1
|
Zenkova MA, Karpova GG. Imperfectly matched nucleic acid complexes and their biochemical manifestation. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1993v062n04abeh000023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
Tan TMC, Zhou L, Houssais S, Seet BL, Jaenicke S, Peter F, Lim SG. Intracellular inhibition of hepatitis B virus S gene expression by chimeric DNA-RNA phosphorothioate minimized ribozyme. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:257-64. [PMID: 12238814 DOI: 10.1089/108729002320351575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a major problem in Asia. Current therapies for chronic hepatitis B have limited efficacy. The successful use of ribozymes for intracellular inhibition of HBV gene expression was recently reported. As an alternative to ribozymes, the use of DNA-containing, phosphorothioate-modified, minimized hammerhead ribozymes (minizymes) to inhibit hepatitis B surface antigen (HBsAg) expression and viral replication was investigated. Such molecules can be synthesized and supplied exogenously. Two conserved sites within the HBsAg open reading frame (ORF) were targeted. PLC/PRF5 cells or 2.2.15 cells were treated with minizymes or antisense oligomers to assess the effects on cell viability, HBsAg expression, and viral DNA production. Treatment with the minizyme, MZPS1, resulted in >80% inhibition of HBsAg expression in PLC/PRF5 cells. MZPS1 had more inhibitory effect than the antisense oligonucletoide target at the same region, whereas the control minizyme had little effect. Another gene-specific minizyme, MZPS2, did not show any effect. Treated cells remained fully viable. Treatment of 2.2.15 cells with MZPS1 also led to decreased HBsAg expression. In addition, a 2.3-fold decrease in viral production was observed. Our data showed that minizymes can inhibit HBV gene expression and may potentially be useful for clinical therapy against chronic HBV infection.
Collapse
|
3
|
Horie S, Kitamura Y, Kawasaki H, Terada T. Inhibitory effects of antisense oligonucleotides on the expression of procollagen type III gene in mouse hepatic stellate cells transformed by simian virus 40. Pathol Int 2000; 50:937-44. [PMID: 11123759 DOI: 10.1046/j.1440-1827.2000.01146.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of phosphorothioate antisense oligonucleotides (ASO), complementary to the AUG start region, the junctional region of the intron and exon, and to exon of the procollagen type III gene, were investigated in a mouse hepatic stellate cell (HSC) line transformed by the simian virus 40 gene, SV68c-IS cells. ASO were transfected by lipofection. Immunohistochemistry, western and northern blotting showed inhibitory effects on procollagen type III gene expression by ASO that were complementary to the AUG start region and the junctional region of the intron and exon 2. However, ASO complementary to the exon 2 and 3, junctional region of the intron and exon 3, and sense oligonucleotides complementary to each ASO did not show any inhibitory effects. The effects of ASO complementary to the AUG start region were greater than those of ASO complementary to the junctional region. The effects of ASO were transient and a large amount of ASO was required to induce inhibitory effects without lipofection. ASO were effective in inhibiting the expression of the procollagen type III gene in the HSC which is well known to play a critical role in liver fibrosis.
Collapse
MESH Headings
- Actins/analysis
- Animals
- Antigens, Viral, Tumor/analysis
- Blotting, Northern
- Blotting, Western
- Cell Division/drug effects
- Cell Line, Transformed
- Cell Transformation, Viral
- DNA, Antisense/genetics
- DNA, Antisense/pharmacology
- Desmin/analysis
- Dose-Response Relationship, Drug
- Gene Expression Regulation/drug effects
- Glial Fibrillary Acidic Protein/analysis
- Immunohistochemistry
- Liver/chemistry
- Liver/cytology
- Liver/virology
- Mice
- Muscle, Smooth/chemistry
- Procollagen/genetics
- Procollagen/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Simian virus 40/growth & development
- Time Factors
Collapse
Affiliation(s)
- S Horie
- Second Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | |
Collapse
|
4
|
Albuquerque-Silva J, Milican F, Bollen A, Houard S. Ribozyme-mediated decrease in mumps virus nucleocapsid mRNA level and progeny in infected vero cells. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1999; 9:279-88. [PMID: 10435753 DOI: 10.1089/oli.1.1999.9.279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of endogenously expressed ribozymes directed to the mumps virus nucleocapsid (NP) mRNA were studied during viral infection. To this end, eukaryotic expression vectors encoding ribozymes or controls of passive hybridization effects were constructed and used to transfect mumps permissive Vero cells. Transcripts spanning trans-acting ribozymes of the hammerhead and hairpin types were designed to hydrolyze the first 5'GUC-3' sequence downstream from the initiation site and to hybridize to a 16 base sequence containing the putative cleavage site. Control vectors encoded mutated and catalytically inactive forms of the ribozymes or a 16 base antisense version of the target sequence. When stably expressed in cells, both ribozymes and passive control RNAs reduced viral yields. A ribozyme-mediated effect on viral growth was, however, observed, as both ribozyme types reduced viral titers by approximately 80%, well above the highest inhibition level of approximately 35% found when noncatalytic RNAs were expressed. In addition, levels of NP mRNA were generally lower in cells expressing catalytic RNAs, supporting the observed inhibition of viral growth. Although cleavage in vitro of a synthetic analog of the NP mRNA was demonstrated using RNAs isolated from ribozyme-expressing cells, in vivo cleavage products were not detectable despite the use of sensitive methods, possibly because of degradation phenomena. We also suggest here that additional controls should be conducted when semicompetitive RT-PCR methods are used to evaluate intracellular cleavage by ribozymes, as the results may depend on the initial target RNA concentration.
Collapse
|
5
|
Wu H, MacLeod AR, Lima WF, Crooke ST. Identification and partial purification of human double strand RNase activity. A novel terminating mechanism for oligoribonucleotide antisense drugs. J Biol Chem 1998; 273:2532-42. [PMID: 9446554 DOI: 10.1074/jbc.273.5.2532] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have identified a double strand RNase (dsRNase) activity that can serve as a novel mechanism for chimeric antisense oligonucleotides comprised of 2'-methoxy 5' and 3' "wings" on either side of an oligoribonucleotide gap. Antisense molecules targeted to the point mutation in codon 12 of Harvey Ras (Ha-Ras) mRNA resulted in a dose-dependent reduction in Ha-Ras RNA. Reduction in Ha-Ras RNA was dependent on the oligoribonucleotide gap size with the minimum gap size being four nucleotides. An antisense oligonucleotide of the same composition, but containing four mismatches, was inactive. When chimeric antisense oligonucleotides were prehybridized with 17-mer oligoribonucleotides, extracts prepared from T24 cells, cytosol, and nuclei resulted in cleavage in the oligoribonucleotide gap. Both strands were cleaved. Neither mammalian nor Escherichia coli RNase HI cleaved the duplex, nor did single strand nucleases. The dsRNase activity resulted in cleavage products with 5'-phosphate and 3'-hydroxyl termini. Partial purification of dsRNase from rat liver cytosolic and nuclear fractions was effected. The cytosolic enzyme was purified approximately 165-fold. It has an approximate molecular weight of 50,000-65,000, a pH optimum of approximately 7.0, requires divalent cations, and is inactivated by approximately 300 mM NaCl. It is inactivated by heat, proteinase K, and also by a number of detergents and several organic solvents.
Collapse
Affiliation(s)
- H Wu
- Department of Molecular Pharmacology, Isis Pharmaceuticals, Carlsbad, California 92008, USA
| | | | | | | |
Collapse
|
6
|
Sokol DL, Passey RJ, MacKinlay AG, Murray JD. Regulation of CAT protein by ribozyme and antisense mRNA in transgenic mice. Transgenic Res 1998; 7:41-50. [PMID: 9556913 DOI: 10.1023/a:1008803905445] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transgenic mouse lines were engineered to express stably antisense mRNA or antisense mRNA containing catalytic ribozyme (rbz) structures complementary to bacterial chloramphenicol acetyltransferase (CAT) gene transcripts. One transgenic line expressed antisense mRNA that specifically targeted full-length CAT coding sequences (ACAT). Another transgenic line expressed full-length antisense CAT mRNA which was modified by mutagensis to include four rbz cassettes (rbz-ACAT) in order to compare antisense versus antisense-rbz function in vivo. Preliminary data were also collected from a transgenic mouse line expressing antisense mRNA targeting 72% of the 5' region of CAT coding sequences (5' ACAT). All constructs contained similar control elements in their design. Promoter elements were derived from the bovine alpha s1-casein gene, while the small t intron and 3' control sequences were derived from SV40. The ability of these various constructs to down-regulate CAT protein levels was compared by analysis of CAT protein production in lactating double-hemizygous transgenic female mice. Every double-hemizygous mouse analysed expressed mRNA from the alpha s1-casein-CAT construct (Clarke et al., 1994) and equivalent levels of mRNA from one of the three antisense constructs. Transgenic mouse lines expressing both ACAT and CAT mRNA down-regulated CAT protein levels by 90% of that found in the CAT only transgenic population. Similarly, double-hemizygous transgenic lines expressing both rbz-ACAT and CAT mRNA regulated CAT protein levels by 87%. Preliminary data suggests that expression of mRNA from 5' ACAT/CAT double-hemizygote mice allowed approximately 67% down-regulation of normal CAT protein levels. We conclude that incorporation of multiple ribozymes within the full-length antisense CAT construct does not enhance the effectiveness of antisense mRNA in the down-regulation of CAT protein production in our system.
Collapse
Affiliation(s)
- D L Sokol
- Department of Pathology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
7
|
Kilkuskie RE, Field AK. Antisense inhibition of virus infections. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 40:437-83. [PMID: 9217933 PMCID: PMC7129323 DOI: 10.1016/s1054-3589(08)60147-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This chapter summarizes the new approaches to identify novel antiviral drug targets and to develop novel antiviral strategies. The chapter also reviews genetic pharmacology as it relates to antiviral antisense research and drug development. Antisense oligonucleotides are selective compounds by virtue of their interaction with specific segments of RNA. For potential antivirals, identification of appropriate target RNA sequences for antisense oligonucleotides is performed at two levels: the optimal gene within the virus, and the optimal sequence within the RNA. The importance of these oligonucleotide modifications in designing effective drugs is just now being evaluated, both in animal model systems and in the clinic. The first generation of widely used antisense oligonucleotides has been the phosphorothioate (PS) compounds and a body of data on biodistribution, pharmacokinetics, and metabolism in animals and in humans is now available. Since the identification and sequencing of human immunodeficiency virus (HIV), there has been a strong interest in identifying a potent oligonucleotide inhibitor that would have the potential for development as a therapy for acquired immunodeficiency syndrome (AIDS). Numerous phosphorothioate oligonucleotides, with no apparent antisense sequence specificity, can have an anti-herpes simplex virus (HSV) effect. Oligonucleotides can be effective anti-influenza agents in cell culture assays. Hepatitis B virus (HBV) X protein that is a transactivator has been also reported to be targeted successfully by antisense oligonucleotides in vivo. Several of picornaviruses have been targets for antisense oligonucleotide inhibition, and the studies demonstrate the versatility of the antisense approach. However, the fact that oligonucleotides may contribute numerous mechanisms toward the antiviral activity, in addition to the antisense mechanism, may in some cases be an asset in the pursuit of clinically useful antiviral drugs.
Collapse
|
8
|
Hofer G, Grimmer C, Sukhatme VP, Sterzel RB, Rupprecht HD. Transcription factor Egr-1 regulates glomerular mesangial cell proliferation. J Biol Chem 1996; 271:28306-10. [PMID: 8910451 DOI: 10.1074/jbc.271.45.28306] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Increase of glomerular mesangial cells (MCs) is a prominent histopathological finding in many types of glomerulonephritis. We have shown previously that expression of the zinc-finger transcription factor, early growth response gene-1 (egr-1), is closely correlated with the proliferation of cultured MCs. To elucidate whether Egr-1 is required for MC proliferation, we inhibited serum-induced Egr-1 expression by phosphothioate-modified antisense oligonucleotides (ODNs). Uptake of antisense ODNs into MCs was demonstrated, and five different egr-1 antisense ODNs were tested for their impact on serum-induced egr-1 mRNA and protein levels and on MC growth. The most potent egr-1 antisense ODN inhibited serum-induced egr-1 mRNA by 68%, protein induction by 58%, and MC replication as measured by [3H]thymidine uptake and cell counts by 78 and 46%, respectively. The effects of antisense ODNs on MC growth correlated closely with their ability to inhibit Egr-1 protein. ODNs acted in a dose-dependent manner, the minimal effective concentration being 1 microM. Control ODNs had no significant effects. In addition, antisense ODNs against egr-1 potently inhibited endothelin-1-induced Egr-1 expression and MC growth. Heparin, a known inhibitor of MC growth, suppressed serum-induced [3H]thymidine uptake by 39% and egr-1 mRNA expression by 44%. We conclude that Egr-1 is an essential part of the mitogenic signal transduction cascade in cultured MCs.
Collapse
Affiliation(s)
- G Hofer
- Medizinische Klinik IV der Universität Erlangen-Nürnberg, Nephrologische Forschungslabors, Loschgestrasse 8, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
9
|
Tellier R, Bukh J, Emerson SU, Purcell RH. Amplification of the full-length hepatitis A virus genome by long reverse transcription-PCR and transcription of infectious RNA directly from the amplicon. Proc Natl Acad Sci U S A 1996; 93:4370-3. [PMID: 8633073 PMCID: PMC39544 DOI: 10.1073/pnas.93.9.4370] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The genetic study of RNA viruses is greatly facilitated by the availability of infectious cDNA clones. However, their construction has often been difficult. While exploring ways to simplify the construction of infectious clones, we have successfully modified and applied the newly described technique of "long PCR" to the synthesis of a full-length DNA amplicon from the RNA of a cytopathogenic mutant (HM 175/24a) of the hepatitis A virus (HAV). Primers were synthesized to match the two extremities of the HAV genome. The antisense primer, homologous to the 3' end, was used in both the reverse transcription (RT) and the PCR steps. With these primers we reproducibly obtained a full-length amplicon of approximately 7.5 kb. Further, since we engineered a T7 promoter in the sense primer, RNA could be transcribed directly from the amplicon with T7 RNA polymerase. Following transfection of cultured fetal rhesus kidney cells with the transcription mixture containing both the HAV cDNA and the transcribed RNA, replicating HAV was detected by immunofluorescence microscopy and, following passage to other cell cultures, by focus formation. The recovered virus displayed the cytopathic effect and large plaque phenotype typical of the original virus; this result highlights the fidelity of the modified long reverse transcription-PCR procedure and demonstrates the potential of this method for providing cDNAs of viral genomes and simplifying the construction of infectious clones.
Collapse
Affiliation(s)
- R Tellier
- Hepatitis Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
10
|
Iizuka N, Chen C, Yang Q, Johannes G, Sarnow P. Cap-independent translation and internal initiation of translation in eukaryotic cellular mRNA molecules. Curr Top Microbiol Immunol 1995; 203:155-77. [PMID: 7555089 DOI: 10.1007/978-3-642-79663-0_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- N Iizuka
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
11
|
Hellen CU, Wimmer E. Translation of encephalomyocarditis virus RNA by internal ribosomal entry. Curr Top Microbiol Immunol 1995; 203:31-63. [PMID: 7555090 DOI: 10.1007/978-3-642-79663-0_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Picornavirus 5' NCRs contain IRES elements that have been divided into two groups, exemplified by PV (type 1) and EMCV (type 2). These elements are functionally related and have an intriguing level of structural and sequence similarity. Some conserved RNA sequences and/or structures may correspond to cis-acting elements involved in IRES function, so that there may also be similarities in the mechanism by which the two types or IRES promote initiation. The function of both types of IRES element appears to depend on a cellular 57 kDa polypeptide, which has been identified as the predominantly nuclear hnRNP protein PTB. However, a specific function for p57/PTB in translation has not yet been established. These two groups can be differentiated on the basis of their requirements for trans-acting factors. The EMCV IRES functions efficiently in a broader range of eukaryotic cell types than type 1 IRES elements, probably because the latter require additional factor(s). A second distinction between these IRES element is that initiation occurs directly at the 3' border of type 2 IRES elements, whereas a nonessential spacer of between 30 nt and 154 nt separates type 1 IRES elements from the downstream initiation codon.
Collapse
Affiliation(s)
- C U Hellen
- Department of Microbiology and Immunology, SUNY Health Sciences Center at Brooklyn 11203-2098, USA
| | | |
Collapse
|
12
|
Johansson HE, Belsham GJ, Sproat BS, Hentze MW. Target-specific arrest of mRNA translation by antisense 2'-O-alkyloligoribonucleotides. Nucleic Acids Res 1994; 22:4591-8. [PMID: 7984406 PMCID: PMC308505 DOI: 10.1093/nar/22.22.4591] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We describe a novel experimental approach to investigate mRNA translation. Antisense 2'-O-allyl oligoribonucleotides (oligos) efficiently arrest translation of targeted mRNAs in rabbit reticulocyte lysate and wheat germ extract while displaying minimal non-specific effects on translation. Oligo/mRNA-hybrids positioned anywhere within the 5' UTR or the first approximately 20 nucleotides of the open reading frame block cap-dependent translation initiation with high specificity. The thermodynamic stability of hybrids between 2'-O-alkyl oligos and RNA permits translational inhibition with oligos as short as 10 nucleotides. This inhibition is independent of RNase H cleavage or modifications which render the mRNA untranslatable. We show that 2'-O-alkyl oligos can also be employed to interfere with cap-independent internal initiation of translation and to arrest translation elongation. The latter is accomplished by UV-crosslinking of psoralen-tagged 2'-O-methyloligoribonucleotides to the mRNA within the open reading frame. The utility of 2'-O-alkyloligoribonucleotides to arrest translation from defined positions within an mRNA provides new approaches to investigate mRNA translation.
Collapse
Affiliation(s)
- H E Johansson
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
13
|
Laptev AV, Lu Z, Colige A, Prockop DJ. Specific inhibition of expression of a human collagen gene (COL1A1) with modified antisense oligonucleotides. The most effective target sites are clustered in double-stranded regions of the predicted secondary structure for the mRNA. Biochemistry 1994; 33:11033-9. [PMID: 8086420 DOI: 10.1021/bi00202a024] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A series of antisense oligonucleotides (ASOs) were synthesized and tested to define the best target sites within an RNA transcript of collagen for effective inhibition of expression. The test system consisted of mouse NIH 3T3 fibroblasts that were stably transfected with a human minigene for procollagen I so that the cells simultaneously synthesized full-length mouse pro alpha 1 (I) chains and internally deleted human pro alpha 1 (I) chains. The sequences of the transcripts from both genes were compared, and a series of 28 ASOs were designed to target sites in which there were at least two base differences within a 20-nucleotide sequence between the human and mouse transcripts. Six of the ASOs specifically decreased the levels of pro alpha 1 (I) chain synthesized from the human gene without a decrease in the levels of pro alpha 1 (I) chains from the mouse endogenous gene. The most effective ASOs reduced the intracellular levels of human pro alpha 1 (I) chains relative to the mouse pro alpha 1 (I) chains to 37-67% of the control values. Combined addition of two effective ASOs or a second administration of the same effective ASO did not produce any additive effect. The results did not support previous suggestions that the best target sites for ASOs were sequences around initiation codons for translation, at intron-exon boundaries, or in single-stranded loops in hairpin structures. Also, the results did not support previous suggestions that the most effective ASOs are those with the highest affinities for their target sequences. Instead, the most consistent pattern in the data was that the most effective ASOs were those targeted to sequences that were predicted to form clustered double-stranded structures in RNA transcripts.
Collapse
Affiliation(s)
- A V Laptev
- Department of Biochemistry and Molecular Biology, Jefferson Institute of Molecular Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | |
Collapse
|
14
|
Abstract
In this chapter I have attempted to outline the rationale that underlies the antisense approach to treatment of virus infection, to catalog the effector molecules that are currently available, and to estimate the relative worth of each. In so doing I have tried to describe the criteria that might be employed in their design and the factors that may determine their efficacy in tissue culture and, perhaps, in vivo. Finally, I have described the few examples presently available that indicate that antisense approaches may one day be therapeutically useful in treatment of disease of viral or nonviral origin.
Collapse
Affiliation(s)
- J L Whitton
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
15
|
Xing Z, Whitton JL. An anti-lymphocytic choriomeningitis virus ribozyme expressed in tissue culture cells diminishes viral RNA levels and leads to a reduction in infectious virus yield. J Virol 1993; 67:1840-7. [PMID: 8445712 PMCID: PMC240243 DOI: 10.1128/jvi.67.4.1840-1847.1993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ribozymes, RNA molecules which cleave RNA in a sequence-specific manner, are a promising tool in the development of specific antiviral therapies. The viruses most susceptible to ribozymes may be those in which all aspects of the viral life cycle depend on RNA, with no DNA intermediate. Consequently, we have chosen as a model one such virus, the arenavirus lymphocytic choriomeningitis virus (LCMV), and have previously reported the design of specific anti-LCMV ribozymes (Z. Xing and J. L. Whitton, J. Virol. 66:1361-1369, 1992). Here we describe the establishment of several cell lines, each stably expressing an antiarenaviral ribozyme of different specificity. Expression of a single ribozyme leads to a reduction in LCMV RNA levels, and stimulation of ribozyme transcription amplifies the effect. Target site selection may be an important determinant of antiviral effectiveness, since the extent of the antiviral effect, measured by assay of viral RNA, varies with the specificity of the antiviral ribozyme expressed. Furthermore, infectious virus production is reduced approximately 100-fold. This effect is LCMV specific, as yield of a related arenavirus is not similarly curtailed. We are currently investigating the mechanism underlying the ribozyme-mediated antiviral effect.
Collapse
Affiliation(s)
- Z Xing
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
16
|
Thierry AR, Dritschilo A. Intracellular availability of unmodified, phosphorothioated and liposomally encapsulated oligodeoxynucleotides for antisense activity. Nucleic Acids Res 1992; 20:5691-8. [PMID: 1454532 PMCID: PMC334404 DOI: 10.1093/nar/20.21.5691] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have studied factors which may effect the intracellular availability of oligonucleotides to achieve antisense activity. 15-20 mer unmodified, phosphorothioate modified and liposomally encapsulated oligodeoxynucleotides have been tested in leukemia MOLT-3 cells. Phosphorothioate analogs penetrated and accumulated intact in cells in contrast to unmodified oligomers, which showed a high instability in cell culture medium. A slow decrease of intracellular concentration of undegraded phosphorothioate oligodeoxynucleotides was observed after cell treatment and could be predominantly explained by a significant efflux transport. Using laser-assisted confocal microscopy we have observed that fluorescein 5-end-labeled phosphorothioate derivatives predominantly distributed in intracytoplasmic endocytic vesicles following cell treatment. The end-capped version of phosphorothioate oligodeoxynucleotides exhibited greater cellular uptake than fully modified analogues while exhibiting similar biological stability. Liposome encapsulation made possible oligomer protection in serum-containing medium and substantially improved cellular accumulation. Furthermore, the efflux rate of oligomer initially introduced within liposomes is 2-fold lower than that observed in cells which have been incubated with free oligonucleotides. Liposomal preparations of oligodeoxynucleotides facilitate release from endocytic vesicles, and thus, cytoplasmic and nuclear localization are observed following cell treatment. Furthermore, intracellular distribution studies demonstrate that intracellular transport of unmodified oligomers is effectively achieved using the liposomal carrier.
Collapse
Affiliation(s)
- A R Thierry
- Department of Radiation Medicine, Vincent T. Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC 20007
| | | |
Collapse
|
17
|
Cantor GH, Palmer GH. Antisense oligonucleotide inhibition of bovine leukemia virus tax expression in a cell-free system. ANTISENSE RESEARCH AND DEVELOPMENT 1992; 2:147-52. [PMID: 1327333 DOI: 10.1089/ard.1992.2.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tax, the trans-activating protein of bovine leukemia virus, stimulates the long terminal repeat to promote viral transcription and also activates cellular genes that may be involved in tumorigenesis. To study Tax regulation, we identified antisense oligodeoxynucleotides that inhibit tax translation in rabbit reticulocyte lysate. Two antisense oligonucleotides directed toward the 5' end of tax RNA inhibited translation by 59% and 45%, when compared to the effect of a random sequence oligonucleotide. This inhibitory effect was independent of RNase H. In contrast, antisense directed at the middle of the tax RNA inhibited by only 12%, but, in the presence of RNase H, inhibited 38%. An antisense oligonucleotide directed at the 3' portion of tax RNA was not inhibitory and, in fact, stimulated translation. Identification of these inhibitory antisense sequences may allow elucidation of the biological role of Tax in BLV-persistent lymphocytosis and tumorigenesis.
Collapse
Affiliation(s)
- G H Cantor
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman
| | | |
Collapse
|
18
|
Ghosh MK, Cohen JS. Oligodeoxynucleotides as antisense inhibitors of gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 42:79-126. [PMID: 1574591 DOI: 10.1016/s0079-6603(08)60574-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M K Ghosh
- Pharmacology Department, Georgetown University Medical School, Washington, D.C. 20007
| | | |
Collapse
|
19
|
Levis C, Tronchet M, Meyer M, Albouy J, Astier-Manifacier S. Effects of antisense oligodeoxynucleotide hybridization on in vitro translation of potato virus Y RNA. Virus Genes 1992; 6:33-46. [PMID: 1549909 DOI: 10.1007/bf01703755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Potato virus Y (PVY), a potyvirus, has an RNA genome containing 9704 nucleotides of which 185 belong to the 5' nontranslated region (NTR). Contrary to most eukaryotic mRNAs that have a cap structure, the potyvirus RNA has a genome-linked protein (VPg). In order to understand the mechanisms of PVY RNA translation initiation, hybrid-arrest translation was used to localize sequences involved in binding of proteins and/or ribosomes. The 5' NTR was fused to the beta-glucuronidase (GUS) reporter gene. Six antisense oligodeoxynucleotides were used for hybridization, and the efficiency of the in vitro translation of the hybridized mRNA was modified to different levels depending upon the position of the oligodeoxynucleotide used. The highest inhibition was obtained with an oligodeoxynucleotide hybridized to the 5' end. In addition, translation of GUS mRNA containing the PVY 5' NTR was greatly enhanced when this mRNA was capped. These results differ from those obtained with the tobacco etch virus (TEV) and three picornaviruses, but are similar to those obtained with capped mRNA.
Collapse
Affiliation(s)
- C Levis
- Station de Phytopathologie, Institut National de la Recherche Agronomique, Versailles, France
| | | | | | | | | |
Collapse
|
20
|
Nagai K, Hecht S. Site-specific DNA cleavage by antisense oligonucleotides covalently linked to phenazine di-N-oxide. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54382-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Sankar S, Porter AG. Expression, purification, and properties of recombinant encephalomyocarditis virus RNA-dependent RNA polymerase. J Virol 1991; 65:2993-3000. [PMID: 1851868 PMCID: PMC240947 DOI: 10.1128/jvi.65.6.2993-3000.1991] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Encephalomyocarditis (EMC) virus RNA-dependent RNA polymerase was expressed in Escherichia coli as a fusion protein with glutathione S-transferase (GST), which allowed easy purification of the fusion protein by affinity chromatography on immobilized glutathione. Inclusion of a thrombin cleavage site between the GST carrier and the viral enzyme facilitated the release of purified mature EMC virus RNA polymerase from the GST carrier by proteolysis with thrombin. The purified recombinant enzyme has a molecular mass of about 52 kDa and is recognized by polyclonal immune serum raised against a peptide sequence corresponding to the C-terminal region of the protein. The recombinant enzyme comigrates with immunoprecipitated EMC virus RNA polymerase from infected mouse L929 cell extracts when run in parallel lanes on a sodium dodecyl sulfate-polyacrylamide gel. The enzyme exhibits rifampin-resistant, poly(A)-dependent poly(U) polymerase activity and RNA polymerase activity, which are both oligo(U) dependent. Template-size products are synthesized in in vitro reactions with EMC virus genomic RNA or globin mRNA. The availability of recombinant EMC virus RNA polymerase in a purified form will allow biochemical analysis of its role in the replication of the virus as well as structure-function studies of this unique class of enzyme.
Collapse
Affiliation(s)
- S Sankar
- Institute of Molecular and Cell Biology, National University of Singapore
| | | |
Collapse
|
22
|
|
23
|
Florini J, Ewton D. Highly specific inhibition of IGF-I-stimulated differentiation by an antisense oligodeoxyribonucleotide to myogenin mRNA. No effects on other actions of IGF-T. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77364-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Gadani F, Mansky LM, Medici R, Miller WA, Hill JH. Genetic engineering of plants for virus resistance. Arch Virol 1990; 115:1-21. [PMID: 2248549 DOI: 10.1007/bf01310619] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Historically, control of plant virus disease has involved numerous strategies which have often been combined to provide effective durable resistance in the field. In recent years, the dramatic advances obtained in plant molecular virology have enhanced our understanding of viral genome organizations and gene functions. Moreover, genetic engineering of plants for virus resistance has recently provided promising additional strategies for control of virus disease. At present, the most promising of these has been the expression of coat-protein coding sequences in plants transformed with a coat protein gene. Other potential methods include the expression of anti-sense viral transcripts in transgenic plants, the application of artificial anti-sense mediated gene regulation to viral systems, and the expression of viral satellite RNAs, RNAs with endoribonuclease activity, antiviral antibody genes, or human interferon genes in plants.
Collapse
Affiliation(s)
- F Gadani
- Research and Development, EniChem S.p.A., Milan, Italy
| | | | | | | | | |
Collapse
|