1
|
Landerer C, Scheremetjew M, Moon H, Hersemann L, Toth-Petroczy A. deTELpy: Python package for high-throughput detection of amino acid substitutions in mass spectrometry datasets. Bioinformatics 2024; 40:btae424. [PMID: 38941503 PMCID: PMC11236091 DOI: 10.1093/bioinformatics/btae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024] Open
Abstract
MOTIVATION Errors in the processing of genetic information during protein synthesis can lead to phenotypic mutations, such as amino acid substitutions, e.g. by transcription or translation errors. While genetic mutations can be readily identified using DNA sequencing, and mutations due to transcription errors by RNA sequencing, translation errors can only be identified proteome-wide using mass spectrometry. RESULTS Here, we provide a Python package implementation of a high-throughput pipeline to detect amino acid substitutions in mass spectrometry datasets. Our tools enable users to process hundreds of mass spectrometry datasets in batch mode to detect amino acid substitutions and calculate codon-specific and site-specific translation error rates. deTELpy will facilitate the systematic understanding of amino acid misincorporation rates (translation error rates), and the inference of error models across organisms and under stress conditions, such as drug treatment or disease conditions. AVAILABILITY AND IMPLEMENTATION deTELpy is implemented in Python 3 and is freely available with detailed documentation and practical examples at https://git.mpi-cbg.de/tothpetroczylab/detelpy and https://pypi.org/project/deTELpy/ and can be easily installed via pip install deTELpy.
Collapse
Affiliation(s)
- Cedric Landerer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Maxim Scheremetjew
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - HongKee Moon
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Lena Hersemann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Agnes Toth-Petroczy
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
2
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Nagao A, Nakanishi Y, Yamaguchi Y, Mishina Y, Karoji M, Toya T, Fujita T, Iwasaki S, Miyauchi K, Sakaguchi Y, Suzuki T. Quality control of protein synthesis in the early elongation stage. Nat Commun 2023; 14:2704. [PMID: 37198183 PMCID: PMC10192219 DOI: 10.1038/s41467-023-38077-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
In the early stage of bacterial translation, peptidyl-tRNAs frequently dissociate from the ribosome (pep-tRNA drop-off) and are recycled by peptidyl-tRNA hydrolase. Here, we establish a highly sensitive method for profiling of pep-tRNAs using mass spectrometry, and successfully detect a large number of nascent peptides from pep-tRNAs accumulated in Escherichia coli pthts strain. Based on molecular mass analysis, we found about 20% of the peptides bear single amino-acid substitutions of the N-terminal sequences of E. coli ORFs. Detailed analysis of individual pep-tRNAs and reporter assay revealed that most of the substitutions take place at the C-terminal drop-off site and that the miscoded pep-tRNAs rarely participate in the next round of elongation but dissociate from the ribosome. These findings suggest that pep-tRNA drop-off is an active mechanism by which the ribosome rejects miscoded pep-tRNAs in the early elongation, thereby contributing to quality control of protein synthesis after peptide bond formation.
Collapse
Affiliation(s)
- Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Yui Nakanishi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yutaro Yamaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshifumi Mishina
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Minami Karoji
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takafumi Toya
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
4
|
Muronetz VI, Pozdyshev DV, Medvedeva MV, Sevostyanova IA. Potential Effect of Post-Transcriptional Substitutions of Tyrosine for Cysteine Residues on Transformation of Amyloidogenic Proteins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:170-178. [PMID: 35508908 DOI: 10.1134/s0006297922020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The review considers the reasons and consequences of post-transcriptional tyrosine substitutions for cysteine residues. Main attention is paid to the Tyr/Cys substitutions that arise during gene expression in bacterial systems at the stage of protein translation as a result of misrecognition of the similar mRNA codons. Notably, translation errors generally occur relatively rarely - from 10-4 to 10-3 errors per codon for E. coli cells, but in some cases the error rate increases significantly. For example, this is typical for certain pairs of codons, when the culture conditions change or in the presence of antibiotics. Thus, with overproduction of the recombinant human alpha-synuclein in E. coli cells, the content of the mutant form with the replacement of Tyr136 (UAC codon) with a cysteine residue (UGC codon) can reach 50%. Possible reasons for the increased production of alpha-synuclein with the Tyr136Cys substitution are considered, as well as consequences of the presence of mutant forms in preparations of amyloidogenic proteins when studying their pathological transformation in vitro. A separate section is devoted to the Tyr/Cys substitutions occurring due to mRNA editing by adenosine deaminases, which is typical for eukaryotic organisms, and the possible role of this process in the amyloid transformation of proteins associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Denis V Pozdyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria V Medvedeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina A Sevostyanova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
5
|
Kato Y. Translational Control using an Expanded Genetic Code. Int J Mol Sci 2019; 20:ijms20040887. [PMID: 30781713 PMCID: PMC6412442 DOI: 10.3390/ijms20040887] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 11/16/2022] Open
Abstract
A bio-orthogonal and unnatural substance, such as an unnatural amino acid (Uaa), is an ideal regulator to control target gene expression in a synthetic gene circuit. Genetic code expansion technology has achieved Uaa incorporation into ribosomal synthesized proteins in vivo at specific sites designated by UAG stop codons. This site-specific Uaa incorporation can be used as a controller of target gene expression at the translational level by conditional read-through of internal UAG stop codons. Recent advances in optimization of site-specific Uaa incorporation for translational regulation have enabled more precise control over a wide range of novel important applications, such as Uaa-auxotrophy-based biological containment, live-attenuated vaccine, and high-yield zero-leakage expression systems, in which Uaa translational control is exclusively used as an essential genetic element. This review summarizes the history and recent advance of the translational control by conditional stop codon read-through, especially focusing on the methods using the site-specific Uaa incorporation.
Collapse
Affiliation(s)
- Yusuke Kato
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Oowashi 1-2, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
6
|
Kato Y. Tight Translational Control Using Site-Specific Unnatural Amino Acid Incorporation with Positive Feedback Gene Circuits. ACS Synth Biol 2018; 7:1956-1963. [PMID: 29979867 DOI: 10.1021/acssynbio.8b00204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tight regulatory system for gene expression, which is ideally controlled by unnatural and bio-orthogonal substances, is a keystone for successful construction of synthetic gene circuits. Here, we present a widely applicable approach to construct tight protein translational switches using site-specific unnatural amino acid (Uaa) incorporation systems. As a key mechanism to obtain excellent tightness, we installed gene circuits for positive feedback derepression. This mechanism dramatically suppressed leakage translation in the absence of the Uaa. In a translational switch with the feedback circuit in Escherichia coli, a 1.4 × 103 ON/OFF ratio was achieved which was 3 × 102-fold greater than that of the parent system and was comparable to that of the well-known tight expression system using the araBAD promoter and the araC regulator. This method offers an avenue for generation of novel tight genetic switches from over a hundred site-specific unnatural amino acid incorporation systems which have already been established. These tight translational switches will facilitate the development of fine gene control systems in synthetic biology, especially for Uaa-auxotrophy-based biological containments and live attenuated vaccines.
Collapse
Affiliation(s)
- Yusuke Kato
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Oowashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
7
|
Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C. RNA Phage Biology in a Metagenomic Era. Viruses 2018; 10:E386. [PMID: 30037084 PMCID: PMC6071253 DOI: 10.3390/v10070386] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022] Open
Abstract
The number of novel bacteriophage sequences has expanded significantly as a result of many metagenomic studies of phage populations in diverse environments. Most of these novel sequences bear little or no homology to existing databases (referred to as the "viral dark matter"). Also, these sequences are primarily derived from DNA-encoded bacteriophages (phages) with few RNA phages included. Despite the rapid advancements in high-throughput sequencing, few studies enrich for RNA viruses, i.e., target viral rather than cellular fraction and/or RNA rather than DNA via a reverse transcriptase step, in an attempt to capture the RNA viruses present in a microbial communities. It is timely to compile existing and relevant information about RNA phages to provide an insight into many of their important biological features, which should aid in sequence-based discovery and in their subsequent annotation. Without comprehensive studies, the biological significance of RNA phages has been largely ignored. Future bacteriophage studies should be adapted to ensure they are properly represented in phageomic studies.
Collapse
Affiliation(s)
- Julie Callanan
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - Stephen R Stockdale
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Andrey Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| |
Collapse
|
8
|
Translational fidelity and mistranslation in the cellular response to stress. Nat Microbiol 2017; 2:17117. [PMID: 28836574 DOI: 10.1038/nmicrobiol.2017.117] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/20/2017] [Indexed: 11/08/2022]
Abstract
Faithful translation of mRNA into the corresponding polypeptide is a complex multistep process, requiring accurate amino acid selection, transfer RNA (tRNA) charging and mRNA decoding on the ribosome. Key players in this process are aminoacyl-tRNA synthetases (aaRSs), which not only catalyse the attachment of cognate amino acids to their respective tRNAs, but also selectively hydrolyse incorrectly activated non-cognate amino acids and/or misaminoacylated tRNAs. This aaRS proofreading provides quality control checkpoints that exclude non-cognate amino acids during translation, and in so doing helps to prevent the formation of an aberrant proteome. However, despite the intrinsic need for high accuracy during translation, and the widespread evolutionary conservation of aaRS proofreading pathways, requirements for translation quality control vary depending on cellular physiology and changes in growth conditions, and translation errors are not always detrimental. Recent work has demonstrated that mistranslation can also be beneficial to cells, and some organisms have selected for a higher degree of mistranslation than others. The aims of this Review Article are to summarize the known mechanisms of protein translational fidelity and explore the diversity and impact of mistranslation events as a potentially beneficial response to environmental and cellular stress.
Collapse
|
9
|
Vieira JP, Racle J, Hatzimanikatis V. Analysis of Translation Elongation Dynamics in the Context of an Escherichia coli Cell. Biophys J 2017; 110:2120-31. [PMID: 27166819 DOI: 10.1016/j.bpj.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/07/2016] [Accepted: 04/04/2016] [Indexed: 01/01/2023] Open
Abstract
Understanding the mechanisms behind translation and its rate-limiting steps is crucial for both the development of drug targets and improvement of heterologous protein production with many biotechnological applications, such as in pharmaceutical and biofuel industries. Despite many advances in the knowledge of the ribosome structure and function, there is still much discussion around the determinants of translation elongation with experiments and computational studies pointing in different directions. Here, we use a stochastic framework to simulate the process of translation in the context of an Escherichia coli cell by gathering the available biochemical data into a ribosome kinetics description. Our results from the study of translation in E. coli at different growth rates contradict the increase of mean elongation rate with growth rate established in the literature. We show that both the level of tRNA competition and the type of cognate binding interaction contribute to the modulation of elongation rate, and that optimization of a heterologous transcript for faster elongation rate is achieved by combining the two. We derive an equation that can accurately predict codon elongation rates based on the abundances of free tRNA in the cell, and can be used to assist transcript design. Finally, we show that non-cognate tRNA-ribosome binding has an important weight in translation, and plays an active role in the modulation of mean elongation rate as shown by our amino-acid starvation/surplus studies.
Collapse
Affiliation(s)
- Joana Pinto Vieira
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Julien Racle
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Ribas de Pouplana L, Santos MAS, Zhu JH, Farabaugh PJ, Javid B. Protein mistranslation: friend or foe? Trends Biochem Sci 2014; 39:355-62. [PMID: 25023410 DOI: 10.1016/j.tibs.2014.06.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 01/03/2023]
Abstract
The translation of genes into functional proteins involves error. Mistranslation is a known cause of disease, but, surprisingly, recent studies suggest that certain organisms from all domains of life have evolved diverse pathways that increase their tolerance of translational error. Although the reason for these high error rates are not yet clear, evidence suggests that increased mistranslation may have a role in the generation of diversity within the proteome and other adaptive functions. Error rates are regulated, and there appears to be an optimal mistranslation rate that varies by organism and environmental condition. Advances in unbiased interrogation of error types and experiments involving wild organisms may help our understanding of the potentially adaptive roles for protein translation errors.
Collapse
Affiliation(s)
- Liuís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), c/Baldiri Reixac 10, Barcelona, 08028, Catalonia, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Catalonia, Spain
| | - Manuel A S Santos
- RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Jun-Hao Zhu
- Centre for Infectious Diseases Research, Tsinghua University School of Medicine, Beijing, China
| | - Philip J Farabaugh
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Babak Javid
- Centre for Infectious Diseases Research, Tsinghua University School of Medicine, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China.
| |
Collapse
|
11
|
Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 2010; 464:441-4. [PMID: 20154731 DOI: 10.1038/nature08817] [Citation(s) in RCA: 503] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 01/07/2010] [Indexed: 11/09/2022]
Abstract
The in vivo, genetically programmed incorporation of designer amino acids allows the properties of proteins to be tailored with molecular precision. The Methanococcus jannaschii tyrosyl-transfer-RNA synthetase-tRNA(CUA) (MjTyrRS-tRNA(CUA)) and the Methanosarcina barkeri pyrrolysyl-tRNA synthetase-tRNA(CUA) (MbPylRS-tRNA(CUA)) orthogonal pairs have been evolved to incorporate a range of unnatural amino acids in response to the amber codon in Escherichia coli. However, the potential of synthetic genetic code expansion is generally limited to the low efficiency incorporation of a single type of unnatural amino acid at a time, because every triplet codon in the universal genetic code is used in encoding the synthesis of the proteome. To encode efficiently many distinct unnatural amino acids into proteins we require blank codons and mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs that recognize unnatural amino acids and decode the new codons. Here we synthetically evolve an orthogonal ribosome (ribo-Q1) that efficiently decodes a series of quadruplet codons and the amber codon, providing several blank codons on an orthogonal messenger RNA, which it specifically translates. By creating mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs and combining them with ribo-Q1 we direct the incorporation of distinct unnatural amino acids in response to two of the new blank codons on the orthogonal mRNA. Using this code, we genetically direct the formation of a specific, redox-insensitive, nanoscale protein cross-link by the bio-orthogonal cycloaddition of encoded azide- and alkyne-containing amino acids. Because the synthetase-tRNA pairs used have been evolved to incorporate numerous unnatural amino acids, it will be possible to encode more than 200 unnatural amino acid combinations using this approach. As ribo-Q1 independently decodes a series of quadruplet codons, this work provides foundational technologies for the encoded synthesis and synthetic evolution of unnatural polymers in cells.
Collapse
Affiliation(s)
- Heinz Neumann
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | |
Collapse
|
12
|
Kramer EB, Farabaugh PJ. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA (NEW YORK, N.Y.) 2007; 13:87-96. [PMID: 17095544 PMCID: PMC1705757 DOI: 10.1261/rna.294907] [Citation(s) in RCA: 359] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Estimates of missense error rates (misreading) during protein synthesis vary from 10(-3) to 10(-4) per codon. The experiments reporting these rates have measured several distinct errors using several methods and reporter systems. Variation in reported rates may reflect real differences in rates among the errors tested or in sensitivity of the reporter systems. To develop a more accurate understanding of the range of error rates, we developed a system to quantify the frequency of every possible misreading error at a defined codon in Escherichia coli. This system uses an essential lysine in the active site of firefly luciferase. Mutations in Lys529 result in up to a 1600-fold reduction in activity, but the phenotype varies with amino acid. We hypothesized that residual activity of some of the mutant genes might result from misreading of the mutant codons by tRNA(Lys) (UUUU), the cognate tRNA for the lysine codons, AAA and AAG. Our data validate this hypothesis and reveal details about relative missense error rates of near-cognate codons. The error rates in E. coli do, in fact, vary widely. One source of variation is the effect of competition by cognate tRNAs for the mutant codons; higher error frequencies result from lower competition from low-abundance tRNAs. We also used the system to study the effect of ribosomal protein mutations known to affect error rates and the effect of error-inducing antibiotics, finding that they affect misreading on only a subset of near-cognate codons and that their effect may be less general than previously thought.
Collapse
Affiliation(s)
- Emily B Kramer
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland, Baltimore, Maryland 21250, USA
| | | |
Collapse
|
13
|
Pavoni E, Flego M, Dupuis ML, Barca S, Petronzelli F, Anastasi AM, D'Alessio V, Pelliccia A, Vaccaro P, Monteriù G, Ascione A, De Santis R, Felici F, Cianfriglia M, Minenkova O. Selection, affinity maturation, and characterization of a human scFv antibody against CEA protein. BMC Cancer 2006; 6:41. [PMID: 16504122 PMCID: PMC1402309 DOI: 10.1186/1471-2407-6-41] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 02/24/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CEA is a tumor-associated antigen abundantly expressed on several cancer types, including those naturally refractory to chemotherapy. The selection and characterization of human anti-CEA single-chain antibody fragments (scFv) is a first step toward the construction of new anticancer monoclonal antibodies designed for optimal blood clearance and tumor penetration. METHODS The human MA39 scFv, selected for its ability to recognize a CEA epitope expressed on human colon carcinomas, was first isolated from a large semi-synthetic ETH-2 antibody phage library, panned on human purified CEA protein. Subsequently, by in vitro mutagenesis of a gene encoding for the scFv MA39, a new library was established, and new scFv antibodies with improved affinity towards the CEA cognate epitope were selected and characterized. RESULTS The scFv MA39 antibody was affinity-maturated by in vitro mutagenesis and the new scFv clone, E8, was isolated, typed for CEA family member recognition and its CEACAM1, 3 and 5 shared epitope characterized for expression in a large panel of human normal and tumor tissues and cells. CONCLUSION The binding affinity of the scFv E8 is in a range for efficient, in vivo, antigen capture in tumor cells expressing a shared epitope of the CEACAM1, 3 and 5 proteins. This new immunoreagent meets all criteria for a potential anticancer compound: it is human, hence poorly or not at all immunogenic, and it binds selectively and with good affinity to the CEA epitope expressed by metastatic melanoma and colon and lung carcinomas. Furthermore, its small molecular size should provide for efficient tissue penetration, yet give rapid plasma clearance.
Collapse
Affiliation(s)
- Emiliano Pavoni
- Kenton Labs, c/o Sigma-Tau, via Pontina, km 30.400, 00040 Pomezia (RM), Italy
| | - Michela Flego
- Pharamcogenetics, Drug Resistance & Experimental Therapeutics Section, Department of Drug Research and Evaluation of Italian National Institute of Health (Istituto Superiore di Sanità), Viale R. Elena 299, 00161 Rome, Italy
| | - Maria Luisa Dupuis
- Pharamcogenetics, Drug Resistance & Experimental Therapeutics Section, Department of Drug Research and Evaluation of Italian National Institute of Health (Istituto Superiore di Sanità), Viale R. Elena 299, 00161 Rome, Italy
| | - Stefano Barca
- Pharamcogenetics, Drug Resistance & Experimental Therapeutics Section, Department of Drug Research and Evaluation of Italian National Institute of Health (Istituto Superiore di Sanità), Viale R. Elena 299, 00161 Rome, Italy
| | - Fiorella Petronzelli
- Immunology Department, Sigma-Tau, via Pontina, km 30.400, 00040 Pomezia (RM), Italy
| | - Anna Maria Anastasi
- Immunology Department, Sigma-Tau, via Pontina, km 30.400, 00040 Pomezia (RM), Italy
| | - Valeria D'Alessio
- Immunology Department, Sigma-Tau, via Pontina, km 30.400, 00040 Pomezia (RM), Italy
| | - Angela Pelliccia
- Immunology Department, Sigma-Tau, via Pontina, km 30.400, 00040 Pomezia (RM), Italy
| | - Paola Vaccaro
- Kenton Labs, c/o Sigma-Tau, via Pontina, km 30.400, 00040 Pomezia (RM), Italy
| | - Giorgia Monteriù
- Kenton Labs, c/o Sigma-Tau, via Pontina, km 30.400, 00040 Pomezia (RM), Italy
| | - Alessandro Ascione
- Pharamcogenetics, Drug Resistance & Experimental Therapeutics Section, Department of Drug Research and Evaluation of Italian National Institute of Health (Istituto Superiore di Sanità), Viale R. Elena 299, 00161 Rome, Italy
| | - Rita De Santis
- Immunology Department, Sigma-Tau, via Pontina, km 30.400, 00040 Pomezia (RM), Italy
| | - Franco Felici
- Kenton Labs, c/o Sigma-Tau, via Pontina, km 30.400, 00040 Pomezia (RM), Italy
- Department of Microbiology, Genetics, Molecular Biology, University of Messina, Messina, 98100, Italy
| | - Maurizio Cianfriglia
- Pharamcogenetics, Drug Resistance & Experimental Therapeutics Section, Department of Drug Research and Evaluation of Italian National Institute of Health (Istituto Superiore di Sanità), Viale R. Elena 299, 00161 Rome, Italy
| | - Olga Minenkova
- Kenton Labs, c/o Sigma-Tau, via Pontina, km 30.400, 00040 Pomezia (RM), Italy
| |
Collapse
|
14
|
|
15
|
Gromadski KB, Rodnina MV. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol Cell 2004; 13:191-200. [PMID: 14759365 DOI: 10.1016/s1097-2765(04)00005-x] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 10/28/2003] [Accepted: 11/17/2003] [Indexed: 11/19/2022]
Abstract
The ribosome selects aminoacyl-tRNA (aa-tRNA) matching to the mRNA codon from the bulk of non-matching aa-tRNAs in two consecutive selection steps, initial selection and proofreading. Here we report the kinetic analysis of selection taking place under conditions where the overall selectivity was close to values observed in vivo and initial selection and proofreading contributed about equally. Comparison of the rate constants shows that the 350-fold difference in stabilities of cognate and near-cognate codon-anticodon complexes is not used for tRNA selection due to high rate of GTP hydrolysis in the cognate complex. tRNA selection at the initial selection step is entirely kinetically controlled and is due to much faster (650-fold) GTP hydrolysis of cognate compared to near-cognate substrate.
Collapse
Affiliation(s)
- Kirill B Gromadski
- Institute of Physical Biochemistry, University of Witten/Herdecke, D-58448 Witten, Germany
| | | |
Collapse
|
16
|
Tolić-Nørrelykke SF, Engh AM, Landick R, Gelles J. Diversity in the rates of transcript elongation by single RNA polymerase molecules. J Biol Chem 2003; 279:3292-9. [PMID: 14604986 DOI: 10.1074/jbc.m310290200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single-molecule measurements of the activities of a variety of enzymes show that rates of catalysis may vary markedly between different molecules in putatively homogeneous enzyme preparations. We measured the rate at which purified Escherichia coli RNA polymerase moves along a approximately 2650-bp DNA during transcript elongation in vitro at 0.5 mm nucleoside triphosphates. Individual molecules of a specifically biotinated RNA polymerase derivative were tagged with 199-nm diameter avidin-coated polystyrene beads; enzyme movement along a surface-linked DNA molecule was monitored by observing changes in bead Brownian motion by light microscopy. The DNA was derived from a naturally occurring transcription unit and was selected for the absence of regulatory sequences that induce lengthy pausing or termination of transcription. With rare exceptions, individual enzyme molecules moved at a constant velocity throughout the transcription reaction; the distribution of velocities across a population of 140 molecules was unimodal and was well fit by a Gaussian. However, the width of the Gaussian, sigma = 6.7 bp/s, was considerably larger than the precision of the velocity measurement (1 bp/s). The observations show that different transcription complexes have differences in catalytic rate (and thus differences in structure) that persist for thousands of catalytic turnovers. These differences may provide a parsimonious explanation for the complex transcription kinetics observed in bulk solution.
Collapse
|
17
|
Rodnina MV, Wintermeyer W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu Rev Biochem 2002; 70:415-35. [PMID: 11395413 DOI: 10.1146/annurev.biochem.70.1.415] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ribosome discriminates between correct and incorrect aminoacyl-tRNAs (aa-tRNAs), or their complexes with elongation factor Tu (EF-Tu) and GTP, according to the match between anticodon and mRNA codon in the A site. Selection takes place at two stages, prior to GTP hydrolysis (initial selection) and after GTP hydrolysis but before peptide bond formation (proofreading). In part, discrimination results from different rejection rates that are due to different stabilities of the respective codon-anticodon complexes. An important additional contribution is provided by induced fit, in that only correct codon recognition leads to acceleration of rate-limiting rearrangements that precede chemical steps. Recent elucidation of ribosome structures and mutational analyses suggest which residues of the decoding center may be involved in signaling formation of the correct codon-anticodon duplex to the functional centers of the ribosome. In utilizing induced fit for substrate discrimination, the ribosome resembles other nucleic acid-programmed polymerases.
Collapse
Affiliation(s)
- M V Rodnina
- Institute of Physical Biochemistry, University of Witten/Herdecke, 58448 Witten, Germany.
| | | |
Collapse
|
18
|
Nastri HG, Fastame IG, Algranati ID. Polyamines modulate streptomycin-induced mistranslation in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1216:455-9. [PMID: 8268227 DOI: 10.1016/0167-4781(93)90014-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of intracellular levels of polyamines on both the in vivo inhibition of protein synthesis and the decrease of translation accuracy induced by streptomycin have been studied in polyamine-auxotrophic strains of Escherichia coli infected with the MS2 bacteriophage. The amount of viral coat protein formed was strongly reduced upon addition of increasing concentrations of streptomycin to polyamine-supplemented bacteria. In contrast, the antibiotic almost did not inhibit coat protein synthesis in polyamine-starved cells. The increase of mistranslation frequency elicited by streptomycin was only observed in bacteria grown with putrescine. In these cells several coat protein-satellites were detected after two-dimensional gel electrophoresis. These proteins, more basic than the normal MS2 coat protein, contain multiple substitutions of lysine for asparagine.
Collapse
Affiliation(s)
- H G Nastri
- Instituto de Investigaciones Bioquímicas 'Fundación Campomar', Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
| | | | | |
Collapse
|
19
|
Cornut B, Willson RC. Measurement of translational accuracy in vivo: missense reporting using inactive enzyme mutants. Biochimie 1991; 73:1567-72. [PMID: 1805970 DOI: 10.1016/0300-9084(91)90192-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The measurement and potential technological significance of in vivo missense errors are briefly reviewed. A recently developed approach is described in which reporter enzyme activity is generated by mistranslation of a gene coding for an inactive mutant form of the enzyme. Initial results obtained using the alpha subunit of E coli tryptophan synthetase and bacterial luciferase are discussed, as well as the prospects for further development of this method.
Collapse
Affiliation(s)
- B Cornut
- Department of Chemical Engineering, University of Houston, TX 77204-4792
| | | |
Collapse
|
20
|
|
21
|
Precup J, Parker J. Missense misreading of asparagine codons as a function of codon identity and context. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)60966-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Parker J, Precup J. Mistranslation during phenylalanine starvation. MOLECULAR & GENERAL GENETICS : MGG 1986; 204:70-4. [PMID: 3018446 DOI: 10.1007/bf00330189] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Starvation for phenylalanine led to leucine misincorporation frequencies of 0.1 and 0.6 at UUC codons in the argI transcript of Escherichia coli, but no detectable misincorporation at a UUU codon. Under similar starvation conditions the relative synthesis of full sized MS2 coat protein, encoded by the RNA virus or a DNA copy, is greatly reduced, preventing analysis of the protein. This reduction in amount is unaffected by a rpsL mutation.
Collapse
|
23
|
Khazaie K, Buchanan JH, Rosenberger RF. The accuracy of Q beta RNA translation. 2. Errors during the synthesis of Q beta proteins by cell-free Escherichia coli extracts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 144:491-5. [PMID: 6386473 DOI: 10.1111/j.1432-1033.1984.tb08492.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The accuracy of Q beta translation by Escherichia coli extracts in polymix and a conventional Tris/Mg2+ system has been followed. Misinsertions of histidine and of tryptophan into the phage coat protein were less frequent in polymix than in Tris/Mg2+, as were errors leading to a change in the coat protein pI. Even the lowest Q beta error rates, however, were still an order of magnitude greater than those for poly(U) or poly(U-G) translation. Comparing Q beta translational errors made in vitro to those found in whole cells, histidine misinsertions were almost twice as frequent, errors leading to a coat protein charge change six times more frequent and tryptophan misinsertions at least 15 times more frequent in vitro. The relation of these findings to measurements of translational accuracy and to factors affecting fidelity is discussed.
Collapse
|