1
|
Zhao N, Liu C, Ji C, Jiang X, Zhao J, Qiang L, Jin H. A multi-omics approach reveals differences in toxicity and mechanisms in rice (Oryza sativa L.) exposed to anatase or rutile TiO 2 nanoparticles. NANOIMPACT 2024; 36:100530. [PMID: 39369818 DOI: 10.1016/j.impact.2024.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in agriculture, which increased the risk to soil-plant systems. Studies have demonstrated that TiO2 NPs can induce phytotoxicity. However, the toxicity mechanisms, particularly under the stress of TiO2 NPs with different crystalline forms, remain inadequately reported. In this study, we combined transcriptomics and metabolomics to analyze the toxicity mechanisms in rice (Oryza sativa L.) under the stress of anatase (AT) or rutile (RT) TiO2 NPs (50 mg/kg, 40 days). The length (decreased by 1.1-fold, p = 0.021) and malondialdehyde concentration (decreased by 1.4-fold, p = 0.0027) of rice shoots was significantly reduced after AT exposure, while no significant changes were observed following RT exposure. Antioxidant enzyme activities were significantly altered both in the AT and RT groups, indicating TiO2 NPs induced rice oxidative damage (with changes of 1.1 to 1.4-fold, p < 0.05). Additionally, compared to the control, AT exposure altered 3247 differentially expressed genes (DEGs) and 56 significantly differentially metabolites in rice (collectively involved in pyrimidine metabolism, TCA cycle, fatty acid metabolism, and amino acid metabolism). After RT exposure, 2814 DEGs and 55 significantly differentially metabolites were identified, which were collectively involved in fatty acid metabolism and amino acid metabolism. Our results indicated that AT exposure led to more pronounced changes in biological responses related to oxidative stress and had more negative effects on rice growth compared to RT exposure. These findings provide new insights into the phytotoxic mechanisms of TiO2 NPs with different crystalline forms. Based on the observed adverse effects, the study emphasizes that any form of TiO2 NPs should be used with caution in rice ecosystems. This study is the first to demonstrate that AT is more toxic than RT in paddy ecosystems, providing crucial insights into the differential impacts and toxic mechanisms of TiO2 NPs with different crystalline forms. These findings suggest prioritizing the use of RT when TiO2 NPs are necessary in agricultural development to minimize toxicity risks.
Collapse
Affiliation(s)
- Nan Zhao
- Zhejiang Provincial Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chang Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chenyang Ji
- Zhejiang Provincial Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xuefeng Jiang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Jinyu Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Liwen Qiang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China.
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
2
|
Mao T, He P, Xu Z, Lai Y, Huang J, Yu Z, Li P, Gong X. Impacts of small-molecule STAT3 inhibitor SC-43 on toxicity, global proteomics and metabolomics of HepG2 cells. J Pharm Biomed Anal 2024; 242:116023. [PMID: 38395000 DOI: 10.1016/j.jpba.2024.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE In this study, we aimed to investigate the cytotoxicity and potential mechanisms of SC-43 by analyzing the global proteomics and metabolomics of HepG2 cells exposed to SC-43. METHODS The effect of SC-43 on cell viability was evaluated through CCK-8 assay. Proteomics and metabolomics studies were performed on HepG2 cells exposed to SC-43, and the functions of differentially expressed proteins and metabolites were categorized. Drug affinity responsive target stability (DARTS) was utilized to identify the potential binding proteins of SC-43 in HepG2 cells. Finally, based on the KEGG pathway database, the co-regulatory mechanism of SC-43 on HepG2 cells was elucidated by conducting a joint pathway analysis on the differentially expressed proteins and metabolites using the MetaboAnalyst 5.0 platform. RESULTS Liver cell viability is significantly impaired by continuous exposure to high concentrations of SC-43. Forty-eight dysregulated proteins (27 upregulated, 21 downregulated) were identified by proteomics analysis, and 184 dysregulated metabolites (65 upregulated, 119 downregulated) were determined by metabolomics in HepG2 cells exposed to SC-43 exposure compared with the control. A joint pathway analysis of proteomics and metabolomics data using the MetaboAnalyst 5.0 platform supported the close correlation between SC-43 toxicity toward HepG2 and the disturbances in pyrimidine metabolism, ferroptosis, mismatch repair, and ABC transporters. Specifically, SC-43 significantly affected the expression of several proteins and metabolites correlated with the above-mentioned functional pathways, such as uridine 5'-monophosphate, uridine, 3'-CMP, glutathione, γ-Glutamylcysteine, TF, MSH2, RPA1, RFC3, TAP1, and glycerol. The differential proteins suggested by the joint analysis were further selected for ELISA validation. The data showed that the RPA1 and TAP1 protein levels significantly increased in HepG2 cells exposed to SC-43 compared to the control group. The results of ELISA and joint analysis were basically in agreement. Notably, DARTS and biochemical analysis indicated that SART3 might be a potential target for SC-43 toxicity in HepG2 cells. CONCLUSION In summary, prolonged exposure of liver cells to high concentrations of SC-43 can result in significant damage. Based on a multi-omics analysis, we identified proteins and metabolites associated with SC-43-induced hepatocellular injury and clarified the underlying mechanism, providing new insights into the toxic mechanism of SC-43.
Collapse
Affiliation(s)
- Ting Mao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Peikun He
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Zhichao Xu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Yingying Lai
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Jinlian Huang
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China.
| | - Xianqiong Gong
- Hepatology Center, Xiamen Hospital, Beijing University of Chinese Medicine, Xiamen 361001, China.
| |
Collapse
|
3
|
Morán-Garrido M, Muñoz-Escudero P, García-Álvarez A, García-Lunar I, Barbas C, Sáiz J. Optimization of sample extraction and injection-related parameters in HILIC performance for polar metabolite analysis. Application to the study of a model of pulmonary hypertension. J Chromatogr A 2022; 1685:463626. [DOI: 10.1016/j.chroma.2022.463626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/18/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
4
|
Delgado-García E, Piedras P, Gómez-Baena G, García-Magdaleno IM, Pineda M, Gálvez-Valdivieso G. Nucleoside Metabolism Is Induced in Common Bean During Early Seedling Development. FRONTIERS IN PLANT SCIENCE 2021; 12:651015. [PMID: 33841480 PMCID: PMC8027947 DOI: 10.3389/fpls.2021.651015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Nucleoside hydrolases (NSH; nucleosidases) catalyze the cleavage of nucleosides into ribose and free nucleobases. These enzymes have been postulated as key elements controlling the ratio between nucleotide salvage and degradation. Moreover, they play a pivotal role in ureidic legumes by providing the substrate for the synthesis of ureides. Furthermore, nucleotide metabolism has a crucial role during germination and early seedling development, since the developing seedlings require high amount of nucleotide simultaneously to the mobilization of nutrient in cotyledons. In this study, we have cloned two nucleosidases genes from Phaseolus vulgaris, PvNSH1 and PvNSH2, expressed them as recombinant proteins, and characterized their catalytic activities. Both enzymes showed a broad range of substrate affinity; however, PvNSH1 exhibited the highest activity with uridine, followed by xanthosine, whereas PvNSH2 hydrolyses preferentially xanthosine and shows low activity with uridine. The study of the regulation of nucleosidases during germination and early postgerminative development indicated that nucleosidases are induced in cotyledons and embryonic axes just after the radicle emergence, coincident with the induction of nucleases activity and the synthesis of ureides in the embryonic axes, with no remarkable differences in the level of expression of both nucleosidase genes. In addition, nucleosides and nucleobase levels were determined as well in cotyledons and embryonic axes. Our results suggest that PvNSH1 and PvNSH2 play an important role in the mobilization of nutrients during this crucial stage of plant development.
Collapse
Affiliation(s)
- Elena Delgado-García
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional en Agroalimentación, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Pedro Piedras
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional en Agroalimentación, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Guadalupe Gómez-Baena
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional en Agroalimentación, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Isabel M. García-Magdaleno
- Servicio Central de Apoyo a la Investigación (SCAI), Unidad de Espectrometría de Masas y Cromatografía, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional en Agroalimentación, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Gregorio Gálvez-Valdivieso
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional en Agroalimentación, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
5
|
Diaz-Baena M, Galvez-Valdivieso G, Delgado-Garcia E, Pineda M, Piedras P. Nuclease and ribonuclease activities in response to salt stress: Identification of PvRNS3, a T2/S-like ribonuclease induced in common bean radicles by salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:235-241. [PMID: 31881432 DOI: 10.1016/j.plaphy.2019.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 05/28/2023]
Abstract
The increase in soil salinization due to global climate change could cause large losses in crop productivity affecting, among other biological processes, to germination and seedling development. We have studied how salt stress affects nucleic acid degrading activities in radicles of common bean during seedling development. In radicles of common bean, a main nuclease of 37 kDa and two ribonucleases of 17 and 19 kDa were detected. Saline stress did not alter these three activities but induced a new ribonuclease of 16 kDa. All three ribonucleases are acidic enzymes that were inhibited by Zn. The 16 and 17 kDa ribonucleases are inhibited by guanilates. In the genome of common bean, we have identified 13 genes belonging to the T2 ribonuclease family and that are grouped in the 3 classes of T2 ribonucleases. The analysis of the expression of the 3 genes belonging to Class I (PvRNS1 to 3) and the unique gene from Class II (PvRNS4) in radicles showed that PvRNS3 is highly induced under salt stress.
Collapse
Affiliation(s)
- Mercedes Diaz-Baena
- Departamento de Botánica, Ecología y Fisiología Vegetal, Plants Molecular Physiology and Biotechnology Group, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Gregorio Galvez-Valdivieso
- Departamento de Botánica, Ecología y Fisiología Vegetal, Plants Molecular Physiology and Biotechnology Group, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Elena Delgado-Garcia
- Departamento de Botánica, Ecología y Fisiología Vegetal, Plants Molecular Physiology and Biotechnology Group, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal, Plants Molecular Physiology and Biotechnology Group, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Pedro Piedras
- Departamento de Botánica, Ecología y Fisiología Vegetal, Plants Molecular Physiology and Biotechnology Group, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
6
|
Scheerer U, Trube N, Netzer F, Rennenberg H, Herschbach C. ATP as Phosphorus and Nitrogen Source for Nutrient Uptake by Fagus sylvatica and Populus x canescens Roots. FRONTIERS IN PLANT SCIENCE 2019; 10:378. [PMID: 31019519 PMCID: PMC6458296 DOI: 10.3389/fpls.2019.00378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/12/2019] [Indexed: 05/08/2023]
Abstract
The present study elucidated whether roots of temperate forest trees can take up organic phosphorus in the form of ATP. Detached non-mycorrhizal roots of beech (Fagus sylvatica) and gray poplar (Populus x canescens) were exposed under controlled conditions to 33P-ATP and/or 13C/15N labeled ATP in the presence and absence of the acid phosphatase inhibitor MoO4 2-. Accumulation of the respective label in the roots was used to calculate 33P, 13C and 15N uptake rates in ATP equivalents for comparison reason. The present data shown that a significant part of ATP was cleaved outside the roots before phosphate (Pi) was taken up. Furthermore, nucleotide uptake seems more reasonable after cleavage of at least one Pi unit as ADP, AMP and/or as the nucleoside adenosine. Similar results were obtained when still attached mycorrhizal roots of adult beech trees and their natural regeneration of two forest stands were exposed to ATP in the presence or absence of MoO4 2-. Cleavage of Pi from ATP by enzymes commonly present in the rhizosphere, such as extracellular acid phosphatases, ecto-apyrase and/or nucleotidases, prior ADP/AMP/adenosine uptake is highly probable but depended on the soil type and the pH of the soil solution. Although uptake of ATP/ADP/AMP cannot be excluded, uptake of the nucleoside adenosine without breakdown into its constituents ribose and adenine is highly evident. Based on the 33P, 13C, and 15N uptake rates calculated as equivalents of ATP the 'pro and contra' for the uptake of nucleotides and nucleosides is discussed. Short Summary Roots take up phosphorus from ATP as Pi after cleavage but might also take up ADP and/or AMP by yet unknown nucleotide transporter(s) because at least the nucleoside adenosine as N source is taken up without cleavage into its constituents ribose and adenine.
Collapse
Affiliation(s)
- Ursula Scheerer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Niclas Trube
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Florian Netzer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Cornelia Herschbach
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Melino VJ, Casartelli A, George J, Rupasinghe T, Roessner U, Okamoto M, Heuer S. RNA Catabolites Contribute to the Nitrogen Pool and Support Growth Recovery of Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1539. [PMID: 30455708 PMCID: PMC6230992 DOI: 10.3389/fpls.2018.01539] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/01/2018] [Indexed: 05/23/2023]
Abstract
Turn-over of RNA and catabolism of nucleotides releases one to four ammonia molecules; the released nutrients being reassimilated into primary metabolism. Preliminary evidence indicates that monocots store high levels of free nucleotides and nucleosides but their potential as a source of internal organic nitrogen for use and remobilization is uncharted. Early tillering wheat plants were therefore starved of N over a 5-day time-course with examination of nucleic acid yields in whole shoots, young and old leaves and roots. Nucleic acids constituted ∼4% of the total N pool of N starved wheat plants, which was comparable with the N available from nitrate (NO3 -) and greater than that available from the sum of 20 proteinogenic amino acids. Methods were optimized to detect nucleotide (purine and pyrimidine) metabolites, and wheat orthologs of RNA degradation (TaRNS), nucleoside transport (TaENT1, TaENT3) and salvage (TaADK) were identified. It was found that N starved wheat roots actively catabolised RNA and specific purines but accumulated pyrimidines. Reduced levels of RNA corresponded with induction of TaRNS2, TaENT1, TaENT3, and TaADK in the roots. Reduced levels of GMP, guanine, xanthine, allantoin, allantoate and glyoxylate in N starved roots correlated with accumulation of allantoate and glyoxylate in the oldest leaf, suggesting translocation of allantoin. Furthermore, N starved wheat plants exogenously supplied with N in the form of purine catabolites grew and photosynthesized as well as those plants re-supplied with NO3 -. These results support the hypothesis that the nitrogen and carbon recovered from purine metabolism can support wheat growth.
Collapse
Affiliation(s)
- Vanessa Jane Melino
- Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
- School of Agriculture and Food, University of Melbourne, Parkville, VIC, Australia
| | - Alberto Casartelli
- Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Jessey George
- Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ute Roessner
- Metabolomics Australia, School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Mamoru Okamoto
- Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Sigrid Heuer
- Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
8
|
Choi JS, Kim S, Motea E, Berdis A. Inhibiting translesion DNA synthesis as an approach to combat drug resistance to DNA damaging agents. Oncotarget 2018; 8:40804-40816. [PMID: 28489578 PMCID: PMC5522278 DOI: 10.18632/oncotarget.17254] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 01/03/2023] Open
Abstract
Anti-cancer agents exert therapeutic effects by damaging DNA. Unfortunately, DNA polymerases can effectively replicate the formed DNA lesions to cause drug resistance and create more aggressive cancers. To understand this process at the cellular level, we developed an artificial nucleoside that visualizes the replication of damaged DNA to identify cells that acquire drug resistance through this mechanism. Visualization is achieved using "click" chemistry to covalently attach azide-containing fluorophores to the ethynyl group present on the nucleoside analog after its incorporation opposite damaged DNA. Flow cytometry and microscopy techniques demonstrate that the extent of nucleotide incorporation into genomic DNA is enhanced by treatment with DNA damaging agents. In addition, this nucleoside analog inhibits translesion DNA synthesis and synergizes the therapeutic activity of certain anti-cancer agents such as temozolomide. The combined diagnostic and therapeutic activities of this synthetic nucleoside analog represent a new paradigm in personalized medicine.
Collapse
Affiliation(s)
- Jung-Suk Choi
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Seol Kim
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Edward Motea
- Departments of Radiation Oncology and Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anthony Berdis
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA.,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA.,Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Spisso A, Verni E, Nahan K, Martinez L, Landero J, Pacheco P. The metabolic effects of mercury during the biological cycle of vines (Vitis vinifera). Biometals 2018; 31:243-254. [PMID: 29508101 DOI: 10.1007/s10534-018-0084-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/10/2018] [Indexed: 10/17/2022]
Abstract
Mercury (Hg) is a major environmental pollutant that can be disposed to the environment by human activities, reaching crops like vineyards during irrigation with contaminated waters. A 2-year study was performed to monitor Hg variations during reproductive and vegetative stages of vines after Hg supplementation. Variations were focused on total Hg concentration, the molecular weight of Hg fractions and Hg-proteins associations in roots, stems and leaves. Total Hg concentrations increased during reproductive stages and decreased during vegetative stages. Variations in length of these stages were observed, according to an extension of the vegetative period. Six months post Hg administration, in roots, stems and leaves, initial Hg proteic fractions of 200 kDa were catabolized to 66 kDa fractions according to a transition from reproductive to vegetative stages. However, 24 months after Hg supplementation, the 66 kDa Hg proteic fraction was continuously determined in a prolonged senescence. Accordingly, the identified proteins associated to Hg show catabolic functions such as endopeptidases, hydrolases, glucosidases and nucleosidases. Stress associated proteins, like peroxidase and chitinase were also found associated to Hg. During the reproductive periods of vines, Hg was associated to membrane proteins, such as ATPases and lipid transfer proteins, especially in roots where Hg is absorbed.
Collapse
Affiliation(s)
- Adrián Spisso
- Instituto de Química de San Luis (INQUISAL-CONICET), Chacabuco y Pedernera, 5700, San Luis, Argentina
| | - Ernesto Verni
- Instituto de Química de San Luis (INQUISAL-CONICET), Chacabuco y Pedernera, 5700, San Luis, Argentina
| | - Keaton Nahan
- Department of Chemistry, University of Cincinnati/Agilent Technologies, Metallomics Center of the Americas, University of Cincinnati, Cincinnati, USA
| | - Luis Martinez
- Instituto de Química de San Luis (INQUISAL-CONICET), Chacabuco y Pedernera, 5700, San Luis, Argentina
| | - Julio Landero
- Department of Chemistry, University of Cincinnati/Agilent Technologies, Metallomics Center of the Americas, University of Cincinnati, Cincinnati, USA
| | - Pablo Pacheco
- Instituto de Química de San Luis (INQUISAL-CONICET), Chacabuco y Pedernera, 5700, San Luis, Argentina.
| |
Collapse
|
10
|
Cabello-Díaz JM, Gálvez-Valdivieso G, Caballo C, Lambert R, Quiles FA, Pineda M, Piedras P. Identification and characterization of a gene encoding for a nucleotidase from Phaseolus vulgaris. JOURNAL OF PLANT PHYSIOLOGY 2015; 185:44-51. [PMID: 26276404 DOI: 10.1016/j.jplph.2015.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
Nucleotidases are phosphatases that catalyze the removal of phosphate from nucleotides, compounds with an important role in plant metabolism. A phosphatase enzyme, with high affinity for nucleotides monophosphate previously identified and purified in embryonic axes from French bean, has been analyzed by MALDI TOF/TOF and two internal peptides have been obtained. The information of these peptide sequences has been used to search in the genome database and only a candidate gene that encodes for the phosphatase was identified (PvNTD1). The putative protein contains the conserved domains (motif I-IV) for haloacid dehalogenase-like hydrolases superfamily. The residues involved in the catalytic activity are also conserved. A recombinant protein overexpressed in Escherichia coli has shown molybdate resistant phosphatase activity with nucleosides monophosphate as substrate, confirming that the identified gene encodes for the phosphatase with high affinity for nucleotides purified in French bean embryonic axes. The activity of the purified protein was inhibited by adenosine. The expression of PvNTD1 gene was induced at the specific moment of radicle protrusion in embryonic axes. The gene was also highly expressed in young leaves whereas the level of expression in mature tissues was minimal.
Collapse
Affiliation(s)
- Juan Miguel Cabello-Díaz
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Gregorio Gálvez-Valdivieso
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Cristina Caballo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Rocío Lambert
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Francisco Antonio Quiles
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Pedro Piedras
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
11
|
Li F, Liang J, Wang W, Zhou X, Deng Z, Wang Z. Two nucleoside receptors from Streptomyces coelicolor: expression of the genes and characterization of the recombinant proteins. Protein Expr Purif 2015; 109:40-6. [PMID: 25680770 DOI: 10.1016/j.pep.2015.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/06/2015] [Accepted: 02/03/2015] [Indexed: 11/19/2022]
Abstract
Streptomyces coelicolor is a soil-dwelling bacterium that undergoes an intricate, saprophytic lifecycle. The bacterium takes up exogenous nucleosides for nucleic acid synthesis or use as carbon and energy sources. However, nucleosides must pass through the membrane with the help of transporters. In the present work, the SCO4884 and SCO4885 genes were cloned into pCOLADuet-1 and overexpressed in Escherichia coli BL21. Each protein was monomeric. Using isothermal titration calorimetry, we determined that SCO4884 and SCO4885 are likely nucleoside receptors with affinity for adenosine and pyrimidine nucleosides. On the basis of bioinformatics analysis and the transporter classification system, we speculate that SCO4884-SCO4888 is an ABC-like transporter responsible for the uptake of adenosine and pyrimidine nucleosides.
Collapse
Affiliation(s)
- Fuhou Li
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China; School of Marine Science and Technology, Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, Lianyungang, Jiangsu Province 222005, People's Republic of China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China
| | - Weixia Wang
- School of Marine Science and Technology, Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, Lianyungang, Jiangsu Province 222005, People's Republic of China
| | - Xiufen Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China.
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China.
| |
Collapse
|
12
|
Lambert R, Quiles FA, Cabello-Díaz JM, Piedras P. Purification and identification of a nuclease activity in embryo axes from French bean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:137-143. [PMID: 24908514 DOI: 10.1016/j.plantsci.2014.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/02/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Plant nucleases are involved in nucleic acid degradation associated to programmed cell death processes as well as in DNA restriction, repair and recombination processes. However, the knowledge about the function of plant nucleases is limited. A major nuclease activity was detected by in-gel assay with whole embryonic axes of common bean by using ssDNA or RNA as substrate, whereas this activity was minimal in cotyledons. The enzyme has been purified to electrophoretic homogeneity from embryonic axes. The main biochemical properties of the purified enzyme indicate that it belongs to the S1/P1 family of nucleases. This was corroborated when this protein, after SDS-electrophoresis, was excised from the gel and further analysis by MALDI TOF/TOF allowed identification of the gene (PVN1) that codes this protein. The gene that codes the purified protein was identified. The expression of PVN1 gene was induced at the specific moment of radicle protrusion. The inclusion of inorganic phosphate to the imbibition media reduced the level of expression of this gene and the nuclease activity suggesting a relationship with the phosphorous status in French bean seedlings.
Collapse
Affiliation(s)
- Rocío Lambert
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Francisco Antonio Quiles
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Juan Miguel Cabello-Díaz
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Pedro Piedras
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
13
|
Konrad A, Lai J, Mutahir Z, Piškur J, Liberles DA. The phylogenetic distribution and evolution of enzymes within the thymidine kinase 2-like gene family in metazoa. J Mol Evol 2014; 78:202-16. [PMID: 24500774 DOI: 10.1007/s00239-014-9611-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/21/2014] [Indexed: 12/22/2022]
Abstract
Deoxyribonucleoside kinases (dNKs) carry out the rate-determining step in the nucleoside salvage pathway within all domains of life where the pathway is present, and, hence, are an indication on whether or not a species/genus retains the ability to salvage deoxyribonucleosides. Here, a phylogenetic tree is constructed for the thymidine kinase 2-like dNK gene family in metazoa. Each enzyme class (deoxycytidine, deoxyguanosine, and deoxythymidine kinases, as well as the multisubstrate dNKs) falls into a monophyletic clade. However, in vertebrates, dCK contains an apparent duplication with one paralog lost in mammals, and a number of crustacean genomes (like Caligus rogercresseyi and Lepeophtheirus salmonis) unexpectedly contain not only the multisubstrate dNKs, related to Drosophila multisubstrate dNK, but also a TK2-like kinase. Additionally, crustaceans (Daphnia, Caligus, and Lepeophtheirus) and some insects (Tribolium, Danaus, Pediculus, and Acyrthosiphon) contain several multisubstrate dNK-like enzymes which group paraphyletically within the arthropod clade. This might suggest that the multisubstrate dNKs underwent multiple rounds of duplications with differential retention of duplicate copies between insect families and more complete retention within some crustaceans and insects. Genomes of several basal animalia contain more than one dNK-like sequence, some of which group outside the remaining eukaryotes (both plants and animals) and/or with bacterial dNKs. Within the vertebrates, the mammalian genomes do not contain the second dCK, while birds, fish, and amphibians do retain it. Phasianidae (chicken and turkey) have lost dGK, while it has been retained in other bird lineages, like zebra finch. Reconstruction of the ancestral sequence between the multisubstrate arthropod dNKs and the TK2 clade of vertebrates followed by homology modeling and discrete molecular dynamics calculations on this sequence were performed to examine the evolutionary path which led to the two different enzyme classes. The structural models showed that the carboxyl terminus of the ancestral sequence is more helical than dNK, in common with TK2, although any implications of this for enzyme specificity will require biochemical validation. Finally, rate-shift and conservation-shift analysis between clades with different specificities uncovered candidate residues outside the active site pocket which may have contributed to differentiation in substrate specificity between enzyme clades.
Collapse
Affiliation(s)
- Anke Konrad
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA,
| | | | | | | | | |
Collapse
|
14
|
Girke C, Daumann M, Niopek-Witz S, Möhlmann T. Nucleobase and nucleoside transport and integration into plant metabolism. FRONTIERS IN PLANT SCIENCE 2014; 5:443. [PMID: 25250038 PMCID: PMC4158802 DOI: 10.3389/fpls.2014.00443] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/18/2014] [Indexed: 05/18/2023]
Abstract
Nucleotide metabolism is an essential process in all living organisms. Besides newly synthesized nucleotides, the recycling (salvage) of partially degraded nucleotides, i.e., nucleosides and nucleobases serves to keep the homeostasis of the nucleotide pool. Both types of metabolites are substrates of at least six families of transport proteins in Arabidopsis thaliana (Arabidopsis) with a total of 49 members. In the last years several members of such transport proteins have been analyzed allowing to present a more detailed picture of nucleoside and nucleobase transport and the physiological function of these processes. Besides functioning in nucleotide metabolism it turned out that individual members of the before named transporters exhibit the capacity to transport a wide range of different substrates including vitamins and phytohormones. The aim of this review is to summarize the current knowledge on nucleobase and nucleoside transport processes in plants and integrate this into nucleotide metabolism in general. Thereby, we will focus on those proteins which have been characterized at the biochemical level.
Collapse
Affiliation(s)
| | | | | | - Torsten Möhlmann
- *Correspondence: Torsten Möhlmann, Pflanzenphysiologie, Universität Kaiserslautern, Erwin-Schrödinger-Str., Postfach 3049, D-67653 Kaiserslautern, Germany e-mail:
| |
Collapse
|
15
|
Bahaji A, Muñoz FJ, Ovecka M, Baroja-Fernández E, Montero M, Li J, Hidalgo M, Almagro G, Sesma MT, Ezquer I, Pozueta-Romero J. Specific delivery of AtBT1 to mitochondria complements the aberrant growth and sterility phenotype of homozygous Atbt1 Arabidopsis mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:1115-21. [PMID: 21883554 DOI: 10.1111/j.1365-313x.2011.04767.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
It has been shown that homozygous AtBT1::T-DNA Arabidopsis mutants display an aberrant growth and sterility phenotype, and that AtBT1 is a carrier that is exclusively localized to the inner plastidial envelope and is required for export of newly synthesized adenylates into the cytosol. However, a recent demonstration that AtBT1 is localized to both plastids and mitochondria suggested that plastidic AtBT1 is not necessary for normal growth and fertility of Arabidopsis. To test this hypothesis, we produced and characterized homozygous AtBT1::T-DNA mutants stably expressing either dually localized AtBT1 or AtBT1 specifically localized to the mitochondrial compartment. These analyses revealed that the aberrant growth and sterility phenotype of homozygous AtBT1::T-DNA mutants was complemented when expressing both the dual-targeted AtBT1 and AtBT1 specifically delivered to mitochondria. These data confirm that (i) plastidic AtBT1 is not strictly required for normal growth and fertility of the plant, and (ii) specific delivery of AtBT1 to mitochondria is enough to complement the aberrant growth and sterility phenotype of homozygous AtBT1::T-DNA mutants. Furthermore, data presented here question the idea that the requirement for AtBT1 is due to its involvement in transport of newly synthesized adenylates from the plastid to the cytosol, and suggest that the protein may play as yet unidentified functions in plastids and mitochondria.
Collapse
Affiliation(s)
- Abdellatif Bahaji
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, 31192 Mutiloabeti, Nafarroa, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Haferkamp I, Fernie AR, Neuhaus HE. Adenine nucleotide transport in plants: much more than a mitochondrial issue. TRENDS IN PLANT SCIENCE 2011; 16:507-15. [PMID: 21622019 DOI: 10.1016/j.tplants.2011.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/14/2011] [Accepted: 04/16/2011] [Indexed: 05/03/2023]
Abstract
Adenine nucleotides play a vital role in plant metabolism and physiology, essentially representing the major energy currency of the cell. Heterotrophic cells regenerate most of the ATP in mitochondria, whereas autotrophic cells also possess chloroplasts, representing a second powerhouse for ATP regeneration. Even though the synthesis of these nucleotides is restricted to a few locations, their use is nearly ubiquitous across the cell and thereby highly efficient systems are required to transport these molecules into and out of different compartments. Here, we discuss the location, biochemical characterization and evolution of corresponding transport systems in plants. We include recent scientific findings concerning organellar transporters from plants and algae and also focus on the physiological importance of adenine nucleotide exchange in these cells.
Collapse
Affiliation(s)
- Ilka Haferkamp
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67663 Kaiserslautern, Germany
| | | | | |
Collapse
|
17
|
Bernard C, Traub M, Kunz HH, Hach S, Trentmann O, Möhlmann T. Equilibrative nucleoside transporter 1 (ENT1) is critical for pollen germination and vegetative growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4627-37. [PMID: 21642237 PMCID: PMC3170557 DOI: 10.1093/jxb/err183] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/29/2011] [Accepted: 05/06/2011] [Indexed: 05/18/2023]
Abstract
ENT1 of Arabidopsis thaliana was the first member of the equilibrative nucleoside transporter (ENT) family to be identified in plants and characterized as a cellular, high-affinity nucleoside importer. Evidence is presented here for a tonoplast localization of ENT1 based on proteome data and Western blot analyses. Increased export of adenosine from reconstituted tonoplast preparations from 35S:ENT1 mutants compared with those from the wild type and ENT1-RNAi mutants support this view. Furthermore, increased vacuolar adenosine and vacuolar 2'3'-cAMP (an intermediate of RNA catabolism) contents in ENT1-RNAi mutants, but decreased contents of these metabolites in 35S:ENT1 over-expresser mutants, were observed. An up-regulation of the salvage pathway was detected in the latter mutants, leading to the conclusion that draining the vacuolar adenosine storage by ENT1 over-expression interferes with cellular nucleotide metabolism. As a consequence of the observed metabolic alterations 35S:ENT1 over-expresser mutants exhibited a smaller phenotypic appearance compared with wild-type plants. In addition, ENT1:RNAi mutants exhibited significantly lower in vitro germination of pollen and contained reduced internal and external ATP levels. This indicates that ENT1-mediated nucleosides, especially adenosine transport, is important for nucleotide metabolism, thus influencing growth and pollen germination.
Collapse
Affiliation(s)
- Carsten Bernard
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Postfach 3049, D-67663 Kaiserslautern, Germany
| | - Michaela Traub
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Postfach 3049, D-67663 Kaiserslautern, Germany
| | | | - Stefanie Hach
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Postfach 3049, D-67663 Kaiserslautern, Germany
| | - Oliver Trentmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Postfach 3049, D-67663 Kaiserslautern, Germany
| | - Torsten Möhlmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Postfach 3049, D-67663 Kaiserslautern, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Werner AK, Witte CP. The biochemistry of nitrogen mobilization: purine ring catabolism. TRENDS IN PLANT SCIENCE 2011; 16:381-7. [PMID: 21482173 DOI: 10.1016/j.tplants.2011.03.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 05/20/2023]
Abstract
The enzymatic route of purine ring catabolism has recently been completed by the discovery of several novel enzymes identified through comparative genome analyses. Here, we review these recent discoveries and present an overview of purine ring catabolism in plants. Xanthine is oxidized to urate in the cytosol, followed by three enzymatic steps taking place in the peroxisome and four reactions in the endoplasmic reticulum releasing the four ring nitrogen as ammonia. Although the main physiological function of purine degradation might lie in the remobilization of nitrogen resources, it has also emerged that catabolic intermediates, the ureides allantoin and allantoate, are likely to be involved in protecting plants against abiotic stress. Conserved alternative splicing mediating the peroxisomal as well as cytosolic localization of allantoin synthase potentially links purine ring catabolism to brassinosteroid signaling.
Collapse
Affiliation(s)
- Andrea K Werner
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Germany
| | | |
Collapse
|
19
|
Witte CP. Urea metabolism in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:431-8. [PMID: 21421389 DOI: 10.1016/j.plantsci.2010.11.010] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/17/2010] [Accepted: 11/22/2010] [Indexed: 05/02/2023]
Abstract
Urea is a plant metabolite derived either from root uptake or from catabolism of arginine by arginase. In agriculture, urea is intensively used as a nitrogen fertilizer. Urea nitrogen enters the plant either directly, or in the form of ammonium or nitrate after urea degradation by soil microbes. In recent years various molecular players of plant urea metabolism have been investigated: active and passive urea transporters, the nickel metalloenzyme urease catalyzing the hydrolysis of urea, and three urease accessory proteins involved in the complex activation of urease. The degradation of ureides derived from purine breakdown has long been discussed as a possible additional metabolic source for urea, but an enzymatic route for the complete hydrolysis of ureides without a urea intermediate has recently been described for Arabidopsis thaliana. This review focuses on the proteins involved in plant urea metabolism and the metabolic sources of urea but also addresses open questions regarding plant urea metabolism in a physiological and agricultural context. The contribution of plant urea uptake and metabolism to fertilizer urea usage in crop production is still not investigated although globally more than half of all nitrogen fertilizer is applied to crops in the form of urea. Nitrogen use efficiency in crop production is generally well below 50% resulting in economical losses and creating ecological problems like groundwater pollution and emission of nitric oxides that can damage the ozone layer and function as greenhouse gasses. Biotechnological approaches to improve fertilizer urea usage bear the potential to increase crop nitrogen use efficiency.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195 Berlin, Germany.
| |
Collapse
|
20
|
Sauer N, Hedrich R. Dynamics and regulation of plant membrane transport. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:1-2. [PMID: 20712615 DOI: 10.1111/j.1438-8677.2010.00390.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|