1
|
Parisi MG, Ozón B, Vera González SM, García-Pardo J, Obregón WD. Plant Protease Inhibitors as Emerging Antimicrobial Peptide Agents: A Comprehensive Review. Pharmaceutics 2024; 16:582. [PMID: 38794245 PMCID: PMC11125377 DOI: 10.3390/pharmaceutics16050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial peptides (AMPs) are important mediator molecules of the innate defense mechanisms in a wide range of living organisms, including bacteria, mammals, and plants. Among them, peptide protease inhibitors (PPIs) from plants play a central role in their defense mechanisms by directly attacking pathogens or by modulating the plant's defense response. The growing prevalence of microbial resistance to currently available antibiotics has intensified the interest concerning these molecules as novel antimicrobial agents. In this scenario, PPIs isolated from a variety of plants have shown potential in inhibiting the growth of pathogenic bacteria, protozoans, and fungal strains, either by interfering with essential biochemical or physiological processes or by altering the permeability of biological membranes of invading organisms. Moreover, these molecules are active inhibitors of a range of proteases, including aspartic, serine, and cysteine types, with some showing particular efficacy as trypsin and chymotrypsin inhibitors. In this review, we provide a comprehensive analysis of the potential of plant-derived PPIs as novel antimicrobial molecules, highlighting their broad-spectrum antimicrobial efficacy, specificity, and minimal toxicity. These natural compounds exhibit diverse mechanisms of action and often multifunctionality, positioning them as promising molecular scaffolds for developing new therapeutic antibacterial agents.
Collapse
Affiliation(s)
- Mónica G. Parisi
- Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu) and Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján B6700, Buenos Aires, Argentina;
| | - Brenda Ozón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Sofía M. Vera González
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Javier García-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| |
Collapse
|
2
|
Gupta R, Jha A, Ambasta RK, Kumar P. Regulatory mechanism of cyclins and cyclin-dependent kinases in post-mitotic neuronal cell division. Life Sci 2021; 285:120006. [PMID: 34606852 DOI: 10.1016/j.lfs.2021.120006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases (NDDs) are the most common life-threatening disease of the central nervous system and it cause the progressive loss of neuronal cells. The exact mechanism of the disease's progression is not clear and thus line of treatment for NDDs is a baffling issue. During the progression of NDDs, oxidative stress and DNA damage play an important regulatory function, and ultimately induces neurodegeneration. Recently, aberrant cell cycle events have been demonstrated in the progression of different NDDs. However, the pertinent role of signaling mechanism, for instance, post-translational modifications, oxidative stress, DNA damage response pathway, JNK/p38 MAPK, MEK/ERK cascade, actively participated in the aberrant cell cycle reentry induced neuronal cell death. Mounting evidence has demonstrated that aberrant cell cycle re-entry is a major contributing factor in the pathogenesis of NDDs rather than a secondary phenomenon. In the brain of AD patients with mild cognitive impairment, post miotic cell division can be seen in the early stage of the disease. However, in the brain of PD patients, response to various neurotoxic signals, the cell cycle re-entry has been observed that causes neuronal apoptosis. On contrary, the contributing factors that leads to the induction of cell cycle events in mature neurons in HD and ALS brain pathology is remain unclear. Various pharmacological drugs have been developed to reduce the pathogenesis of NDDs, but they are still not helpful in eliminating the cause of these NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
3
|
Cotabarren J, Lufrano D, Parisi MG, Obregón WD. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110398. [PMID: 32005400 DOI: 10.1016/j.plantsci.2019.110398] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Protease inhibitors (PIs) are regulatory proteins found in numerous animal tissues and fluids, plants, and microorganisms that reduce and inhibit the exacerbated and uncontrolled activity of the target proteases. Specific PIs are also effective tools for inactivating proteases involved in human diseases like arthritis, pancreatitis, hepatitis, cancer, AIDS, thrombosis, emphysema, hypertension, and muscular dystrophy among others. Plant PIs-small peptides with a high content of cystine residues in disulfide bridges-possess a remarkable resistance to heat treatment and a high stability against shifts in pH, denaturing agents, ionic strength, and proteolysis. In recent years, novel biologic activities have been reported for plant PIs, including antimicrobial, anticoagulant, antioxidant action plus inhibition of tumor-cell growth; thus pointing to possible applications in medicine, agriculture, and biotechnology. In this review, we provide a comparative overview of plant-PIs classifying them in four groups according of their thermal and pH stability (high stability and hyperstable -to temperature and to pHs-, respectively), then emphasizing the relevance of the physicochemical characteristics of these proteins for potential biotechnological and industrial applications. Finally, we analyze the biologic activities of the stable protease inhibitors previously characterized that are the most relevant to potential applications in biomedicine, the food industry, and agriculture.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Daniela Lufrano
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Mónica Graciela Parisi
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján, 6700, Buenos Aires, Argentina.
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| |
Collapse
|
4
|
Di Sante G, Pagé J, Jiao X, Nawab O, Cristofanilli M, Skordalakes E, Pestell RG. Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology. Expert Rev Anticancer Ther 2019; 19:569-587. [PMID: 31219365 PMCID: PMC6834352 DOI: 10.1080/14737140.2019.1615889] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Collaborative interactions between several diverse biological processes govern the onset and progression of breast cancer. These processes include alterations in cellular metabolism, anti-tumor immune responses, DNA damage repair, proliferation, anti-apoptotic signals, autophagy, epithelial-mesenchymal transition, components of the non-coding genome or onco-mIRs, cancer stem cells and cellular invasiveness. The last two decades have revealed that each of these processes are also directly regulated by a component of the cell cycle apparatus, cyclin D1. Area covered: The current review is provided to update recent developments in the clinical application of cyclin/CDK inhibitors to breast cancer with a focus on the anti-tumor immune response. Expert opinion: The cyclin D1 gene encodes the regulatory subunit of a proline-directed serine-threonine kinase that phosphorylates several substrates. CDKs possess phosphorylation site selectivity, with the phosphate-acceptor residue preceding a proline. Several important proteins are substrates including all three retinoblastoma proteins, NRF1, GCN5, and FOXM1. Over 280 cyclin D3/CDK6 substrates have b\een identified. Given the diversity of substrates for cyclin/CDKs, and the altered thresholds for substrate phosphorylation that occurs during the cell cycle, it is exciting that small molecular inhibitors targeting cyclin D/CDK activity have encouraging results in specific tumors.
Collapse
Affiliation(s)
- Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Jessica Pagé
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Omar Nawab
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
5
|
Urbach A, Witte OW. Divide or Commit - Revisiting the Role of Cell Cycle Regulators in Adult Hippocampal Neurogenesis. Front Cell Dev Biol 2019; 7:55. [PMID: 31069222 PMCID: PMC6491688 DOI: 10.3389/fcell.2019.00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
The adult dentate gyrus continuously generates new neurons that endow the brain with increased plasticity, helping to cope with changing environmental and cognitive demands. The process leading to the birth of new neurons spans several precursor stages and is the result of a coordinated series of fate decisions, which are tightly controlled by extrinsic signals. Many of these signals act through modulation of cell cycle (CC) components, not only to drive proliferation, but also for linage commitment and differentiation. In this review, we provide a comprehensive overview on key CC components and regulators, with emphasis on G1 phase, and analyze their specific functions in precursor cells of the adult hippocampus. We explore their role for balancing quiescence versus self-renewal, which is essential to maintain a lifelong pool of neural stem cells while producing new neurons “on demand.” Finally, we discuss available evidence and controversies on the impact of CC/G1 length on proliferation versus differentiation decisions.
Collapse
Affiliation(s)
- Anja Urbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
6
|
Xu H, Yu S, Liu Q, Yuan X, Mani S, Pestell RG, Wu K. Recent advances of highly selective CDK4/6 inhibitors in breast cancer. J Hematol Oncol 2017; 10:97. [PMID: 28438180 PMCID: PMC5404666 DOI: 10.1186/s13045-017-0467-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/19/2017] [Indexed: 01/15/2023] Open
Abstract
Uncontrolled cell division is the hallmark of cancers. Full understanding of cell cycle regulation would contribute to promising cancer therapies. In particular, cyclin-dependent kinases 4/6 (CDK4/6), which are pivotal drivers of cell proliferation by combination with cyclin D, draw more and more attention. Subsequently, extensive studies were carried out to explore drugs inhibiting CDK4/6 and assess the efficacy and safety of these drugs in cancer, especially breast cancer. Due to the insuperable adverse events and the less activity observed in vivo, the drug development of the initial pan-CDK inhibitor flavopiridol was consequently discontinued, and then highly specific inhibitors were extensively researched and developed, including palbociclib (PD0332991), ribociclib (LEE011), and abemaciclib (LY2835219). Food and Drug Administration has approved palbociclib and ribociclib for the treatment of hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced or metastatic breast cancer, and recent clinical trial data suggest that palbociclib significantly improved clinical outcome when combined with letrozole or fulvestrant. Besides, the favorable effects of abemaciclib on prolonging survival of breast cancer patients have also been observed in clinical trials both for single-agent and combination strategy. In this review, we outline the preclinical and clinical advancement of these three orally bioavailable and highly selective CDK4/6 inhibitors in breast cancer.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Sridhar Mani
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY 10461 USA
| | - Richard G. Pestell
- Pennsylvania Center for Cancer and Regenerative Medicine, Wynnewood, PA 19096 USA
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| |
Collapse
|
7
|
Abstract
Deregulation of the cyclin-dependent kinase (CDK) 4/6-retinoblastoma (RB) axis can occur through a number of mechanisms and contributes towards the unrestrained growth witnessed in a variety of cancers including breast cancers. Recent years have seen the development of selective CDK4/6 inhibitors, which have delivered promising preclinical and clinical results in breast cancer and other tumours. A number of trials assessing antitumour efficacy in various disease settings and combinations are ongoing. The cyclin D1-CDK-Rb axis and its role in the cell cycle of normal and cancer cells are delineated. The early pan-CDK inhibitor flavopiridol and subsequent preclinical and clinical development of selective CDK4/6 inhibitors are described. Ongoing studies in breast cancer with novel CDK4/6 inhibitors (palbociclib, abemaciclib and ribociclib) are explored. A literature search of these topics was performed through PubMed. Abstracts from major oncology meetings were also reviewed. Selective CDK4/6 inhibitors, as represented by the competing compounds currently in clinical development, comprise a novel, safe and, thus far, promisingly efficacious group of drugs. Considerable resources are being devoted towards exploring the efficacy of these drugs in combination with endocrine therapies, an approach that has yielded encouraging results and accelerated approval by the US Food and Drugs Administration for one of these agents (palbociclib). The results of confirmatory phase 3 trials are, however, awaited. We discuss further therapy combinations in development and highlight potential areas for caution including the potential for antagonistic interactions with cytotoxic chemotherapies.
Collapse
|
8
|
Yang CH, Kuo WT, Chuang YT, Chen CY, Lin CC. Cyclin B1 destruction box-mediated protein instability: the enhanced sensitivity of fluorescent-protein-based reporter gene system. BIOMED RESEARCH INTERNATIONAL 2013; 2013:732307. [PMID: 24416725 PMCID: PMC3876668 DOI: 10.1155/2013/732307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 11/19/2013] [Indexed: 12/26/2022]
Abstract
The periodic expression and destruction of several cyclins are the most important steps for the exact regulation of cell cycle. Cyclins are degraded by the ubiquitin-proteasome system during cell cycle. Besides, a short sequence near the N-terminal of cyclin B called the destruction box (D-box; CDB) is also required. Fluorescent-protein-based reporter gene system is insensitive to analysis because of the overly stable fluorescent proteins. Therefore, in this study, we use human CDB fused with both enhanced green fluorescent protein (EGFP) at C-terminus and red fluorescent protein (RFP, DsRed) at N-terminus in the transfected human melanoma cells to examine the effects of CDB on different fluorescent proteins. Our results indicated that CDB-fused fluorescent protein can be used to examine the slight gene regulations in the reporter gene system and have the potential to be the system for screening of functional compounds in the future.
Collapse
Affiliation(s)
- Chao-Hsun Yang
- Department of Cosmetic Science, Providence University, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung 43301, Taiwan
| | - Wan-Ting Kuo
- Department of Cosmetic Science, Providence University, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung 43301, Taiwan
| | - Yun-Ting Chuang
- Department of Cosmetic Science, Providence University, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung 43301, Taiwan
| | - Cheng-Yu Chen
- Department of Cosmetic Science, Providence University, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung 43301, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung 43301, Taiwan
| |
Collapse
|
9
|
Laflamme BA, Wolfner MF. Identification and function of proteolysis regulators in seminal fluid. Mol Reprod Dev 2012; 80:80-101. [PMID: 23109270 DOI: 10.1002/mrd.22130] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/20/2012] [Indexed: 01/17/2023]
Abstract
Proteins in the seminal fluid of animals with internal fertilization effect numerous responses in mated females that impact both male and female fertility. Among these proteins is the highly represented class of proteolysis regulators (proteases and their inhibitors). Though proteolysis regulators have now been identified in the seminal fluid of all animals in which proteomic studies of the seminal fluid have been conducted (as well as several other species in which they have not), a unified understanding of the importance of proteolysis to male fertilization success and other reproductive processes has not yet been achieved. In this review, we provide an overview of the identification of proteolysis regulators in the seminal fluid of humans and Drosophila melanogaster, the two species with the most comprehensively known seminal fluid proteomes. We also highlight reports demonstrating the functional significance of specific proteolysis regulators in reproductive and post-mating processes. Finally, we make broad suggestions for the direction of future research into the roles of both active seminal fluid proteolysis regulators and their inactive homologs, another significant class of seminal fluid proteins. We hope that this review aids researchers in pursuing a coordinated study of the functional significance of proteolysis regulators in semen.
Collapse
Affiliation(s)
- Brooke A Laflamme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
10
|
Mikolcevic P, Rainer J, Geley S. Orphan kinases turn eccentric: a new class of cyclin Y-activated, membrane-targeted CDKs. Cell Cycle 2012; 11:3758-68. [PMID: 22895054 DOI: 10.4161/cc.21592] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PCTAIRE kinases (PCTK) are a highly conserved, but poorly characterized, subgroup of cyclin-dependent kinases (CDK). They are characterized by a conserved catalytic domain flanked by N- and C-terminal extensions that are involved in cyclin binding. Vertebrate genomes contain three highly similar PCTAIRE kinases (PCTK1,2,3, a.k.a., CDK16,17,18), which are most abundant in post-mitotic cells in brain and testis. Consistent with this restricted expression pattern, PCTK1 (CDK16) has recently been shown to be essential for spermatogenesis. PCTAIREs are activated by cyclin Y (CCNY), a highly conserved single cyclin fold protein. By binding to N-myristoylated CCNY, CDK16 is targeted to the plasma membrane. Unlike conventional cyclin-CDK interactions, binding of CCNY to CDK16 not only requires the catalytic domain, but also domains within the N-terminal extension. Interestingly, phosphorylation within this domain blocks CCNY binding, providing a novel means of cyclin-CDK regulation. By using these functional characteristics, we analyzed "PCTAIRE" sequence containing protein kinase genes in genomes of various organisms and found that CCNY and CCNY-dependent kinases are restricted to eumetazoa and possibly evolved along with development of a central nervous system. Here, we focus on the structure and regulation of PCTAIREs and discuss their established functions.
Collapse
Affiliation(s)
- Petra Mikolcevic
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | |
Collapse
|
11
|
Moh C, Kubiak JZ, Bajic VP, Zhu X, Smith MA, Lee HG. Cell cycle deregulation in the neurons of Alzheimer's disease. Results Probl Cell Differ 2011; 53:565-76. [PMID: 21630160 PMCID: PMC5925746 DOI: 10.1007/978-3-642-19065-0_23] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cell cycle consists of four main phases: G(1), S, G(2), and M. Most cells undergo these cycles up to 40-60 times in their life. However, neurons remain in a nondividing, nonreplicating phase, G(0). Neurons initiate but do not complete cell division, eventually entering apoptosis. Research has suggested that like cancer, Alzheimer's disease (AD) involves dysfunction in neuronal cell cycle reentry, leading to the development of the two-hit hypothesis of AD. The first hit is abnormal cell cycle reentry, which typically results in neuronal apoptosis and prevention of AD. However, with the second hit of chronic oxidative damage preventing apoptosis, neurons gain "immortality" analogous to tumor cells. Once both of these hits are activated, AD can develop and produce senile plaques and neurofibrillary tangles throughout brain tissue. In this review, we propose a mechanism for neuronal cell cycle reentry and the development of AD.
Collapse
Affiliation(s)
- Calvin Moh
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
12
|
Bonda DJ, Bajić VP, Spremo-Potparevic B, Casadesus G, Zhu X, Smith MA, Lee HG. Review: cell cycle aberrations and neurodegeneration. Neuropathol Appl Neurobiol 2010; 36:157-63. [PMID: 20059701 DOI: 10.1111/j.1365-2990.2010.01064.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cell cycle is a highly regulated and fundamental cellular process that involves complex feedback regulation of many proteins, and any compromise to its integrity elicits dire consequences for the cell. For example, in neurodegenerative diseases such as Alzheimer disease (AD), evidence for abnormal cell cycle re-entry precedes other hallmarks of disease and as such, implicates cell cycle aberrations in the aetiology of AD. The mechanism(s) for cell cycle re-entry in AD, however, remain unclear. Current theory suggests it to be part of a combination of early events that together elicit the degenerative pathology and cognitive phenotype consistent with the disease. We propose a 'Two-Hit Hypothesis' that highlights the concerted interaction between cell cycle alterations and oxidative stress that combine to produce neurodegeneration. Here, we review the evidence implicating cell cycle mechanisms in AD and how such changes, especially in combination with oxidative stress, would lead to a cascade of events leading to disease. Based on this concept, we propose new opportunities for disease treatment.
Collapse
Affiliation(s)
- D J Bonda
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Schmetsdorf S, Gärtner U, Arendt T. Constitutive expression of functionally active cyclin-dependent kinases and their binding partners suggests noncanonical functions of cell cycle regulators in differentiated neurons. Cereb Cortex 2006; 17:1821-9. [PMID: 17050646 DOI: 10.1093/cercor/bhl091] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neurodegeneration in Alzheimer's disease and various experimental lesion paradigms are associated with an unscheduled upregulation of cell cycle-related proteins, indicating a link between cell cycle reactivation and neuronal death. Recent evidence, however, suggests that at least some of the canonical cell cycle regulators are constitutively expressed in differentiated neurons of the adult brain. Systematic investigations on the constitutive expression of cell cycle regulators in differentiated neurons in vivo, providing the basis for further insights into their potential role under pathological conditions, however, have not been carried out. Here, we demonstrate a constitutive neuronal expression of Cdks 1, 2, and 4; their activators cyclins D, A, B, and E; and their inhibitors p15(Ink4b), p16(Ink4a), p18(Ink4c), p19(Ink4d), p21(Waf1/Cip1), p27(Kip1), and p57(Kip2) within the neocortex of adult mice by western blot and immunocytochemistry. Expression was verified by single-cell reverse transcriptase-polymerase chain reaction applied to individual microscopically identified neurons captured with laser dissection. Immunoprecipitation and in vitro kinase assays revealed that Cdks 1, 2, and 4 are properly complexed to cyclins and exhibit kinase activity. This physiological expression of positive cell cycle regulators in adult neurons is clearly not related to neuronal proliferation. Taken together, our findings demonstrate a constitutive expression of functionally active cyclin-dependent kinases and their regulators in differentiated neurons suggesting a noncanonical role of cell cycle regulators potentially linked to neuronal plasticity and/or stability.
Collapse
Affiliation(s)
- Stefanie Schmetsdorf
- Paul Flechsig Institute for Brain Research, Department of Neuroanatomy, University of Leipzig, 04109 Leipzig, Germany
| | | | | |
Collapse
|
14
|
Rueda S, Vicente M, Mingorance J. Concentration and assembly of the division ring proteins FtsZ, FtsA, and ZipA during the Escherichia coli cell cycle. J Bacteriol 2003; 185:3344-51. [PMID: 12754232 PMCID: PMC155373 DOI: 10.1128/jb.185.11.3344-3351.2003] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The concentration of the cell division proteins FtsZ, FtsA, and ZipA and their assembly into a division ring during the Escherichia coli B/r K cell cycle have been measured in synchronous cultures obtained by the membrane elution technique. Immunostaining of the three proteins revealed no organized structure in newly born cells. In a culture with a doubling time of 49 min, assembly of the Z ring started around minute 25 and was detected first as a two-dot structure that became a sharp band before cell constriction. FtsA and ZipA localized into a division ring following the same pattern and time course as FtsZ. The concentration (amount relative to total mass) of the three proteins remained constant during one complete cell cycle, showing that assembly of a division ring is not driven by changes in the concentration of these proteins. Maintenance of the Z ring during the process of septation is a dynamic energy-dependent event, as evidenced by its disappearance in cells treated with sodium azide.
Collapse
Affiliation(s)
- Sonsoles Rueda
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
15
|
Mendoza MAC, Ponce RA, Ou YC, Faustman EM. p21(WAF1/CIP1) inhibits cell cycle progression but not G2/M-phase transition following methylmercury exposure. Toxicol Appl Pharmacol 2002; 178:117-25. [PMID: 11814332 DOI: 10.1006/taap.2001.9267] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methylmercury (MeHg) is an environmentally prevalent organometal that is particularly toxic to the developing central nervous system (CNS). Prenatal MeHg exposure is associated with reduced brain size and weight and a reduced number of neurons, which have been associated with impaired cell proliferation. We evaluate the role of p21, a cell cycle protein involved in the G1- and G2-phase checkpoint control, in the cell cycle inhibition induced by MeHg. Primary mouse embryonic fibroblasts (MEFs) of different p21 genotypes (wild-type, heterozygous, and null) were isolated at day 14 of gestation and treated at passages 4-6 with either 0, 2, 4, or 6 microM MeHg or 50 nM colchicine for 24 h. Changes in cell cycle distribution after continuous toxicant treatment were analyzed by DNA content-based flow cytometry using DAPI. MeHg induced an increase in the proportion of cells in G2/M at 2 and 4 microM MeHg (p < or = 0.05) irrespective of p21 genotype. Effects of MeHg on cell cycle progression were subsequently evaluated using BrdU-Hoechst flow cytometric analysis. Inhibition of cell cycle progression was observed in all p21 genotypes after continuous exposure to MeHg for 24 and 48 h. p21 null (-/-) cells reached the second-round G1 at a higher fraction compared to the wild type (+/+) and heterozygous (+/-) cells (p < or = 0.05). These data support previous observations that MeHg inhibits cell cycle progression through delayed G2/M transition. Whereas the G2/M accumulation induced by MeHg was independent of p21 status, a greater proportion of p21(-/-) cells were able to complete one round of cell division in the presence of MeHg compared to p21(+/-) or p21(+/+) cells. These data suggest a role for p21 in retarding cell cycle progression, but not mitotic inhibition, following exposure to MeHg.
Collapse
Affiliation(s)
- Ma Aileen C Mendoza
- Department of Environmental Health, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
16
|
Van Hellemond JJ, Mottram JC. The CYC3 gene of trypanosoma brucei encodes a cyclin with a short half-life. Mol Biochem Parasitol 2000; 111:275-82. [PMID: 11163436 DOI: 10.1016/s0166-6851(00)00318-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recently, we identified two Trpanosoma brucei cyclin genes, CYC2 and CYC3, by rescue of the Saccharomyces cerevisiae mutant DL1, which is deficient in CLN G1 cyclin function. CYC3 has a low level of sequence identity to mitotic B-type cyclins from a variety of organisms. In order to examine whether CYC3 associates in vivo with a trypanosome cdc2-related kinase (CRK), the CYC3 gene was fused with the TY-epitope tag, integrated into the trypanosome genome and expressed under inducible control. CYC3ty was demonstrated to associate with the CRK-binding factor p12cks1 and histone H1 kinase activity could be detected in CYC3ty immune precipitated fractions, which demonstrates that CYC3ty associates in vivo with an active trypanosome CRK. Both CYC3ty and CYC2ty were shown to have a half-life of less than one cell cycle, which was significantly elongated by specific proteasome inhibitors, strongly suggesting that CYC3ty and CYC2ty are substrates for proteasome degradation. This is consistent with the presence in CYC3 of a putative destruction box motif that defines proteins for degradation via the ubiquitin degradation pathway. These results are consistant with proteolysis by the proteasome being involved in regulation of the cellular cyclin concentration in trypanosomes.
Collapse
Affiliation(s)
- J J Van Hellemond
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, Anderson College, UK
| | | |
Collapse
|
17
|
Yorgin PD, Hartson SD, Fellah AM, Scroggins BT, Huang W, Katsanis E, Couchman JM, Matts RL, Whitesell L. Effects of geldanamycin, a heat-shock protein 90-binding agent, on T cell function and T cell nonreceptor protein tyrosine kinases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2915-23. [PMID: 10706677 DOI: 10.4049/jimmunol.164.6.2915] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The benzoquinoid ansamycins geldanamycin (GA), herbimycin, and their derivatives are emerging as novel therapeutic agents that act by inhibiting the 90-kDa heat-shock protein hsp90. We report that GA inhibits the proliferation of mitogen-activated T cells. GA is actively toxic to both resting and activated T cells; activated T cells appear to be especially vulnerable. The mechanism by which GA acts is reflected by its effects on an essential hsp90-dependent protein, the T cell-specific nonreceptor tyrosine kinase lck. GA treatment depletes lck levels in cultured T cells by a kinetically slow dose-dependent process. Pulse-chase analyses indicate that GA induces the very rapid degradation of newly synthesized lck molecules. GA also induces a slower degradation of mature lck populations. These results correlate with global losses in protein tyrosine kinase activity and an inability to respond to TCR stimuli, but the activity of mature lck is not immediately compromised. Although the specific proteasome inhibitor lactacystin provides marginal protection against GA-induced lck depletion, proteasome inhibition also induces changes in lck detergent solubility independent of GA application. There is no other evidence for the involvement of the proteosome. Lysosome inhibition provides quantitatively superior protection against degradation. These results indicate that pharmacologic inhibition of hsp90 chaperone function may represent a novel immunosuppressant strategy, and elaborate on the appropriate context in which to interpret losses of lck as a reporter for the pharmacology of GA in whole organisms.
Collapse
Affiliation(s)
- P D Yorgin
- Department of Pediatrics, Steele Memorial Children's Research Center, University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Odani S, Tominaga K, Kondou S, Hori H, Koide T, Hara S, Isemura M, Tsunasawa S. The inhibitory properties and primary structure of a novel serine proteinase inhibitor from the fruiting body of the basidiomycete, Lentinus edodes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:915-23. [PMID: 10411656 DOI: 10.1046/j.1432-1327.1999.00463.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel proteinase inhibitor, Lentinus proteinase inhibitor, has been purified from the fruiting bodies of the edible mushroom, Lentinus edodes, by buffer extraction and affinity chromatography on immobilized anhydrotrypsin. The protein simultaneously inhibits bovine beta-trypsin and alpha-chymotrypsin at independent sites, with apparent dissociation constants of 3.5 x 10(-10) M and 4 x 10(-8) M, respectively. The purified protein is eluted as two well-separated peaks on reversed-phase HPLC, one of which is inhibitory-active and the other inactive, and they are interconvertible under folding/unfolding conditions. Among the mammalian and microbial serine proteinases examined, including human enzymes of blood coagulation and fibrinolysis, activated factor XI was inhibited by the Lentinus proteinase inhibitor. Chemical modification studies suggest involvement of one or more arginine residues in the inhibition of trypsin. The complete primary structure composed of 142 amino acids with an acetylated N-terminus was determined by protein analysis. The theoretical molecular mass (15999.2) from the sequence is close to the experimental value of 15999.61 +/- 0.61 determined by mass spectrometry. Although there are no apparently homologous proteinase inhibitors in the protein database, there is a rather striking similarity to the propeptide segment of a microbial serine proteinase, as well as to the N-terminal region of the mature enzyme.
Collapse
Affiliation(s)
- S Odani
- Department of Biology, Faculty of Science, Niigata University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Franklin JL, Johnson EM. Control of neuronal size homeostasis by trophic factor-mediated coupling of protein degradation to protein synthesis. J Cell Biol 1998; 142:1313-24. [PMID: 9732291 PMCID: PMC2149345 DOI: 10.1083/jcb.142.5.1313] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrate that NGF couples the rate of degradation of long-lived proteins in sympathetic neurons to the rate of protein synthesis. Inhibiting protein synthesis rate by a specific percentage caused an almost equivalent percentage reduction in the degradation rate of long-lived proteins, indicating nearly 1:1 coupling between the two processes. The rate of degradation of short-lived proteins was unaffected by suppressing protein synthesis. Included in the pool of proteins that had increased half-lives when protein synthesis was inhibited were actin and tubulin. Both of these proteins, which had half-lives of several days, exhibited no degradation over a 3-d period when protein synthesis was completely suppressed. The half-lives of seven other long-lived proteins were quantified and found to increase by 84-225% when protein synthesis was completely blocked. Degradation-synthesis coupling protected cells from protein loss during periods of decreased synthesis. The rate of protein synthesis greatly decreased and coupling between degradation and synthesis was lost after removal of NGF. Uncoupling resulted in net loss of cellular protein and somatic atrophy. We propose that coupling the rate of protein degradation to that of protein synthesis is a fundamental mechanism by which neurotrophic factors maintain homeostatic control of neuronal size and perhaps growth.
Collapse
Affiliation(s)
- J L Franklin
- Department of Neurological Surgery, 4640 MSC, University of Wisconsin School of Medicine, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
20
|
Mykles DL. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 184:157-289. [PMID: 9697313 DOI: 10.1016/s0074-7696(08)62181-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytosolic proteinases carry out a variety of regulatory functions by controlling protein levels and/or activities within cells. Calcium-dependent and ubiquitin/proteasome-dependent pathways are common to all eukaryotes. The former pathway consists of a diverse group of Ca(2+)-dependent cysteine proteinases (CDPs; calpains in vertebrate tissues). The latter pathway is highly conserved and consists of ubiquitin, ubiquitin-conjugating enzymes, deubiquitinases, and the proteasome. This review summarizes the biochemical properties and genetics of invertebrate CDPs and proteasomes and their roles in programmed cell death, stress responses (heat shock and anoxia), skeletal muscle atrophy, gametogenesis and fertilization, development and pattern formation, cell-cell recognition, signal transduction and learning, and photoreceptor light adaptation. These pathways carry out bulk protein degradation in the programmed death of the intersegmental and flight muscles of insects and of individuals in a colonial ascidian; molt-induced atrophy of crustacean claw muscle; and responses of brine shrimp, mussels, and insects to environmental stress. Selective proteolysis occurs in response to specific signals, such as in modulating protein kinase A activity in sea hare and fruit fly associated with learning; gametogenesis, differentiation, and development in sponge, echinoderms, nematode, ascidian, and insects; and in light adaptation of photoreceptors in the eyes of squid, insects, and crustaceans. Proteolytic activities and specificities are regulated through proteinase gene expression (CDP isozymes and proteasomal subunits), allosteric regulators, and posttranslational modifications, as well as through specific targeting of protein substrates by a diverse assemblage of ubiquitin-conjugases and deubiquitinases. Thus, the regulation of intracellular proteolysis approaches the complexity and versatility of transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
21
|
Pinna LA, Meggio F. Protein kinase CK2 ("casein kinase-2") and its implication in cell division and proliferation. PROGRESS IN CELL CYCLE RESEARCH 1998; 3:77-97. [PMID: 9552408 DOI: 10.1007/978-1-4615-5371-7_7] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein kinase CK2 (also termed casein kinase-2 or -II) is a ubiquitous Ser/Thr-specific protein kinase required for viability and for cell cycle progression. CK2 is especially elevated in proliferating tissues, either normal or transformed, and the expression of its catalytic subunit in transgenic mice is causative of lymphomas. CK2 is highly pleiotropic: more than 160 proteins phosphorylated by it at sites specified by multiple acidic residues are known. Despite its heterotetrameric structure generally composed by two catalytic (alpha and/or alpha') and two non catalytic beta-subunits, the regulation of CK2 is still enigmatic. A number of functional features of the beta-subunit which could cooperate to the modulation of CK2 targeting/activity will be discussed.
Collapse
Affiliation(s)
- L A Pinna
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| | | |
Collapse
|
22
|
Wolf G, Schroeder R, Thaiss F, Ziyadeh FN, Helmchen U, Stahl RA. Glomerular expression of p27Kip1 in diabetic db/db mouse: role of hyperglycemia. Kidney Int 1998; 53:869-79. [PMID: 9551393 DOI: 10.1111/j.1523-1755.1998.00829.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Early diabetic nephropathy is characterized by glomerular hypertrophy. Previous studies in vitro have demonstrated that mesangial cells exposed to high glucose are arrested in the G1-phase of the cell cycle and express increased levels of the cyclin-dependent kinase inhibitor p27Kip1. The present study was performed to investigate the renal expression of p27Kip1 in db/db mice, a model of diabetes mellitus type II. Glomerular p27Kip1 protein, but not mRNA expression, was strongly enhanced in diabetic db/db mice compared with non-diabetic db/+ littermates. Immunohistochemical studies revealed that this stimulated expression was mainly restricted to the nuclei of mesangial cells and podocytes, but glomerular endothelial cells occasionally also stained positively. Quantification of p27Kip1 positive glomerular cells showed a significant increase of these cells in db/db mice compared with non-diabetic db/+ animals. Although tubular cells revealed a positive staining for p27Kip1 protein, there was no difference between db/+ and db/db mice. Immunoprecipitation experiments revealed that p27Kip1 protein associates with Cdk2 and Cdk4, but not with Cdk6. To test for the influence of hyperglycemia on cell cycle arrest and p27Kip1 expression, mesangial cells were isolated from db/+ and db/db mice. There was a similar basal proliferation when these cells were grown in normal glucose-containing medium (100 mg/dl). However, raising the glucose concentration to 275 to 450 mg/dl induced cell cycle arrest in db/+ as well as db/db mesangial cells. Increasing the medium osmolarity with D-mannitol failed to induce p27Kip1 expression in mesangial cells. Transfection of cells with p27Kip1 antisense, but not missense, phosphorothioate oligonucleotides facilitated cell cycle progression equally well in db/+ and db/db mesangial cells. Furthermore, p27Kip1 expression was comparable in both cell lines in normal glucose, but increased in high glucose medium. Our studies demonstrate that p27Kip1 expression is enhanced in diabetic db/db animals. This induction appears to be due to hyperglycemia. Expression of p27Kip1 may be important in cell cycle arrest and hypertrophy of mesangial cells during early diabetic nephropathy.
Collapse
Affiliation(s)
- G Wolf
- Department of Medicine, University of Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Fu YH, Nishinaka T, Yokoyama K, Chiu R. A retinoblastoma susceptibility gene product, RB, targeting protease is regulated through the cell cycle. FEBS Lett 1998; 421:89-93. [PMID: 9462847 DOI: 10.1016/s0014-5793(97)01541-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Degradation of cyclin B and cyclin-dependent kinase inhibitor, p27, at a specific time has been shown to play a critical role in regulating the cell cycle. SPase, a nuclear and cytosol protease with cathepsin B- and L-like proteolytic activity, has been identified in several cell lines. This proteolytic enzyme selectively degraded nuclear proteins such as retinoblastoma susceptibility gene product, RB, and transcription factor, SP-1. High levels of SPase activity were detected at the G1/S, moderate levels at the G1 and S phases, and undetectable activity at the M phase of synchronized CV-1 cells, suggesting that SPase activity is regulated through the cell cycle. Degradation of RB correlated with SPase activity throughout the cell cycle, suggesting that SPase regulates RB, which has a functional role in regulating cell cycle. These results demonstrated that SPase plays an integral role in regulating the nuclear regulator, RB, in controlling cell cycle progression.
Collapse
Affiliation(s)
- Y H Fu
- Department of Surgery, School of Medicine, University of California, Los Angeles, 90095-1782, USA
| | | | | | | |
Collapse
|