1
|
Li BY, Peng WQ, Liu Y, Guo L, Tang QQ. HIGD1A links SIRT1 activity to adipose browning by inhibiting the ROS/DNA damage pathway. Cell Rep 2023; 42:112731. [PMID: 37393616 DOI: 10.1016/j.celrep.2023.112731] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/28/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
Energy-dissipating adipocytes have the potential to improve metabolic health. Here, we identify hypoxia-induced gene domain protein-1a (HIGD1A), a mitochondrial inner membrane protein, as a positive regulator of adipose browning. HIGD1A is induced in thermogenic fats by cold exposure. Peroxisome proliferator-activated receptor gamma (PPARγ) transactivates HIGD1A expression synergistically with peroxisome proliferators-activated receptor γ coactivator α (PGC1α). HIGD1A knockdown inhibits adipocyte browning, whereas HIGD1A upregulation promotes the browning process. Mechanistically, HIGD1A deficiency impairs mitochondrial respiration to increase reactive oxygen species (ROS) level. This increases NAD+ consumption for DNA damage repair and curtails the NAD+/NADH ratio, which inhibits sirtuin1 (SIRT1) activity, thereby compromising adipocyte browning. Conversely, overexpression of HIGD1A blunts the above process to promote adaptive thermogenesis. Furthermore, mice with HIGD1A knockdown in inguinal and brown fat have impaired thermogenesis and are prone to diet-induced obesity (DIO). Overexpression of HIGD1A favors adipose tissue browning, ultimately preventing DIO and metabolic disorders. Thus, the mitochondrial protein HIGD1A links SIRT1 activity to adipocyte browning by inhibiting ROS levels.
Collapse
Affiliation(s)
- Bai-Yu Li
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wan-Qiu Peng
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Chang HR, Jung E, Cho S, Jeon YJ, Kim Y. Targeting Non-Oncogene Addiction for Cancer Therapy. Biomolecules 2021; 11:129. [PMID: 33498235 PMCID: PMC7909239 DOI: 10.3390/biom11020129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
While Next-Generation Sequencing (NGS) and technological advances have been useful in identifying genetic profiles of tumorigenesis, novel target proteins and various clinical biomarkers, cancer continues to be a major global health threat. DNA replication, DNA damage response (DDR) and repair, and cell cycle regulation continue to be essential systems in targeted cancer therapies. Although many genes involved in DDR are known to be tumor suppressor genes, cancer cells are often dependent and addicted to these genes, making them excellent therapeutic targets. In this review, genes implicated in DNA replication, DDR, DNA repair, cell cycle regulation are discussed with reference to peptide or small molecule inhibitors which may prove therapeutic in cancer patients. Additionally, the potential of utilizing novel synthetic lethal genes in these pathways is examined, providing possible new targets for future therapeutics. Specifically, we evaluate the potential of TONSL as a novel gene for targeted therapy. Although it is a scaffold protein with no known enzymatic activity, the strategy used for developing PCNA inhibitors can also be utilized to target TONSL. This review summarizes current knowledge on non-oncogene addiction, and the utilization of synthetic lethality for developing novel inhibitors targeting non-oncogenic addiction for cancer therapy.
Collapse
Affiliation(s)
- Hae Ryung Chang
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| | - Eunyoung Jung
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| | - Soobin Cho
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea;
| | - Yonghwan Kim
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| |
Collapse
|
3
|
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD + metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther 2020; 5:227. [PMID: 33028824 PMCID: PMC7539288 DOI: 10.1038/s41392-020-00311-7] [Citation(s) in RCA: 502] [Impact Index Per Article: 100.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its metabolites function as critical regulators to maintain physiologic processes, enabling the plastic cells to adapt to environmental changes including nutrient perturbation, genotoxic factors, circadian disorder, infection, inflammation and xenobiotics. These effects are mainly achieved by the driving effect of NAD+ on metabolic pathways as enzyme cofactors transferring hydrogen in oxidation-reduction reactions. Besides, multiple NAD+-dependent enzymes are involved in physiology either by post-synthesis chemical modification of DNA, RNA and proteins, or releasing second messenger cyclic ADP-ribose (cADPR) and NAADP+. Prolonged disequilibrium of NAD+ metabolism disturbs the physiological functions, resulting in diseases including metabolic diseases, cancer, aging and neurodegeneration disorder. In this review, we summarize recent advances in our understanding of the molecular mechanisms of NAD+-regulated physiological responses to stresses, the contribution of NAD+ deficiency to various diseases via manipulating cellular communication networks and the potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Peter Ernst Huber
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Tanuma SI, Shibui Y, Oyama T, Uchiumi F, Abe H. Targeting poly(ADP-ribose) glycohydrolase to draw apoptosis codes in cancer. Biochem Pharmacol 2019; 167:163-172. [PMID: 31176615 DOI: 10.1016/j.bcp.2019.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/04/2019] [Indexed: 12/30/2022]
Abstract
Poly(ADP-ribosyl)ation is a unique post-translational modification of proteins. The metabolism of poly(ADP-ribose) (PAR) is tightly regulated mainly by poly(ADP-ribose) polymerases (PARP) and poly(ADP-ribose) glycohydrolase (PARG). Accumulating evidence has suggested the biological functions of PAR metabolism in control of many cellular processes, such as cell proliferation, differentiation and death by remodeling chromatin structure and regulation of DNA transaction, including DNA repair, replication, recombination and transcription. However, the physiological roles of the catabolism of PAR catalyzed by PARG remain less understood than those of PAR synthesis by PARP. Noteworthy biochemical studies have revealed the importance of PAR catabolic pathway generating nuclear ATP via the coordinated actions of PARG and ADP-ribose pyrophosphorylase (ADPRPPL) for the driving of DNA repair and the maintenance of DNA replication apparatus while repairing DNA damage. Furthermore, genetic studies have shown the value of PARG as a therapeutic molecular target for PAR-mediated diseases, such as cancer, inflammation and many pathological conditions. In this review, we present the current knowledge of de-poly(ADP-ribosyl)ation catalyzed by PARG focusing on its role in DNA repair, replication and apoptosis. Furthermore, the induction of apoptosis code of DNA replication catastrophe by synthetic lethality of PARG inhibition and the recent progresses regarding the development of small molecule PARG inhibitors and their therapeutic potentials in cancer chemotherapy are highlighted in this review.
Collapse
Affiliation(s)
- Sei-Ichi Tanuma
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Yuto Shibui
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takahiro Oyama
- Hinoki Shinyaku Co., Ltd., 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideaki Abe
- Hinoki Shinyaku Co., Ltd., 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan
| |
Collapse
|
5
|
Chen C, Masi RD, Lintermann R, Wirthmueller L. Nuclear Import of Arabidopsis Poly(ADP-Ribose) Polymerase 2 Is Mediated by Importin-α and a Nuclear Localization Sequence Located Between the Predicted SAP Domains. FRONTIERS IN PLANT SCIENCE 2018; 9:1581. [PMID: 30455710 PMCID: PMC6230994 DOI: 10.3389/fpls.2018.01581] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/10/2018] [Indexed: 05/17/2023]
Abstract
Proteins of the Poly(ADP-Ribose) Polymerase (PARP) family modify target proteins by covalent attachment of ADP-ribose moieties onto amino acid side chains. In Arabidopsis, PARP proteins contribute to repair of DNA lesions and modulate plant responses to various abiotic and biotic stressors. Arabidopsis PARP1 and PARP2 are nuclear proteins and given that their molecular weights exceed the diffusion limit of nuclear pore complexes, an active import mechanism into the nucleus is likely. Here we use confocal microscopy of fluorescent protein-tagged Arabidopsis PARP2 and PARP2 deletion constructs in combination with site-directed mutagenesis to identify a nuclear localization sequence in PARP2 that is required for nuclear import. We report that in co-immunoprecipitation assays PARP2 interacts with several isoforms of the importin-α group of nuclear transport adapters and that PARP2 binding to IMPORTIN-α2 is mediated by the identified nuclear localization sequence. Our results demonstrate that PARP2 is a cargo protein of the canonical importin-α/β nuclear import pathway.
Collapse
Affiliation(s)
| | | | | | - Lennart Wirthmueller
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Bonfiglio JJ, Fontana P, Zhang Q, Colby T, Gibbs-Seymour I, Atanassov I, Bartlett E, Zaja R, Ahel I, Matic I. Serine ADP-Ribosylation Depends on HPF1. Mol Cell 2017; 65:932-940.e6. [PMID: 28190768 PMCID: PMC5344681 DOI: 10.1016/j.molcel.2017.01.003] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 12/28/2022]
Abstract
ADP-ribosylation (ADPr) regulates important patho-physiological processes through its attachment to different amino acids in proteins. Recently, by precision mapping on all possible amino acid residues, we identified histone serine ADPr marks in the DNA damage response. However, the biochemical basis underlying this serine modification remained unknown. Here we report that serine ADPr is strictly dependent on histone PARylation factor 1 (HPF1), a recently identified regulator of PARP-1. Quantitative proteomics revealed that serine ADPr does not occur in cells lacking HPF1. Moreover, adding HPF1 to in vitro PARP-1/PARP-2 reactions is necessary and sufficient for serine-specific ADPr of histones and PARP-1 itself. Three endogenous serine ADPr sites are located on the PARP-1 automodification domain. Further identification of serine ADPr on HMG proteins and hundreds of other targets indicates that serine ADPr is a widespread modification. We propose that O-linked protein ADPr is the key signal in PARP-1/PARP-2-dependent processes that govern genome stability.
Collapse
Affiliation(s)
- Juan José Bonfiglio
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Pietro Fontana
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Qi Zhang
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Thomas Colby
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Ian Gibbs-Seymour
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ilian Atanassov
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Edward Bartlett
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Roko Zaja
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Ivan Matic
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany.
| |
Collapse
|
7
|
Qiao A, Jin X, Pang J, Moskophidis D, Mivechi NF. The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis. J Cell Biol 2017; 216:723-741. [PMID: 28183717 PMCID: PMC5350514 DOI: 10.1083/jcb.201607091] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/20/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023] Open
Abstract
How cells sense energetic demands and regulate their bioenergetic networks to balance anabolism and catabolism is unclear. Qiao et al show that HSF1, a regulator of the chaperone response, has a central role in systemic energy sensing and is required for metabolic adaptation to nutrient availability. Metabolic energy reprogramming facilitates adaptations to a variety of stress conditions and cellular dysfunction, but how the energetic demands are monitored and met in response to physiological stimuli remains elusive. Our data support a model demonstrating that heat shock factor 1 (HSF1), a master transcriptional regulator of the chaperone response, has been coopted from its role as a critical protein quality-control regulator to having a central role in systemic energy sensing and for metabolic adaptation to nutrient availability. We found that in the absence of HSF1, levels of NAD+ and ATP are not efficiently sustained in hepatic cells, largely because of transcriptional repression of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway. Mechanistically, the defect in NAD+ and ATP synthesis linked to a loss of NAD+-dependent deacetylase activity, increased protein acetylation, and impaired mitochondrial integrity. Remarkably, the drop in ATP level caused by HSF1 loss invoked an adaptive response featuring the inhibition of energetically demanding processes, including gluconeogenesis, translation, and lipid synthesis. Our work identifies HSF1 as a central regulator of cellular bioenergetics and protein homeostasis that benefits malignant cell progression and exacerbates development of metabolic diseases.
Collapse
Affiliation(s)
- Aijun Qiao
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Georgia Cancer Center, Augusta University, Augusta, GA 30912
| | - Xiongjie Jin
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Georgia Cancer Center, Augusta University, Augusta, GA 30912
| | - Junfeng Pang
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Georgia Cancer Center, Augusta University, Augusta, GA 30912
| | - Demetrius Moskophidis
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912 .,Georgia Cancer Center, Augusta University, Augusta, GA 30912.,Department of Medicine, Augusta University, Augusta, GA 30912
| | - Nahid F Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912 .,Georgia Cancer Center, Augusta University, Augusta, GA 30912.,Department of Radiology, Augusta University, Augusta, GA 30912
| |
Collapse
|
8
|
Dale Rein I, Solberg Landsverk K, Micci F, Patzke S, Stokke T. Replication-induced DNA damage after PARP inhibition causes G2 delay, and cell line-dependent apoptosis, necrosis and multinucleation. Cell Cycle 2016; 14:3248-60. [PMID: 26312527 PMCID: PMC4825575 DOI: 10.1080/15384101.2015.1085137] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
PARP inhibitors have been approved for treatment of tumors with mutations in or loss of BRCA1/2. The molecular mechanisms and particularly the cellular phenotypes resulting in synthetic lethality are not well understood and varying clinical responses have been observed. We have investigated the dose- and time-dependency of cell growth, cell death and cell cycle traverse of 4 malignant lymphocyte cell lines treated with the PARP inhibitor Olaparib. PARP inhibition induced a severe growth inhibition in this cell line panel and increased the levels of phosphorylated H2AX-associated DNA damage in S phase. Repair of the remaining replication related damage caused a G2 phase delay before entry into mitosis. The G2 delay, and the growth inhibition, was more pronounced in the absence of functional ATM. Further, Olaparib treated Reh and Granta-519 cells died by apoptosis, while U698 and JVM-2 cells proceeded through mitosis with aberrant chromosomes, skipped cytokinesis, and eventually died by necrosis. The TP53-deficient U698 cells went through several rounds of DNA replication and mitosis without cytokinesis, ending up as multinucleated cells with DNA contents of up to 16c before dying. In summary, we report here for the first time cell cycle-resolved DNA damage induction, and cell line-dependent differences in the mode of cell death caused by PARP inhibition.
Collapse
Affiliation(s)
- Idun Dale Rein
- a Group for Molecular Radiation Biology ; Department of Radiation Biology ; The Norwegian Radium Hospital ; Oslo , Norway
| | - Kirsti Solberg Landsverk
- a Group for Molecular Radiation Biology ; Department of Radiation Biology ; The Norwegian Radium Hospital ; Oslo , Norway
| | - Francesca Micci
- b Section of Cancer Cytogenetics, Institute for Medical Informatics, The Norwegian Radium Hospital ; Oslo , Norway.,c Centre for Cancer Biomedicine, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital ; Oslo , Norway
| | - Sebastian Patzke
- a Group for Molecular Radiation Biology ; Department of Radiation Biology ; The Norwegian Radium Hospital ; Oslo , Norway
| | - Trond Stokke
- a Group for Molecular Radiation Biology ; Department of Radiation Biology ; The Norwegian Radium Hospital ; Oslo , Norway
| |
Collapse
|
9
|
Mohamed JS, Wilson JC, Myers MJ, Sisson KJ, Alway SE. Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism. Aging (Albany NY) 2015; 6:820-34. [PMID: 25361036 PMCID: PMC4247385 DOI: 10.18632/aging.100696] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Accumulation of reactive oxygen species (ROS) in skeletal muscles and the resulting decline in muscle performance are hallmarks of sarcopenia. However, the precise mechanism by which ROS results in a decline in muscle performance is unclear. We demonstrate that isometric-exercise concomitantly increases the activities of Silent information regulator 1 (SIRT-1) and Poly [ADP-ribose] polymerase (PARP-1), and that activated SIRT-1 physically binds with and inhibits PARP-1 activity by a deacetylation dependent mechanism in skeletal muscle from young mice. In contrast, skeletal muscle from aged mice displays higher PARP-1 activity and lower SIRT-1 activity due to decreased intracellular NAD+ content, and as a result reduced muscle performance in response to exercise. Interestingly, injection of PJ34, a PARP-1 inhibitor, in aged mice increased SIRT-1 activity by preserving intracellular NAD+ content, which resulted in higher skeletal muscle mitochondrial biogenesis and performance. We found that the higher activity of PARP-1 in H2O2-treated myotubes or in exercised-skeletal muscles from aged mice is due to an elevated level of PARP-1 acetylation by the histone acetyltransferase General control of amino acid synthesis protein 5-like 2 (GCN-5). These results suggest that activation of SIRT-1 and/or inhibition of PARP-1 may ameliorate skeletal muscle performance in pathophysiological conditions such as sarcopenia and disuse-induced atrophy in aging.
Collapse
Affiliation(s)
- Junaith S Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA. Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA
| | - Joseph C Wilson
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA. Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA
| | - Matthew J Myers
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA. Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA
| | - Kayla J Sisson
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA
| | - Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA. Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA. West Virginia Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227 USA
| |
Collapse
|
10
|
Cerutti R, Pirinen E, Lamperti C, Marchet S, Sauve AA, Li W, Leoni V, Schon EA, Dantzer F, Auwerx J, Viscomi C, Zeviani M. NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab 2014; 19:1042-9. [PMID: 24814483 PMCID: PMC4051987 DOI: 10.1016/j.cmet.2014.04.001] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/17/2014] [Accepted: 03/14/2014] [Indexed: 01/22/2023]
Abstract
Mitochondrial disorders are highly heterogeneous conditions characterized by defects of the mitochondrial respiratory chain. Pharmacological activation of mitochondrial biogenesis has been proposed as an effective means to correct the biochemical defects and ameliorate the clinical phenotype in these severely disabling, often fatal, disorders. Pathways related to mitochondrial biogenesis are targets of Sirtuin1, a NAD(+)-dependent protein deacetylase. As NAD(+) boosts the activity of Sirtuin1 and other sirtuins, intracellular levels of NAD(+) play a key role in the homeostatic control of mitochondrial function by the metabolic status of the cell. We show here that supplementation with nicotinamide riboside, a natural NAD(+) precursor, or reduction of NAD(+) consumption by inhibiting the poly(ADP-ribose) polymerases, leads to marked improvement of the respiratory chain defect and exercise intolerance of the Sco2 knockout/knockin mouse, a mitochondrial disease model characterized by impaired cytochrome c oxidase biogenesis. This strategy is potentially translatable into therapy of mitochondrial disorders in humans.
Collapse
Affiliation(s)
- Raffaele Cerutti
- Unit of Molecular Neurogenetics, The Foundation "Carlo Besta" Institute of Neurology IRCCS, 20133 Milan, Italy; MRC-Mitochondrial Biology Unit, Cambridge CB2 0XY, UK
| | - Eija Pirinen
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland; Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Costanza Lamperti
- Unit of Molecular Neurogenetics, The Foundation "Carlo Besta" Institute of Neurology IRCCS, 20133 Milan, Italy
| | - Silvia Marchet
- Unit of Molecular Neurogenetics, The Foundation "Carlo Besta" Institute of Neurology IRCCS, 20133 Milan, Italy
| | - Anthony A Sauve
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Wei Li
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Valerio Leoni
- Laboratory of Clinical Pathology and Medical Genetics, The Foundation "Carlo Besta" Institute of Neurology IRCCS, 20133 Milan, Italy
| | - Eric A Schon
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Françoise Dantzer
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Université de Strasbourg, ESBS, 67412 Illkirch, France
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Carlo Viscomi
- Unit of Molecular Neurogenetics, The Foundation "Carlo Besta" Institute of Neurology IRCCS, 20133 Milan, Italy; MRC-Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| | - Massimo Zeviani
- Unit of Molecular Neurogenetics, The Foundation "Carlo Besta" Institute of Neurology IRCCS, 20133 Milan, Italy; MRC-Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| |
Collapse
|
11
|
Feng X, Koh DW. Roles of poly(ADP-ribose) glycohydrolase in DNA damage and apoptosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:227-81. [PMID: 23809438 DOI: 10.1016/b978-0-12-407696-9.00005-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Poly(ADP-ribose) glycohydrolase (PARG) is the primary enzyme that catalyzes the hydrolysis of poly(ADP-ribose) (PAR), an essential biopolymer that is synthesized by poly(ADP-ribose) polymerases (PARPs) in the cell. By regulating the hydrolytic arm of poly(ADP-ribosyl)ation, PARG participates in a number of biological processes, including the repair of DNA damage, chromatin dynamics, transcriptional regulation, and cell death. Collectively, the research investigating the roles of PARG in the cell has identified the importance of PARG and its value as a therapeutic target. However, the biological role of PARG remains less understood than the role of PAR synthesis by the PARPs. Further complicating the study of PARG is the existence of multiple PARG isoforms in the cell, the lack of optimal PARG inhibitors, and the lack of viable PARG-null animals. This review will present our current knowledge of PARG, with a focus on its roles in DNA-damage repair and cell death.
Collapse
Affiliation(s)
- Xiaoxing Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, Washington, USA
| | | |
Collapse
|
12
|
Therapeutic intervention by the simultaneous inhibition of DNA repair and type I or type II DNA topoisomerases: one strategy, many outcomes. Future Med Chem 2012; 4:51-72. [PMID: 22168164 DOI: 10.4155/fmc.11.175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Many anticancer drugs reduce the integrity of DNA, forming strand breaks. This can cause mutations and cancer or cell death if the lesions are not repaired. Interestingly, DNA repair-deficient cancer cells (e.g., those with BRCA1/2 mutations) have been shown to exhibit increased sensitivity to chemotherapy. Based on this observation, a new therapeutic approach termed 'synthetic lethality' has been developed, in which radiation therapy or cytotoxic anticancer agents are employed in conjunction with selective inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). Such combinations can cause severe genomic instability in transformed cells resulting in cell death. The synergistic effects of combining PARP-1 inhibition with anticancer drugs have been demonstrated. However, the outcome of this therapeutic strategy varies significantly between cancer types, suggesting that synthetic lethality may be influenced by additional cellular factors. This review focuses on the outcomes of the combined action of PARP-1 inhibitors and agents that affect the activity of DNA topoisomerases.
Collapse
|
13
|
Bai P, Cantó C, Oudart H, Brunyánszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper RH, Schoonjans K, Schreiber V, Sauve AA, Menissier-de Murcia J, Auwerx J. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 2011; 13:461-468. [PMID: 21459330 PMCID: PMC3086520 DOI: 10.1016/j.cmet.2011.03.004] [Citation(s) in RCA: 643] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/05/2010] [Accepted: 02/24/2011] [Indexed: 11/27/2022]
Abstract
SIRT1 regulates energy homeostasis by controlling the acetylation status and activity of a number of enzymes and transcriptional regulators. The fact that NAD(+) levels control SIRT1 activity confers a hypothetical basis for the design of new strategies to activate SIRT1 by increasing NAD(+) availability. Here we show that the deletion of the poly(ADP-ribose) polymerase-1 (PARP-1) gene, encoding a major NAD(+)-consuming enzyme, increases NAD(+) content and SIRT1 activity in brown adipose tissue and muscle. PARP-1(-/-) mice phenocopied many aspects of SIRT1 activation, such as a higher mitochondrial content, increased energy expenditure, and protection against metabolic disease. Also, the pharmacologic inhibition of PARP in vitro and in vivo increased NAD(+) content and SIRT1 activity and enhanced oxidative metabolism. These data show how PARP-1 inhibition has strong metabolic implications through the modulation of SIRT1 activity, a property that could be useful in the management not only of metabolic diseases, but also of cancer.
Collapse
Affiliation(s)
- Péter Bai
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Université de Strasbourg, ESBS, Illkirch, France; Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Carles Cantó
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Switzerland
| | | | - Attila Brunyánszki
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Yana Cen
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Charles Thomas
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Hiroyasu Yamamoto
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Aline Huber
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Université de Strasbourg, ESBS, Illkirch, France
| | - Borbála Kiss
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Université de Strasbourg, ESBS, Illkirch, France
| | - Riekelt H Houtkooper
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Valérie Schreiber
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Université de Strasbourg, ESBS, Illkirch, France
| | - Anthony A Sauve
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | | | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Switzerland.
| |
Collapse
|
14
|
The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger. J Mol Biol 2011; 407:149-70. [PMID: 21262234 PMCID: PMC3094755 DOI: 10.1016/j.jmb.2011.01.034] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/16/2010] [Accepted: 01/14/2011] [Indexed: 01/10/2023]
Abstract
Poly(ADP-ribose)polymerase-1 (PARP-1) is a highly abundant chromatin-associated enzyme present in all higher eukaryotic cell nuclei, where it plays key roles in the maintenance of genomic integrity, chromatin remodeling and transcriptional control. It binds to DNA single- and double-strand breaks through an N-terminal region containing two zinc fingers, F1 and F2, following which its C-terminal catalytic domain becomes activated via an unknown mechanism, causing formation and addition of polyadenosine-ribose (PAR) to acceptor proteins including PARP-1 itself. Here, we report a biophysical and structural characterization of the F1 and F2 fingers of human PARP-1, both as independent fragments and in the context of the 24-kDa DNA-binding domain (F1 + F2). We show that the fingers are structurally independent in the absence of DNA and share a highly similar structural fold and dynamics. The F1 + F2 fragment recognizes DNA single-strand breaks as a monomer and in a single orientation. Using a combination of NMR spectroscopy and other biophysical techniques, we show that recognition is primarily achieved by F2, which binds the DNA in an essentially identical manner whether present in isolation or in the two-finger fragment. F2 interacts much more strongly with nicked or gapped DNA ligands than does F1, and we present a mutational study that suggests origins of this difference. Our data suggest that different DNA lesions are recognized by the DNA-binding domain of PARP-1 in a highly similar conformation, helping to rationalize how the full-length protein participates in multiple steps of DNA single-strand breakage and base excision repair.
Collapse
|
15
|
Zhou Y, Feng X, Koh DW. Enhanced DNA accessibility and increased DNA damage induced by the absence of poly(ADP-ribose) hydrolysis. Biochemistry 2010; 49:7360-6. [PMID: 20687516 DOI: 10.1021/bi100979j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Poly(ADP-ribose) (PAR) is a therapeutic target primarily identified through inhibiting its synthesis by PAR polymerase-1 (PARP-1). However, inhibiting its hydrolysis by PAR glycohydrolase (PARG) has therapeutic potential in cancer. Unknown is the effect of elevated PAR levels on cellular processes and if this effect can enhance the therapeutic value of PARG. Here, we demonstrate in PARG null embryonic trophoblast stem (TS) cells that the absence of PAR hydrolysis led to PAR-modified histones H1, H2A, and H2B. To determine if this led to the differential vulnerability of DNA to modification, TS cells were treated with DNA-modifying agents. The results demonstrate increased DNA laddering by micrococcal nuclease and an increased amount of DNA intercalation by acridine orange in PARG null-TS cells. This increased access to PARG null-TS cell DNA was further verified by the detection of increased DNA damage following treatment with UV radiation and a minimal dose of the DNA-alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Further, this DNA damage was predominantly unrepaired 12 h after treatment in PARG null-TS cells. Finally, TS cells were treated with DNA-modifying chemotherapeutic agents. The results demonstrate up to 4-fold increases in cell death in PARG null-TS cells after treatment with epirubicin or sub-IC(50) doses of cisplatin and cyclophosphamide. Taken together, we provide compelling evidence that increased DNA access induced by the absence of PARG enhances the efficacy of DNA-modifying agents. Thus, this study demonstrates that greater DNA accessibility, increased DNA damage, and increased cell death all contribute to the PARG null cell phenotype in response to genotoxic stress.
Collapse
Affiliation(s)
- Yiran Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|
16
|
Altmeyer M, Messner S, Hassa PO, Fey M, Hottiger MO. Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res 2009; 37:3723-38. [PMID: 19372272 PMCID: PMC2699514 DOI: 10.1093/nar/gkp229] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR) using nicotinamide adenine dinucleotide (NAD) as a substrate. Despite intensive research on the cellular functions of PARP1, the molecular mechanism of PAR formation has not been comprehensively understood. In this study, we elucidate the molecular mechanisms of poly(ADP-ribosyl)ation and identify PAR acceptor sites. Generation of different chimera proteins revealed that the amino-terminal domains of PARP1, PARP2 and PARP3 cooperate tightly with their corresponding catalytic domains. The DNA-dependent interaction between the amino-terminal DNA-binding domain and the catalytic domain of PARP1 increased Vmax and decreased the Km for NAD. Furthermore, we show that glutamic acid residues in the auto-modification domain of PARP1 are not required for PAR formation. Instead, we identify individual lysine residues as acceptor sites for ADP-ribosylation. Together, our findings provide novel mechanistic insights into PAR synthesis with significant relevance for the different biological functions of PARP family members.
Collapse
Affiliation(s)
- Matthias Altmeyer
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
17
|
Sharan RN, Devi BJ, Humtsoe JO, Saikia JR, Kma L. Detection and quantification of poly-ADP-ribosylated cellular proteins of spleen and liver tissues of mice in vivo by slot and Western blot immunoprobing using polyclonal antibody against mouse ADP-ribose polymer. Mol Cell Biochem 2006; 278:213-21. [PMID: 16180107 DOI: 10.1007/s11010-005-7588-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 05/19/2005] [Indexed: 11/29/2022]
Abstract
Poly-ADP-ribosylation (PAR) of cellular proteins has been shown to have decisive roles in diverse cellular functions including carcinogenesis. There are indications that metabolic level of poly-ADP-ribosylated cellular proteins might indicate carcinogenesis and, therefore, could be potentially used in cancer screening program. Keeping in mind the limitations of currently available assays of cellular PAR, a new assay is being reported that measures the metabolic level of poly-ADP-ribosylated cellular proteins. The ELISA based slot and Western blot immunoassay used polyclonal antibody against natural, heterogeneous ADP-ribose polymers. It could be successfully employed to qualitatively and quantitatively assay metabolic levels of poly-ADP-ribosylated proteins of spleen and liver tissues of normal mice or mice exposed to dimethylnitrosamine for up to 8 weeks; potentially PAR of cellular proteins could be assayed in any tissue or biopsy. Implications of the results in cancer screening program have been discussed.
Collapse
Affiliation(s)
- R N Sharan
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University, Umshing, Shillong, India.
| | | | | | | | | |
Collapse
|
18
|
Meyer-Ficca ML, Scherthan H, Bürkle A, Meyer RG. Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis. Chromosoma 2005; 114:67-74. [PMID: 15838619 DOI: 10.1007/s00412-005-0344-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 03/10/2005] [Accepted: 03/29/2005] [Indexed: 12/21/2022]
Abstract
In spermiogenesis, spermatid differentiation is marked by dramatic changes in chromatin density and composition. The extreme condensation of the spermatid nucleus is characterized by an exchange of histones to transition proteins and then to protamines as the major nuclear proteins. Alterations in DNA topology that occur in this process have been shown to require the controlled formation of DNA strand breaks. Poly(ADP-ribosyl)ation is a posttranslational modification of proteins mediated by a family of poly(ADP-ribose) polymerase (PARP) proteins, and two family members, PARP-1 and PARP-2, are activated by DNA strand breaks that are directly detected by the DNA-binding domains of these enzymes. Here, we show for the first time that poly(ADP-ribose) formation, mediated by poly(ADP-ribose) polymerases (PARP-1 and presumably PARP-2), occurs in spermatids of steps 11-14, steps that immediately precede the most pronounced phase of chromatin condensation in spermiogenesis. High levels of ADP-ribose polymer were observed in spermatid steps 12-13 in which the highest rates of chromatin nucleoprotein exchanges take place. We also detected gamma-H2AX, indicating the presence of DNA double-strand breaks during the same steps. Thus, we hypothesize that transient ADP-ribose polymer formation may facilitate DNA strand break management during the chromatin remodeling steps of sperm cell maturation.
Collapse
Affiliation(s)
- Mirella L Meyer-Ficca
- Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
19
|
Mendoza-Alvarez H, Alvarez-Gonzalez R. The 40 kDa carboxy-terminal domain of poly(ADP-ribose) polymerase-1 forms catalytically competent homo- and heterodimers in the absence of DNA. J Mol Biol 2004; 336:105-14. [PMID: 14741207 DOI: 10.1016/j.jmb.2003.11.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 40 kDa carboxy-terminal catalytic domain (CD) of avian poly(ADP-ribose) polymerase (PARP-1) was cloned, expressed in a baculovirus expression system, and purified to homogeneity by affinity chromatography. The purified polypeptide synthesized covalent CD-poly(ADP-ribose) conjugates in the absence of DNA. Electrophoretic analysis of the ADP-ribose chain length distribution generated indicated that recombinant CD was able to catalyze the initiation, elongation, and branching reactions of poly(ADP-ribose) synthesis, although at a 500-fold lower efficiency than wild-type PARP-1. Kinetic evaluation of poly(ADP-ribose) synthesis showed that the enzymatic activities of CD increased for up to 60 minutes in a time-dependent manner. Moreover, the rates of CD auto-poly(ADP-ribosyl)ation increased with second-order kinetics as a function of the protein concentration with either betaNAD(+) or 3'-deoxyNAD(+) as a substrate. Furthermore, the formation of catalytically competent CD-[PARP-1] heterodimers was also observed in specific ultrafiltration experiments. Thus, we conclude that the 40 kDa carboxy terminus of PARP-1 forms a competent catalytic dimer in the absence of DNA, and that its automodification reaction is intermolecular.
Collapse
Affiliation(s)
- Hilda Mendoza-Alvarez
- The Department of Molecular Biology and Immunology, University of North Texas, Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA
| | | |
Collapse
|
20
|
Yau L, Zahradka P. ADP-Ribosylation and the Cardiovascular System. PATHOPHYSIOLOGY OF CARDIOVASCULAR DISEASE 2004. [DOI: 10.1007/978-1-4615-0453-5_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Koh DW, Patel CN, Ramsinghani S, Slama JT, Oliveira MA, Jacobson MK. Identification of an inhibitor binding site of poly(ADP-ribose) glycohydrolase. Biochemistry 2003; 42:4855-63. [PMID: 12718526 DOI: 10.1021/bi0272048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymers of ADP-ribose involved in the maintenance of genomic integrity are converted to free ADP-ribose by the action of poly(ADP-ribose) glycohydrolase (PARG). As an approach to mapping functions of PARG onto the amino acid sequence of the protein, we report here experiments that identify an amino acid residue involved in the binding of potent PARG inhibitors. A photoreactive inhibitor, [alpha-(32)P]-8-azidoadenosine diphosphate (hydroxymethyl)pyrrolidinediol (8-N(3)-ADP-HPD), was used to photolabel a recombinant bovine PARG catalytic fragment (rPARG-CF). N-Terminal sequencing of tryptic and subtilitic peptides of photoderivatized rPARG-CF identified tyrosine 796 (Y796), a residue conserved in PARG across a wide range of organisms, as a site of photoderivatization. Site-directed mutants where this tyrosine residue was replaced with an alanine residue (Y796A) had a nearly 8-fold decrease in catalytic efficiency (k(cat)/K(M)), while replacement with a tryptophan residue (Y796W) had little effect on catalytic efficiency. Surface plasmon resonance spectroscopy using the PARG inhibitor 8-(aminohexyl)amino-ADP-HPD demonstrated that the binding constant of the inhibitor for Y796A was 21-fold lower (K(D) = 170 nM) than that of wild-type PARG (K(D) = 8.2 nM), while Y796W displayed a binding affinity similar to that of the wild-type enzyme. Our results indicate that Y796 is involved in inhibitor binding to PARG via a ring stacking interaction and identify a highly conserved region of the protein that putatively contains other residues involved in catalytic activity and/or substrate recognition.
Collapse
Affiliation(s)
- David W Koh
- College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
22
|
Mendoza-Alvarez H, Alvarez-Gonzalez R. Regulation of p53 sequence-specific DNA-binding by covalent poly(ADP-ribosyl)ation. J Biol Chem 2001; 276:36425-30. [PMID: 11477085 DOI: 10.1074/jbc.m105215200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized the covalent poly(ADP-ribosyl)ation of p53 using an in vitro reconstituted system. We used recombinant wild type p53, recombinant poly(ADP-ribose) polymerase-1 (PARP-1) (EC ), and betaNAD(+). Our results show that the covalent poly(ADP-ribosyl)ation of p53 is a time-dependent protein-poly(ADP-ribosyl)ation reaction and that the addition of this tumor suppressor protein to a PARP-1 automodification mixture stimulates total protein-poly(ADP-ribosyl)ation 3- to 4-fold. Electrophoretic analysis of the products synthesized indicated that short oligomers predominate early during hetero-poly(ADP-ribosyl)ation, whereas longer ADP-ribose chains are synthesized at later times of incubation. A more drastic effect in the complexity of the ADP-ribose chains generated was observed when the betaNAD(+) concentration was varied. As expected, increasing the betaNAD(+) concentration from low nanomolar to high micromolar levels resulted in the slower electrophoretic migration of the p53-(ADP-ribose)(n) adducts. Increasing the concentration of p53 protein from low nanomolar (40 nm) to low micromolar (1.0 microm) yielded higher amounts of poly(ADP-ribosyl)ated p53 as well. Thus, the reaction was acceptor protein concentration-dependent. The hetero-poly(ADP-ribosyl)ation of p53 also showed that high concentrations of p53 specifically stimulated the automodification reaction of PARP-1. The covalent modification of p53 resulted in the inhibition of the binding ability of this transcription factor to its DNA consensus sequence as judged by electrophoretic mobility shift assays. In fact, controls carried out with calf thymus DNA, betaNAD(+), PARP-1, and automodified PARP-1 confirmed our conclusion that the covalent poly(ADP-ribosyl)ation of p53 results in the transcriptional inactivation of this tumor suppressor protein.
Collapse
Affiliation(s)
- H Mendoza-Alvarez
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas 76107, USA
| | | |
Collapse
|
23
|
Alvarez-Gonzalez R, Spring H, Müller M, Bürkle A. Selective loss of poly(ADP-ribose) and the 85-kDa fragment of poly(ADP-ribose) polymerase in nucleoli during alkylation-induced apoptosis of HeLa cells. J Biol Chem 1999; 274:32122-6. [PMID: 10542247 DOI: 10.1074/jbc.274.45.32122] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alkylation treatment of HeLa cells results in the rapid induction of apoptosis as revealed by DNA laddering and cleavage of poly(ADP-ribose) polymerase (PARP) into the 29-and 85-kDa fragments (Kumari S. R., Mendoza-Alvarez, H. & Alvarez-Gonzalez, R. (1998) Cancer Res. 58, 5075-5078). Here, we performed a time-course analysis of (i) poly(ADP-ribose) synthesis and degradation as well as (ii) the subnuclear localization of PARP and its fragments by using confocal laser scanning immunofluorescence microscopy. PARP was activated within 15 min post-treatment, as revealed by nuclear immunostaining with antibody 10H (recognizing poly(ADP-ribose)). This was followed by a late, time-dependent, progressive decline of 10H signals that coincide with the time of PARP cleavage. Strikingly, nucleolar immunostaining with antibodies 10H and C-II-10 (recognizing the 85-kDa PARP fragment) was lost by 15 min post-treatment, whereas F-I-23 signals (recognizing the 29-kDa fragment) persisted. We hypothesize that the 85-kDa PARP fragment is translocated, along with covalently bound poly(ADP-ribose), from nucleoli to the nucleoplasm, whereas the 29-kDa fragment is retained, because it binds to DNA strand breaks. Our data (i) provide a link between the known time-dependent bifunctional role of PARP in apoptosis and the subcellular localization of PARP fragments and also (ii) add to the evidence for early proteolytic changes in nucleoli during apoptosis.
Collapse
Affiliation(s)
- R Alvarez-Gonzalez
- Division of Tumor Virology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | |
Collapse
|
24
|
Abstract
Mammalian DNA topoisomerase I is a multifunctional enzyme which is essential for embryonal development. In addition to its classical DNA nicking-closing activities which are needed for relaxation of supercoiled DNA, topoisomerase I can phosphorylate certain splicing factors. The enzyme is also involved in transcriptional regulation through its ability to associate with other proteins in the TFIID-, and possibly TFIIH-, transcription complexes, and is implicated in the recognition of DNA lesions. Finally, topoisomerase I is a recombinase which can mediate illegitimate recombination. A crucial reaction intermediate during relaxation of DNA is the formation of a DNA-topoisomerase I complex (the cleavable complex) where topoisomerase I is covalently linked to a 3 -end of DNA thereby creating a single stranded DNA break. Cleavable complexes are also formed in the vicinity of DNA lesions and in the presence of the antitumor agent, camptothecin. While formation of cleavable complexes may be necessary for the initial stages of the DNA damage response, these complexes are also potentially dangerous to the cell due to their ability to mediate illegitimate recombination, which can lead to genomic instability and oncogenesis. Thus the levels and stability of these complexes have to be strictly regulated. This is obtained by maintaining the enzyme levels relatively constant, by limiting the stability of the cleavable complexes through physical interaction with the oncogene suppressor protein p53 and by degradation of the topoisomerase I by the proteasome system. Emerging evidence suggest that these regulatory functions are perturbed in tumor cells, explaining at the same time why topoisomerase I activities so often are increased in certain human tumors, and why these cells are sensitized to the cytotoxic effects of camptothecins.
Collapse
Affiliation(s)
- A K Larsen
- Institut Gustave-Roussy, Laboratory of Biology and Pharmacology of DNA Topoisomerases 39, Rue Camille Desmoulins, Villejuif, 94805, France.
| | | |
Collapse
|
25
|
Mendoza-Alvarez H, Alvarez-Gonzalez R. Biochemical characterization of mono(ADP-ribosyl)ated poly(ADP-ribose) polymerase. Biochemistry 1999; 38:3948-53. [PMID: 10194306 DOI: 10.1021/bi982148p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we report the biochemical characterization of mono(ADP-ribosyl)ated poly(ADP-ribose) polymerase (PARP) (EC 2.4.2. 30). PARP was effectively mono(ADP-ribosyl)ated both in solution and via an activity gel assay following SDS-PAGE with 20 microM or lower concentrations of [32P]-3'-dNAD+ as the ADP-ribosylation substrate. We observed the exclusive formation of [32P]-3'-dAMP and no polymeric ADP-ribose molecules following chemical release of enzyme-bound ADP-ribose units and high-resolution polyacrylamide gel electrophoresis. The reaction in solution (i) was time-dependent, (ii) was activated by nicked dsDNA, and (iii) increased with the square of the enzyme concentration. Stoichiometric analysis of the reaction indicated that up to four amino acid residues per mole of enzyme were covalently modified with single units of 3'-dADP-ribose. Peptide mapping of mono(3'-dADP-ribosyl)ated-PARP following limited proteolysis with either papain or alpha-chymotrypsin indicated that the amino acid acceptor sites for chain initiation with 3'-dNAD+ as a substrate are localized within an internal 22 kDa automodification domain. Neither the amino-terminal DNA-binding domain nor the carboxy-terminal catalytic fragment became ADP-ribosylated with [32P]-3'-dNAD+ as a substrate. Finally, the apparent rate constant of mono(ADP-ribosyl)ation in solution indicates that the initiation reaction catalyzed by PARP proceeds 232-fold more slowly than ADP-ribose polymerization.
Collapse
Affiliation(s)
- H Mendoza-Alvarez
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center at Fort Worth 76107-2699, USA
| | | |
Collapse
|
26
|
Lin W, Amé JC, Aboul-Ela N, Jacobson EL, Jacobson MK. Isolation and characterization of the cDNA encoding bovine poly(ADP-ribose) glycohydrolase. J Biol Chem 1997; 272:11895-901. [PMID: 9115250 DOI: 10.1074/jbc.272.18.11895] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The synthesis and rapid turnover of ADP-ribose polymers is an immediate cellular response to DNA damage. We report here the isolation and characterization of cDNA encoding poly(ADP-ribose) glycohydrolase (PARG), the enzyme responsible for polymer turnover. PARG was isolated from bovine thymus, yielding a protein of approximately 59 kDa. Based on the sequence of oligopeptides derived from the enzyme, polymerase chain reaction products and partial cDNA clones were isolated and used to construct a putative full-length cDNA. The cDNA of approximately 4.1 kilobase pairs predicted expression of a protein of approximately 111 kDa, nearly twice the size of the isolated protein. A single transcript of approximately 4. 3 kilobase pairs was detected in bovine kidney poly(A)+ RNA, consistent with expression of a protein of 111 kDa. Expression of the cDNA in Escherichia coli resulted in an enzymatically active protein of 111 kDa and an active fragment of 59 kDa. Analysis of restriction endonuclease fragments from bovine DNA by Southern hybridization indicated that PARG is encoded by a single copy gene. Taken together, the results indicate that previous reports of multiple PARGs can be explained by proteolysis of an 111-kDa enzyme. The deduced amino acid sequence of the bovine PARG shares little or no homology with other known proteins. However, it contains a putative bipartite nuclear location signal as would be predicted for a nuclear protein. The availability of cDNA clones for PARG should facilitate structure-function studies of the enzyme and its involvement in cellular responses to genomic damage.
Collapse
Affiliation(s)
- W Lin
- Division of Medicinal Chemistry and Pharmaceutics, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
27
|
Oei SL, Griesenbeck J, Schweiger M. The role of poly(ADP-ribosyl)ation. Rev Physiol Biochem Pharmacol 1997; 131:127-73. [PMID: 9204691 DOI: 10.1007/3-540-61992-5_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- S L Oei
- Institut für Biochemie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
28
|
Simbulan-Rosenthal CM, Rosenthal DS, Hilz H, Hickey R, Malkas L, Applegren N, Wu Y, Bers G, Smulson ME. The expression of poly(ADP-ribose) polymerase during differentiation-linked DNA replication reveals that it is a component of the multiprotein DNA replication complex. Biochemistry 1996; 35:11622-33. [PMID: 8794742 DOI: 10.1021/bi953010z] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
3T3-L1 preadipocytes have been shown to exhibit a transient increase in poly(ADP-ribose) polymerase (PARP) protein and activity, as well as an association of PARP with DNA polymerase alpha, within 12-24 h of exposure to inducers of differentiation, whereas 3T3-L1 cells expressing PARP antisense RNA showed no increase in PARP and are unable to complete the round of DNA replication required for differentiation into adipocytes. The role of PARP in differentiation-linked DNA replication has now been further clarified at both the cellular and enzymological levels. Flow cytometric analysis revealed that control 3T3-L1 cells progressed through one round of DNA replication prior to the onset of terminal differentiation, whereas cells expressing PARP antisense RNA were blocked at the G0/G1 phase of the cell cycle. Confocal microscope image analysis of control S phase cells demonstrated that PARP was localized within distinct intranuclear granular foci associated with DNA replication centers. On the basis of these results, purified replicative complexes from other cell types that had been characterized for their ability to catalyze viral DNA replication in vitro were analyzed for the presence of PARP. PARP exclusively copurified through a series of centrifugation and chromatography steps with core proteins of an 18-21S multiprotein replication complex (MRC) from human HeLa cells, as well as with the corresponding mouse MRC from FM3A cells. The MRC were shown to contain DNA polymerases alpha and delta, DNA primase, DNA helicase, DNA ligase, and topoisomerases I and II, as well as accessory proteins such as PCNA, RF-C, and RP-A. Finally, immunoblot analysis of MRCs from both cell types with monoclonal antibodies to poly (ADP-ribose) revealed the presence of approximately 15 poly(ADP-ribosyl)ated proteins, some of which were further confirmed to be DNA polymerase alpha, DNA topoisomerase I, and PCNA by immunoprecipitation experiments. These results suggest that PARP may play a regulatory role within the replicative apparatus as a molecular nick sensor controlling the progression of the replication fork or modulates component replicative enzymes or factors in the complex by directly associating with them or by catalyzing their poly(ADP-ribosyl)ation.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Alvarez-Gonzalez R, Pacheco-Rodriguez G, Mendoza-Alvarez H. Enzymology of ADP-ribose polymer synthesis. Mol Cell Biochem 1994; 138:33-7. [PMID: 7898472 DOI: 10.1007/bf00928440] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this minireview, we summarize recent advances on the enzymology of ADP-ribose polymer synthesis. First, a short discussion of the primary structure and cloning of poly(ADP-ribose) polymerase (PARP) [EC 2.4.2.30], the enzyme that catalyzes the synthesis of poly(ADP-ribose), is presented. A catalytic distinction between the multiple enzymatic activities of PARP is established. The direction of ADP-ribose chain growth as well as the molecular mechanism of the automodification reaction catalyzed by PARP are described. Current approaches to dissect ADP-ribose polymer synthesis into individual reactions of initiation, elongation and branching, as well as a partial mechanistic characterization of the ADP-ribose elongation reaction at the chemical level are also presented. Finally, recent developments in the catalytic characterization of PARP by site-directed mutagenesis are also briefly summarized.
Collapse
Affiliation(s)
- R Alvarez-Gonzalez
- Department of Microbiology & Immunology, University of North Texas Health Science Center at Fort Worth 76107-2699
| | | | | |
Collapse
|
30
|
Althaus FR, Höfferer L, Kleczkowska HE, Malanga M, Naegeli H, Panzeter PL, Realini CA. Histone shuttling by poly ADP-ribosylation. Mol Cell Biochem 1994; 138:53-9. [PMID: 7898476 DOI: 10.1007/bf00928443] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The enzymes poly(ADP-ribose)polymerase and poly(ADP-ribose) glycohydrolase may cooperate to drive a histone shuttle mechanism in chromatin. The mechanism is triggered by binding of the N-terminal zinc-finger domain of the polymerase to DNA strand breaks, which activates the catalytic activities residing in the C-terminal domain. The polymerase converts into a protein carrying multiple ADP-ribose polymers which displace histones from DNA by specifically targeting the histone tails responsible for DNA condensation. As a result, the domains surrounding DNA strand breaks become accessible to other proteins. Poly(ADP-ribose)glycohydrolase attacks ADP-ribose polymers in a specific order and thereby releases histones for reassociation with DNA. Increasing evidence from different model systems suggests that histone shuttling participates in DNA repair in vivo as a catalyst for nucleosomal unfolding.
Collapse
Affiliation(s)
- F R Althaus
- University of Zürich-Tierspital, Institute of Pharmacology and Toxicology, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- C Binder
- Department of Hematology/Oncology, University of Göttingen, Germany
| | | |
Collapse
|
32
|
Abstract
Cells from multicellular spheroids are often more resistant than monolayers to drugs and radiation. While explanations for resistance can be based on differences in cell cycle distribution, inability of the drug to penetrate the spheroid, or the presence of hypoxic cells, these mechanisms do not adequately explain resistance to all agents. Small spheroids (containing about 25-50 cells) exposed to ionizing radiation, hyperthermia, photodynamic therapy, or topoisomerase II inhibitors, are more resistant to killing than monolayers; the close three-dimensional contact in spheroids has been implicated in this resistance. Proposed mechanisms for the 'contact effect' include gap junctional 'reciprocity', cell shape mediated changes in (repair-related) gene expression, and alterations in chromatin packaging which influence DNA repair. The consequences of the contact effect are especially important for multifraction exposures. Another form of resistance can be demonstrated during repetitive treatments; 'regrowth resistance' reflects the capacity of spheroid cells to proliferate more efficiently to compensate for cell killing.
Collapse
Affiliation(s)
- P L Olive
- British Columbia Cancer Research Centre, Vancouver, Canada
| | | |
Collapse
|
33
|
Mendoza-Alvarez H, Alvarez-Gonzalez R. Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)41568-2] [Citation(s) in RCA: 176] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
34
|
Abstract
Studies on poly(ADP-ribosyl)ation related to chromatin structure and to nuclear functions such as repair, gene expression and replication are reviewed. Poly(ADP-ribosyl)ation might be involved in regulating the activity of nuclear enzymes involved in the metabolism of DNA strand breaks such as ligase II and topoisomerases I and II. In addition, it modifies nuclear proteins participating in gene expression including HMG non-histones, large T antigen, acetylated histone H4 and nuclear matrix proteins. It is speculated that poly(ADP-ribose) can induce free DNA domains by removing histones from specific nucleosomes whose DNA has been damaged. This process is proposed to require specific proteins recognizing lesions on DNA that ultimately attach the damaged site on the nuclear matrix where the repair enzymes are located. The role of poly(ADP-ribosyl)ation in carcinogenesis arises from that inhibitors of this modification potentiate the cytotoxicity of DNA-damaging drugs used in cancer chemotherapy and either enhance or inhibit tumor growth.
Collapse
Affiliation(s)
- T Boulikas
- Linus Pauling Institute of Science and Medicine, Palo Alto, CA
| |
Collapse
|
35
|
Althaus FR, Höfferer L, Kleczkowska HE, Malanga M, Naegeli H, Panzeter P, Realini C. Histone shuttle driven by the automodification cycle of poly(ADP-ribose)polymerase. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1993; 22:278-282. [PMID: 8223511 DOI: 10.1002/em.2850220417] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In mammalian cells, the incision step of DNA excision repair triggers a dramatic metabolic response in chromatin. The reaction starts with the binding of a zinc-finger protein, i.e. poly(ADP-ribose)polymerase to DNA nicks, activation of four resident catalytic activities leading to poly(ADP-ribose) synthesis, conversion of the polymerase into a protein modified with up to 28 variably sized ADP-ribose polymers, and rapid degradation of polymerase-bound polymers by poly(ADP-ribose)glycohydrolase. This automodification cycle catalyzes a transient and reversible dissociation of histones from DNA. Shuttling of histones on the DNA allows selected other proteins, such as DNA helicase A and topoisomerase I, to gain access to DNA. Histone shuttling in vitro mimics nucleosomal unfolding/refolding in vivo that accompanies the postincisional steps of DNA excision repair. Suppression of the automodification cycle in mammalian cells prevents nucleosomal unfolding and nucleotide excision repair.
Collapse
Affiliation(s)
- F R Althaus
- University of Zürich-Tierspital, Institute of Pharmacology and Toxicology, Switzerland
| | | | | | | | | | | | | |
Collapse
|
36
|
Martinez M, Price SR, Moss J, Alvarez-Gonzalez R. Mono(ADP-ribosyl)ation of poly(ADP-ribose)polymerase by cholera toxin. Biochem Biophys Res Commun 1991; 181:1412-8. [PMID: 1764092 DOI: 10.1016/0006-291x(91)92096-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Poly(ADP-ribose)polymerase (PADPRP) was found to be an efficient protein acceptor for the arginine-specific ADP-ribosylation reaction catalyzed by cholera toxin (CT). The covalent modification of PADPRP was carried out with [32P]2'-dNAD as a selective mono(ADP-ribosyl)ation substrate. Mono(2'-dADP-ribosyl)ated-PADPRP was identified by autoradiographic analysis of the CT reaction products following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Addition of recombinant ADP-ribosylation factor (rARF), a small GTP-binding protein that stimulates the enzymatic activity of CT, enhanced the mono(2'-dADP-ribosyl)ation of PADPRP in a time- and substrate-dependent manner. In contrast, rARF did not change the ADP-ribose polymerizing activity of PADPRP. Peptide mapping mapping of [32P] labeled (2'-dADP-ribose)-PADPRP, following partial proteolysis with papain, revealed that the DNA-binding domain of PADPRP contained the mono(2'-dADP-ribosyl)ated arginine residue(s). Our results are consistent with the conclusion that PADPRP is susceptible to arginine-specific mono(ADP-ribosyl)ation catalyzed by CT.
Collapse
Affiliation(s)
- M Martinez
- Department of Microbiology and Immunology, Texas College of Osteopathic Medicine/UNT, Fort Worth 76107-2690
| | | | | | | |
Collapse
|
37
|
Kaufmann SH, Brunet G, Talbot B, Lamarr D, Dumas C, Shaper JH, Poirier G. Association of poly(ADP-ribose) polymerase with the nuclear matrix: the role of intermolecular disulfide bond formation, RNA retention, and cell type. Exp Cell Res 1991; 192:524-35. [PMID: 1703086 DOI: 10.1016/0014-4827(91)90072-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The recovery of the enzyme poly(ADP-ribose) polymerase (pADPRp) in the nuclease- and 1.6 M NaCl-resistant nuclear subfraction prepared from a number of different sources was assessed by Western blotting. When rat liver nuclei were treated with DNase I and RNase A followed by 1.6 M NaCl, approximately 10% of the nuclear pADPRp was recovered in the sedimentable fraction. The proportion of pADPRp recovered with the residual fraction decreased to less than 5% of the total nuclear polymerase when nuclei were prepared in the presence of the sulfhydryl blocking reagent iodoacetamide and increased to approximately 50% of the total nuclear pADPRp when nuclei were treated with the sulfhydryl cross-linking reagent sodium tetrathionate (NaTT) prior to fractionation. To determine whether this effect of disulfide bond formation was unique to rat liver nuclei, nuclear matrix/cytoskeleton structures were prepared in situ by sequentially treating monolayers of tissue culture cells with Nonidet-P40, DNase I and RNase A, and 1.6 M NaCl (S.H. Kaufmann and J.H. Shaper (1991) Exp. Cell Res. 192, 511-523). When nuclear monolayers were prepared from HTC rat hepatoma cells, CaLu-1 human lung carcinoma cells, and CHO hamster ovary cells in the absence of NaTT, pADPRp was undetectable in the nuclease- and 1.6 M NaCl-resistant fraction. In contrast, when nuclear monolayers were isolated in the presence of NaTT, from 5% (CaLu-1) to 26% (HTC cells) of the total nuclear pADPRp was recovered with the nuclease- and salt-resistant fraction. Examination of these residual structures by SDS-polyacrylamide gel electrophoresis under nonreducing conditions suggested that pADPRp was present as a component of disulfide cross-linked complexes. Further analysis by immunofluorescence revealed that the pADPRp was diffusely distributed throughout the CaLu-1 or CHO nuclear matrix. In addition, when matrices were prepared in the absence of RNase A, pADPRp was also observed in the residual nucleoli. These observations reveal that the recovery of pADPRp with a nuclease- and salt-resistant nuclear subfraction is dependent on the source of the nuclei and on the conditions used to fractionate those nuclei. In addition, these observations raise the possibility that there might be different functional classes of pADPRp molecules within the nucleus.
Collapse
Affiliation(s)
- S H Kaufmann
- Oncology Center, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | | | | | |
Collapse
|
38
|
Sweigert SE, Marston JM, Dethlefsen LA. Poly(ADP-ribose) metabolism in proliferating versus quiescent cells and its relationship to their radiation responses. Int J Radiat Biol 1990; 58:111-23. [PMID: 1973429 DOI: 10.1080/09553009014551471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the murine tumour cell lines 66 and 67 growing in vitro, quiescent (Q; unfed plateau-phase) cells are more sensitive to X-ray-induced cell killing than are proliferating (P) cells, while St4 cells (Q cells that have been re-fed and returned to 37 degrees C for 4h) are similar to P cells in radiosensitivity. We have been investigating parameters of poly(ADP-ribose) metabolism in order to determine whether such factors contribute to the variations in radiosensitivity of these growth states. These parameters were cellular NAD content, the activity of poly(ADP-ribose) transferase (ADPRT) in permeabilized cells and the activity of poly(ADP-ribose)-degrading enzymes. The results suggest that in line 66, but not 67, a reduced ability to regenerate NAD following irradiation was associated with the reduced survival of Q cells. However, neither the baseline activity of ADPRT nor the degree of stimulation of ADPRT by X-rays was found to correlate with survival, or with the induction and repair of DNA strand breaks. Stimulation of ADPRT by X-rays was dependent on dose and was greatest for a 2-min incubation with 3H-NAD. For a 2-min incubation the stimulation of ADPRT following a dose of 50 Gy was 7- and 10-fold in 66 and 67 P cells, respectively, versus 3-4-fold in Q cells. Detectable stimulation was observed in 66 P and Q cells for doses as low as 5 Gy. P and Q cells did not differ in the rate of degradation of the poly(ADP-ribose) polymers.
Collapse
Affiliation(s)
- S E Sweigert
- Department of Radiology, University of Utah Health Sciences Center, Salt Lake City 84132
| | | | | |
Collapse
|
39
|
Ménard L, Thibault L, Poirier GG. Reconstitution of an in vitro poly(ADP-ribose) turnover system. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1049:45-58. [PMID: 2113406 DOI: 10.1016/0167-4781(90)90083-e] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Poly(ADP-ribose) is synthesized and degraded by poly(ADP-ribose) polymerase and glycohydrolase, respectively. We have reconstituted in vitro two turnover systems containing these two enzymes. We have measured the kinetics of NAD consumption and polymer accumulation during turnover. The combined action of the two enzymes (i.e., turnover) generates a steady state of polymer quantity. The glycohydrolase determines the time and the level at which this steady state of total polymer is reached. A major observation is that the size and calculated density of polymer bound to the total polymerase molecules is tightly regulated by the rate of polymer turnover. On the polymerase, an increase in the rate of polymer turnover does not affect the mean polymer size, but reduces the polymer density on the enzyme (i.e., the number of polymer chains per polymerase molecule). In the absence of glycohydrolase and at low histone H1 concentration (less than 1.5 micrograms/ml), poly(ADP-ribose) polymerase preferentially automodifies itself instead of modifying histone H1. In contrast, under turnover conditions, oligomer accumulation on histone H1 was greatly increased, with almost 40% of all the polymer present on H1 after 5 min of turnover. Although turnover conditions were necessary for histone H1 labelling, there was no difference between the fast and the slow turnover systems as concerns the proportion of histone H1 labelling, although the mean polymer size on histone H1 was decreased with increasing turnover rate. Due to its small size, polymer is not degraded by the glycohydrolase and accumulates on histone H1 during turnover. These data suggest that the glycohydrolase modulates the level of poly(ADP-ribosyl)action of different proteins in two ways; by degrading shorter polymers at a slower rate and probably by competing with the polymerase for polymer.
Collapse
Affiliation(s)
- L Ménard
- Département de Biologie de l'Université de Sherbrooke, Québec
| | | | | |
Collapse
|
40
|
Zhang JY, Ebisuzaki K. p66 an in vivo target for poly(ADP-ribosyl)ation co-purifies with poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 1989; 165:631-6. [PMID: 2512919 DOI: 10.1016/s0006-291x(89)80012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A direct immunoassay has been applied for the quantitation of poly(ADP-ribose) polymerase and its automodification in BALB/3T3 (A31) cells. As the cell population reached a high density, a 66 kDa protein (designated p66) which co-purified with the enzyme became highly poly(ADP-ribosyl)ated. Pulse-chase experiments as well as a Western blot analysis indicated that the p66 was not a degradation product of poly(ADP-ribose) polymerase.
Collapse
Affiliation(s)
- J Y Zhang
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | | |
Collapse
|
41
|
Huletsky A, de Murcia G, Muller S, Hengartner M, Ménard L, Lamarre D, Poirier GG. The Effect of poly(ADP-ribosyl)ation on Native and H1-depleted Chromatin. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81875-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Alvarez-Gonzalez R. 3′-Deoxy-NAD+ as a substrate for poly(ADP-ribose)polymerase and the reaction mechanism of poly(ADP-ribose) elongation. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77892-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
43
|
Aboul-Ela N, Jacobson EL, Jacobson MK. Labeling methods for the study of poly- and mono(ADP-ribose) metabolism in cultured cells. Anal Biochem 1988; 174:239-50. [PMID: 3218735 DOI: 10.1016/0003-2697(88)90541-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Methods are described for the radiolabeling and determination of NAD+, poly(ADP-ribose), and protein-bound monomers of ADP-ribose in cultured mammalian cells. The adenine nucleotide pools of confluent monolayer cell cultures are radiolabeled using high-specific-activity [3H]adenine. Following any desired experimental manipulation, cultures are treated with trichloroacetic acid. Radiolabel in NAD+ can be rapidly determined from the acid-soluble fraction using dihydroxyboronyl Sepharose (DHB-Sepharose). The acid-insoluble material can be analyzed for radiolabeled polymers of ADP-ribose and protein-bound monomers of ADP-ribose. Polymers are separated from interfering material using dihydroxyboronyl-Bio-Rex 70 (DHB-Bio-Rex). Protein-bound monomers are separated from noncovalently bound ADP-ribose and different classes of (ADP-ribosyl) protein linkages are released by specific chemical treatments. The released ADP-ribose is then separated from interfering materials using DHB-Bio-Rex and DHB-Sepharose. Control experiments have demonstrated the sensitivity, selectivity, and precision of the methods. Major advantages of the methods are that they allow many simultaneous determinations and all components can be determined from material derived from a single dish of cultured cells. The methods should prove useful for detailed studies of the metabolism of both protein-bound monomers and polymers of ADP-ribose in cultured mammalian cells.
Collapse
Affiliation(s)
- N Aboul-Ela
- Department of Biochemistry, Texas College of Osteopathic Medicine, University of North Texas, Fort Worth 76107
| | | | | |
Collapse
|