1
|
Bedewy WA, Mulawka JW, Adler MJ. Classifying covalent protein binders by their targeted binding site. Bioorg Med Chem Lett 2025; 117:130067. [PMID: 39667507 DOI: 10.1016/j.bmcl.2024.130067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Covalent protein targeting represents a powerful tool for protein characterization, identification, and activity modulation. The safety of covalent therapeutics was questioned for many years due to the possibility of off-target binding and subsequent potential toxicity. Researchers have recently, however, demonstrated many covalent binders as safe, potent, and long-acting therapeutics. Moreover, they have achieved selective targeting among proteins with high structural similarities, overcome mutation-induced resistance, and obtained higher potency compared to non-covalent binders. In this review, we highlight the different classes of binding sites on a target protein that could be addressed by a covalent binder. Upon folding, proteins generate various concavities available for covalent modifications. Selective targeting to a specific site is driven by differences in the geometry and physicochemical properties of the binding pocket residues as well as the geometry and reactivity of the covalent modifier "warhead". According to the warhead reactivity and the nature of the binding region, covalent binders can alter or lock a targeted protein conformation and inhibit or enhance its activity. We survey these various modification sites using case studies of recently discovered covalent binders, bringing to the fore the versatile application of covalent protein binders with respect to drug discovery approaches.
Collapse
Affiliation(s)
- Walaa A Bedewy
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Egypt.
| | - John W Mulawka
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Marc J Adler
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
2
|
Hulce KR, Jaishankar P, Lee GM, Bohn MF, Connelly EJ, Wucherer K, Ongpipattanakul C, Volk RF, Chuo SW, Arkin MR, Renslo AR, Craik CS. Inhibiting a dynamic viral protease by targeting a non-catalytic cysteine. Cell Chem Biol 2022; 29:785-798.e19. [PMID: 35364007 PMCID: PMC9133232 DOI: 10.1016/j.chembiol.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/07/2022] [Accepted: 03/10/2022] [Indexed: 11/03/2022]
Abstract
Viruses are responsible for some of the most deadly human diseases, yet available vaccines and antivirals address only a fraction of the potential viral human pathogens. Here, we provide a methodology for managing human herpesvirus (HHV) infection by covalently inactivating the HHV maturational protease via a conserved, non-catalytic cysteine (C161). Using human cytomegalovirus protease (HCMV Pr) as a model, we screened a library of disulfides to identify molecules that tether to C161 and inhibit proteolysis, then elaborated hits into irreversible HCMV Pr inhibitors that exhibit broad-spectrum inhibition of other HHV Pr homologs. We further developed an optimized tool compound targeted toward HCMV Pr and used an integrative structural biology and biochemical approach to demonstrate inhibitor stabilization of HCMV Pr homodimerization, exploiting a conformational equilibrium to block proteolysis. Irreversible HCMV Pr inhibition disrupts HCMV infectivity in cells, providing proof of principle for targeting proteolysis via a non-catalytic cysteine to manage viral infection.
Collapse
Affiliation(s)
- Kaitlin R Hulce
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA; Small Molecule Discovery Center, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Gregory M Lee
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA; Small Molecule Discovery Center, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Markus-Frederik Bohn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Emily J Connelly
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Kristin Wucherer
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Chayanid Ongpipattanakul
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Regan F Volk
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Shih-Wei Chuo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA; Small Molecule Discovery Center, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA; Small Molecule Discovery Center, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA.
| |
Collapse
|
3
|
Abstract
The recent approval by the regulatory authorities in the United States of several HIV proteinase inhibitors as therapeutics for the treatment of AIDS confirms that virus proteinases are valid molecular targets in the search for new antiviral drugs. This review summarizes the available approaches that can be taken to discover virus proteinase inhibitors and reviews the current status of our knowledge with respect to virus proteinases in viruses of clinical significance other than HIV. The major focus is on proteinases identified in the viruses that cause the common cold, hepatitis C virus and the herpesviruses.
Collapse
Affiliation(s)
- J. S. Mills
- Molecular Virology Department, Roche Research Centre, 40 Broadwater Road, Welwyn Garden City, Herts AL7 3AY, UK
| |
Collapse
|
4
|
Zühlsdorf M, Werten S, Klupp BG, Palm GJ, Mettenleiter TC, Hinrichs W. Dimerization-Induced Allosteric Changes of the Oxyanion-Hole Loop Activate the Pseudorabies Virus Assemblin pUL26N, a Herpesvirus Serine Protease. PLoS Pathog 2015; 11:e1005045. [PMID: 26161660 PMCID: PMC4498786 DOI: 10.1371/journal.ppat.1005045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/24/2015] [Indexed: 01/01/2023] Open
Abstract
Herpesviruses encode a characteristic serine protease with a unique fold and an active site that comprises the unusual triad Ser-His-His. The protease is essential for viral replication and as such constitutes a promising drug target. In solution, a dynamic equilibrium exists between an inactive monomeric and an active dimeric form of the enzyme, which is believed to play a key regulatory role in the orchestration of proteolysis and capsid assembly. Currently available crystal structures of herpesvirus proteases correspond either to the dimeric state or to complexes with peptide mimetics that alter the dimerization interface. In contrast, the structure of the native monomeric state has remained elusive. Here, we present the three-dimensional structures of native monomeric, active dimeric, and diisopropyl fluorophosphate-inhibited dimeric protease derived from pseudorabies virus, an alphaherpesvirus of swine. These structures, solved by X-ray crystallography to respective resolutions of 2.05, 2.10 and 2.03 Å, allow a direct comparison of the main conformational states of the protease. In the dimeric form, a functional oxyanion hole is formed by a loop of 10 amino-acid residues encompassing two consecutive arginine residues (Arg136 and Arg137); both are strictly conserved throughout the herpesviruses. In the monomeric form, the top of the loop is shifted by approximately 11 Å, resulting in a complete disruption of the oxyanion hole and loss of activity. The dimerization-induced allosteric changes described here form the physical basis for the concentration-dependent activation of the protease, which is essential for proper virus replication. Small-angle X-ray scattering experiments confirmed a concentration-dependent equilibrium of monomeric and dimeric protease in solution. Herpesviruses encode a unique serine protease, which is essential for herpesvirus capsid maturation and is therefore an interesting target for drug development. In solution, this protease exists in an equilibrium of an inactive monomeric and an active dimeric form. All currently available crystal structures of herpesvirus proteases represent complexes, particularly dimers. Here we show the first three-dimensional structure of the native monomeric form in addition to the native and the chemically inactivated dimeric form of the protease derived from the porcine herpesvirus pseudorabies virus. Comparison of the monomeric and dimeric form allows predictions on the structural changes that occur during dimerization and shed light onto the process of protease activation. These new crystal structures provide a rational base to develop drugs preventing dimerization and therefore impeding herpesvirus capsid maturation. Furthermore, it is likely that this mechanism is conserved throughout the herpesviruses.
Collapse
Affiliation(s)
- Martin Zühlsdorf
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sebastiaan Werten
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Gottfried J. Palm
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Winfried Hinrichs
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
- * E-mail:
| |
Collapse
|
5
|
Gable J, Acker TM, Craik CS. Current and potential treatments for ubiquitous but neglected herpesvirus infections. Chem Rev 2014; 114:11382-412. [PMID: 25275644 PMCID: PMC4254030 DOI: 10.1021/cr500255e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan
E. Gable
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158-2280, United States
- Graduate
Group in Biophysics, University of California,
San Francisco, 600 16th
Street, San Francisco, California 94158-2280, United States
| | - Timothy M. Acker
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158-2280, United States
| | - Charles S. Craik
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158-2280, United States
| |
Collapse
|
6
|
Ekici OD, Paetzel M, Dalbey RE. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci 2008; 17:2023-37. [PMID: 18824507 DOI: 10.1110/ps.035436.108] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Serine proteases comprise nearly one-third of all known proteases identified to date and play crucial roles in a wide variety of cellular as well as extracellular functions, including the process of blood clotting, protein digestion, cell signaling, inflammation, and protein processing. Their hallmark is that they contain the so-called "classical" catalytic Ser/His/Asp triad. Although the classical serine proteases are the most widespread in nature, there exist a variety of "nonclassical" serine proteases where variations to the catalytic triad are observed. Such variations include the triads Ser/His/Glu, Ser/His/His, and Ser/Glu/Asp, and include the dyads Ser/Lys and Ser/His. Other variations are seen with certain serine and threonine peptidases of the Ntn hydrolase superfamily that carry out catalysis with a single active site residue. This work discusses the structure and function of these novel serine proteases and threonine proteases and how their catalytic machinery differs from the prototypic serine protease class.
Collapse
Affiliation(s)
- Ozlem Doğan Ekici
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
7
|
Brignole EJ, Gibson W. Enzymatic activities of human cytomegalovirus maturational protease assemblin and its precursor (pPR, pUL80a) are comparable: [corrected] maximal activity of pPR requires self-interaction through its scaffolding domain. J Virol 2007; 81:4091-103. [PMID: 17287260 PMCID: PMC1866128 DOI: 10.1128/jvi.02821-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses encode an essential, maturational serine protease whose catalytic domain, assemblin (28 kDa), is released by self-cleavage from a 74-kDa precursor (pPR, pUL80a). Although there is considerable information about the structure and enzymatic characteristics of assemblin, a potential pharmacologic target, comparatively little is known about these features of the precursor. To begin studying pPR, we introduced five point mutations that stabilize it against self-cleavage at its internal (I), cryptic (C), release (R), and maturational (M) sites and at a newly discovered "tail" (T) site. The resulting mutants, called ICRM-pPR and ICRMT-pPR, were expressed in bacteria, denatured in urea, purified by immobilized metal affinity chromatography, and renatured by a two-step dialysis procedure and by a new method of sedimentation into glycerol gradients. The enzymatic activities of the pPR mutants were indistinguishable from that of IC-assemblin prepared in parallel for comparison, as determined by using a fluorogenic peptide cleavage assay, and approximated rates previously reported for purified assemblin. The percentage of active enzyme in the preparations was also comparable, as determined by using a covalent-binding suicide substrate. An unexpected finding was that, in the absence of the kosmotrope Na2SO4, optimal activity of pPR requires interaction through its scaffolding domain. We conclude that although the enzymatic activities of assemblin and its precursor are comparable, there may be differences in how their catalytic sites become fully activated.
Collapse
Affiliation(s)
- Edward J Brignole
- Virology Laboratories, The Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| | | |
Collapse
|
8
|
Cottier V, Barberis A, Lüthi U. Novel yeast cell-based assay to screen for inhibitors of human cytomegalovirus protease in a high-throughput format. Antimicrob Agents Chemother 2006; 50:565-71. [PMID: 16436711 PMCID: PMC1366920 DOI: 10.1128/aac.50.2.565-571.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protease encoded by the human cytomegalovirus (HCMV) is an attractive target for antiviral drug development because of its essential function in viral replication. We describe here a cellular assay in the yeast Saccharomyces cerevisiae for the identification of small molecule inhibitors of HCMV protease by conditional growth in selective medium. In this system, the protease cleavage sequence is inserted into the N-(5'-phosphoribosyl)anthranilate isomerase (Trp1p), a yeast protein essential for cell proliferation in the absence of tryptophan. Coexpression of HCMV protease with the engineered Trp1p substrate in yeast cells results in site-specific cleavage and functional inactivation of the Trp1p enzyme, thereby leading to an arrest of cell proliferation. This growth arrest can be suppressed by the addition of validated HCMV protease inhibitors. The growth selection system presented here provides the basis for a high-throughput screen to identify HCMV protease inhibitors that are active in eukaryotic cells.
Collapse
Affiliation(s)
- Valérie Cottier
- ESBATech AG, Wagistr. 21, CH-8952 Zurich-Schlieren, Switzerland
| | | | | |
Collapse
|
9
|
Buisson M, Hernandez JF, Lascoux D, Schoehn G, Forest E, Arlaud G, Seigneurin JM, Ruigrok RWH, Burmeister WP. The crystal structure of the Epstein-Barr virus protease shows rearrangement of the processed C terminus. J Mol Biol 2002; 324:89-103. [PMID: 12421561 DOI: 10.1016/s0022-2836(02)01040-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Epstein-Barr virus (EBV) belongs to the gamma-herpesvirinae subfamily of the Herpesviridae. The protease domain of the assemblin protein of herpesviruses forms a monomer-dimer equilibrium in solution. The protease domain of EBV was expressed in Escherichia coli and its structure was solved by X-ray crystallography to 2.3A resolution after inhibition with diisopropyl-fluorophosphate (DFP). The overall structure confirms the conservation of the homodimer and its structure throughout the alpha, beta, and gamma-herpesvirinae. The substrate recognition could be modelled using information from the DFP binding, from a crystal contact, suggesting that the substrate forms an antiparallel beta-strand extending strand beta5, and from the comparison with the structure of a peptidomimetic inhibitor bound to cytomegalovirus protease. The long insert between beta-strands 1 and 2, which was disordered in the KSHV protease structure, was found to be ordered in the EBV protease and shows the same conformation as observed for proteases in the alpha and beta-herpesvirus families. In contrast to previous structures, the long loop located between beta-strands 5 and 6 is partially ordered, probably due to DFP inhibition and a crystal contact. It also contributes to substrate recognition. The protease shows a specific recognition of its own C terminus in a binding pocket involving residue Phe210 of the other monomer interacting across the dimer interface. This suggests conformational changes of the protease domain after its release from the assemblin precursor followed by burial of the new C terminus and a possible effect onto the monomer-dimer equilibrium. The importance of the processed C terminus was confirmed using a mutant protease carrying a C-terminal extension and a mutated release site, which shows different solution properties and a strongly reduced enzymatic activity.
Collapse
Affiliation(s)
- Marlyse Buisson
- Laboratoire de Virologie, Hôpital Michallon, BP 217, 38043 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chan CK, Brignole EJ, Gibson W. Cytomegalovirus assemblin (pUL80a): cleavage at internal site not essential for virus growth; proteinase absent from virions. J Virol 2002; 76:8667-74. [PMID: 12163586 PMCID: PMC136994 DOI: 10.1128/jvi.76.17.8667-8674.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) maturational proteinase is synthesized as an enzymatically active 74-kDa precursor that cleaves itself at four sites. Two of these, called the maturational (M) and release (R) sites, are conserved in the homologs of all herpesviruses. The other two, called the internal (I) and cryptic (C) sites, have recognized consensus sequences only among cytomegalovirus (CMV) homologs and are located in the 28-kDa proteolytic portion of the precursor, called assemblin. I-site cleavage cuts assemblin in half without detected effect on its enzymatic behavior in vitro. To investigate the requirement for this cleavage during virus infection, we used the CMV-bacterial artificial chromosome system (E. M. Borst, G. Hahn, U. H. Koszinowski, and M. Messerle, J. Virol. 73:8320-8329, 1999) to construct a virus encoding a mutant I site (Ala143 to Val) intended to be blocked for cleavage. Characterizations of the resulting mutant (i) confirmed the presence of the mutation in the viral genome and the inability of the mutant virus to effect I-site cleavage in infected cells; (ii) determined that the mutation has no gross effect on the rate of virus production or on the amounts of extracellular virions, noninfectious enveloped particles (NIEPs), and dense bodies; (iii) established that assemblin and its cleavage products are present in NIEPs but are absent from CMV virions, an apparent difference from what is found for virions of herpes simplex virus; and (iv) showed that the 23-kDa protein product of C-site cleavage is more abundant in mutant virus-than in wild-type virus-infected cells and NIEPs. We conclude that the production of infectious CMV requires neither I-site cleavage of assemblin nor the presence of assemblin in the mature virion.
Collapse
Affiliation(s)
- Chee-Kai Chan
- Virology Laboratories, Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
11
|
Buisson M, Valette E, Hernandez JF, Baudin F, Ebel C, Morand P, Seigneurin JM, Arlaud GJ, Ruigrok RW. Functional determinants of the Epstein-Barr virus protease. J Mol Biol 2001; 311:217-28. [PMID: 11469870 DOI: 10.1006/jmbi.2001.4854] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpesvirus proteases are essential for the production of progeny virus. They cleave the assembly protein that fills the immature capsid in order to make place for the viral DNA. The recombinant protease of the human gamma-herpesvirus Epstein-Barr virus (EBV) was expressed in Escherichia coli and purified. Circular dichroism indicated that the protein was properly folded with a secondary structure content similar to that of other herpesvirus proteases. Gel filtration and sedimentation analysis indicated a fast monomer-dimer equilibrium of the protease with a K(d) of about 60 microM. This value was not influenced by glycerol but was lowered to 1.7 microM in the presence of 0.5 M sodium citrate. We also developed an HPLC-based enzymatic assay using a 20 amino acid residue synthetic peptide substrate derived from one of the viral target sequences for the protease. We found that conditions that stabilised the dimer also led to a higher enzymatic activity. Through sequential deletion of amino acid residues from either side of the cleavage site, the minimal peptide substrate for the protease was determined as P5-P2'. This minimal sequence is shorter than that for other herpesvirus proteases. The implications of our findings are discussed with reference to the viral life-cycle. These results are the first ever published on the EBV protease and represent a first step towards the development of protease inhibitors.
Collapse
Affiliation(s)
- M Buisson
- Laboratoire de Virologie, Hôpital Michallon, Grenoble Cedex 9, 38043, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Matsumoto M, Misawa S, Chiba N, Takaku H, Hayashi H. Selective nonpeptidic inhibitors of herpes simplex virus type 1 and human cytomegalovirus proteases. Biol Pharm Bull 2001; 24:236-41. [PMID: 11256477 DOI: 10.1248/bpb.24.236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proteases encoded by herpesviruses including herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV) are attractive targets for antiviral drug development because of their important roles in viral replication. We randomly screened a chemical compound library for inhibitory activity against HSV-1 protease. 1,4-Dihydroxynaphthalene and three naphthoquinones were found to be potent inhibitors of HSV-1 protease with IC50 values of 6.4 to 16.9 microM. Inhibitory mode analysis of the compounds against HSV-1 protease suggested that, in spite of structural similarities, only 1,4-dihydroxynaphthalene was a competitive inhibitor, whereas the three naphthoquinones were noncompetitive inhibitors. Among all assayed dihydroxynaphthalene derivatives in the chemical compound library, 1,4-dihydroxynaphthalene proved to be the most potent inhibitor of HSV-1 protease. Therefore, the two hydroxyl groups located at positions 1 and 4 on the naphthalene structure seemed essential for exertion of a potent inhibitory activity against HSV-1 protease. In addition, we have found that these compounds are also potent inhibitors of HCMV protease with extremely low micromolar IC50 values. This differed from the results of inhibitory mode analysis of HSV-1 protease, 1,4-dihydroxynaphthalene was a noncompetitive inhibitor of HCMV protease, and three naphthoquinones were competitive inhibitors. These compounds showed no effective inhibitory activity against several mammalian serine proteases (trypsin, chymotrypsin, kallikrein, plasmin, thrombin and Factor Xa) at 100 microM. These results suggest that 1,4-dihydroxynaphthalene and three naphthoquinones may be useful in the development of nonpeptidic antiherpesvirus agents.
Collapse
Affiliation(s)
- M Matsumoto
- Pharmaceuticals and Biotechnology Laboratory, Japan Energy Corporation, Saitama.
| | | | | | | | | |
Collapse
|
13
|
Petit S, Lejal N, Huet JC, Delmas B. Active residues and viral substrate cleavage sites of the protease of the birnavirus infectious pancreatic necrosis virus. J Virol 2000; 74:2057-66. [PMID: 10666235 PMCID: PMC111686 DOI: 10.1128/jvi.74.5.2057-2066.2000] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/1999] [Accepted: 12/01/1999] [Indexed: 12/17/2022] Open
Abstract
The polyprotein of infectious pancreatic necrosis virus (IPNV), a birnavirus, is processed by the viral protease VP4 (also named NS) to generate three polypeptides: pVP2, VP4, and VP3. Site-directed mutagenesis at 42 positions of the IPNV VP4 protein was performed to determine the active site and the important residues for the protease activity. Two residues (serine 633 and lysine 674) were critical for cleavage activity at both the pVP2-VP4 and the VP4-VP3 junctions. Wild-type activity at the pVP2-VP4 junction and a partial block (with an alteration of the cleavage specificity) at the VP4-VP3 junction were observed when replacement occurred at histidines 547 and 679. A similar observation was made when aspartic acid 693 was replaced by leucine, but wild-type activity and specificity were found when substituted by glutamine or asparagine. Sequence comparison between IPNV and two birnavirus (infectious bursal disease virus and Drosophila X virus) VP4s revealed that serine 633 and lysine 674 are conserved in these viruses, in contrast to histidines 547 and 679. The importance of serine 633 and lysine 674 is reminiscent of the protease active site of bacterial leader peptidases and their mitochondrial homologs and of the bacterial LexA-like proteases. Self-cleavage sites of IPNV VP4 were determined at the pVP2-VP4 and VP4-VP3 junctions by N-terminal sequencing and mutagenesis. Two alternative cleavage sites were also identified in the carboxyl domain of pVP2 by cumulative mutagenesis. The results suggest that VP4 cleaves the (Ser/Thr)-X-Ala / (Ser/Ala)-Gly motif, a target sequence with similarities to bacterial leader peptidases and herpesvirus protease cleavage sites.
Collapse
Affiliation(s)
- S Petit
- Unité de Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, F-78350 Jouy-en-Josas, France
| | | | | | | |
Collapse
|
14
|
Abstract
Viruses of the family Herpesviridae are responsible for a diverse set of human diseases. The available treatments are largely ineffective, with the exception of a few drugs for treatment of herpes simplex virus (HSV) infections. For several members of this DNA virus family, advances have been made recently in the biochemistry and structural biology of the essential viral protease, revealing common features that may be possible to exploit in the development of a new class of anti-herpesvirus agents. The herpesvirus proteases have been identified as belonging to a unique class of serine protease, with a Ser-His-His catalytic triad. A new, single domain protein fold has been determined by X-ray crystallography for the proteases of at least three different herpesviruses. Also unique for serine proteases, dimerization has been shown to be required for activity of the cytomegalovirus and HSV proteases. The dimerization requirement seriously impacts methods needed for productive, functional analysis and inhibitor discovery. The conserved functional and catalytic properties of the herpesvirus proteases lead to common considerations for this group of proteases in the early phases of inhibitor discovery. In general, classical serine protease inhibitors that react with active site residues do not readily inactivate the herpesvirus proteases. There has been progress however, with activated carbonyls that exploit the selective nucleophilicity of the active site serine. In addition, screening of chemical libraries has yielded novel structures as starting points for drug development. Recent crystal structures of the herpesvirus proteases now allow more direct interpretation of ligand structure-activity relationships. This review first describes basic functional aspects of herpesvirus protease biology and enzymology. Then we discuss inhibitors identified to date and the prospects for their future development.
Collapse
Affiliation(s)
- L Waxman
- Department of Antiviral Research, Merck Research Laboratories, West Point, PA 19486, USA
| | | |
Collapse
|
15
|
Ogilvie WW, Yoakim C, Dô F, Haché B, Lagacé L, Naud J, O'Meara JA, Déziel R. Synthesis and antiviral activity of monobactams inhibiting the human cytomegalovirus protease. Bioorg Med Chem 1999; 7:1521-31. [PMID: 10482444 DOI: 10.1016/s0968-0896(99)00094-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A series of monobactam inhibitors of HCMV (N(o)) protease bearing a heterocycle linked by a methylene group at C-4 is described. Inhibitors containing a heterocycle such as a 2-furyl, 2-thiophenyl, 4-methyl-2-tetrazole and 2-benzothiazole were found to be active in a plaque reduction assay. Furthermore, 2-benzothiazole derivatives were shown to inhibit the HCMV protease activity inside cells by using a cell transfection assay, indicating that their antiviral activity in the plaque reduction assay could be attributed to protease inhibition.
Collapse
Affiliation(s)
- W W Ogilvie
- Boehringer Ingelheim (Canada) Ltd., Bio-Méga Research Division, Laval, Québec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tigue NJ, Kay J. Autoprocessing and peptide substrates for human herpesvirus 6 proteinase. J Biol Chem 1998; 273:26441-6. [PMID: 9756878 DOI: 10.1074/jbc.273.41.26441] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autoprocessing of the precursor form of human herpesvirus 6 (HHV-6) proteinase at two sites (termed M and R) is required to generate the mature enzyme. Kinetic constants were determined for the hydrolysis of a series of synthetic peptide substrates by mature HHV-6 proteinase, purified to homogeneity. Truncation or replacement of individual residues in peptides mimicking the R-site sequence, indicated that the minimum length for effective hydrolysis by the viral enzyme was P4-P3-P2-Ala*Ser-P2'-P3'-P4' and revealed the importance of the P1 Ala and P4 Tyr residues. Consequently, relevant (P1 or P4) mutations were introduced into the precursor form of the proteinase and the ability of these altered proteins to autoprocess was examined. Introduction of Val in place of the P1 Ala at the M-site essentially abrogated cleavage but mature HHV-6 proteinase was still generated by cleavage at the R-site, indicating that processing of the M-site is not a prerequisite for cleavage of the R-site in the precursor. At the R-site, mutation of the P1 Ala, or of the preceding P4 Tyr residue, prevented processing at the R-site in the precursor so that the mature form of HHV-6 proteinase was not generated. The accumulated data suggest a possible new approach to the design of inhibitors for therapeutic intervention in the life cycle of herpesviruses.
Collapse
Affiliation(s)
- N J Tigue
- School of Molecular and Medical Biosciences, University of Wales, P. O. Box 911, Cardiff CF1 3US, Wales, United Kingdom
| | | |
Collapse
|
17
|
Yoakim C, Ogilvie WW, Cameron DR, Chabot C, Grand-Maître C, Guse I, Haché B, Kawai S, Naud J, O'Meara JA, Plante R, Déziel R. Potent beta-lactam inhibitors of human cytomegalovirus protease. Antivir Chem Chemother 1998; 9:379-87. [PMID: 9875391 DOI: 10.1177/095632029800900502] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A series of novel monobactam inhibitors of human cytomegalovirus (HCMV) protease has been described that possess a heterocyclic thiomethyl side chain at C-4. Changes to the heterocycle did not significantly change the inhibitory activity of these compounds in an enzymatic assay, although improvements in solubility and cell culture activity were noted. A number of permutations between C-4 substitutions and N-1 derivatives led to the identification of several beta-lactams with antiviral activity in a plaque reduction assay. N-methyl thiotetrazole-containing compounds were found to be the most potent inhibitors in the enzymatic assay.
Collapse
Affiliation(s)
- C Yoakim
- Bio-Méga Research Division, Boehringer Ingelheim (Canada), Laval, Québec.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
LaPlante SR, Aubry N, Bonneau PR, Cameron DR, Lagacé L, Massariol MJ, Montpetit H, Plouffe C, Kawai SH, Fulton BD, Chen Z, Ni F. Human cytomegalovirus protease complexes its substrate recognition sequences in an extended peptide conformation. Biochemistry 1998; 37:9793-801. [PMID: 9657693 DOI: 10.1021/bi980555v] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Substrate hydrolysis by human cytomegalovirus (HCMV) protease is essential to viral capsid assembly. The interaction of HCMV protease and the N-terminal cleavage products of the hydrolysis of R- and M-site oligopeptide substrate mimics (R and M, respectively, which span the P9-P1 positions) was studied by NMR methods. Protease-induced differential line broadening indicated that ligand binding is mediated by the P4-P1 amino acid residues of the peptides. A well-defined extended conformation of R from P1 through P4 when complexed to HCMV protease was evidenced by numerous transferred nuclear Overhauser effect (NOE) correlations for the peptide upon addition of the enzyme. NOE cross-peaks between the P4 and P5 side chains placing these two groups in proximity indicated a deviation from the extended conformation starting at P5. Similar studies carried out for the M peptide also indicated an extended peptide structure very similar to that of R, although the conformation of the P5 glycine could not be established. No obvious variation in structure between bound R and M (notably at P4, where the tyrosine of the R-site has been suggested to play a key role in ligand binding) could be discerned that might explain the observed differences in processing rates between R- and M-sequences. Kinetic studies, utilizing R- and M-site peptide substrates for which the P5 and P4 residues were separately exchanged, revealed that these positions had essentially no influence on the specificity constants (kcat/KM). In sharp contrast, substitution of the P2 residue of an M-site peptide changed its specificity constant to that of an R-site peptide substrate, and vice versa.
Collapse
Affiliation(s)
- S R LaPlante
- Biomolecular NMR Laboratory, Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Watanabe S, Konno K, Shigeta S, Yokota T. Inhibition of human cytomegalovirus proteinase by salcomine derivatives. Antivir Chem Chemother 1998; 9:269-74. [PMID: 9875406 DOI: 10.1177/095632029800900308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Salcomine, N,N'-bis(salicylidene)ethylene diamino-cobalt (II), and its derivatives were evaluated for their ability to inhibit selectively human cytomegalovirus (HCMV) proteinase activity. The 50% inhibitory concentration (IC50) of salcomine was 1.4 microM for HCMV proteinase, but > 200 microM for three other serine proteinases (trypsin, > 250 microM; chymotrypsin, 206 microM; and elastase, > 250 microM). Two salcomine derivatives also inhibited HCMV proteinase with IC50 values under 2 microM. Studies of the structure-activity relationship of salcomine-related compounds showed that the phenyl moiety and the spacer moiety (distance between the two amines) were instrumental in the inhibition of HCMV proteinase. Moreover, salcomine inhibited the growth of laboratory strain AD169 and three clinical isolates at a 50% effective concentration (EC50) range of 1.92-2.89 microM. These results show that salcomine derivatives are potent and selective inhibitors of HCMV proteinase and HCMV replication in cell culture. Salcomine derivatives appear to be worth pursuing as candidate drugs for the chemotherapy of HCMV infection.
Collapse
Affiliation(s)
- S Watanabe
- Rational Drug Design Laboratories, Fukushima, Japan.
| | | | | | | |
Collapse
|
20
|
Ogilvie W, Bailey M, Poupart MA, Abraham A, Bhavsar A, Bonneau P, Bordeleau J, Bousquet Y, Chabot C, Duceppe JS, Fazal G, Goulet S, Grand-Maître C, Guse I, Halmos T, Lavallée P, Leach M, Malenfant E, O'Meara J, Plante R, Plouffe C, Poirier M, Soucy F, Yoakim C, Déziel R. Peptidomimetic inhibitors of the human cytomegalovirus protease. J Med Chem 1997; 40:4113-35. [PMID: 9406601 DOI: 10.1021/jm970104t] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of peptidomimetic inhibitors of the human cytomegalovirus (HCMV) protease showing sub-micromolar potency in an enzymatic assay is described. Selective substitution of the amino acid residues of these inhibitors led to the identification of tripeptide inhibitors showing improvements in inhibitor potency of 27-fold relative to inhibitor 39 based upon the natural tetrapeptide sequence. Small side chains at P1 were well tolerated by this enzyme, a fact consistent with previous observations. The S2 binding pocket of HCMV protease was very permissive, tolerating lipophilic and basic residues. The substitutions tried at P3 indicated that a small increase in inhibitor potency could be realized by the substitution of a tert-leucine residue for valine. Substitutions of the N-terminal capping group did not significantly affect inhibitor potency. Pentafluoroethyl ketones, alpha,alpha-difluoro-beta-keto amides, phosphonates and alpha-keto amides were all effective substitutions for the activated carbonyl component and gave inhibitors which were selective for HCMV protease. A slight increase in potency was observed by lengthening the P1' residue of the alpha-keto amide series of inhibitors. This position also tolerated a variety of groups making this a potential site for future modifications which could modulate the physicochemical properties of these molecules.
Collapse
Affiliation(s)
- W Ogilvie
- Bio-Méga Research Division, Boehringer Ingelheim Ltd., Laval, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
O'Boyle DR, Pokornowski KA, McCann PJ, Weinheimer SP. Identification of a novel peptide substrate of HSV-1 protease using substrate phage display. Virology 1997; 236:338-47. [PMID: 9325241 DOI: 10.1006/viro.1997.8746] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The method of substrate phage display was used to select a preferred substrate from three monovalent display libraries using the HSV-1 protease. The display libraries consisted of four random amino acids, six random amino acids, and a biased library containing four amino acids from the P side of the HSV-1 maturation site followed by four random amino acids. A series of consensus peptides was synthesized based upon the results from these screens and tested in peptide cleavage assays. An eight amino acids consensus peptide (LVLASSSF) derived from the phage results was cleaved as efficiently as a 20-mer maturation site peptide. The selected amino acid sequences also allowed the design of a four amino acid paranitroanilide substrate for continuous assay of HSV-1 protease. Similar to HCMV protease, these results define P4 to P1 as a minimal substrate recognition domain for the HSV-1 protease and suggest that P4 to P1 is the minimal substrate domain which all herpesvirus proteases recognize.
Collapse
Affiliation(s)
- D R O'Boyle
- Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492, USA
| | | | | | | |
Collapse
|
22
|
Unal A, Pray TR, Lagunoff M, Pennington MW, Ganem D, Craik CS. The protease and the assembly protein of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8). J Virol 1997; 71:7030-8. [PMID: 9261433 PMCID: PMC191989 DOI: 10.1128/jvi.71.9.7030-7038.1997] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A genomic clone encoding the protease (Pr) and the assembly protein (AP) of Kaposi's sarcoma-associated herpesvirus (KSHV) (also called human herpesvirus 8) has been isolated and sequenced. As with other herpesviruses, the Pr and AP coding regions are present within a single long open reading frame. The mature KSHV Pr and AP polypeptides are predicted to contain 230 and 283 residues, respectively. The amino acid sequence of KSHV Pr has 56% identity with that of herpesvirus salmiri, the most similar virus by phylogenetic comparison. Pr is expressed in infected human cells as a late viral gene product, as suggested by RNA analysis of KSHV-infected BCBL-1 cells. Expression of the Pr domain in Escherichia coli yields an enzymatically active species, as determined by cleavage of synthetic peptide substrates, while an active-site mutant of this same domain yields minimal proteolytic activity. Sequence comparisons with human cytomegalovirus (HCMV) Pr permitted the identification of the catalytic residues, Ser114, His46, and His134, based on the known structure of the HCMV enzyme. The amino acid sequences of the release site of KSHV Pr (Tyr-Leu-Lys-Ala*Ser-Leu-Ile-Pro) and the maturation site (Arg-Leu-Glu-Ala*Ser-Ser-Arg-Ser) show that the extended substrate binding pocket differs from that of other members of the family. The conservation of amino acids known to be involved in the dimer interface region of HCMV Pr suggests that KSHV Pr assembles in a similar fashion. These features of the viral protease provide opportunities to develop specific inhibitors of its enzymatic activity.
Collapse
Affiliation(s)
- A Unal
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
23
|
Flynn DL, Abood NA, Holwerda BC. Recent advances in antiviral research: identification of inhibitors of the herpesvirus proteases. Curr Opin Chem Biol 1997; 1:190-6. [PMID: 9667847 DOI: 10.1016/s1367-5931(97)80009-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Major advances have been reported in the last two years regarding the molecular biology and structural properties of the herpesvirus proteases. X-ray diffraction studies have enabled several groups to solve the structure of the human cytomegalovirus protease. Fluorescence-based substrate assays have also been recently reported. These substrates exhibit sufficient kinetic and sensitivity properties to enable high-throughput screening efforts dedicated toward the discovery of protease inhibitors. Three classes of inhibitors have been reported recently: nonpeptidic aryl trifluoromethylketones; alternate substrate inhibitors (benzoxazinones/azalactones); and thiol-modifying inhibitors. The thiol-modifying class offers a unique opportunity to discover inhibitors specific to the human cytomegalovirus protease, as this protease requires reduced cysteine residues for its enzymatic activity.
Collapse
Affiliation(s)
- D L Flynn
- Searle Research and Development, Department of Medicinal Chemistry, 800 N Lindbergh Blvd, St Louis, MO 63167, USA.
| | | | | |
Collapse
|
24
|
Abstract
Herpesvirus proteases have emerged as targets for the development of novel antiviral drugs. These enzymes, which are necessary for the replication of all herpesviruses, are serine proteases, but possess a unique structure as revealed by solution of the crystal structure of human cytomegalovirus protease. Many of the biochemical properties of these enzymes are now explained by the structure. Conventional serine protease inhibitors are not potent inhibitors of these enzymes and therefore the search for potent inhibitors possessing necessary features of an effective antiviral will require novel approaches. The three-dimensional structure serves as a milestone for continued endeavors towards this goal.
Collapse
Affiliation(s)
- B C Holwerda
- Searle Research and Development, St. Louis, MO 63198, USA.
| |
Collapse
|
25
|
Hall MR, Gibson W. Independently cloned halves of cytomegalovirus assemblin, An and Ac, can restore proteolytic activity to assemblin mutants by intermolecular complementation. J Virol 1997; 71:956-64. [PMID: 8995613 PMCID: PMC191144 DOI: 10.1128/jvi.71.2.956-964.1997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Herpesviruses encode an essential serine proteinase called assemblin that is responsible for cleaving the precursor assembly protein during the process of capsid formation. In cytomegalovirus (CMV), assemblin undergoes autoproteolysis at an internal (I) site located near the middle of the molecule. I-site cleavage converts the enzyme to an active two-chain form consisting of the subunits An and Ac. We have recently shown that the recombinant An and Ac subunits can spontaneously associate within eukaryotic cells to yield active two-chain proteinase. This finding indicates that the subunits are able to independently assume their correct functional conformations and led us to test whether they are capable of intermolecular complementation. This was done by coexpressing inactive mutant (point, deletion, and insertion) forms of assemblin together with the wild-type subunit (either An or Ac) corresponding to the domain of assemblin that was mutated. Results of these experiments showed that both An and Ac are able to rescue the enzymatic activity of assemblin mutants. I-site cleavage of the mutated assemblin occurred during complementation but was not absolutely required, as shown by effective complementation of inactive assemblins with noncleavable I sites. We have also shown that intermolecular complementation can rescue the activity of an inactive mutant full-length proteinase precursor and can occur between different species of CMV (e.g., human CMV subunit can rescue activity of mutant simian CMV assemblin). These results indicate that assemblin is able to form active multimeric structures that may be of functional importance.
Collapse
Affiliation(s)
- M R Hall
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
26
|
Snyder SW, Edalji RP, Lindh FG, Walter KA, Solomon L, Pratt S, Steffy K, Holzman TF. Initial characterization of autoprocessing and active-center mutants of CMV proteinase. JOURNAL OF PROTEIN CHEMISTRY 1996; 15:763-74. [PMID: 9008301 DOI: 10.1007/bf01887151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human cytomegalovirus (CMV) encodes a unique serine proteinase that is required in the maturation of the viral capsid. The CMV proteinase can undergo autocatalytic activation and is subject to proteolytic self-inactivation. Mutant enzyme forms were prepared to eliminate the initial autoprocessing site and thus form an active single-chain protein for structure-function studies. Two mutants of CMV proteinase were cloned and expressed in Escherichia coli. The A143V mutant was a conservative substitution at the first internal cleavage site. The S132A mutant modified one of the triad of residues responsible for catalytic activity. Through the use of computer-controlled high-cell-density fermentations the mutant proteins were expressed in E. coli at approximately 170 mg/L as both soluble (approximately 40% of total) and inclusion-body forms (approximately 60% of total). The soluble enzyme was purified by standard methods; inclusion-body protein was isolated by standard methods after refolding and solubilization in guanidine or urea. Sedimentation equilibrium and sedimentation velocity analyses reveal that the enzyme undergoes concentration-dependent aggregation. It exhibits a monomer <==> dimer equilibrium (Kd = 1 microM) at low concentrations and remains dimeric at high concentrations (28 mg/ml). Differential scanning calorimetry data for protein thermal unfolding fit best to a non-two-state model with two components (Tm = 52.3 and 55.3 degrees C) which subsequently aggregate upon unfolding. Analysis of the short-UV circular dichroism spectra of protein forms resulting from expression as soluble molecules (not refolded) reveals that the two mutants have very similar secondary structures which comprise a mixed structural motif of 20% alpha-helix, 26% beta-sheet, and 53% random coil. Though soluble and active (A143V mutant only), CD analysis revealed that protein refolded from inclusion bodies did not exhibit spectra identical to that of protein expressed only in soluble form.
Collapse
Affiliation(s)
- S W Snyder
- Protein Biochemistry, Pharmaceutical Discovery, Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Qiu X, Culp JS, DiLella AG, Hellmig B, Hoog SS, Janson CA, Smith WW, Abdel-Meguid SS. Unique fold and active site in cytomegalovirus protease. Nature 1996; 383:275-9. [PMID: 8805707 DOI: 10.1038/383275a0] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Human herpesviruses are responsible for a variety of diseases. They are divided into three subfamilies: alpha includes herpes simplex viruses (HSV-1 and HSV-2) and varicella-zoster virus (VZV); beta includes cytomegalovirus (CMV) and human herpesvirus-6 (HHV-6); and gamma includes Epstein-Barr virus (EBV). Each virus encodes a serine protease that is essential for its replication and is a potential target for therapeutic intervention. Human CMV is a ubiquitous opportunistic pathogen that can result in life-threatening infections in congenitally infected infants, immunocompromised individuals and immunosuppressed cancer or transplant patients. Here we report the crystal structure of human CMV protease at 2.5 angstroms resolution. The structure reveals a fold that has not been reported for any other serine protease, and an active site consisting of a novel catalytic triad in which the third member is a histidine instead of an aspartic acid, or possibly a catalytic tetrad consisting of a serine, two histidines and an aspartic acid. An unusual dimer interface that is important to the protease activity has also been identified.
Collapse
Affiliation(s)
- X Qiu
- Department of Macromolecular Sciences, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hall MR, Gibson W. Cytomegalovirus assemblin: the amino and carboxyl domains of the proteinase form active enzyme when separately cloned and coexpressed in eukaryotic cells. J Virol 1996; 70:5395-404. [PMID: 8764050 PMCID: PMC190497 DOI: 10.1128/jvi.70.8.5395-5404.1996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The cytomegalovirus (CMV) serine proteinase assemblin is synthesized as a precursor that undergoes three principal autoproteolytic cleavages. Two of these are common to the assemblin homologs of all herpes group viruses: one at the maturational site near the carboxyl end of the precursor and another at the release site near the midpoint of the precursor. Release-site cleavage frees the proteolytic amino domain, assemblin, from the nonproteolytic carboxyl domain of the precursor. In CMV, a third autoproteolytic cleavage at an internal site divides assemblin into an amino subunit (An) and a carboxyl subunit (Ac) of approximately the same size that remain associated as an active "two-chain" enzyme. We have cloned the sequences encoding An and Ac as separate genes and expressed them by transfecting human cells with recombinant plasmids and by infecting insect cells with recombinant baculoviruses. When An and Ac from either simian CMV or human CMV were coexpressed in human or insect cells, active two-chain assemblin was formed. This finding demonstrates that An and Ac do not require synthesis as single-chain assemblin to fold and associate correctly in these eukaryotic systems, and it suggests that they may be structurally, if not functionally, distinct domains. An interaction between the independently expressed An and Ac subunits was demonstrated by coimmunoprecipitation experiments, and efforts to disrupt the complex indicate that the subunit interaction is hydrophobic. Cell-based cleavage assays of the two-chain assemblin formed from independently expressed An and Ac also indicate that (i) its specificity for both CMV and herpes simplex virus native substrates is similar to that of single-chain assemblin, (ii) R-site cleavage is not essential for the activity of two-chain recombinant assemblin, and (iii) the human CMV and simian CMV An and Ac recombinant subunits are functionally interchangeable.
Collapse
Affiliation(s)
- M R Hall
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
29
|
LaFemina RL, Bakshi K, Long WJ, Pramanik B, Veloski CA, Wolanski BS, Marcy AI, Hazuda DJ. Characterization of a soluble stable human cytomegalovirus protease and inhibition by M-site peptide mimics. J Virol 1996; 70:4819-24. [PMID: 8676515 PMCID: PMC190425 DOI: 10.1128/jvi.70.7.4819-4824.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human cytomegalovirus (HCMV) protease is a potential target for antiviral chemotherapeutics; however, autoprocessing at internal sites, particularly at positions 143 and 209, hinders the production of large quantities of stable enzyme for either screening or structural studies. Using peptides encompassing the sequence of the natural M-site substrate (P5-P5', GVVNA/SCRLA), we previously demonstrated that substitution of glycine for valine at the P3 position in the substrate abrogates processing by the recombinant protease in vitro. We now demonstrate that introduction of the V-to-G substitution in the P3 positions of the two major internal processing sites, positions 143 and 209, in the mature HCMV protease renders the enzyme stable to autoprocessing. When expressed in Escherichia coli, the doubly substituted protease was produced almost exclusively as the 30-kDa full-length protein. The full-length V141G, V207G (V-to-G changes at positions 141 and 207) protease was purified as a soluble protein by a simple two-step procedure, ammonium sulfate precipitation followed by DEAE ion-exchange chromatography, resulting in 10 to 15 mg of greater than 95% pure enzyme per liter. The stabilized enzyme was characterized kinetically and was indistinguishable from the wild-type recombinant protease, exhibiting Km and catalytic constant values of 0.578 mM and 13.18/min, respectively, for the maturation site (M-site) peptide substrate, GVVNASCRLARR (underlined residues indicate additions to or substitutions from peptides derived from the wild-type substrate). This enzyme was also used to perform inhibition studies with a series of truncated and/or substituted maturation site peptides. Short nonsubstrate M-site-derived peptides were demonstrated to be competitive inhibitors of cleavage in vitro, and these analyses defined amino acids VVNA, P4 through P1 in the substrate, as the minimal substrate binding and recognition sequence for the HCMV protease.
Collapse
Affiliation(s)
- R L LaFemina
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- A L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
31
|
Tigue NJ, Matharu PJ, Roberts NA, Mills JS, Kay J, Jupp R. Cloning, expression and characterization of the proteinase from human herpesvirus 6. J Virol 1996; 70:4136-41. [PMID: 8648756 PMCID: PMC190303 DOI: 10.1128/jvi.70.6.4136-4141.1996] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
After the U53 gene encoding the proteinase from human herpesvirus 6 (HHV-6) was sequenced, it was expressed in Escherichia coli, and the activity of the purified, recombinant HHV-6 proteinase was characterized quantitatively by using synthetic peptide substrates mimicking the release and maturation cleavage sites in the polyprotein precursors of HHV-6, human cytomegalovirus (CMV), murine CMV, and Epstein-Barr virus. Despite sharing 40% identity with other betaherpesvirus proteinases such as human CMV proteinase, the one-chain HHV-6 enzyme was distinguished from these two-chain proteinases by the absence of an internal autocatalytic cleavage site.
Collapse
Affiliation(s)
- N J Tigue
- Department of Molecular and Medical Biosciences, University of Wales College of Cardiff, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Baum EZ, Siegel MM, Bebernitz GA, Hulmes JD, Sridharan L, Sun L, Tabei K, Johnston SH, Wildey MJ, Nygaard J, Jones TR, Gluzman Y. Inhibition of human cytomegalovirus UL80 protease by specific intramolecular disulfide bond formation. Biochemistry 1996; 35:5838-46. [PMID: 8639545 DOI: 10.1021/bi952996+] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A symmetrically substituted disulfide compound, CL13933, was identified as a potent inhibitor of human cytomegalovirus UL80 protease. Two types of inhibited protease were observed, depending on inhibitor concentration. At high concentrations, CL13933 formed a covalent adduct with the protease on Cys residues. At lower concentrations, this compound induced specific intramolecular disulfide formation between Cys84 and Cys87, and between Cys138 and Cys161. In contrast, Cys202 did not form disulfide bonds. Inhibition was reversed upon reduction of the protease. Each of the five cysteines of the UL80 protease was individually mutated to Ala. Each of the mutant proteases retained enzymatic activity, but mutants C138A and C161A were resistant to inhibition by CL13933, suggesting that disulfide bond formation between Cys138 and Cys161 is responsible for inhibition. This disulfide is apparently not induced by air oxidation. Examination of the CL13933 loading patterns of wild type and the five mutant proteases by mass spectrometry revealed that residues Cys87, Cys138, and Cys161 react with CL13933, and that the disulfide pair partner of each (Cys84, Cys161, and Cys138, respectively) is able to displace the compound via thiol-disulfide exchange. The possible significance of these reactive thiols in the protease is discussed.
Collapse
Affiliation(s)
- E Z Baum
- Molecular Biology Research Section, Wyeth-Ayerst Research, Lederle Laboratories, Pearl River, New York 10965, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Baum EZ, Ding WD, Siegel MM, Hulmes J, Bebernitz GA, Sridharan L, Tabei K, Krishnamurthy G, Carofiglio T, Groves JT, Bloom JD, DiGrandi M, Bradley M, Ellestad G, Seddon AP, Gluzman Y. Flavins inhibit human cytomegalovirus UL80 protease via disulfide bond formation. Biochemistry 1996; 35:5847-55. [PMID: 8639546 DOI: 10.1021/bi9529972] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Among the most potent inhibitors of human cytomegalovirus protease identified by random screening of a chemical library was 1,4-dihydro-7,8-dimethyl 6H-pyrimido[1,2-b]-1,2,4,5-tetrazin-6-one (1) (PTH2). The oxidized form (2), PT, which is present in solutions of PTH2, was shown to be the actual inhibitory species which irreversibly inactivates the protease; recycling of PTH2 by dissolved oxygen results in complete inhibition of the protease at substoichiometric amounts of compound. No evidence for a covalent adduct between the protease and the inhibitor was obtained, and protease activity was restored by incubation of the inactivated enzyme with the reducing agent bismercaptoethyl sulfone, suggesting that disulfide bond formation was responsible for the observed inhibition. The five cysteines of the protease are normally in the reduced state; analysis of tryptic peptides from inhibited protease indicated that disulfide bonds Cys84-Cys87 and Cys138-Cys161 were formed. Using site-directed mutagenesis, the disulfide pair induced between Cys138 and Cys161 disulfide is dependent upon interaction of PT with the protease and does not form spontaneously, unlike that of the Cys84-Cys87 pair which can form in the absence of inhibitor. The inhibitor's redox chemistry is analogous to that of flavin, and, in fact, flavin inhibits the protease by the same mechanism, causing formation of a disulfide bond between Cys138 and Cys161. That the cysteines are dispensable, but can regulate protease activity by formation of a unique disulfide pair, suggests a plausible mechanism for control of proteolysis during the viral life cycle.
Collapse
Affiliation(s)
- E Z Baum
- Wyeth-Ayerst Research, Lederle Laboratories, Pearl River, New York 10965, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Register RB, Shafer JA. A facile system for construction of HSV-1 variants: site directed mutation of the UL26 protease gene in HSV-1. J Virol Methods 1996; 57:181-93. [PMID: 8801230 DOI: 10.1016/0166-0934(95)01984-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A 2-plasmid/4-cosmid-based system of mutagenesis is described for construction of herpes simplex virus type 1 (HSV-1) variants with point mutations in the protease gene. The system was used to reconstruct a mutant virus (V701) with Tyr30 to Phe and Ala48 to Val mutations in HSV-1 protease that exhibits the temperature sensitive phenotype of the previously characterized temperature sensitive HSV-1 mutant, ts1201. The 2-plasmid/4-cosmid system of mutagenesis was further validated by using it to construct a virus wherein the active site Ser129 of HSV-1 protease was mutated to Ala. The resulting virus mutant (V713) grew only on the Vero host range cell line PHS-23. In V713 infected Vero cells, the processing of Pra to N(O) was almost completely blocked, and B capsids accumulated in the nucleus in crystal-like aggregates, suggesting that protease activity is required for emergence of monodispersed capsids from these aggregates. Back mutation of Ala129 to Ser using the V713 viral DNA as template for PCR mutagenesis restored the wild-type phenotype verifying that the replicative incompetence of V713 reflected only the effect of the Ser to Ala mutation. The 2-plasmid/4-cosmid system of mutagenesis (and modifications thereof) should facilitate production of new mutant viruses for delineating interactions of domains of HSV-1 protease (as well as other HSV-1 proteins) important for virus replication.
Collapse
Affiliation(s)
- R B Register
- Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486, USA
| | | |
Collapse
|
35
|
Darke PL, Cole JL, Waxman L, Hall DL, Sardana MK, Kuo LC. Active human cytomegalovirus protease is a dimer. J Biol Chem 1996; 271:7445-9. [PMID: 8631772 DOI: 10.1074/jbc.271.13.7445] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The quaternary state of the human cytomegalovirus (hCMV) protease has been analyzed in relation to its catalysis of peptide hydrolysis. Based on results obtained from steady state kinetics, size exclusion chromatography, and velocity sedimentation, the hCMV protease exists in a monomer-dimer equilibrium. Dimerization of the protease is enhanced by the presence of glycerol and high concentrations of enzyme. Isolation of monomeric and dimeric species eluted from a size exclusion column, followed by immediate assay, identifies the dimer as the active species. Activity measurements conducted with a range of enzyme concentrations are also consistent with a kinetic model in which only the dimeric hCMV protease is active. Using this model, the dissociation constant of the protease is 6.6 microM in 10% glycerol and 0.55 microM in 20% glycerol at 30 degrees C and pH 7.5.
Collapse
Affiliation(s)
- P L Darke
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | |
Collapse
|
36
|
Gibson W, Welch AR, Hall MRT. Assemblin, a herpes virus serine maturational proteinase and new molecular target for antivirals. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/bf02172034] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
O'Boyle DR, Wager-Smith K, Stevens JT, Weinheimer SP. The effect of internal autocleavage on kinetic properties of the human cytomegalovirus protease catalytic domain. J Biol Chem 1995; 270:4753-8. [PMID: 7876248 DOI: 10.1074/jbc.270.9.4753] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The 28-kilodalton (kDa) catalytic domain of the human cytomegalovirus (HCMV) protease undergoes autoproteolytic cleavage at an internal site (I site), yielding amino-terminal 15-kDa (N15) and carboxyl-terminal 13-kDa (C13) fragments. I site autocleavage has been postulated to inactivate the protease and provide a mechanism for the negative regulation of enzyme activity during viral infection. We purified recombinant enzymes to demonstrate I site autocleavage in vitro and used site-directed mutagenesis of the I site to stabilize the protease. No difference in the kinetic properties of wild type and stabilized mutant proteases were observed in an in vitro peptide cleavage assay. The consequences of I site cleavage on enzyme activity were investigated two ways. First, autodigestion of the wild type enzyme converted the intact protease to N15 and C13 autocleavage products without a corresponding loss in enzyme activity. Second, genetic constructs encoding the N15 and C13 autocleavage products were generated and expressed separately in Escherichia coli, and each fragment was purified. An active enzyme was reconstituted by refolding a mixture of the purified fragments in vitro to form a noncovalent complex. The kinetic properties of this complex were very similar to the wild type and stabilized enzymes under optimal reaction conditions. We concluded from these studies that I site cleavage does not inactivate the HCMV protease, in the absence of other virally induced factors, and that limited potential exists for the regulation of catalytic activity by I site cleavage.
Collapse
Affiliation(s)
- D R O'Boyle
- Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543
| | | | | | | |
Collapse
|