualism in wasps pollinating the fig, Ficus microcarpa, in Yunnan Province, China. Proc Natl Acad Sci U S A 2021; 118:2021148118. [PMID: 34341115 DOI: 10.1073/pnas.2021148118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Theory identifies factors that can undermine the evolutionary stability of mutualisms. However, theory's relevance to mutualism stability in nature is controversial. Detailed comparative studies of parasitic species that are embedded within otherwise mutualistic taxa (e.g., fig pollinator wasps) can identify factors that potentially promote or undermine mutualism stability. We describe results from behavioral, morphological, phylogenetic, and experimental studies of two functionally distinct, but closely related, Eupristina wasp species associated with the monoecious host fig, Ficus microcarpa, in Yunnan Province, China. One (Eupristina verticillata) is a competent pollinator exhibiting morphologies and behaviors consistent with observed seed production. The other (Eupristina sp.) lacks these traits, and dramatically reduces both female and male reproductive success of its host. Furthermore, observations and experiments indicate that individuals of this parasitic species exhibit greater relative fitness than the pollinators, in both indirect competition (individual wasps in separate fig inflorescences) and direct competition (wasps of both species within the same fig). Moreover, phylogenetic analyses suggest that these two Eupristina species are sister taxa. By the strictest definition, the nonpollinating species represents a "cheater" that has descended from a beneficial pollinating mutualist. In sharp contrast to all 15 existing studies of actively pollinated figs and their wasps, the local F. microcarpa exhibit no evidence for host sanctions that effectively reduce the relative fitness of wasps that do not pollinate. We suggest that the lack of sanctions in the local hosts promotes the loss of specialized morphologies and behaviors crucial for pollination and, thereby, the evolution of cheating.
Collapse
|
27
|
Prevalence and Photobiology of Photosynthetic Dinoflagellate Endosymbionts in the Nudibranch Berghia stephanieae. Animals (Basel) 2021; 11:ani11082200. [PMID: 34438657 PMCID: PMC8388370 DOI: 10.3390/ani11082200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Some sea slugs have evolved highly specialized feeding habits and solely prey upon a reduced number of species. This is the case of Berghia stephanieae, a sea slug that feeds exclusively on glass anemones, such as Exaiptasia diaphana. Glass anemones host photosynthetic microalgae that B. stephanieae ingest when preying upon E. diaphana. The association between these photosynthetic microalgae and sea slugs appears to be limited in time, particularly if B. stephanieae is deprived of prey hosting these microalgae. In the present study, we validate the use of a non-invasive and non-destructive approach that allows monitoring the persistence of this association in live sea slugs by measuring chlorophyll fluorescence. A complete loss of photosynthetic microalgae was observed within 8 days when animals were deprived of food or fed glass anemones with no microalgae (bleached anemones). As such, the association between B. stephanieae and photosynthetic microalgae acquired when preying glass anemones is not a true symbiosis. Future studies may use the technique here described to monitor the prevalence of the association between sea slugs and photosynthetic microalgae, particularly under bleaching events that will impair sea slugs to acquire microalgae by preying upon their invertebrate hosts. Abstract Berghia stephanieae is a stenophagous sea slug that preys upon glass anemones, such as Exaiptasia diaphana. Glass anemones host photosynthetic dinoflagellate endosymbionts that sea slugs ingest when consuming E. diaphana. However, the prevalence of these photosynthetic dinoflagellate endosymbionts in sea slugs appears to be short-lived, particularly if B.stephanieae is deprived of prey that host these microalgae (e.g., during bleaching events impacting glass anemones). In the present study, we investigated this scenario, along with food deprivation, and validated the use of a non-invasive and non-destructive approach employing chlorophyll fluorescence as a proxy to monitor the persistence of the association between sea slugs and endosymbiotic photosynthetic dinoflagellates acquired through the consumption of glass anemones. Berghia stephanieae deprived of a trophic source hosting photosynthetic dinoflagellate endosymbionts (e.g., through food deprivation or by feeding on bleached E. diaphana) showed a rapid decrease in minimum fluorescence (Fo) and photosynthetic efficiency (Fv/Fm) when compared to sea slugs fed with symbiotic anemones. A complete loss of endosymbionts was observed within 8 days, confirming that no true symbiotic association was established. The present work opens a new window of opportunity to rapidly monitor in vivo and over time the prevalence of associations between sea slugs and photosynthetic dinoflagellate endosymbionts, particularly during bleaching events that prevent sea slugs from incorporating new microalgae through trophic interactions.
Collapse
|
28
|
Xu T, Chen L. Chemical communication in ant-hemipteran mutualism: potential implications for ant invasions. CURRENT OPINION IN INSECT SCIENCE 2021; 45:121-129. [PMID: 33901733 DOI: 10.1016/j.cois.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Ant-hemipteran mutualism is one of the most frequently observed food-for-protection associations in nature, and is recently found to contribute to the invasions of several of the most destructive invasive ants. Chemical communication underlies establishment and maintenance of such associations, in which a multitude of semiochemicals, such as pheromones, cuticular hydrocarbons, honeydew sugars and bacteria-produced honeydew volatiles mediate location, recognition, selection, learning of mutualistic partners. Here, we review what is known about the chemical communication between ants and honeydew-producing hemipterans, and discuss how invasive ants can rapidly recognize and establish a mutualistic relationship with the hemipterans with which they have never coevolved. We also highlight some future directions for a clearer understanding of the chemical communication in ant-hemipteran mutualism and its role in ant invasions.
Collapse
Affiliation(s)
- Tian Xu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Li Chen
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
29
|
Hayward A, Poulin R, Nakagawa S. A broadscale analysis of host-symbiont cophylogeny reveals the drivers of phylogenetic congruence. Ecol Lett 2021; 24:1681-1696. [PMID: 33987932 DOI: 10.1111/ele.13757] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/21/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
Symbioses exert substantial biological influence, with great evolutionary and ecological relevance for disease, major evolutionary transitions, and the structure and function of ecological communities. Yet, much remains unknown about the patterns and processes that characterise symbioses. A major unanswered question is the extent to which symbiont phylogenies mirror those of their hosts and if patterns differ for parasites and mutualists. Addressing this question offers fundamental insights into evolutionary processes, such as whether symbionts typically codiverge with their hosts or if diversity is generated via host switches. Here, we perform a meta-analysis of host-symbiont phylogenetic congruence, encompassing 212 host-symbiont cophylogenetic studies that include ~10,000 species. Our analysis supersedes previous qualitative assessments by utilising a quantitative framework. We show that symbiont phylogeny broadly reflects host phylogeny across biodiversity and life-history, demonstrating a general pattern of phylogenetic congruence in host-symbiont interactions. We reveal two key aspects of symbiont life-history that promote closer ties between hosts and symbionts: vertical transmission and mutualism. Mode of symbiosis and mode of transmission are intimately interlinked, but vertical transmission is the dominant factor. Given the pervasiveness of symbioses, these findings provide important insights into the processes responsible for generating and maintaining the Earth's rich biodiversity.
Collapse
Affiliation(s)
- Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
30
|
A Phylogeny-Informed Analysis of the Global Coral-Symbiodiniaceae Interaction Network Reveals that Traits Correlated with Thermal Bleaching Are Specific to Symbiont Transmission Mode. mSystems 2021; 6:6/3/e00266-21. [PMID: 33947806 PMCID: PMC8269218 DOI: 10.1128/msystems.00266-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The complex network of associations between corals and their dinoflagellates (family Symbiodiniaceae) are the basis of coral reef ecosystems but are sensitive to increasing global temperatures. Coral-symbiont interactions are restricted by ecological and evolutionary determinants that constrain partner choice and influence holobiont response to environmental stress; however, little is known about how these processes shape thermal resilience of the holobiont. Here, we built a network of global coral-Symbiodiniaceae associations, mapped species traits (e.g., symbiont transmission mode and biogeography) and phylogenetic relationships of both partners onto the network, and assigned thermotolerance to both host and symbiont nodes. Using network analysis and phylogenetic comparative methods, we determined the contribution of species traits to thermal resilience of the holobiont, while accounting for evolutionary patterns among species. We found that the network shows nonrandom interactions among species, which are shaped by evolutionary history, symbiont transmission mode (horizontally transmitted [HT] or vertically transmitted [VT] corals) and biogeography. Coral phylogeny, but not Symbiodiniaceae phylogeny, symbiont transmission mode, or biogeography, was a good predictor of thermal resilience. Closely related corals have similar Symbiodiniaceae interaction patterns and bleaching susceptibilities. Nevertheless, the association patterns that explain increased host thermal resilience are not generalizable across the entire network but are instead unique to HT and VT corals. Under nonstress conditions, thermally resilient VT coral species associate with thermotolerant phylotypes and limit their number of unique symbionts and overall symbiont thermotolerance diversity, while thermally resilient HT coral species associate with a few host-specific symbiont phylotypes. IMPORTANCE Recent advances have revealed a complex network of interactions between coral and Symbiodiniaceae. Specifically, nonrandom association patterns, which are determined in part by restrictions imposed by symbiont transmission mode, increase the sensitivity of the overall network to thermal stress. However, little is known about the extent to which coral-Symbiodiniaceae network resistance to thermal stress is shaped by host and symbiont species phylogenetic relationships and host and symbiont species traits, such as symbiont transmission mode. We built a frequency-weighted global coral-Symbiodiniaceae network and used network analysis and phylogenetic comparative methods to show that evolutionary relatedness, but not transmission mode, predicts thermal resilience of the coral-Symbiodiniaceae holobiont. Consequently, thermal stress events could result in nonrandom pruning of susceptible lineages and loss of taxonomic diversity with catastrophic effects on community resilience to future events. Our results show that inclusion of the contribution of evolutionary and ecological processes will further our understanding of the fate of coral assemblages under climate change.
Collapse
|
31
|
Rodrigues AMM, Estrela S, Brown SP. Community lifespan, niche expansion and the evolution of interspecific cooperation. J Evol Biol 2020; 34:352-363. [PMID: 33238064 DOI: 10.1111/jeb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022]
Abstract
Microbes live in dense and diverse communities where they deploy many traits that promote the growth and survival of neighbouring species, all the while also competing for shared resources. Because microbial communities are highly dynamic, the costs and benefits of species interactions change over the growth cycle of a community. How mutualistic interactions evolve under such demographic and ecological conditions is still poorly understood. Here, we develop an eco-evolutionary model to explore how different forms of helping with distinct fitness effects (rate-enhancing and yield-enhancing) affect the multiple phases of community growth, and its consequences for the evolution of mutualisms. We specifically focus on a form of yield-enhancing trait in which cooperation augments the common pool of resources, termed niche expansion. We show that although mutualisms in which cooperation increases partners growth rate are generally favoured at early stages of community growth, niche expansion can evolve at later stages where densities are high. Further, we find that niche expansion can promote the evolution of reproductive restraint, in which a focal species adaptively reduces its own growth rate to increase the density of partner species. Our findings suggest that yield-enhancing mutualisms are more prevalent in stable habitats with a constant supply of resources, and where populations typically live at high densities. In general, our findings highlight the need to integrate different components of population growth in the analysis of mutualisms to understand the composition and function of microbial communities.
Collapse
Affiliation(s)
| | - Sylvie Estrela
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
32
|
Sathe S, Kümmerli R. Antagonistic interactions subdue inter-species green-beard cooperation in bacteria. J Evol Biol 2020; 33:1245-1255. [PMID: 32946129 DOI: 10.1111/jeb.13666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Cooperation can be favoured through the green-beard mechanism, where a set of linked genes encodes both a cooperative trait and a phenotypic marker (green beard), which allows carriers of the trait to selectively direct cooperative acts to other carriers. In theory, the green-beard mechanism should favour cooperation even when interacting partners are totally unrelated at the genome level. Here, we explore such an extreme green-beard scenario between two unrelated bacterial species-Pseudomonas aeruginosa and Burkholderia cenocepacia, which share a cooperative locus encoding the public good pyochelin (an iron-scavenging siderophore) and its cognate receptor (green beard) required for iron-pyochelin uptake. We show that pyochelin, when provided in cell-free supernatants, can be mutually exchanged between species and provide fitness benefits under iron limitation. However, in co-culture we observed that these cooperative benefits vanished and communities were dominated by P. aeruginosa, regardless of strain background and species starting frequencies. Our results further suggest that P. aeruginosa engages in interference competition to suppress B. cenocepacia, indicating that inter-species conflict arising from dissimilarities at the genome level overrule the aligned cooperative interests at the pyochelin locus. Thus, green-beard cooperation is subdued by competition, indicating that interspecific siderophore cooperation is difficult to evolve and to be maintained.
Collapse
Affiliation(s)
- Santosh Sathe
- Department of Quantitative Biomedicine, University of Zürich, Zürich, Switzerland.,Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.,Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zürich, Zürich, Switzerland.,Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
33
|
Wisselink M, Aanen DK, van ’t Padje A. The Longevity of Colonies of Fungus-Growing Termites and the Stability of the Symbiosis. INSECTS 2020; 11:E527. [PMID: 32823564 PMCID: PMC7469218 DOI: 10.3390/insects11080527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 01/10/2023]
Abstract
The agricultural mutualistic symbiosis between macrotermitine termites and Termitomyces fungi is obligate for both partners. The termites provide a protective growth environment for the fungus by cultivating it inside their colony and providing it with foraged plant material. The termites use the fungus for plant substrate degradation, and the production of asexual fruiting bodies for nourishment and re-inoculation of the fungus garden. The termite colony can reach an age of up to several decades, during which time it is believed that a single fungal monoculture is asexually propagated by the offspring of a single founding royal pair. The termite-fungus mutualism has a long evolutionary history dating back more than 30 million years. Both on the time-scale of a termite colony lifespan and that of the mutualistic symbiosis, questions arise about stability. We address the physical stability of the mound, the termite colony and the monoculture fungal garden during a colony's lifetime. On the long-term evolutionary scale, we address the stability of the symbiosis, where horizontal transmission of the symbiotic fungus raises the question of how the mutualistic interaction between host and symbiont persists over generations.
Collapse
Affiliation(s)
| | - Duur K. Aanen
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (M.W.); (A.v.P.)
| | | |
Collapse
|
34
|
Nguyen PL, van Baalen M. On the difficult evolutionary transition from the free-living lifestyle to obligate symbiosis. PLoS One 2020; 15:e0235811. [PMID: 32730262 PMCID: PMC7392539 DOI: 10.1371/journal.pone.0235811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
Obligate symbiosis evolved from free-living individuals most likely via the intermediate stage of facultative symbiosis. However, why should facultative symbionts, who can live independently but also benefit from their partners if these are available, give up this best of both worlds? Using the adaptive dynamics approach, we analyse a simple model, focusing on one partner of the symbiosis, to gain more insight into the selective forces that make individuals forgo the ability to reproduce in the free-living state. Our results suggest that, similar to the parasitism-mutualism continuum, the free-living way of life and obligate symbiosis are two extremes of a continuum of the ability to reproduce independently of a partner. More importantly, facultative symbiosis should be the rule as for many parameter combinations completely giving up independent reproduction or adopting a pure free-living strategy is not so easy. We also show that if host encounter comes at a cost, individuals that put more effort into increasing the chances to meet with their partners are more likely to give up the ability to reproduce independently. Finally, our model does not specify the ecological interactions between hosts and symbionts but we discuss briefly how the ecological nature of an interaction can influence the transition from facultative to obligate symbiosis.
Collapse
Affiliation(s)
| | - Minus van Baalen
- Institut de Biologie de l’École Normale Supérieur, Paris, France
| |
Collapse
|
35
|
Abstract
Mutualistic symbiosis can be regarded as interspecific division of labour, which can improve the productivity of metabolites and services but deteriorate the ability to live without partners. Interestingly, even in environmentally acquired symbiosis, involved species often rely exclusively on the partners despite the lethal risk of missing partners. To examine this paradoxical evolution, we explored the coevolutionary dynamics in symbiotic species for the amount of investment in producing their essential metabolites, which symbiotic species can share. Our study has shown that, even if obtaining partners is difficult, 'perfect division of labour' (PDL) can be maintained evolutionarily, where each species perfectly specializes in producing one of the essential metabolites so that every member entirely depends on the others for survival, i.e. in exchange for losing the ability of living alone. Moreover, the coevolutionary dynamics shows multistability with other states including a state without any specialization. It can cause evolutionary hysteresis: once PDL has been achieved evolutionarily when obtaining partners was relatively easy, it is not reverted even if obtaining partners becomes difficult later. Our study suggests that obligate mutualism with a high degree of mutual specialization can evolve and be maintained easier than previously thought.
Collapse
Affiliation(s)
- Yu Uchiumi
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| | - Akira Sasaki
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan.,Evolution and Ecology Program, International Institute for Applied Systems Analysis, Schlosplatz 1, 2361, Laxenburg, Austria
| |
Collapse
|
36
|
Sørensen MES, Lowe CD, Minter EJA, Wood AJ, Cameron DD, Brockhurst MA. The role of exploitation in the establishment of mutualistic microbial symbioses. FEMS Microbiol Lett 2020; 366:5528313. [PMID: 31271421 PMCID: PMC6638607 DOI: 10.1093/femsle/fnz148] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Evolutionary theory suggests that the conditions required for the establishment of mutualistic symbioses through mutualism alone are highly restrictive, often requiring the evolution of complex stabilising mechanisms. Exploitation, whereby initially the host benefits at the expense of its symbiotic partner and mutual benefits evolve subsequently through trade-offs, offers an arguably simpler route to the establishment of mutualistic symbiosis. In this review, we discuss the theoretical and experimental evidence supporting a role for host exploitation in the establishment and evolution of mutualistic microbial symbioses, including data from both extant and experimentally evolved symbioses. We conclude that exploitation rather than mutualism may often explain the origin of mutualistic microbial symbioses.
Collapse
Affiliation(s)
- Megan E S Sørensen
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Chris D Lowe
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Ewan J A Minter
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - A Jamie Wood
- Department of Biology, University of York, York YO10 5DD, UK.,Department of Mathematics, University of York, York YO10 5DD, UK
| | - Duncan D Cameron
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
37
|
Lindgren H, Moncada B, Lücking R, Magain N, Simon A, Goffinet B, Sérusiaux E, Nelsen MP, Mercado-Díaz JA, Widhelm TJ, Lumbsch HT. Cophylogenetic patterns in algal symbionts correlate with repeated symbiont switches during diversification and geographic expansion of lichen-forming fungi in the genus Sticta (Ascomycota, Peltigeraceae). Mol Phylogenet Evol 2020; 150:106860. [PMID: 32473336 DOI: 10.1016/j.ympev.2020.106860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/10/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022]
Abstract
Species in the fungal genus Sticta form symbiotic associations primarily with either green algae or cyanobacteria, but tripartite associations or photosymbiodemes involving both types of photobionts occur in some species. Sticta is known to associate with green algae in the genus Symbiochloris. However, previous studies have shown that algae from other genera, such as Heveochlorella, may also be suitable partners for Sticta. We examined the diversity of green algal partners in the genus Sticta and assessed the patterns of association between the host fungus and its algal symbiont. We used multi-locus sequence data from multiple individuals collected in Australia, Cuba, Madagascar, Mauritius, New Zealand, Reunion and South America to infer phylogenies for fungal and algal partners and performed tests of congruence to assess coevolution between the partners. In addition, event-based methods were implemented to examine which cophylogenetic processes have led to the observed association patterns in Sticta and its green algal symbionts. Our results show that in addition to Symbiochloris, Sticta associates with green algae from the genera Chloroidium, Coccomyxa, Elliptochloris and Heveochlorella, the latter being the most common algal symbiont associated with Sticta in this study. Geography plays a strong role in shaping fungal-algal association patterns in Sticta as mycobionts associate with different algal lineages in different geographic locations. While fungal and algal phylogenies were mostly congruent, event-based methods did not find any evidence for cospeciation between the partners. Instead, the association patterns observed in Sticta and associated algae, were largely explained by other cophylogenetic events such as host-switches, losses of symbiont and failure of the symbiont to diverge with its host. Our results also show that tripartite associations with green algae evolved multiple times in Sticta.
Collapse
Affiliation(s)
- Hanna Lindgren
- Science and Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605, United States.
| | - Bibiana Moncada
- Licenciatura en Biología, Universidad Distrital Francisco José de Caldas, Cra. 4 No. 26D-54, Torre de Laboratorios, Herbario, Bogotá, Colombia
| | - Robert Lücking
- Botanical Garden and Botanical Museum, Koenigin-Luise-Strasse 6-8, 14195 Berlin, Germany
| | - Nicolas Magain
- Evolution and Conservation Biology, University of Liège, Sart Tilman B22, B-4000 Liège, Belgium; Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Antoine Simon
- Evolution and Conservation Biology, University of Liège, Sart Tilman B22, B-4000 Liège, Belgium
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
| | - Emmanuël Sérusiaux
- Evolution and Conservation Biology, University of Liège, Sart Tilman B22, B-4000 Liège, Belgium
| | - Matthew P Nelsen
- Science and Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605, United States
| | - Joel A Mercado-Díaz
- Science and Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605, United States; Committee on Evolutionary Biology, University of Chicago, 1025 E. 57(th) street, Chicago, IL 60637, USA
| | - Todd J Widhelm
- Science and Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605, United States
| | - H Thorsten Lumbsch
- Science and Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605, United States
| |
Collapse
|
38
|
Figueiredo ART, Kramer J. Cooperation and Conflict Within the Microbiota and Their Effects On Animal Hosts. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
39
|
Abstract
Abstract
Fig tree–fig wasp mutualisms are diverse and underpin much biodiversity. The wasps (Agaonidae) are the sole pollinators of the trees (Ficus). Figs are enclosed inflorescences, each of which contains many small flowers. Female wasps (foundresses) enter receptive figs to spread pollen and to lay their eggs individually into fig flowers. As they oviposit, wasps also inject chemicals that transform individual flower ovaries into galls that will feed and house wasp offspring. For fig tree–fig wasp mutualisms to persist, the trees must set seed; therefore, the wasps have both to pollinate and to fail to gall all flower ovaries. However, wasps that avoid pollination costs and/or gall all flowers are predicted to outcompete more cooperative conspecifics, resulting in destabilisation of the mutualism. Here, I review the literature on why wasps pollinate by focusing on how trees reduce investment to unpollinated figs, resulting in ‘sanctions’ to wasps that fail to pollinate via reduced production of offspring. I also review the mechanisms that prevent wasps from galling all flowers, mainly those in monoecious Ficus, that also result in wasps predominantly galling longer flowers whilst leaving shorter flowers to become seeds. I make suggestions for future work and conclude by reaffirming why multiple processes promote stability in fig tree–fig wasp mutualisms.
Collapse
Affiliation(s)
- Derek W Dunn
- College of Life Sciences, Northwest University, Xian, China
| |
Collapse
|
40
|
Griffiths JI, Cohen AL, Jones V, Salgia R, Chang JT, Bild AH. Opportunities for improving cancer treatment using systems biology. ACTA ACUST UNITED AC 2019; 17:41-50. [PMID: 32518857 DOI: 10.1016/j.coisb.2019.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Current cancer therapies target a limited set of tumor features, rather than considering the tumor as a whole. Systems biology aims to reveal therapeutic targets associated with a variety of facets in an individual's tumor, such as genetic heterogeneity and its evolution, cancer cell-autonomous phenotypes, and microenvironmental signaling. These disparate characteristics can be reconciled using mathematical modeling that incorporates concepts from ecology and evolution. This provides an opportunity to predict tumor growth and response to therapy, to tailor patient-specific approaches in real time or even prospectively. Importantly, as data regarding patient tumors is often available from only limited time points during treatment, systems-based approaches can address this limitation by interpolating longitudinal events within a principled framework. This review outlines areas in medicine that could benefit from systems biology approaches to deconvolve the complexity of cancer.
Collapse
Affiliation(s)
- Jason I Griffiths
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam L Cohen
- Huntsman Cancer Institute, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Veronica Jones
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Andrea H Bild
- Department of Medical Oncology, Division of Molecular Pharmacology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
41
|
Caves EM, Chen C, Johnsen S. The cleaner shrimp Lysmata amboinensis adjusts its behaviour towards predatory versus non-predatory clients. Biol Lett 2019; 15:20190534. [PMID: 31530112 DOI: 10.1098/rsbl.2019.0534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In cleaning mutualisms, small cleaner organisms remove ectoparasites and dead skin from larger clients. Because cheating by predatory clients can result in cleaner death, cleaners should assess the potential risk of interacting with a given client and adjust their behaviour accordingly. Cleaner shrimp are small marine crustaceans that interact with numerous client fish species, many of which are potential predators. We use in situ observations of cleaner-client interactions to show that the cleaner shrimp Lysmata amboinensis adjusts several behaviours when interacting with predatory versus non-predatory clients. Predatory clients were cleaned in a significantly lower proportion of interactions than non-predatory clients, and cleaners also exhibited a leg rocking behaviour-potentially signalling their identity or intent to clean-almost exclusively toward predatory clients. Incidence of leg rocking was positively correlated with client size, and laboratory experiments showed that it can be elicited by dark visual stimuli and decreases in illumination level. Thus, cleaners clean less frequently when predation risk is higher, and may use leg rocking as a signal advertising cleaning services and directed specifically at predators.
Collapse
Affiliation(s)
- Eleanor M Caves
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Catherine Chen
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
42
|
Sinnesael A, Leroux O, Janssens SB, Smets E, Panis B, Verstraete B. Is the bacterial leaf nodule symbiosis obligate for Psychotria umbellata? The development of a Burkholderia-free host plant. PLoS One 2019; 14:e0219863. [PMID: 31310638 PMCID: PMC6634412 DOI: 10.1371/journal.pone.0219863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/02/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND & AIMS The bacterial leaf nodule symbiosis is an interaction where bacteria are housed in specialised structures in the leaves of their plant host. In the Rubiaceae plant family, host plants interact with Burkholderia bacteria. This interaction might play a role in the host plant defence system. It is unique due to its high specificity; the vertical transmission of the endophyte to the next generation of the host plant; and its supposedly obligatory character. Although previous attempts have been made to investigate this obligatory character by developing Burkholderia-free plants, none have succeeded and nodulating plants were still produced. In order to investigate the obligatory character of this endosymbiosis, our aims were to develop Burkholderia-free Psychotria umbellata plants and to investigate the effect of the absence of the endophytes on the host in a controlled environment. METHODS The Burkholderia-free plants were obtained via embryo culture, a plant cultivation technique. In order to analyse the endophyte-free status, we screened the plants morphologically, microscopically and molecularly over a period of three years. To characterise the phenotype and growth of the in vitro aposymbiotic plants, we compared the growth of the Burkholderia-free plants to the nodulating plants under the same in vitro conditions. KEY RESULTS All the developed plants were Burkholderia-free and survived in a sterile in vitro environment. The growth analysis showed that plants without endophytes had a slower development. CONCLUSIONS Embryo culture is a cultivation technique with a high success rate for the development of Burkholderia-free plants of P. umbellata. The increased growth rate in vitro when the specific endophyte is present cannot be explained by possible benefits put forward in previous studies. This might indicate that the benefits of the endosymbiosis are not yet completely understood.
Collapse
Affiliation(s)
- Arne Sinnesael
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
- Meise Botanic Garden, Meise, Belgium
| | | | - Steven B. Janssens
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
- Meise Botanic Garden, Meise, Belgium
| | - Erik Smets
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Bart Panis
- Bioversity International, Leuven, Belgium
| | | |
Collapse
|
43
|
Yamawo A, Suzuki N, Tagawa J. Extrafloral nectary-bearing plant Mallotus japonicus uses different types of extrafloral nectaries to establish effective defense by ants. JOURNAL OF PLANT RESEARCH 2019; 132:499-507. [PMID: 31228016 PMCID: PMC7196952 DOI: 10.1007/s10265-019-01119-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/06/2019] [Indexed: 05/31/2023]
Abstract
Extrafloral nectary (EFN)-bearing plants attract ants to gain protection against herbivores. Some EFN-bearing plants possess different types of EFNs, which might have different effects on ants on the plants. Mallotus japonicus (Thunb.) Muell. Arg. (Euphorbiaceae) bears two types of EFNs, including a pair of large EFNs at the leaf base and many small EFNs along the leaf edge. This study aimed to determine the different roles of the two types of EFNs in biotic defense by ants. A field experiment was conducted to investigate the effect of leaf damage on EFN production and on the distribution pattern of ants. After leaf damage, the number of leaf edge EFNs increased in the leaves first-produced. The number of ants on the leaves also increased, and the foraging area of ants extended from the leaf base to the leaf tip. An EFN-covering field experiment revealed that leaf edge EFNs had a greater effect than leaf base EFNs on ant dispersal on leaves. The extended foraging area of ants resulted in an increase of encounter or attack rate against an experimentally placed herbivore, Spodoptera litura. These results suggest that M. japonicus plants control the foraging area of ants on their leaves using different types of EFNs in response to leaf damage, thus achieving a very effective biotic defense against herbivores by ants.
Collapse
Affiliation(s)
- Akira Yamawo
- Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga, 840-8502, Japan.
| | - Nobuhiko Suzuki
- Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga, 840-8502, Japan
| | - Jun Tagawa
- Department of Biosphere-Geosphere System Science, Faculty of Informatics, Okayama University of Science, Okayama, 700-0005, Japan
| |
Collapse
|
44
|
Müller J, Spriewald S, Stecher B, Stadler E, Fuchs TM. Evolutionary Stability of Salmonella Competition with the Gut Microbiota: How the Environment Fosters Heterogeneity in Exploitative and Interference Competition. J Mol Biol 2019; 431:4732-4748. [PMID: 31260689 DOI: 10.1016/j.jmb.2019.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 11/27/2022]
Abstract
Following ingestion, gastrointestinal pathogens compete against the gastrointestinal microbiota and overcome host immune defenses in order to cause infections. Besides employing direct killing mechanisms, the commensal microbiota occupies metabolic niches to outcompete invading pathogens. Salmonella enterica serovar Typhimurium (S. Typhimurium) uses several strategies to successfully colonize the gut and establish infection, of which an increasing number is based on phenotypic heterogeneity within the S. Typhimurium population. The utilization of myo-inositol (MI) and the production of colicin confer a selective advantage over the microbiota in terms of exploitative and interference competition, respectively. In this review, we summarize the genetic basis underlying bistability of MI catabolism and colicin production. As demonstrated by single-cell analyses, a stochastic switch in the expression of the genes responsible for colicin production and MI degradation constitutes the heterogeneity of the two phenotypes. Both genetic systems are tightly regulated to avoid their expression under non-appropriate conditions and possible detrimental effects on bacterial fitness. Moreover, evolutionary mechanisms underlying formation and stability of these phenotypes in S. Typhimurium are discussed. We propose that both MI catabolism and colicin production create a bet-hedging strategy, which provides an adaptive benefit for S. Typhimurium in the fluctuating environment of the mammalian gut.
Collapse
Affiliation(s)
- Johannes Müller
- Technische Universität München, Centre for Mathematical Sciences, Boltzmannstr. 3, 85747 Garching, Germany; Institute for Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Stefanie Spriewald
- Max von Pettenkofer-Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany
| | - Eva Stadler
- Technische Universität München, Centre for Mathematical Sciences, Boltzmannstr. 3, 85747 Garching, Germany
| | - Thilo M Fuchs
- Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Naumburger Str. 96a, 07743 Jena, Germany.
| |
Collapse
|
45
|
Krah FS, Büntgen U, Schaefer H, Müller J, Andrew C, Boddy L, Diez J, Egli S, Freckleton R, Gange AC, Halvorsen R, Heegaard E, Heideroth A, Heibl C, Heilmann-Clausen J, Høiland K, Kar R, Kauserud H, Kirk PM, Kuyper TW, Krisai-Greilhuber I, Norden J, Papastefanou P, Senn-Irlet B, Bässler C. European mushroom assemblages are darker in cold climates. Nat Commun 2019; 10:2890. [PMID: 31253790 PMCID: PMC6599080 DOI: 10.1038/s41467-019-10767-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/30/2019] [Indexed: 12/22/2022] Open
Abstract
Thermal melanism theory states that dark-colored ectotherm organisms are at an advantage at low temperature due to increased warming. This theory is generally supported for ectotherm animals, however, the function of colors in the fungal kingdom is largely unknown. Here, we test whether the color lightness of mushroom assemblages is related to climate using a dataset of 3.2 million observations of 3,054 species across Europe. Consistent with the thermal melanism theory, mushroom assemblages are significantly darker in areas with cold climates. We further show differences in color phenotype between fungal lifestyles and a lifestyle differentiated response to seasonality. These results indicate a more complex ecological role of mushroom colors and suggest functions beyond thermal adaption. Because fungi play a crucial role in terrestrial carbon and nutrient cycles, understanding the links between the thermal environment, functional coloration and species' geographical distributions will be critical in predicting ecosystem responses to global warming.
Collapse
Affiliation(s)
- Franz-Sebastian Krah
- Plant Biodiversity Research Group, Department of Ecology & Ecosystem Management, Technische Universität München, 85354, Freising, Germany.
- Bavarian Forest National Park, 94481, Grafenau, Germany.
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Cambridge, CB2 3EN, UK
- Research Unit Biodiversity & Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
- Global Change Research Centre and Masaryk University, 61300, Brno, Czech Republic
| | - Hanno Schaefer
- Plant Biodiversity Research Group, Department of Ecology & Ecosystem Management, Technische Universität München, 85354, Freising, Germany
| | - Jörg Müller
- Bavarian Forest National Park, 94481, Grafenau, Germany
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter University of Würzburg, 96181, Rauhenebrach, Germany
| | - Carrie Andrew
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Lynne Boddy
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Jeffrey Diez
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Simon Egli
- Research Unit Biodiversity & Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Robert Freckleton
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Alan C Gange
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Rune Halvorsen
- Natural History Museum, University of Oslo, Blindern, 0318, Oslo, Norway
| | - Einar Heegaard
- Norwegian Institute of Bioeconomy Research, 5244, Fana, Norway
| | - Antje Heideroth
- Bavarian Forest National Park, 94481, Grafenau, Germany
- Ecology Research Group, Department of Biology, Philipps Uuniversity Marburg, 35043, Marburg, Germany
| | | | - Jacob Heilmann-Clausen
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Klaus Høiland
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Ritwika Kar
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, 72076, Tuebingen, Germany
| | - Håvard Kauserud
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Paul M Kirk
- Mycology Section, Jodrell Laboratory, Royal Botanic Gardens Kew, Surrey, TW9 3DS, UK
| | - Thomas W Kuyper
- Department of Soil Quality, Wageningen University, 6700 AA, Wageningen, The Netherlands
| | - Irmgard Krisai-Greilhuber
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, 1030, Vienna, Austria
| | - Jenni Norden
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Phillip Papastefanou
- TUM School of Life Sciences Weihenstephan, Land Surface-Atmosphere Interactions, Technical University of Munich, 85354, Freising, Germany
| | - Beatrice Senn-Irlet
- Research Unit Biodiversity & Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Claus Bässler
- Bavarian Forest National Park, 94481, Grafenau, Germany.
- Technical University of Munich, Chair for Terrestrial Ecology, 85354, Freising, Germany.
| |
Collapse
|
46
|
Shibasaki S. The evolutionary game of interspecific mutualism in the multi-species model. J Theor Biol 2019; 471:51-58. [PMID: 30935957 DOI: 10.1016/j.jtbi.2019.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 11/30/2022]
Abstract
Mutualistic interspecific interactions, including Müllerian mimicry and division of labor, are common in nature. In contrast to antagonistic interactions, where faster evolution is favored, mutualism can favor slower evolution under certain conditions. This is called the Red King effect. Since Bergstrom and Lachmann (2003) proposed the Red King effect, it has been investigated only in two-species models. However, biological examples suggest that mutualism can include three or more species. Here, I modeled the evolutionary dynamics of mutualism in communities where involving two or more species, and in which all species mutually interact. Regardless of the number of species in the community, it is possible to derive conditions for stable equilibria. Although nonlinear relationships exist between the evolutionary rates and the evolutionary fate of each species in the multi-species communities, the model suggests that it is possible to predict whether faster evolution is favored or disfavored for the relatively rapidly evolving species; however, it is difficult to predict the evolutionary fate of species that evolve relatively slowly because their evolutionary dynamics are affected by the evolutionary fate of species evolving rapidly.
Collapse
Affiliation(s)
- Shota Shibasaki
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 1538902, Japan; Department of Fundamental Microbiology, University of Lausanne, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
47
|
De Medeiros BAS, Núñez-Avellaneda LA, Hernandez AM, Farrell BD. Flower visitors of the licuri palm (Syagrus coronata): brood pollinators coexist with a diverse community of antagonists and mutualists. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Bruno A S De Medeiros
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology Harvard University, Cambridge, MA, USA
| | | | - Alyssa M Hernandez
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology Harvard University, Cambridge, MA, USA
| | - Brian D Farrell
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology Harvard University, Cambridge, MA, USA
| |
Collapse
|
48
|
Sinnesael A, Eeckhout S, Janssens SB, Smets E, Panis B, Leroux O, Verstraete B. Detection of Burkholderia in the seeds of Psychotria punctata (Rubiaceae) - Microscopic evidence for vertical transmission in the leaf nodule symbiosis. PLoS One 2018; 13:e0209091. [PMID: 30550604 PMCID: PMC6294375 DOI: 10.1371/journal.pone.0209091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/29/2018] [Indexed: 11/25/2022] Open
Abstract
Background and aims The bacterial leaf nodule symbiosis is a close interaction between endophytes and their plant hosts, mainly within the coffee family. The interaction between Rubiaceae species and Burkholderia bacteria is unique due to its obligate nature, high specificity, and predominantly vertical transmission of the endophytes to the next generation of host plants. This vertical transmission is intriguing since it is the basis for the uniqueness of the symbiosis. However, unequivocal evidence of the location of the endophytes in the seeds is lacking. The aim of this paper is therefore to demonstrate the presence of the host specific endophyte in the seeds of Psychotria punctata and confirm its precise location. In addition, the suggested location of the endophyte in other parts of the host plant is investigated. Methods To identify and locate the endophyte in Psychotria punctata, a two-level approach was adopted using both a molecular screening method and fluorescent in situ hybridisation microscopy. Key results The endophytes, molecularly identified as Candidatus Burkholderia kirkii, were detected in the leaves, vegetative and flower buds, anthers, gynoecium, embryos, and young twigs. In addition, they were in situ localised in leaves, flowers and shoot apical meristems, and, for the first time, in between the cotyledons of the embryos. Conclusions Both independent techniques detected the host specific endophyte in close proximity to the shoot apical meristem of the embryo, which confirms for the first time the exact location of the endophytes in the seeds. This study provides reliable proof that the endophytes are maintained throughout the growth and development of the host plant and are transmitted vertically to the offspring.
Collapse
Affiliation(s)
- Arne Sinnesael
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
- Botanic Garden Meise, Meise, Belgium
- * E-mail:
| | | | | | - Erik Smets
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
- Naturalis Biodiversity Center, University of Leiden, Leiden, the Netherlands
| | - Bart Panis
- Bioversity International, Leuven, Belgium
| | | | | |
Collapse
|
49
|
|
50
|
Hare D, Blossey B, Reeve HK. Value of species and the evolution of conservation ethics. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181038. [PMID: 30564400 PMCID: PMC6281939 DOI: 10.1098/rsos.181038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
The theory of evolution by natural selection can help explain why people care about other species. Building upon recent insights that morality evolves to secure fitness advantages of cooperation, we propose that conservation ethics (moral beliefs, attitudes, intuitions and norms regarding other species) could be adaptations that support cooperation between humans and non-humans. We present eco-evolutionary cost-benefit models of conservation behaviours as interspecific cooperation (altruism towards members of other species). We find that an evolutionary rule identical in structure to Hamilton's rule (which explains altruistic behaviour towards related conspecifics) can explain altruistic behaviour towards members of other species. Natural selection will favour traits for selectively altering the success of members of other species (e.g. conserving them) in ways that maximize inclusive fitness return benefits. Conservation behaviours and the ethics that evolve to reinforce them will be sensitive to local ecological and socio-cultural conditions, so will assume different contours in different places. Difficulties accurately assessing costs and benefits provided by other species, time required to adapt to ecological and socio-cultural change and barriers to collective action could explain the apparent contradiction between the widespread existence of conservation ethics and patterns of biodiversity decline globally.
Collapse
Affiliation(s)
- Darragh Hare
- Department of Natural Resources, Cornell University, Fernow Hall, Ithaca, NY 14853, USA
| | - Bernd Blossey
- Department of Natural Resources, Cornell University, Fernow Hall, Ithaca, NY 14853, USA
| | - H. Kern Reeve
- Department of Neurobiology and Behavior, Cornell University, Mudd Hall, Ithaca, NY 14853, USA
| |
Collapse
|