1
|
Vega-Celedón P, Castillo-Novales D, Bravo G, Cárdenas F, Romero-Silva MJ, Seeger M. Synthesis and Degradation of the Phytohormone Indole-3-Acetic Acid by the Versatile Bacterium Paraburkholderia xenovorans LB400 and Its Growth Promotion of Nicotiana tabacum Plant. PLANTS (BASEL, SWITZERLAND) 2024; 13:3533. [PMID: 39771231 PMCID: PMC11676955 DOI: 10.3390/plants13243533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Plant growth-promoting bacteria (PGPB) play a role in stimulating plant growth through mechanisms such as the synthesis of the phytohormone indole-3-acetic acid (IAA). The aims of this study were the characterization of IAA synthesis and degradation by the model aromatic-degrading bacterium Paraburkholderia xenovorans LB400, and its growth promotion of the Nicotiana tabacum plant. Strain LB400 was able to synthesize IAA (measured by HPLC) during growth in the presence of tryptophan and at least one additional carbon source; synthesis of anthranilic acid was also observed. RT-PCR analysis indicates that under these conditions, strain LB400 expressed the ipdC gene, which encodes indole-3-pyruvate decarboxylase, suggesting that IAA biosynthesis proceeds through the indole-3-pyruvate pathway. In addition, strain LB400 degraded IAA and grew on IAA as a sole carbon and energy source. Strain LB400 expressed the iacC and catA genes, which encode the α subunit of the aromatic-ring-hydroxylating dioxygenase in the IAA catabolic pathway and the catechol 1,2-dioxygenase, respectively, which may suggest a peripheral IAA pathway leading to the central catechol pathway. Notably, P. xenovorans LB400 promoted the growth of tobacco seedlings, increasing the number and the length of the roots. In conclusion, this study indicates that the versatile bacterium P. xenovorans LB400 is a PGPB.
Collapse
Affiliation(s)
- Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Diyanira Castillo-Novales
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Guillermo Bravo
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Franco Cárdenas
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
| | - María José Romero-Silva
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| |
Collapse
|
2
|
Shi M, Hao S, Wang Y, Zhang S, Cui G, Zhang B, Zhou W, Chen H, Wang M. Plant growth-promoting fungi improve tobacco yield and chemical components by reassembling rhizosphere fungal microbiome and recruiting probiotic taxa. ENVIRONMENTAL MICROBIOME 2024; 19:83. [PMID: 39487540 PMCID: PMC11531166 DOI: 10.1186/s40793-024-00629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Tobacco production faces ongoing challenges due to soil degradation, leading to a persistent decline in yield. Plant growth-promoting fungi (PGPF) have been recognized as an environmentally friendly agricultural strategy. However, many commercial PGPF products exhibit instability due to insufficient environmental compatibility. RESULTS In this study, Penicillium sp. PQxj3 was isolated and assessed for its potential to enhance tobacco productivity under field conditions. The results demonstrated that Penicillium sp. PQxj3 treatment significantly promoted the tobacco growth and improved the crop yield. The height of tobacco in Penicillium sp. PQxj3 treatment group significantly increased by 50.19% and 24.05% compared with CK at exuberant and maturity period (P < 0.05). The average yield of tobacco significantly increased by 36.16% compared to CK (P < 0.05). Fungal microbiome analysis revealed that phylogenetically similar probiotic taxa were recruited by Penicillium sp. PQxj3 and reassembled tobacco rhizosphere fungal microbiome. The key chemical indicators of tobacco such as alkaloid, total sugar, and phosphorus were significantly enhanced in Penicillium sp. PQxj3 treatment. The recruited probiotic taxa (Penicillium brasilianum, Penicillium simplicissimum, Penicillium macrosclerotiorum and Penicillium senticosum) were significantly associated with alkaloid, total sugar etc. (P < 0.05), which were identified as the key drivers for improving the chemical components of tobacco. Transcriptome analysis indicated that Penicillium sp. PQxj3 promoted up-regulation of key functional genes involved in alkaloid, indoleacetic, and gibberellin biosynthesis pathways. CONCLUSION In summary, this study assessed the biopromotion mechanism of PGPF Penicillium sp. PQxj3 linking chemical traits, rhizosphere fungal microbiome, and transcriptome profiling. The findings provide a fundamental basis and a sustainable solution for developing fungal fertilizers to enhance agricultural sustainability.
Collapse
Affiliation(s)
- Mingzi Shi
- College of Life Science, Henan Agricultural University, Henan, 450046, China
| | - Shanghua Hao
- College of Life Science, Henan Agricultural University, Henan, 450046, China
| | - Yuhe Wang
- Department of Genomic and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Sen Zhang
- College of Life Science, Henan Agricultural University, Henan, 450046, China
| | - Guangzhou Cui
- Xinyang City Company of Henan Tobacco Corporation, Henan, 464006, China
| | - Bin Zhang
- Xinyang City Company of Henan Tobacco Corporation, Henan, 464006, China
| | - Wang Zhou
- College of Life Science, Henan Agricultural University, Henan, 450046, China
| | - Hongge Chen
- College of Life Science, Henan Agricultural University, Henan, 450046, China
| | - Mingdao Wang
- College of Life Science, Henan Agricultural University, Henan, 450046, China.
| |
Collapse
|
3
|
Nagarajan N, Khan M, Djamei A. Manipulation of Auxin Signaling by Smut Fungi during Plant Colonization. J Fungi (Basel) 2023; 9:1184. [PMID: 38132785 PMCID: PMC10744876 DOI: 10.3390/jof9121184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
A common feature of many plant-colonizing organisms is the exploitation of plant signaling and developmental pathways to successfully establish and proliferate in their hosts. Auxins are central plant growth hormones, and their signaling is heavily interlinked with plant development and immunity responses. Smuts, as one of the largest groups in basidiomycetes, are biotrophic specialists that successfully manipulate their host plants and cause fascinating phenotypes in so far largely enigmatic ways. This review gives an overview of the growing understanding of how and why smut fungi target the central and conserved auxin growth signaling pathways in plants.
Collapse
Affiliation(s)
| | | | - Armin Djamei
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115 Bonn, Germany; (N.N.); (M.K.)
| |
Collapse
|
4
|
Tang J, Li Y, Zhang L, Mu J, Jiang Y, Fu H, Zhang Y, Cui H, Yu X, Ye Z. Biosynthetic Pathways and Functions of Indole-3-Acetic Acid in Microorganisms. Microorganisms 2023; 11:2077. [PMID: 37630637 PMCID: PMC10459833 DOI: 10.3390/microorganisms11082077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Indole-3-acetic acid (IAA) belongs to the family of auxin indole derivatives. IAA regulates almost all aspects of plant growth and development, and is one of the most important plant hormones. In microorganisms too, IAA plays an important role in growth, development, and even plant interaction. Therefore, mechanism studies on the biosynthesis and functions of IAA in microorganisms can promote the production and utilization of IAA in agriculture. This mini-review mainly summarizes the biosynthesis pathways that have been reported in microorganisms, including the indole-3-acetamide pathway, indole-3-pyruvate pathway, tryptamine pathway, indole-3-acetonitrile pathway, tryptophan side chain oxidase pathway, and non-tryptophan dependent pathway. Some pathways interact with each other through common key genes to constitute a network of IAA biosynthesis. In addition, functional studies of IAA in microorganisms, divided into three categories, have also been summarized: the effects on microorganisms, the virulence on plants, and the beneficial impacts on plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.T.); (L.Z.)
| |
Collapse
|
5
|
Yu C, Qi J, Han H, Wang P, Liu C. Progress in pathogenesis research of Ustilago maydis, and the metabolites involved along with their biosynthesis. MOLECULAR PLANT PATHOLOGY 2023; 24:495-509. [PMID: 36808861 PMCID: PMC10098057 DOI: 10.1111/mpp.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Ustilago maydis is a pathogenic fungus that causes corn smut. Because of its easy cultivation and genetic transformation, U. maydis has become an important model organism for plant-pathogenic basidiomycetes. U. maydis is able to infect maize by producing effectors and secreted proteins as well as surfactant-like metabolites. In addition, the production of melanin and iron carriers is also associated with its pathogenicity. Here, advances in our understanding of the pathogenicity of U. maydis, the metabolites involved in the pathogenic process, and the biosynthesis of these metabolites, are reviewed and discussed. This summary will provide new insights into the pathogenicity of U. maydis and the functions of associated metabolites, as well as new clues for deciphering the biosynthesis of metabolites.
Collapse
Affiliation(s)
- Chunyan Yu
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & PharmacyNorthwest A&F UniversityYanglingChina
| | - Haiyan Han
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| |
Collapse
|
6
|
Vañó MS, Nourimand M, MacLean A, Pérez-López E. Getting to the root of a club - Understanding developmental manipulation by the clubroot pathogen. Semin Cell Dev Biol 2023; 148-149:22-32. [PMID: 36792438 DOI: 10.1016/j.semcdb.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Plasmodiophora brassicae Wor., the clubroot pathogen, is the perfect example of an "atypical" plant pathogen. This soil-borne protist and obligate biotrophic parasite infects the roots of cruciferous crops, inducing galls or clubs that lead to wilting, loss of productivity, and plant death. Unlike many other agriculturally relevant pathosystems, research into the molecular mechanisms that underlie clubroot disease and Plasmodiophora-host interactions is limited. After release of the first P. brassicae genome sequence and subsequent availability of transcriptomic data, the clubroot research community have implicated the involvement of phytohormones during the clubroot pathogen's manipulation of host development. Herein we review the main events leading to the formation of root galls and describe how modulation of select phytohormones may be key to modulating development of the plant host to the benefit of the pathogen. Effector-host interactions are at the base of different strategies employed by pathogens to hijack plant cellular processes. This is how we suspect the clubroot pathogen hijacks host plant metabolism and development to induce nutrient-sink roots galls, emphasizing a need to deepen our understanding of this master manipulator.
Collapse
Affiliation(s)
- Marina Silvestre Vañó
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Maryam Nourimand
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Allyson MacLean
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Edel Pérez-López
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
7
|
RoyChowdhury M, Sternhagen J, Xin Y, Lou B, Li X, Li C. Evolution of pathogenicity in obligate fungal pathogens and allied genera. PeerJ 2022; 10:e13794. [PMID: 36042858 PMCID: PMC9420410 DOI: 10.7717/peerj.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/06/2022] [Indexed: 01/17/2023] Open
Abstract
Obligate fungal pathogens (ascomycetes and basidiomycetes) and oomycetes are known to cause diseases in cereal crop plants. They feed on living cells and most of them have learned to bypass the host immune machinery. This paper discusses some of the factors that are associated with pathogenicity drawing examples from ascomycetes, basidiomycetes and oomycetes, with respect to their manifestation in crop plants. The comparisons have revealed a striking similarity in the three groups suggesting convergent pathways that have arisen from three lineages independently leading to an obligate lifestyle. This review has been written with the intent, that new information on adaptation strategies of biotrophs, modifications in pathogenicity strategies and population dynamics will improve current strategies for breeding with stable resistance.
Collapse
Affiliation(s)
- Moytri RoyChowdhury
- Infectious Diseases Program, California Department of Public Health, Richmond, California, United States of America
| | - Jake Sternhagen
- Riverside School of Medicine, University of California, Riverside, Riverside, CA, United States of America
| | - Ya Xin
- Hangzhou Academy of Agricultural Sciences, Hangzhou, P.R. China
| | - Binghai Lou
- Guangxi Academy of Specialty Crops, Guilin, Guangxi, P.R. China
| | - Xiaobai Li
- Zhejiang Academy of Agricultural Sciences, Hangzhou, P.R. China
| | - Chunnan Li
- Hangzhou Academy of Agricultural Sciences, Hangzhou, P.R. China
| |
Collapse
|
8
|
Aminotransferase SsAro8 Regulates Tryptophan Metabolism Essential for Filamentous Growth of Sugarcane Smut Fungus
Sporisorium scitamineum. Microbiol Spectr 2022; 10:e0057022. [PMID: 35862944 PMCID: PMC9431617 DOI: 10.1128/spectrum.00570-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sugarcane smut caused by the basidiomycetous fungus Sporisorium scitamineum leads to severe economic losses globally. Sexual mating/filamentation of S. scitamineum is critical for its pathogenicity, as only the dikaryotic hyphae formed after sexual mating are capable of invading the host cane. Our comparative transcriptome analysis showed that the mitogen-activated protein kinase (MAPK) pathway and the AGC kinase Agc1 (orthologous to yeast Rim15), both governing S. scitamineum mating/filamentation, were induced by elevated tryptophol level, supporting a positive regulation of S. scitamineum mating/filamentation by tryptophol. However, the biosynthesis pathway of tryptophol remains unknown in S. scitamineum. Here, we identified an aminotransferase orthologous to the established tryptophan aminotransferase Tam1/Aro8, catalyzing the first step of tryptophan-dependent indole-3-acetic acid (IAA) production as well as that of the Ehrlich pathway for tryptophol production. We designated this S. scitamineum aminotransferase as SsAro8 and found that it was essential for mating/filamentation. Comparative metabolomics analysis revealed that SsAro8 was involved in tryptophan metabolism, likely for producing important intermediate products, including tryptophol. Exogenous addition of tryptophan or tryptophol could differentially restore mating/filamentation in the ssaro8Δ mutant, indicating that in addition to tryptophol, other product(s) of tryptophan catabolism may also be involved in S. scitamineum mating/filamentation regulation. S. scitamineum could also produce IAA, partially dependent on SsAro8 function. Surprisingly, photodestruction of IAA produced the compound(s) able to suppress S. scitamineum growth/differentiation. Lastly, we found that SsAro8 was required for proper biofilm formation, oxidative stress tolerance, and full pathogenicity in S. scitamineum. Overall, our study establishes the aminotransferase SsAro8 as an essential regulator of S. scitamineum pathogenic differentiation, as well as fungus-host interaction, and therefore of great potential as a molecular target for sugarcane smut disease control. IMPORTANCE Sugarcane smut caused by the basidiomycete fungus S. scitamineum leads to massive economic losses in sugarcane plantation globally. Dikaryotic hyphae formation (filamentous growth) and biofilm formation are two important aspects in S. scitamineum pathogenesis, yet the molecular regulation of these two processes was not as extensively investigated as that in the model pathogenic fungi, e.g., Candida albicans, Ustilago maydis, or Cryptococcus neoformans. In this study, a tryptophan aminotransferase ortholog was identified in S. scitamineum, designated SsAro8. Functional characterization showed that SsAro8 positively regulates both filamentous growth and biofilm formation, respectively, via tryptophol-dependent and -independent manners. Furthermore, SsAro8 is required for full pathogenicity and, thus, is a promising molecular target for designing anti-smut strategy.
Collapse
|
9
|
Ullah U, Buttar ZA, Shalmani A, Muhammad I, Ud-Din A, Ali H. Genome-wide identification and expression analysis of CPP-like gene family in Triticum aestivum L. under different hormone and stress conditions. Open Life Sci 2022; 17:544-562. [PMID: 35647295 PMCID: PMC9123298 DOI: 10.1515/biol-2022-0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022] Open
Abstract
The CPP-like plant‐specific transcription factor has a prominent role in plant development and growth through cell division and differential activities. However, little information is available about the CPP gene family in Triticum aestivum L. Herein, we identified 37 and 11 CPP genes in the wheat and rice genome databases, respectively. The phylogeny of the CPP protein-like family members was further divided into five subfamilies based on structural similarities and phenotypic functional diversities. The in silico expression analysis showed that CPP genes are highly expressed in some tissues, such as shoot apex, shoot, leaf, leaf sheath, and microspore. Furthermore, the qRT-PCR found higher expression for TaCPP gene family members in leaf, leaf blade, young spike, mature spike, and differential expression patterns under abiotic stresses, including heat, drought, salt, and hormonal treatment, such as indole acetic acid and 1-aminocyclopropane-1 carboxylic acid. We found that CPP gene family members are mostly located in the nucleus after infiltrating the CPP5-1B-GFP and TaCPP11-3B-GFP into tobacco leaves. The overexpression of the TaCPP5-1D gene revealed that the CPP gene positively regulates the germanium, shoot, and root activities in Arabidopsis. The TaCPP5-1D-overexpressed plants showed less anti-oxidative sensitivity under drought stress conditions. These results demonstrated that TaCPP5-1D protein has a crucial contribution by interacting with TaCPP11-3B protein in maintaining stress homeostasis under the natural and unfavorable environmental conditions for growth, development, and stress resistance activities. Therefore, this study could be used as pioneer knowledge to further investigate the function of CPP genes in plant growth and development.
Collapse
Affiliation(s)
- Uzair Ullah
- Department of Biotechnology and Genetic Engineering, University Mansehra, Dhodial, Pakistan
| | - Zeeshan Ali Buttar
- The Collaborative Innovation Center for Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Abdullah Shalmani
- College of Life Sciences, Northwest A & F University, Xianyang, China
| | - Izhar Muhammad
- College of Life Sciences, Northwest A & F University, Xianyang, China
| | - Aziz Ud-Din
- Department of Biotechnology and Genetic Engineering, University Mansehra, Dhodial, Pakistan
| | - Hamid Ali
- Department of Biotechnology and Genetic Engineering, University Mansehra, Dhodial, Pakistan
| |
Collapse
|
10
|
Rani M, Utreja D, Sharma S. Role of Indole Derivatives in Agrochemistry: Synthesis and Future Insights. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220426103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Heterocycles constitute a wider class of organic compounds which contribute significantly in every facet of pure and applied chemistry. Indole, one of the bicyclic heterocyclic compounds containing nitrogen atom, witnessed unparalleled biological activity such as antiviral, antibacterial, anticancer, anti-depressant and antifungal activities. Different biological activities exhibited by indole derivatives provide the impulsion to explore its activity against anti-phytopathogenic microbes to save the plants from pests and disease, as food security will once again become a rigid demand. This review mainly focuses on various methods related to the synthesis of indole derivatives and its role in agriculture.
Collapse
Affiliation(s)
- Manisha Rani
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Shivali Sharma
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| |
Collapse
|
11
|
Dong L, Ma Y, Chen CY, Shen L, Sun W, Cui G, Naqvi NI, Deng YZ. Identification and Characterization of Auxin/IAA Biosynthesis Pathway in the Rice Blast Fungus Magnaporthe oryzae. J Fungi (Basel) 2022; 8:jof8020208. [PMID: 35205962 PMCID: PMC8879529 DOI: 10.3390/jof8020208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
The rice blast fungus Magnaporthe oryzae has been known to produce the phytohormone auxin/IAA from its hyphae and conidia, but the detailed biological function and biosynthesis pathway is largely unknown. By sequence homology, we identified a complete indole-3-pyruvic acid (IPA)-based IAA biosynthesis pathway in M. oryzae, consisting of the tryptophan aminotransferase (MoTam1) and the indole-3-pyruvate decarboxylase (MoIpd1). In comparison to the wild type, IAA production was significantly reduced in the motam1Δ mutant, and further reduced in the moipd1Δ mutant. Correspondingly, mycelial growth, conidiation, and pathogenicity were defective in the motam1Δ and the moipd1Δ mutants to various degrees. Targeted metabolomics analysis further confirmed the presence of a functional IPA pathway, catalyzed by MoIpd1, which contributes to IAA/auxin production in M. oryzae. Furthermore, the well-established IAA biosynthesis inhibitor, yucasin, suppressed mycelial growth, conidiation, and pathogenicity in M. oryzae. Overall, this study identified an IPA-dependent IAA synthesis pathway crucial for M. oryzae mycelial growth and pathogenic development.
Collapse
Affiliation(s)
- Lihong Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuming Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
| | - Cheng-Yen Chen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; (C.-Y.C.); (N.I.N.)
| | - Lizheng Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
| | - Wenda Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
| | - Guobing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; (C.-Y.C.); (N.I.N.)
| | - Yi Zhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
12
|
Jahn L, Hofmann U, Ludwig-Müller J. Indole-3-Acetic Acid Is Synthesized by the Endophyte Cyanodermella asteris via a Tryptophan-Dependent and -Independent Way and Mediates the Interaction with a Non-Host Plant. Int J Mol Sci 2021; 22:2651. [PMID: 33800748 PMCID: PMC7961953 DOI: 10.3390/ijms22052651] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
The plant hormone indole-3-acetic acid (IAA) is one of the main signals playing a role in the communication between host and endophytes. Endophytes can synthesize IAA de novo to influence the IAA homeostasis in plants. Although much is known about IAA biosynthesis in microorganisms, there is still less known about the pathway by which IAA is synthesized in fungal endophytes. The aim of this study is to examine a possible IAA biosynthesis pathway in Cyanodermella asteris. In vitro cultures of C. asteris were incubated with the IAA precursors tryptophan (Trp) and indole, as well as possible intermediates, and they were additionally treated with IAA biosynthesis inhibitors (2-mercaptobenzimidazole and yucasin DF) to elucidate possible IAA biosynthesis pathways. It was shown that (a) C. asteris synthesized IAA without adding precursors; (b) indole-3-acetonitrile (IAN), indole-3-acetamide (IAM), and indole-3-acetaldehyde (IAD) increased IAA biosynthesis; and (c) C. asteris synthesized IAA also by a Trp-independent pathway. Together with the genome information of C. asteris, the possible IAA biosynthesis pathways found can improve the understanding of IAA biosynthesis in fungal endophytes. The uptake of fungal IAA into Arabidopsis thaliana is necessary for the induction of lateral roots and other fungus-related growth phenotypes, since the application of the influx inhibitor 2-naphthoxyacetic acid (NOA) but not the efflux inhibitor N-1-naphtylphthalamic acid (NPA) were altering these parameters. In addition, the root phenotype of the mutation in an influx carrier, aux1, was partially rescued by C. asteris.
Collapse
Affiliation(s)
| | | | - Jutta Ludwig-Müller
- Institute of Botany, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany; (L.J.); (U.H.)
| |
Collapse
|
13
|
Pan L, Chen J, Ren S, Shen H, Rong B, Liu W, Yang Z. Complete genome sequence of Mycobacterium Mya-zh01, an endophytic bacterium, promotes plant growth and seed germination isolated from flower stalk of Doritaenopsis. Arch Microbiol 2020; 202:1965-1976. [DOI: 10.1007/s00203-020-01924-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 11/27/2022]
|
14
|
Pham MT, Huang CM, Kirschner R. The plant growth-promoting potential of the mesophilic wood-rot mushroom Pleurotus pulmonarius. J Appl Microbiol 2019; 127:1157-1171. [PMID: 31291682 DOI: 10.1111/jam.14375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/09/2019] [Accepted: 06/26/2019] [Indexed: 11/27/2022]
Abstract
AIMS To demonstrate the plant growth-promoting potential of a wood-decay mushroom. METHODS AND RESULTS A wild strain of a white rot fungus (Pleurotus pulmonarius) was found to convert 10 mmol l-1 L-tryptophan (TRP) to approximately 15 μg ml-1 indole-3-acetic acid (IAA) under the optimal growth conditions of 30°C and pH 5 for 15 days. Results of gas chromatography-mass spectrometry indicated IAA synthesis through the indole-3-pyruvic acid pathway when using cellulose as a sole carbon source. The mycelium as well as the culture filtrate promoted the growth and chlorophyll content of seedlings. In a monocotyledonous plant (rice), the number of lateral roots was increased experimentally, whereas in a dicotyledonous plant (tomato), the fungus led to an increased length of shoots and roots. CONCLUSIONS TRP-dependent IAA production was demonstrated for the first time for P. pulmonarius and may be responsible for enhancing plant growth in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY Synthesis of IAA as the most prevalent phytohormone in plants has been demonstrated for soil microfungi. Pleurotus pulmonarius is reported as an IAA-producing wood-decay macrofungus. The higher temperature optimum of P. pulmonarius isolated from subtropical environment compared to other Pleurotus species from temperate regions makes it more suitable for application in subtropical/tropical regions.
Collapse
Affiliation(s)
- M T Pham
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan City, Taiwan
| | - C-M Huang
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan City, Taiwan
| | - R Kirschner
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Crump BC, Wojahn JM, Tomas F, Mueller RS. Metatranscriptomics and Amplicon Sequencing Reveal Mutualisms in Seagrass Microbiomes. Front Microbiol 2018; 9:388. [PMID: 29599758 PMCID: PMC5863793 DOI: 10.3389/fmicb.2018.00388] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
Terrestrial plants benefit from many well-understood mutualistic relationships with root- and leaf-associated microbiomes, but relatively little is known about these relationships for seagrass and other aquatic plants. We used 16S rRNA gene amplicon sequencing and metatranscriptomics to assess potential mutualisms between microorganisms and the seagrasses Zostera marina and Zostera japonica collected from mixed beds in Netarts Bay, OR, United States. The phylogenetic composition of leaf-, root-, and water column-associated bacterial communities were strikingly different, but these communities were not significantly different between plant species. Many taxa present on leaves were related to organisms capable of consuming the common plant metabolic waste product methanol, and of producing agarases, which can limit the growth of epiphytic algae. Taxa present on roots were related to organisms capable of oxidizing toxic sulfur compounds and of fixing nitrogen. Metatranscriptomic sequencing identified expression of genes involved in all of these microbial metabolic processes at levels greater than typical water column bacterioplankton, and also identified expression of genes involved in denitrification and in bacterial synthesis of the plant growth hormone indole-3-acetate. These results provide the first evidence using metatranscriptomics that seagrass microbiomes carry out a broad range of functions that may benefit their hosts, and imply that microbe-plant mutualisms support the health and growth of aquatic plants.
Collapse
Affiliation(s)
- Byron C. Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - John M. Wojahn
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - Fiona Tomas
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA), Universitat de les Illes Balears (UIB) – Consejo Superior de Investigaciones Científicas (CSIC), Esporles, Spain
| | - Ryan S. Mueller
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
16
|
Sardar P, Kempken F. Characterization of indole-3-pyruvic acid pathway-mediated biosynthesis of auxin in Neurospora crassa. PLoS One 2018; 13:e0192293. [PMID: 29420579 PMCID: PMC5805262 DOI: 10.1371/journal.pone.0192293] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/22/2018] [Indexed: 12/03/2022] Open
Abstract
Plants, bacteria and some fungi are known to produce indole-3-acetic acid (IAA) by employing various pathways. Among these pathways, the indole-3-pyruvic acid (IPA) pathway is the best studied in green plants and plant-associated beneficial microbes. While IAA production circuitry in plants has been studied for decades, little is known regarding the IAA biosynthesis pathway in fungal species. Here, we present the first data for IAA-producing genes and the associated biosynthesis pathway in a non-pathogenic fungus, Neurospora crassa. For this purpose, we used a computational approach to determine the genes and outlined the IAA production circuitry in N. crassa. We then validated these data with experimental evidence. Here, we describe the homologous genes that are present in the IPA pathway of IAA production in N. crassa. High-performance liquid chromatography and thin-layer chromatography unambiguously identified IAA, indole-3-lactic acid (ILA) and tryptophol (TOL) from cultures supplemented with tryptophan. Deletion of the gene (cfp) that encodes the enzyme indole-3-pyruvate decarboxylase, which converts IPA to indole-3-acetaldehyde (IAAld), results in an accumulation of higher levels of ILA in the N. crassa culture medium. A double knock-out strain (Δcbs-3;Δahd-2) for the enzyme IAAld dehydrogenase, which converts IAAld to IAA, shows a many fold decrease in IAA production compared with the wild type strain. The Δcbs-3;Δahd-2 strain also displays slower conidiation and produces many fewer conidiospores than the wild type strain.
Collapse
Affiliation(s)
- Puspendu Sardar
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität, Kiel, Germany
| | - Frank Kempken
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität, Kiel, Germany
- * E-mail:
| |
Collapse
|
17
|
Wang ZD, Yan N, Wang ZH, Zhang XH, Zhang JZ, Xue HM, Wang LX, Zhan Q, Xu YP, Guo DP. RNA-seq analysis provides insight into reprogramming of culm development in Zizania latifolia induced by Ustilago esculenta. PLANT MOLECULAR BIOLOGY 2017; 95:533-547. [PMID: 29076026 DOI: 10.1007/s11103-017-0658-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/31/2017] [Indexed: 05/21/2023]
Abstract
We report a transcriptome assembly and expression profiles from RNA-Seq data and identify genes responsible for culm gall formation in Zizania latifolia induced by Ustilago esculenta. The smut fungus Ustilago esculenta can induce culm gall in Zizania latifolia, which is used as a vegetable in Asian countries. However, the underlying molecular mechanism of culm gall formation is still unclear. To characterize the processes underlying this host-fungus association, we performed transcriptomic and expression profiling analyses of culms from Z. latifolia infected by the fungus U. esculenta. Transcriptomic analysis detected U. esculenta induced differential expression of 19,033 and 17,669 genes in Jiaobai (JB) and Huijiao (HJ) type of gall, respectively. Additionally, to detect the potential gall inducing genes, expression profiles of infected culms collected at -7, 1 and 10 DAS of culm gall development were analyzed. Compared to control, we detected 8089 genes (4389 up-regulated, 3700 down-regulated) and 5251 genes (3121 up-regulated, 2130 down-regulated) were differentially expressed in JB and HJ, respectively. And we identified 376 host and 187 fungal candidate genes that showed stage-specific expression pattern, which are possibly responsible for gall formation at the initial and later phases, respectively. Our results indicated that cytokinins play more prominent roles in regulating gall formation than do auxins. Together, our work provides general implications for the understanding of gene regulatory networks for culm gall development in Z. latifolia, and potential targets for genetic manipulation to improve the future yield of this crop.
Collapse
Affiliation(s)
- Zhi-Dan Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ning Yan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zheng-Hong Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Huan Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing-Ze Zhang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Min Xue
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Li-Xia Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qi Zhan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Ping Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - De-Ping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Fattahian Y, Riahi-Madvar A, Mirzaee R, Asadikaram G, Rahbar MR. In silico locating the immune-reactive segments of Lepidium draba peroxidase and designing a less immune-reactive enzyme derivative. Comput Biol Chem 2017; 70:21-30. [DOI: 10.1016/j.compbiolchem.2017.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/14/2017] [Accepted: 07/12/2017] [Indexed: 12/24/2022]
|
19
|
Liao X, Lovett B, Fang W, St Leger RJ. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. MICROBIOLOGY-SGM 2017; 163:980-991. [PMID: 28708056 DOI: 10.1099/mic.0.000494] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The plant root colonizing insect-pathogenic fungus Metarhizium robertsii has been shown to boost plant growth, but little is known about the responsible mechanisms. Here we show that M. robertsii promotes lateral root growth and root hair development of Arabidopsis seedlings in part through an auxin [indole-3-acetic acid (IAA)]-dependent mechanism. M. robertsii, or its auxin-containing culture filtrate promoted root proliferation, activated IAA-regulated gene expression and rescued the root hair defect of the IAA-deficient rhd6 Arabidopsis mutant. Substrate feeding assays suggest that M. robertsii possesses tryptamine (TAM) and indole-3-acetamide tryptophan (Trp)-dependent auxin biosynthetic pathways. Deletion of Mrtdc impaired M. robertsii IAA production by blocking conversion of Trp to TAM but the reduction was not sufficient to affect plant growth enhancement. We also show that M. robertsii secretes IAA on insect cuticle. ∆Mrtdc produced fewer infection structures and was less virulent to insects than the wild-type, whereas M. robertsii spores harvested from culture media containing IAA were more virulent. Furthermore, exogenous application of IAA increased appressorial formation and virulence. Together, these results suggest that auxins play an important role in the ability of M. robertsii to promote plant growth, and the endogenous pathways for IAA production may also be involved in regulating entomopathogenicity. Auxins were also produced by other Metarhizium species and the endophytic insect pathogen Beauveria bassiana suggesting that interplay between plant- and fungal-derived auxins has important implications for plant-microbe-insect interactions.
Collapse
Affiliation(s)
- Xinggang Liao
- College of Chemistry and Life Sciences, Guizhou Education University, Guiyang, Guizhou 550018, PR China
| | - Brian Lovett
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Weiguo Fang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Raymond J St Leger
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
20
|
Fan B, Li YL, Mariappan A, Becker A, Wu XQ, Borriss R. New SigD-regulated genes identified in the rhizobacterium Bacillus amyloliquefaciens FZB42. Biol Open 2016; 5:1776-1783. [PMID: 27797724 PMCID: PMC5200910 DOI: 10.1242/bio.021501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alternative sigma factor D is known to be involved in at least three biological processes in Bacilli: flagellin synthesis, methyl-accepting chemotaxis and autolysin synthesis. Although many Bacillus genes have been identified as SigD regulon, the list may be not be complete. With microarray-based systemic screening, we found a set of genes downregulated in the sigD knockout mutant of the plant growth-promoting rhizobacterium B. amyloliquefaciens subsp. plantarum FZB42. Eight genes (appA, blsA, dhaS, spoVG, yqgA, RBAM_004640, RBAM_018080 and ytk) were further confirmed by quantitative PCR and/or northern blot to be controlled by SigD at the transcriptional level. These genes are hitherto not reported to be controlled by SigD. Among them, four genes are of unknown function and two genes (RBAM_004640 and RBAM_018080), absent in the model strain B. subtilis 168, are unique to B. amyloliquefaciens stains. The eight genes are involved in sporulation, biofilm formation, metabolite transport and several other functions. These findings extend our knowledge of the regulatory network governed by SigD in Bacillus and will further help to decipher the roles of the genes.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.,Institut für Biologie/Bakteriengenetik, Humboldt Universität zu Berlin, Chausseestrasse 117, Berlin D-10115, Germany
| | - Yu-Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Aruljothi Mariappan
- Institut für Biologie/Bakteriengenetik, Humboldt Universität zu Berlin, Chausseestrasse 117, Berlin D-10115, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology, Marburg an der Lahn, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Rainer Borriss
- Institut für Biologie/Bakteriengenetik, Humboldt Universität zu Berlin, Chausseestrasse 117, Berlin D-10115, Germany .,Fachgebiet Phytomedizin, Albrecht Daniel Thaer Institut für Agrar- und Gartenbauwissenschaften, Lebenswissenschaftliche Fakultät, Humboldt Universität zu Berlin, Berlin 14195, Germany
| |
Collapse
|
21
|
Liu YY, Chen HW, Chou JY. Variation in Indole-3-Acetic Acid Production by Wild Saccharomyces cerevisiae and S. paradoxus Strains from Diverse Ecological Sources and Its Effect on Growth. PLoS One 2016; 11:e0160524. [PMID: 27483373 PMCID: PMC4970732 DOI: 10.1371/journal.pone.0160524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/19/2016] [Indexed: 12/16/2022] Open
Abstract
Phytohormone indole-3-acetic acid (IAA) is the most common naturally occurring and most thoroughly studied plant growth regulator. Microbial synthesis of IAA has long been known. Microbial IAA biosynthesis has been proposed as possibly occurring through multiple pathways, as has been proven in plants. However, the biosynthetic pathways of IAA and the ecological roles of IAA in yeast have not been widely studied. In this study, we investigated the variation in IAA production and its effect on the growth of Saccharomyces cerevisiae and its closest relative Saccharomyces paradoxus yeasts from diverse ecological sources. We found that almost all Saccharomyces yeasts produced IAA when cultured in medium supplemented with the primary precursor of IAA, L-tryptophan (L-Trp). However, when cultured in medium without L-Trp, IAA production was only detected in three strains. Furthermore, exogenous added IAA exerted stimulatory and inhibitory effects on yeast growth. Interestingly, a negative correlation was observed between the amount of IAA production in the yeast cultures and the IAA inhibition ratio of their growth.
Collapse
Affiliation(s)
- Yen-Yu Liu
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Hung-Wei Chen
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
22
|
Krause K, Henke C, Asiimwe T, Ulbricht A, Klemmer S, Schachtschabel D, Boland W, Kothe E. Biosynthesis and Secretion of Indole-3-Acetic Acid and Its Morphological Effects on Tricholoma vaccinum-Spruce Ectomycorrhiza. Appl Environ Microbiol 2015; 81:7003-11. [PMID: 26231639 PMCID: PMC4579454 DOI: 10.1128/aem.01991-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/23/2015] [Indexed: 12/14/2022] Open
Abstract
Fungus-derived indole-3-acetic acid (IAA), which is involved in development of ectomycorrhiza, affects both partners, i.e., the tree and the fungus. The biosynthesis pathway, excretion from fungal hyphae, the induction of branching in fungal cultures, and enhanced Hartig net formation in mycorrhiza were shown. Gene expression studies, incorporation of labeled compounds into IAA, heterologous expression of a transporter, and bioinformatics were applied to study the effect of IAA on fungal morphogenesis and on ectomycorrhiza. Tricholoma vaccinum produces IAA from tryptophan via indole-3-pyruvate, with the last step of this biosynthetic pathway being catalyzed by an aldehyde dehydrogenase. The gene ald1 was found to be highly expressed in ectomycorrhiza and induced by indole-3-acetaldehyde. The export of IAA from fungal cells is supported by the multidrug and toxic extrusion (MATE) transporter Mte1 found in T. vaccinum. The addition of IAA and its precursors induced elongated cells and hyphal ramification of mycorrhizal fungi; in contrast, in saprobic fungi such as Schizophyllum commune, IAA did not induce morphogenetic changes. Mycorrhiza responded by increasing its Hartig net formation. The IAA of fungal origin acts as a diffusible signal, influencing root colonization and increasing Hartig net formation in ectomycorrhiza.
Collapse
Affiliation(s)
- Katrin Krause
- Friedrich Schiller University, Institute of Microbiology, Microbial Communication, Jena, Germany
| | - Catarina Henke
- Friedrich Schiller University, Institute of Microbiology, Microbial Communication, Jena, Germany
| | - Theodore Asiimwe
- Friedrich Schiller University, Institute of Microbiology, Microbial Communication, Jena, Germany
| | - Andrea Ulbricht
- Friedrich Schiller University, Institute of Microbiology, Microbial Communication, Jena, Germany
| | - Sandra Klemmer
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erika Kothe
- Friedrich Schiller University, Institute of Microbiology, Microbial Communication, Jena, Germany
| |
Collapse
|
23
|
Fu SF, Wei JY, Chen HW, Liu YY, Lu HY, Chou JY. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. PLANT SIGNALING & BEHAVIOR 2015; 10:e1048052. [PMID: 26179718 PMCID: PMC4623019 DOI: 10.1080/15592324.2015.1048052] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 05/20/2023]
Abstract
Plants as well as microorganisms, including bacteria and fungi, produce indole-3-acetic acid (IAA). IAA is the most common plant hormone of the auxin class and it regulates various aspects of plant growth and development. Thus, research is underway globally to exploit the potential for developing IAA-producing fungi for promoting plant growth and protection for sustainable agriculture. Phylogenetic evidence suggests that IAA biosynthesis evolved independently in bacteria, microalgae, fungi, and plants. Present studies show that IAA regulates the physiological response and gene expression in these microorganisms. The convergent evolution of IAA production leads to the hypothesis that natural selection might have favored IAA as a widespread physiological code in these microorganisms and their interactions. We summarize recent studies of IAA biosynthetic pathways and discuss the role of IAA in fungal ecology.
Collapse
Affiliation(s)
- Shih-Feng Fu
- Department of Biology; National Changhua University of Education; Taiwan, R.O.C
| | - Jyuan-Yu Wei
- Department of Biology; National Changhua University of Education; Taiwan, R.O.C
| | - Hung-Wei Chen
- Department of Biology; National Changhua University of Education; Taiwan, R.O.C
| | - Yen-Yu Liu
- Department of Biology; National Changhua University of Education; Taiwan, R.O.C
| | - Hsueh-Yu Lu
- Department of Biology; National Changhua University of Education; Taiwan, R.O.C
| | - Jui-Yu Chou
- Department of Biology; National Changhua University of Education; Taiwan, R.O.C
- Correspondence to: Jui-Yu Chou;
| |
Collapse
|
24
|
Ludwig-Müller J. Bacteria and fungi controlling plant growth by manipulating auxin: balance between development and defense. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:4-12. [PMID: 25456606 DOI: 10.1016/j.jplph.2014.01.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 05/03/2023]
Abstract
Plant diseases cause huge losses by changing the quality and quantity of harvested crops. Many disease symptoms caused by bacteria or fungi rely on the involvement of plant hormones, while other plant hormones act as defense signals in the plant. In this review the role of auxins in these processes will be evaluated. Some growth promoting plant hormones cause disease symptoms. For example auxins stimulate cell division and cell elongation in a healthy plant, but tumor formation after bacterial infection. Thus, control of auxin levels and auxin signaling pathways significantly contribute to the defense network in plants. Auxin can also act directly as defense molecule with antimicrobial activity. Since much research has been done in the recent years on auxin as a pathogenicity factor for many diseases, several examples will be presented to highlight the complexity between normal plant growth, which is regulated by auxin, and processes determining resistance or susceptibility, triggered by the same class of molecules.
Collapse
Affiliation(s)
- Jutta Ludwig-Müller
- Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany.
| |
Collapse
|
25
|
Sun PF, Fang WT, Shin LY, Wei JY, Fu SF, Chou JY. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PLoS One 2014; 9:e114196. [PMID: 25464336 PMCID: PMC4252105 DOI: 10.1371/journal.pone.0114196] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 11/03/2014] [Indexed: 11/18/2022] Open
Abstract
Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture.
Collapse
Affiliation(s)
- Pei-Feng Sun
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Wei-Ta Fang
- Graduate Institute of Environmental Education, National Taiwan Normal University, Taipei 116, Taiwan, R.O.C
| | - Li-Ying Shin
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Jyuan-Yu Wei
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Shih-Feng Fu
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
26
|
Kollath-Leiß K, Bönniger C, Sardar P, Kempken F. BEM46 shows eisosomal localization and association with tryptophan-derived auxin pathway in Neurospora crassa. EUKARYOTIC CELL 2014; 13:1051-63. [PMID: 24928924 PMCID: PMC4135797 DOI: 10.1128/ec.00061-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/06/2014] [Indexed: 11/20/2022]
Abstract
BEM46 proteins are evolutionarily conserved, but their functions remain elusive. We reported previously that the BEM46 protein in Neurospora crassa is targeted to the endoplasmic reticulum (ER) and is essential for ascospore germination. In the present study, we established a bem46 knockout strain of N. crassa. This Δbem46 mutant exhibited a level of ascospore germination lower than that of the wild type but much higher than those of the previously characterized bem46-overexpressing and RNA interference (RNAi) lines. Reinvestigation of the RNAi transformants revealed two types of alternatively spliced bem46 mRNA; expression of either type led to a loss of ascospore germination. Our results indicated that the phenotype was not due to bem46 mRNA downregulation or loss but was caused by the alternatively spliced mRNAs and the peptides they encoded. Using the N. crassa ortholog of the eisosomal protein PILA from Aspergillus nidulans, we further demonstrated the colocalization of BEM46 with eisosomes. Employing the yeast two-hybrid system, we identified a single interaction partner: anthranilate synthase component II (encoded by trp-1). This interaction was confirmed in vivo by a split-YFP (yellow fluorescent protein) approach. The Δtrp-1 mutant showed reduced ascospore germination and increased indole production, and we used bioinformatic tools to identify a putative auxin biosynthetic pathway. The genes involved exhibited various levels of transcriptional regulation in the different bem46 transformant and mutant strains. We also investigated the indole production of the strains in different developmental stages. Our findings suggested that the regulation of indole biosynthesis genes was influenced by bem46 overexpression. Furthermore, we uncovered evidence of colocalization of BEM46 with the neutral amino acid transporter MTR.
Collapse
Affiliation(s)
- K Kollath-Leiß
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - C Bönniger
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - P Sardar
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - F Kempken
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
27
|
Kulkarni GB, Sanjeevkumar S, Kirankumar B, Santoshkumar M, Karegoudar TB. Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of Wilt in Chickpea. Appl Biochem Biotechnol 2013; 169:1292-305. [PMID: 23306880 DOI: 10.1007/s12010-012-0037-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/17/2012] [Indexed: 11/24/2022]
Abstract
Fusarium delphinoides (Ascomycota; Nectriaceae) is an indole-3-acetic acid (IAA) producing plant pathogen and a causal agent of wilt in chickpea. The IAA biosynthetic pathway in F. delphinoides strain GPK (FDG) was examined by analyzing metabolic intermediates and by feeding experiments. Gas chromatograph (GC) analysis of FDG culture filtrates showed the presence of metabolic intermediates of indole-3-pyruvic acid (IPyA), indole-3-acetamide (IAM), and tryptamine (TRA) pathways. The different IAA biosynthetic pathways were further confirmed by identifying the presence of different enzymes of these pathways. Substrate specificity study of aromatic amino acid aminotransferase revealed that the enzyme is highly specific for tryptophan (Trp) and α-ketoglutarate (α-kg) as amino group donor and acceptor, respectively. Furthermore, the concentration-dependent effect of exogenous IAA on fungal growth was established. Low concentration of exogenous IAA increases the fungal growth and at high concentration it decreases the growth of FDG.
Collapse
|
28
|
Nwugo CC, Arivett BA, Zimbler DL, Gaddy JA, Richards AM, Actis LA. Effect of ethanol on differential protein production and expression of potential virulence functions in the opportunistic pathogen Acinetobacter baumannii. PLoS One 2012; 7:e51936. [PMID: 23284824 PMCID: PMC3527336 DOI: 10.1371/journal.pone.0051936] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/09/2012] [Indexed: 12/25/2022] Open
Abstract
Acinetobacter baumannii persists in the medical environment and causes severe human nosocomial infections. Previous studies showed that low-level ethanol exposure increases the virulence of A. baumannii ATCC 17978. To better understand the mechanisms involved in this response, 2-D gel electrophoresis combined with mass spectrometry was used to investigate differential protein production in bacteria cultured in the presence or absence of ethanol. This approach showed that the presence of ethanol significantly induces and represses the production of 22 and 12 proteins, respectively. Although over 25% of the ethanol-induced proteins were stress-response related, the overall bacterial viability was uncompromised when cultured under these conditions. Production of proteins involved in lipid and carbohydrate anabolism was increased in the presence of ethanol, a response that correlates with increased carbohydrate biofilm content, enhanced biofilm formation on abiotic surfaces and decrease bacterial motility on semi-solid surfaces. The presence of ethanol also induced the acidification of bacterial cultures and the production of indole-3-acetic acid (IAA), a ubiquitous plant hormone that signals bacterial stress-tolerance and promotes plant-bacteria interactions. These responses could be responsible for the significantly enhanced virulence of A. baumannii ATCC 17978 cells cultured in the presence of ethanol when tested with the Galleria mellonella experimental infection model. Taken together, these observations provide new insights into the effect of ethanol in bacterial virulence. This alcohol predisposes the human host to infections by A. baumannii and could favor the survival and adaptation of this pathogen to medical settings and adverse host environments.
Collapse
Affiliation(s)
- Chika C. Nwugo
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Brock A. Arivett
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Daniel L. Zimbler
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Jennifer A. Gaddy
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Ashley M. Richards
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
- * E-mail:
| |
Collapse
|
29
|
|
30
|
Hilbert M, Voll LM, Ding Y, Hofmann J, Sharma M, Zuccaro A. Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. THE NEW PHYTOLOGIST 2012; 196:520-534. [PMID: 22924530 DOI: 10.1111/j.1469-8137.2012.04275.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/07/2012] [Indexed: 05/04/2023]
Abstract
Beneficial effects elicited by the root endophyte Piriformospora indica are widely known, but the mechanism by which these are achieved is still unclear. It is proposed that phytohormones produced by the fungal symbiont play a crucial role in the interaction with the plant roots. Biochemical analyses of the underlying biosynthetic pathways for auxin production have shown that, on tryptophan feeding, P. indica can produce the phytohormones indole-3-acetic acid (IAA) and indole-3-lactate (ILA) through the intermediate indole-3-pyruvic acid (IPA). Time course transcriptional analyses after exposure to tryptophan designated the piTam1 gene as a key player. A green fluorescence protein (GFP) reporter study and transcriptional analysis of colonized barley roots showed that piTam1 is induced during the biotrophic phase. Piriformospora indica strains in which the piTam1 gene was silenced via an RNA interference (RNAi) approach were compromised in IAA and ILA production and displayed reduced colonization of barley (Hordeum vulgare) roots in the biotrophic phase, but the elicitation of growth promotion was not affected compared with the wild-type situation. Our results suggest that IAA is involved in the establishment of biotrophy in P. indica-barley symbiosis and might represent a compatibility factor in this system.
Collapse
Affiliation(s)
- Magdalena Hilbert
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Str. 10, 35043, Marburg, Germany
| | - Lars M Voll
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Yi Ding
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Str. 10, 35043, Marburg, Germany
| | - Jörg Hofmann
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Monica Sharma
- Department of Mycology and Plant Pathology, Dr. YSP UHF, Nauni, Solan, HP, India
| | - Alga Zuccaro
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Str. 10, 35043, Marburg, Germany
| |
Collapse
|
31
|
Asiimwe T, Krause K, Schlunk I, Kothe E. Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum. MYCORRHIZA 2012; 22:471-484. [PMID: 22159964 DOI: 10.1007/s00572-011-0424-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/25/2011] [Indexed: 05/28/2023]
Abstract
We report the first mycorrhizal fungal aldehyde dehydrogenase gene, ald1, which was isolated from the basidiomycete Tricholoma vaccinum. The gene, encoding a protein Ald1 of 502 amino acids, is up-regulated in ectomycorrhiza. Phylogenetic analyses using 53 specific fungal aldehyde dehydrogenases from all major phyla in the kingdom of fungi including Ald1 and two partial sequences of T. vaccinum were performed to get an insight in the evolution of the aldehyde dehydrogenase family. By using competitive and real-time RT-PCR, ald1 is up-regulated in response to alcohol and aldehyde-related stress. Furthermore, heterologous expression of ald1 in Escherichia coli and subsequent in vitro enzyme activity assay demonstrated the oxidation of propionaldehyde and butyraldehyde with different kinetics using either NAD(+) or NADP(+) as cofactors. In addition, overexpression of ald1 in T. vaccinum after Agrobacterium tumefaciens-mediated transformation increased ethanol stress tolerance. These results demonstrate the ability of Ald1 to circumvent ethanol stress, a critical function in mycorrhizal habitats.
Collapse
Affiliation(s)
- Theodore Asiimwe
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
| | | | | | | |
Collapse
|
32
|
Fu J, Wang S. Insights into auxin signaling in plant-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2011; 2:74. [PMID: 22639609 PMCID: PMC3355572 DOI: 10.3389/fpls.2011.00074] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/17/2011] [Indexed: 05/17/2023]
Abstract
The phytohormone auxin has been known to be a regulator of plant growth and development ever since its discovery. Recent studies on plant-pathogen interactions identify auxin as a key character in pathogenesis and plant defense. Like plants, diverse pathogens possess the capacity to synthesize indole-3-acetic acid (IAA), the major form of auxin in plants. The emerging knowledge on auxin-signaling components, auxin metabolic processes, and indole-derived phytoalexins in plant responses to pathogen invasion has provided putative mechanisms of IAA in plant susceptibility and resistance to non-gall- or tumor-inducing pathogens.
Collapse
Affiliation(s)
- Jing Fu
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Shiping Wang, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China. e-mail:
| |
Collapse
|
33
|
Aberrant synthesis of indole-3-acetic acid in Saccharomyces cerevisiae triggers morphogenic transition, a virulence trait of pathogenic fungi. Genetics 2010; 185:211-20. [PMID: 20233857 DOI: 10.1534/genetics.109.112854] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many plant-associated microbes synthesize the auxin indole-3-acetic acid (IAA), and several IAA biosynthetic pathways have been identified in microbes and plants. Saccharomyces cerevisiae has previously been shown to respond to IAA by inducing pseudohyphal growth. We observed that IAA also induced hyphal growth in the human pathogen Candida albicans and thus may function as a secondary metabolite signal that regulates virulence traits such as hyphal transition in pathogenic fungi. Aldehyde dehydrogenase (Ald) is required for IAA synthesis from a tryptophan (Trp) precursor in Ustilago maydis. Mutant S. cerevisiae with deletions in two ALD genes are unable to convert radiolabeled Trp to IAA, yet produce IAA in the absence of exogenous Trp and at levels higher than wild type. These data suggest that yeast may have multiple pathways for IAA synthesis, one of which is not dependent on Trp.
Collapse
|
34
|
L-Tryptophan catabolism by Rubrivivax benzoatilyticus JA2 occurs through indole 3-pyruvic acid pathway. Biodegradation 2010; 21:825-32. [PMID: 20217460 DOI: 10.1007/s10532-010-9347-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 02/28/2010] [Indexed: 10/19/2022]
Abstract
Rubrivivax benzoatilyticus JA2 utilizes L: -tryptophan as the sole source of nitrogen for growth, and it has a doubling time of approximately 11 h (compared to 8 h with ammonium chloride). With cell free extracts in the presence of 2-oxoglutarate, indole-3-pyruvic acid, indole-3-acetaldehyde, indole-3-acetic acid, isatin, benzaldehyde, gallic acid and pyrogallol were identified using high performance liquid chromatography (HPLC) and liquid chromatography-mass spectroscopy (LC-MS) analysis. The conversion of L: -tryptophan into indole 3-pyruvic acid and glutamate by an enzyme aminotransferase was confirmed and the catabolism of indole-3-pyruvic acid via side chain oxidation followed by ring oxidation, gallic acid and pyrogallol were confirmed as metabolites. In addition, the proposed pathway sequential conversion of indole-3-pyruvic acid to the end product of pyrogallol was identified, including an enzymatic step that would convert isatin to benzaldehyde by an enzyme yet to be identified. At this stage of the study, the enzyme tryptophan aminotransferase in R. benzoatilyticus JA2 was demonstrated.
Collapse
|
35
|
Novel strategies for controlling
Streptococcus pyogenes
infection and associated diseases: from potential peptide vaccines to antibody immunotherapy. Immunol Cell Biol 2009; 87:391-9. [DOI: 10.1038/icb.2009.29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Hu G, Cheng PY, Sham A, Perfect JR, Kronstad JW. Metabolic adaptation in Cryptococcus neoformans during early murine pulmonary infection. Mol Microbiol 2008; 69:1456-75. [PMID: 18673460 PMCID: PMC2730461 DOI: 10.1111/j.1365-2958.2008.06374.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SUMMARY The pathogenic fungus Cryptococcus neoformans generally initiates infection in mammalian lung tissue and subsequently disseminates to the brain. We performed serial analysis of gene expression (SAGE) on C. neoformans cells recovered from the lungs of mice and found elevated expression of genes for central carbon metabolism including functions for acetyl-CoA production and utilization. Deletion of the highly expressed ACS1 gene encoding acetyl-CoA synthetase revealed a requirement for growth on acetate and for full virulence. Transcripts for transporters (e.g. for monosaccharides, iron, copper and acetate) and for stress-response proteins were also elevated thus indicating a nutrient-limited and hostile host environment. The pattern of regulation was reminiscent of the control of alternative carbon source utilization and stress response by the Snf1 protein kinase in Saccharomyces cerevisiae. A snf1 mutant of C. neoformans showed defects in alternative carbon source utilization, the response to nitrosative stress, melanin production and virulence. However, loss of Snf1 did not influence the expression of a set of genes for carbon metabolism that were elevated upon lung infection. Taken together, the results reveal specific metabolic adaptations of C. neoformans during pulmonary infection and indicate a role for ACS1 and SNF1 in virulence.
Collapse
Affiliation(s)
| | | | | | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
37
|
Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. MOLECULAR PLANT PATHOLOGY 2008; 9:339-55. [PMID: 18705875 PMCID: PMC6640242 DOI: 10.1111/j.1364-3703.2008.00470.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Infection of maize (Zea mays) plants with the smut fungus Ustilago maydis is characterized by excessive host tumour formation. U. maydis is able to produce indole-3-acetic acid (IAA) efficiently from tryptophan. To assess a possible connection to the induction of host tumours, we investigated the pathways leading to fungal IAA biosynthesis. Besides the previously identified iad1 gene, we identified a second indole-3-acetaldehyde dehydrogenase gene, iad2. Deltaiad1Deltaiad2 mutants were blocked in the conversion of both indole-3-acetaldehyde and tryptamine to IAA, although the reduction in IAA formation from tryptophan was not significantly different from Deltaiad1 mutants. To assess an influence of indole-3-pyruvic acid on IAA formation, we deleted the aromatic amino acid aminotransferase genes tam1 and tam2 in Deltaiad1Deltaiad2 mutants. This revealed a further reduction in IAA levels by five- and tenfold in mutant strains harbouring theDeltatam1 andDeltatam1Deltatam2 deletions, respectively. This illustrates that indole-3-pyruvic acid serves as an efficient precursor for IAA formation in U. maydis. Interestingly, the rise in host IAA levels upon U. maydis infection was significantly reduced in tissue infected with Deltaiad1Deltaiad2Deltatam1 orDeltaiad1Deltaiad2Deltatam1Deltatam2 mutants, whereas induction of tumours was not compromised. Together, these results indicate that fungal IAA production critically contributes to IAA levels in infected tissue, but this is apparently not important for triggering host tumour formation.
Collapse
Affiliation(s)
- Gavin Reineke
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Zuther K, Mayser P, Hettwer U, Wu W, Spiteller P, Kindler BLJ, Karlovsky P, Basse CW, Schirawski J. The tryptophan aminotransferase Tam1 catalyses the single biosynthetic step for tryptophan-dependent pigment synthesis in Ustilago maydis. Mol Microbiol 2008; 68:152-72. [DOI: 10.1111/j.1365-2958.2008.06144.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
39
|
Tanaka E, Tanaka C. Phylogenetic study of clavicipitaceous fungi using acetaldehyde dehydrogenase gene sequences. MYCOSCIENCE 2008. [DOI: 10.1007/s10267-007-0401-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R. Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 2007; 25:1007-14. [PMID: 17704766 DOI: 10.1038/nbt1325] [Citation(s) in RCA: 524] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/09/2007] [Indexed: 11/09/2022]
Abstract
Bacillus amyloliquefaciens FZB42 is a Gram-positive, plant-associated bacterium, which stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. Its 3,918-kb genome, containing an estimated 3,693 protein-coding sequences, lacks extended phage insertions, which occur ubiquitously in the closely related Bacillus subtilis 168 genome. The B. amyloliquefaciens FZB42 genome reveals an unexpected potential to produce secondary metabolites, including the polyketides bacillaene and difficidin. More than 8.5% of the genome is devoted to synthesizing antibiotics and siderophores by pathways not involving ribosomes. Besides five gene clusters, known from B. subtilis to mediate nonribosomal synthesis of secondary metabolites, we identified four giant gene clusters absent in B. subtilis 168. The pks2 gene cluster encodes the components to synthesize the macrolactin core skeleton.
Collapse
Affiliation(s)
- Xiao Hua Chen
- Bakteriengenetik, Institut für Biologie, Humboldt Universität, Chausseestrasse 117, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Idris EE, Iglesias DJ, Talon M, Borriss R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:619-26. [PMID: 17555270 DOI: 10.1094/mpmi-20-6-0619] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Phytohormone-like acting compounds previously have been suggested to be involved in the phytostimulatory action exerted by the plant-beneficial rhizobacterium Bacillus amyloliquefaciens FZB42. Analyses by high-performance liquid chromatography and gas chromatography-mass spectrometry performed with culture filtrates of FZB42 demonstrated the presence of indole-3-acetic acid (IAA), corroborating it as one of the pivotal plant-growth-promoting substances produced by this bacterium. In the presence of 5 mM tryptophan, a fivefold increase in IAA secretion was registered. In addition, in the trp auxotrophic strains E101 (deltatrpBA) and E102 (deltatrpED), and in two other strains bearing knockout mutations in genes probably involved in IAA metabolism, E103 (deltaysnE, putative IAA transacetylase) and E105 (deltayhcX, putative nitrilase), the concentration of IAA in the culture filtrates was diminished. Three of these mutant strains were less efficient in promoting plant growth, indicating that the Trp-dependent synthesis of auxins and plant growth promotion are functionally related in B. amyloliquefaciens.
Collapse
Affiliation(s)
- ElSorra E Idris
- Humboldt Universität Berlin, Institut für Biologie, Berlin, Germany
| | | | | | | |
Collapse
|
42
|
Klosterman SJ, Perlin MH, Garcia-Pedrajas M, Covert SF, Gold SE. Genetics of morphogenesis and pathogenic development of Ustilago maydis. ADVANCES IN GENETICS 2007; 57:1-47. [PMID: 17352901 DOI: 10.1016/s0065-2660(06)57001-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ustilago maydis has emerged as an important model system for the study of fungi. Like many fungi, U. maydis undergoes remarkable morphological transitions throughout its life cycle. Fusion of compatible, budding, haploid cells leads to the production of a filamentous dikaryon that penetrates and colonizes the plant, culminating in the production of diploid teliospores within fungal-induced plant galls or tumors. These dramatic morphological transitions are controlled by components of various signaling pathways, including the pheromone-responsive MAP kinase and cAMP/PKA (cyclic AMP/protein kinase A) pathways, which coregulate the dimorphic switch and sexual development of U. maydis. These signaling pathways must somehow cooperate with the regulation of the cytoskeletal and cell cycle machinery. In this chapter, we provide an overview of these processes from pheromone perception and mating to gall production and sporulation in planta. Emphasis is placed on the genetic determinants of morphogenesis and pathogenic development of U. maydis and on the fungus-host interaction. Additionally, we review advances in the development of tools to study U. maydis, including the recently available genome sequence. We conclude with a brief assessment of current challenges and future directions for the genetic study of U. maydis.
Collapse
Affiliation(s)
- Steven J Klosterman
- Department of Plant Pathology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
43
|
Krause K, Kothe E. Use of RNA fingerprinting to identify fungal genes specifically expressed during ectomycorrhizal interaction. J Basic Microbiol 2006; 46:387-99. [PMID: 17009294 DOI: 10.1002/jobm.200610153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ecosystem soil is characterized by interactions between microorganisms and plants including mycorrhiza--mutualistic interactions between fungi and plant roots. Species of the basidiomycete genus Tricholoma form ectomycorrhiza with tree roots which is characterized by morphological and metabolic changes of both partners, yet molecular mechanisms of the interaction are poorly understood. We performed differential display with arbitrarily primed RT-PCR using ectomycorrhiza between the basidiomycete Tricholoma vaccinum and its compatible host spruce (Picea abies) to isolate mycorrhiza-specific fungal gene fragments. 76 differentially expressed PCR fragments were verified and checked for plant or fungal origin and expression pattern. Of 20 fungal fragments with mycorrhiza-specific expression, sequence analyses were performed to identify homologs with known function of the encoded protein. Among the genes identified were orthologs to an aldehyde dehydrogenase, an alcohol dehydrogenase and a protein of the MATE transporter family, all with possible function in plant pathogen response. A phospholipase B, a beta-glucosidase and a binding protein of basic amino acids might play a role in nutrient exchange and growth in planta. A protein similar to inactive E2 compounds of ubiquitin-conjugating enzymes like CROC-1 and MMS2, a Ras protein and an APS kinase were placed in signal transduction and two retrotransposons of the Ty3-gypsy and the Ty1-copia family are expressed most likely due to stress.
Collapse
Affiliation(s)
- Katrin Krause
- University of Jena, Dept. Microbiology, Microbial Phytopathology, Neugasse 25, D-07743 Jena, Germany.
| | | |
Collapse
|
44
|
García-Pedrajas MD, Gold SE. Kernel knowledge: smut of corn. ADVANCES IN APPLIED MICROBIOLOGY 2005; 56:263-90. [PMID: 15566982 DOI: 10.1016/s0065-2164(04)56008-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
. KRC, . DDT. Biosynthesis of Indole-3-Acetic Acid by the Gall-inducing Fungus Ustilago esculenta. ACTA ACUST UNITED AC 2004. [DOI: 10.3923/jbs.2004.744.750] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Prusty R, Grisafi P, Fink GR. The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2004; 101:4153-7. [PMID: 15010530 PMCID: PMC384710 DOI: 10.1073/pnas.0400659101] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fungi must recognize plant-specific signals to initiate subsequent morphogenetic events such as filamentation that lead to infection. Here we show that the plant hormone indoleacetic acid (IAA) induces adhesion and filamentation of Saccharomyces cerevisiae. Genome expression profiling of cells treated with IAA identified Yap1, a fungal specific transcription factor, as a key mediator of this response. Strains lacking YAP1 (yap1-1) are hypersensitive to growth on IAA because they accumulate more IAA than can wild type. Members of a family of transporters the amino acid/auxin:proton symport permeases with homology to AUX1, a putative IAA transporter from plants, are up-regulated in the yap1-1 mutant. Deletion of any one of these transporters makes yap1-1 mutants more resistant to IAA by decreasing its uptake. The permease mutants are defective in IAA perception and filamentation. The ability of a fungus to perceive a plant hormone that causes it to differentiate into an invasive form has important implications for plant-pathogen interactions.
Collapse
Affiliation(s)
- Reeta Prusty
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
47
|
Bakkeren G, Gold S. The path in fungal plant pathogenicity: many opportunities to outwit the intruders? GENETIC ENGINEERING 2004; 26:175-223. [PMID: 15387298 DOI: 10.1007/978-0-306-48573-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The number of genes implicated in the infection and disease processes of phytopathogenic fungi is increasing rapidly. Forward genetic approaches have identified mutated genes that affect pathogenicity, host range, virulence and general fitness. Likewise, candidate gene approaches have been used to identify genes of interest based on homology and recently through 'comparative genomic approaches' through analysis of large EST databases and whole genome sequences. It is becoming clear that many genes of the fungal genome will be involved in the pathogen-host interaction in its broadest sense, affecting pathogenicity and the disease process in planta. By utilizing the information obtained through these studies, plants may be bred or engineered for effective disease resistance. That is, by trying to disable pathogens by hitting them where it counts.
Collapse
Affiliation(s)
- Guus Bakkeren
- Agriculture & Agri-Food Canada,Pacific Agri-Food Research Centre, Summerland, BC, Canada V0H 1Z0
| | | |
Collapse
|
48
|
Chung KR, Shilts T, Ertürk U, Timmer LW, Ueng PP. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol Lett 2003; 226:23-30. [PMID: 13129603 DOI: 10.1016/s0378-1097(03)00605-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Postbloom fruit drop (PFD) of citrus and Key lime anthracnose (KLA) are caused by Colletotrichum acutatum. Both fungal isolates can infect flower petals, induce young fruit abscission and result in severe yield loss on many citrus cultivars. Previous studies revealed that infection of citrus flowers by C. acutatum caused higher levels of indole-3-acetic acid (IAA), which could be synthesized from the host plant and/or the fungal pathogen. The ability for IAA production by C. acutatum isolates was investigated. Similar to many microorganisms, the production of indole compounds in the medium by C. acutatum was dependent solely on the presence of tryptophan (Trp). In total, 14 PFD and KLA fungal isolates were tested, and revealed that they all were capable of utilizing Trp as a precursor to synthesize IAA and other indole derivatives. High-performance liquid chromatography analysis and chromogenic stains after a fluorescence thin-layer chromatography separation unambiguously identified IAA, tryptophol (TOL), indole-acetaldehyde, indole-acetamide (IAM), indole-pyruvic acid, and indole-lactic acid (ILA) from cultures supplemented with Trp. The data suggest that C. acutatum may synthesize IAA using various pathways. Interestingly, increasing Trp concentrations drastically increased the levels of TOL and ILA, but not IAA and IAM. The ability of C. acutatum to produce IAA and related indole compounds may in part contribute to the increased IAA levels in citrus flowers after infection.
Collapse
Affiliation(s)
- Kuang Ren Chung
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA.
| | | | | | | | | |
Collapse
|
49
|
Flipphi M, Kocialkowska J, Felenbok B. Relationships between the ethanol utilization (alc) pathway and unrelated catabolic pathways in Aspergillus nidulans. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3555-64. [PMID: 12919319 DOI: 10.1046/j.1432-1033.2003.03738.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ethanol utilization pathway in Aspergillus nidulans is a model system, which has been thoroughly elucidated at the biochemical, genetic and molecular levels. Three main elements are involved: (a) high level expression of the positively autoregulated activator AlcR; (b) the strong promoters of the structural genes for alcohol dehydrogenase (alcA) and aldehyde dehydrogenase (aldA); and (c) powerful activation of AlcR by the physiological inducer, acetaldehyde, produced from growth substrates such as ethanol and l-threonine. We have previously characterized the chemical features of direct inducers of the alc regulon. These studies allowed us to predict which type of carbonyl compounds might induce the system. In this study we have determined that catabolism of different amino acids, such as L-valine, L-isoleucine, L-arginine and L-proline, produces aldehydes that are either not accumulated or fail to induce the alc system. On the other hand, catabolism of D-galacturonic acid and putrescine, during which aldehydes are transiently accumulated, gives rise to induction of the alc genes. We show that the formation of a direct inducer from carboxylic esters does not depend on alcA-encoded alcohol dehydrogenase I or on AlcR, and suggest that a cytochrome P450 might be responsible for the initial formation of a physiological aldehyde inducer.
Collapse
Affiliation(s)
- Michel Flipphi
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud XI, Centre d'Orsay, Orsay, France.
| | | | | |
Collapse
|
50
|
Liu F, Schnable PS. Functional specialization of maize mitochondrial aldehyde dehydrogenases. PLANT PHYSIOLOGY 2002; 130:1657-74. [PMID: 12481049 PMCID: PMC166681 DOI: 10.1104/pp.012336] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Revised: 08/28/2002] [Accepted: 09/25/2002] [Indexed: 05/18/2023]
Abstract
The maize (Zea mays) rf2a and rf2b genes both encode homotetrameric aldehyde dehydrogenases (ALDHs). The RF2A protein was shown previously to accumulate in the mitochondria. In vitro import experiments and ALDH assays on mitochondrial extracts from rf2a mutant plants established that the RF2B protein also accumulates in the mitochondria. RNA gel-blot analyses and immunohistolocation experiments revealed that these two proteins have only partially redundant expression patterns in organs and cell types. For example, RF2A, but not RF2B, accumulates to high levels in the tapetal cells of anthers. Kinetic analyses established that RF2A and RF2B have quite different substrate specificities; although RF2A can oxidize a broad range of aldehydes, including aliphatic aldehydes and aromatic aldehydes, RF2B can oxidize only short-chain aliphatic aldehydes. These two enzymes also have different pH optima and responses to changes in substrate concentration. In addition, RF2A, but not RF2B or any other natural ALDHs, exhibits positive cooperativity. These functional specializations may explain why many species have two mitochondrial ALDHs. This study provides data that serve as a basis for identifying the physiological pathway by which the rf2a gene participates in normal anther development and the restoration of Texas cytoplasm-based male sterility. For example, the observations that Texas cytoplasm anthers do not accumulate elevated levels of reactive oxygen species or lipid peroxidation and the kinetic features of RF2A make it unlikely that rf2a restores fertility by preventing premature programmed cell death.
Collapse
Affiliation(s)
- Feng Liu
- Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|