1
|
Zhang Y, Huang Y, Yu D, Xu M, Hu H, Zhang Q, Cai M, Geng X, Zhang H, Xia J, Guo M, Lu D, Xu H, Li L, Zhang X, Wang Q, Liu S, Zhang W. Demethylzeylasteral induces PD-L1 ubiquitin-proteasome degradation and promotes antitumor immunity via targeting USP22. Acta Pharm Sin B 2024; 14:4312-4328. [PMID: 39525573 PMCID: PMC11544192 DOI: 10.1016/j.apsb.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 07/25/2024] [Indexed: 11/16/2024] Open
Abstract
Programmed cell death ligand-1 (PD-L1) is a T cell inhibitory immune checkpoint molecule that interacts with programmed cell death-1 (PD-1) to promote immune escape of tumor cells. Compared with antibody therapies, small molecule drugs show better prospects due to their advantages such as higher bioavailability, better tissue penetration, and reduced risk of immunogenicity. Here, we found that the small molecule demethylzeylasteral (Dem) can significantly downregulate the expression of PD-L1 in colorectal cancer cells and enhance the killing effect of T cells on tumor cells. Mechanistically, Dem binds to the deubiquitinating enzyme USP22 and promotes its degradation, resulting in increased ubiquitination and degradation of PD-L1 through the proteasome pathway. In addition, Dem increased the activity of cytotoxic T cells and reduced the number of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in tumor-infiltrating lymphocytes (TILs), thereby activating the tumor immune microenvironment and inhibiting the growth of subcutaneous MC38 tumors in C57BL/6 mice. Moreover, we also found that the combination of Dem and CTLA4 antibodies can further improve the efficacy of antitumor therapy. Our study reveals the mechanism by which Dem promotes PD-L1 degradation and suggests that the combination of Dem and CTLA4 antibodies may improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yanyan Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yun Huang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dianping Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengting Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongmei Hu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minchen Cai
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiangxin Geng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongwei Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianhua Xia
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengmeng Guo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dong Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hanchi Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linyang Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xing Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qun Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
2
|
Kowald L, Roedig J, Karlowitz R, Wagner K, Smith S, Juretschke T, Beli P, Müller S, van Wijk SJL. USP22 regulates APL differentiation via PML-RARα stabilization and IFN repression. Cell Death Discov 2024; 10:128. [PMID: 38467608 PMCID: PMC10928094 DOI: 10.1038/s41420-024-01894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Ubiquitin-specific peptidase 22 (USP22) is a deubiquitinating enzyme (DUB) that underlies tumorigenicity, proliferation, cell death and differentiation through deubiquitination of histone and non-histone targets. Ubiquitination determines stability, localization and functions of cell fate proteins and controls cell-protective signaling pathways to surveil cell cycle progression. In a variety of carcinomas, lymphomas and leukemias, ubiquitination regulates the tumor-suppressive functions of the promyelocytic leukemia protein (PML), but PML-specific DUBs, DUB-controlled PML ubiquitin sites and the functional consequences of PML (de)ubiquitination remain unclear. Here, we identify USP22 as regulator of PML and the oncogenic acute promyelocytic leukemia (APL) fusion PML-RARα protein stability and identify a destabilizing role of PML residue K394. Additionally, loss of USP22 upregulates interferon (IFN) and IFN-stimulated gene (ISG) expression in APL and induces PML-RARα stabilization and a potentiation of the cell-autonomous sensitivity towards all-trans retinoic acid (ATRA)-mediated differentiation. Our findings imply USP22-dependent surveillance of PML-RARα stability and IFN signaling as important regulator of APL pathogenesis, with implications for viral mimicry, differentiation and cell fate regulation in other leukemia subtypes.
Collapse
Affiliation(s)
- Lisa Kowald
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Jens Roedig
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Rebekka Karlowitz
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Kristina Wagner
- Institute of Biochemistry II (IBCII), Medical Faculty, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sonja Smith
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Thomas Juretschke
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Stefan Müller
- Institute of Biochemistry II (IBCII), Medical Faculty, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- University Cancer Centre Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
3
|
Al-Balushi E, Al Marzouqi A, Tavoosi S, Baghsheikhi AH, Sadri A, Aliabadi LS, Salarabedi MM, Rahman SA, Al-Yateem N, Jarrahi AM, Halimi A, Ahmadvand M, Abdel-Rahman WM. Comprehensive analysis of the role of ubiquitin-specific peptidases in colorectal cancer: A systematic review. World J Gastrointest Oncol 2024; 16:197-213. [PMID: 38292842 PMCID: PMC10824112 DOI: 10.4251/wjgo.v16.i1.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/05/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most frequent and the second most fatal cancer. The search for more effective drugs to treat this disease is ongoing. A better understanding of the mechanisms of CRC development and progression may reveal new therapeutic strategies. Ubiquitin-specific peptidases (USPs), the largest group of the deubiquitinase protein family, have long been implicated in various cancers. There have been numerous studies on the role of USPs in CRC; however, a comprehensive view of this role is lacking. AIM To provide a systematic review of the studies investigating the roles and functions of USPs in CRC. METHODS We systematically queried the MEDLINE (via PubMed), Scopus, and Web of Science databases. RESULTS Our study highlights the pivotal role of various USPs in several processes implicated in CRC: Regulation of the cell cycle, apoptosis, cancer stemness, epithelial-mesenchymal transition, metastasis, DNA repair, and drug resistance. The findings of this study suggest that USPs have great potential as drug targets and noninvasive biomarkers in CRC. The dysregulation of USPs in CRC contributes to drug resistance through multiple mechanisms. CONCLUSION Targeting specific USPs involved in drug resistance pathways could provide a novel therapeutic strategy for overcoming resistance to current treatment regimens in CRC.
Collapse
Affiliation(s)
- Eman Al-Balushi
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amina Al Marzouqi
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shima Tavoosi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan 81746-73441, Iran
| | - Amir Hossein Baghsheikhi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 11365/4435, Iran
| | - Arash Sadri
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Leyla Sharifi Aliabadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Mohammad-Mahdi Salarabedi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Syed Azizur Rahman
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nabeel Al-Yateem
- Department of Nursing, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Alireza Mosavi Jarrahi
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Aram Halimi
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences , Tehran 1416634793, Iran
| | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
4
|
Wang Y, Jia Z, Gao J, Zhou T, Zhang X, Zu G. Clinicopathological and Prognostic Value of USP22 Expression in Gastric Cancer: A Systematic Review and Meta-Analysis and Database Validation. Front Surg 2022; 9:920595. [PMID: 35784926 PMCID: PMC9243499 DOI: 10.3389/fsurg.2022.920595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/26/2022] [Indexed: 01/02/2023] Open
Abstract
Background It has been reported that there is a correlation between the level of ubiquitin-specific protease 22 (USP22) and the clinicopathological parameters and prognosis of gastric cancer (GC) patients, but the conclusions are inconsistent. Hence, a meta-analysis must be conducted to clarify the relationship between USP22 expression and clinicopathological and prognostic value of GC patients to provide more accurate evidence. Methods According to the predetermined selection criteria, systematic file retrieval was performed. The hazard ratio (HR) or odds ratio (OR) and its 95% confidence interval (CI) were used to evaluate the relationship between USP22 expression and clinicopathological and prognostic value of GC patients. Results In a total of 802 patients, those with GC were finally included in 6 studies. The pooled results demonstrated that the expression of USP22 was significantly increased in GC tissues compared with control tissues (OR = 9.947, 95% CI, 6.074–16.291, P = 0.000), and USP22 expression was related to lymph node metastasis (OR = 2.415, 95% CI, 1.082, P = 0.031), distant metastasis (OR = 3.956, 95% CI, 1.365–11.464, P = 0.011) and TNM stage (OR = 2.973, 95% CI, 1.153–7.666, P = 0.024). Nevertheless, the expression of USP22 was not correlated with gender (OR = 1.202, 95% CI, 0.877–1.648, P = 0.253), age (OR = 1.090, 95% CI, 0.811–1.466, P = 0.568), tumor size (OR = 0.693,95% CI, 0.348–1.380, P = 0.297), tumor differentiation (OR = 1.830, 95%CI, 0.948–3.531, P = 0.072) and depth of invasion (OR = 2.320, 95% CI, 0.684–7.871, P = 0.177). Moreover, a high expression of USP22 predicted a poor overall survival (OS) in GC patients (HR = 2.012, 95% CI, 1.522–2.658, P = 0.000). The database of Kaplan–Meier plotter confirmed that a high expression of USP22 was correlated with poor prognostics in GC patients (HR = 1.41, 95% CI, 1.18–1.68, P < 0.01). Conclusion USP22 overexpression in GC tissues is positively related to lymph node metastasis, distant metastasis and TNM stage and indicates a poor clinical outcome of GC patients, but it is not associated with age, gender, depth of invasion, tumor differentiation and tumor size of GC patients. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier: 338361.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of General Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Zirui Jia
- Department of General Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Jiacheng Gao
- Department of General Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Tingting Zhou
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangwen Zhang
- Department of General Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- Correspondence: Guo Zu Xiangwen Zhang
| | - Guo Zu
- Department of General Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- Correspondence: Guo Zu Xiangwen Zhang
| |
Collapse
|
5
|
Acute Myeloid Leukemia-Related Proteins Modified by Ubiquitin and Ubiquitin-like Proteins. Int J Mol Sci 2022; 23:ijms23010514. [PMID: 35008940 PMCID: PMC8745615 DOI: 10.3390/ijms23010514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common form of an acute leukemia, is a malignant disorder of stem cell precursors of the myeloid lineage. Ubiquitination is one of the post-translational modifications (PTMs), and the ubiquitin-like proteins (Ubls; SUMO, NEDD8, and ISG15) play a critical role in various cellular processes, including autophagy, cell-cycle control, DNA repair, signal transduction, and transcription. Also, the importance of Ubls in AML is increasing, with the growing research defining the effect of Ubls in AML. Numerous studies have actively reported that AML-related mutated proteins are linked to Ub and Ubls. The current review discusses the roles of proteins associated with protein ubiquitination, modifications by Ubls in AML, and substrates that can be applied for therapeutic targets in AML.
Collapse
|
6
|
Qu J, Lin Z. Autophagy Regulation by Crosstalk between miRNAs and Ubiquitination System. Int J Mol Sci 2021; 22:ijms222111912. [PMID: 34769343 PMCID: PMC8585084 DOI: 10.3390/ijms222111912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes with ~22 nucleotides which are involved in the regulation of post-transcriptional gene expression. Ubiquitination and deubiquitination are common post-translational modifications in eukaryotic cells and important pathways in regulating protein degradation and signal transduction, in which E3 ubiquitin ligases and deubiquitinases (DUBs) play a decisive role. MiRNA and ubiquitination are involved in the regulation of most biological processes, including autophagy. Furthermore, in recent years, the direct interaction between miRNA and E3 ubiquitin ligases or deubiquitinases has attracted much attention, and the cross-talk between miRNA and ubiquitination system has been proved to play key regulatory roles in a variety of diseases. In this review, we summarized the advances in autophagy regulation by crosstalk between miRNA and E3 ubiquitin ligases or deubiquitinases.
Collapse
|
7
|
Zhou S, Cai Y, Liu X, Jin L, Wang X, Ma W, Zhang T. Role of H2B mono-ubiquitination in the initiation and progression of cancer. Bull Cancer 2021; 108:385-398. [PMID: 33685627 DOI: 10.1016/j.bulcan.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023]
Abstract
Numerous epigenetic alterations are observed in cancer cells, and dysregulation of mono-ubiquitination of histone H2B (H2Bub1) has often been linked to tumorigenesis. H2Bub1 is a dynamic post-translational histone modification associated with transcriptional elongation and DNA damage response. Histone H2B monoubiquitination occurs in the site of lysine 120, written predominantly by E3 ubiquitin ligases RNF20/RNF40 and deubiquitinated by ubiquitin specific peptidase 22 (USP22). RNF20/40 is often altered in the primary tumors including colorectal cancer, breast cancer, ovarian cancer, prostate cancer, and lung cancer, and the loss of H2Bub1 is usually associated with poor prognosis in tumor patients. The purpose of this review is to summarize the current knowledge of H2Bub1 in transcription, DNA damage response and primary tumors. This review also provides novel options for exploiting the potential therapeutic target H2Bub1 in personalized cancer therapy.
Collapse
Affiliation(s)
- Sa Zhou
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Yuqiao Cai
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Xinyi Liu
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Lijun Jin
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Xiaoqin Wang
- Beijing University of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing 102206, PR China
| | - Wenjian Ma
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China; Qilu Institute of Technology, Shandong 250200, PR China.
| | - Tongcun Zhang
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China; Wuhan University of Science and Technology, Institute of Biology and Medicine, Wuhan 430081, PR China.
| |
Collapse
|
8
|
Roedig J, Kowald L, Juretschke T, Karlowitz R, Ahangarian Abhari B, Roedig H, Fulda S, Beli P, van Wijk SJL. USP22 controls necroptosis by regulating receptor-interacting protein kinase 3 ubiquitination. EMBO Rep 2021; 22:e50163. [PMID: 33369872 PMCID: PMC7857539 DOI: 10.15252/embr.202050163] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022] Open
Abstract
Dynamic control of ubiquitination by deubiquitinating enzymes is essential for almost all biological processes. Ubiquitin-specific peptidase 22 (USP22) is part of the SAGA complex and catalyzes the removal of mono-ubiquitination from histones H2A and H2B, thereby regulating gene transcription. However, novel roles for USP22 have emerged recently, such as tumor development and cell death. Apart from apoptosis, the relevance of USP22 in other programmed cell death pathways still remains unclear. Here, we describe a novel role for USP22 in controlling necroptotic cell death in human tumor cell lines. Loss of USP22 expression significantly delays TNFα/Smac mimetic/zVAD.fmk (TBZ)-induced necroptosis, without affecting TNFα-mediated NF-κB activation or extrinsic apoptosis. Ubiquitin remnant profiling identified receptor-interacting protein kinase 3 (RIPK3) lysines 42, 351, and 518 as novel, USP22-regulated ubiquitination sites during necroptosis. Importantly, mutation of RIPK3 K518 reduced necroptosis-associated RIPK3 ubiquitination and amplified necrosome formation and necroptotic cell death. In conclusion, we identify a novel role of USP22 in necroptosis and further elucidate the relevance of RIPK3 ubiquitination as crucial regulator of necroptotic cell death.
Collapse
Affiliation(s)
- Jens Roedig
- Institute for Experimental Cancer Research in PediatricsGoethe‐UniversityFrankfurt am MainGermany
| | - Lisa Kowald
- Institute for Experimental Cancer Research in PediatricsGoethe‐UniversityFrankfurt am MainGermany
| | | | - Rebekka Karlowitz
- Institute for Experimental Cancer Research in PediatricsGoethe‐UniversityFrankfurt am MainGermany
| | - Behnaz Ahangarian Abhari
- Lighthouse Core FacilityZentrum für Translationale ZellforschungUniversitaetsklinikum FreiburgKlinik für Innere Medizin IFreiburgGermany
| | - Heiko Roedig
- Pharmazentrum FrankfurtInstitut für Allgemeine Pharmakologie und ToxikologieGoethe‐UniversityFrankfurt am MainGermany
| | - Simone Fulda
- Institute for Experimental Cancer Research in PediatricsGoethe‐UniversityFrankfurt am MainGermany
| | - Petra Beli
- Institute of Molecular Biology (IMB)MainzGermany
| | - Sjoerd JL van Wijk
- Institute for Experimental Cancer Research in PediatricsGoethe‐UniversityFrankfurt am MainGermany
| |
Collapse
|
9
|
Huang X, Zhang X, Xu J, Wang X, Zhang G, Tang T, Shen X, Liang T, Bai X. Deubiquitinating Enzyme: A Potential Secondary Checkpoint of Cancer Immunity. Front Oncol 2020; 10:1289. [PMID: 32850399 PMCID: PMC7426525 DOI: 10.3389/fonc.2020.01289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The efficacy of cancer immunotherapy depends on the fine interplay between tumoral immune checkpoints and host immune system. However, the up-to-date clinical performance of checkpoint blockers in cancer therapy revealed that higher-level regulation should be further investigated for better therapeutic outcomes. It is becoming increasingly evident that the expression of immune checkpoints is largely associated to the immunotherapeutic response and consequent prognosis. Deubiquitinating enzymes (DUBs) with their role of cleaving ubiquitin from proteins and other molecules, thus reversing ubiquitination-mediated protein degradation, modulate multiple cellular processes, including, but not limited to, transcriptional regulation, cell cycle progression, tissue development, and antiviral response. Accumulating evidence indicates that DUBs also have the critical influence on anticancer immunity, simply by stabilizing pivotal checkpoints or key regulators of T-cell functions. Therefore, this review summarizes the current knowledge about DUBs, highlights the secondary checkpoint-like role of DUBs in cancer immunity, in particular their direct effects on the stability control of pivotal checkpoints and key regulators of T-cell functions, and suggests the therapeutic potential of DUBs-based strategy in targeted immunotherapy for cancer.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xiaozhen Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Jian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xun Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xiaochao Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
10
|
Qiu GZ, Liu Q, Wang XG, Xu GZ, Zhao T, Lou MQ. Hypoxia-induced USP22-BMI1 axis promotes the stemness and malignancy of glioma stem cells via regulation of HIF-1α. Life Sci 2020; 247:117438. [PMID: 32070708 DOI: 10.1016/j.lfs.2020.117438] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 11/19/2022]
Abstract
AIMS This study intends to investigate the mechanisms of ubiqutin-specific protease 22 (USP22)/B cell-specific Moloney murine leukemia virus integration site 1 (BMI1) on the biological phenotypes of glioma stem cells (GSCs) under hypoxia. MAIN METHODS Western blot, Cell Counting Kit-8, colony formation and flow cytometry assays were preformed to evaluate cells biological behaviors. Luciferase assay was utilized to identify the associations among USP22, HIF-1α and BMI1. KEY FINDINGS Silencing USP22 reduced the stemness and proliferation of GSCs, and increased its apoptosis in response to hypoxia. Whilst, overexpression of BMI1 reversed these phenomena. Whilst, a significant decrease in proliferation and stemness of GSCs caused by HIF-1α exhaustion were inversed by overexpression of USP22 or BMI1. SIGNIFICANCE Function of USP22-BMI1 on biological behaviors of GSCs was regulated by HIF-1α in response to hypoxia.
Collapse
Affiliation(s)
- Guan-Zhong Qiu
- The Neurosurgery Department of the Shanghai General Hospital, Shanghai Jiaotong University, No. 85 Wujin Road, Hongkou District, Shanghai, PR China; The Neurosurgery Department of the 960th Hospital of Joint Logistics Support Force, The Chinese People's Liberation Army, No. 25 Shifan Road, Beicun Street, Worker's New Village, Tianqiao District, Jinan, Shandong Province, PR China.
| | - Qiang Liu
- The Neurosurgery Department of the 960th Hospital of Joint Logistics Support Force, The Chinese People's Liberation Army, No. 25 Shifan Road, Beicun Street, Worker's New Village, Tianqiao District, Jinan, Shandong Province, PR China
| | - Xiao-Gang Wang
- The Neurosurgery Department of the 960th Hospital of Joint Logistics Support Force, The Chinese People's Liberation Army, No. 25 Shifan Road, Beicun Street, Worker's New Village, Tianqiao District, Jinan, Shandong Province, PR China
| | - Guang-Zhen Xu
- The Neurosurgery Department of the 960th Hospital of Joint Logistics Support Force, The Chinese People's Liberation Army, No. 25 Shifan Road, Beicun Street, Worker's New Village, Tianqiao District, Jinan, Shandong Province, PR China
| | - Tong Zhao
- Department of Neurosurgery, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Jing'an District, Shanghai, PR China
| | - Mei-Qing Lou
- The Neurosurgery Department of the Shanghai General Hospital, Shanghai Jiaotong University, No. 85 Wujin Road, Hongkou District, Shanghai, PR China.
| |
Collapse
|
11
|
Lim C, Xu JC, Chen TY, Xu JX, Chen WF, Hu JW, Li QL, Zhang YQ. Ubiquitin-specific peptide 22 acts as an oncogene in gastric cancer in a son of sevenless 1-dependent manner. Cancer Cell Int 2020; 20:45. [PMID: 32063746 PMCID: PMC7011508 DOI: 10.1186/s12935-020-1137-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
Background Aberrant expression of ubiquitin-specific peptide 22 (USP22) has been detected in various cancers. This study aimed to investigate the role of USP22 and the underlying mechanism in human gastric cancer. Methods The expression pattern of USP22 in human gastric cancer was detected in a tissue microarray containing 88 pairs of gastric cancer tissue and adjacent normal tissue samples from patients with primary gastric cancer using immunohistochemical staining. The correlation of USP22 expression with clinical characteristics of patients, as well as their prognostic values in the overall survival of patients, were evaluated. USP22-overexpressing SGC7901 and USP22-silencing AGS cells were used to explore the role of USP22 in gastric cancer cell behavior in vitro and in vivo. Chromatin immunoprecipitation was performed to identify differentially expressed genes induced by USP22 overexpression. Western blot analysis was conducted to detect the activation of RAS/ERK and PI3K/AKT signaling in USP22-overexpressing SGC7901 cells and xenograft tumor tissues. Knockdown of RAS activator son of sevenless 1 (SOS1) was performed to investigate the role of SOS1 in USP22-regulated gastric cancer cell behavior and RAS signaling both in vitro and in vivo. Results USP22 protein expression was significantly increased in human gastric cancer tissues, compared with adjacent normal tissues, and was positively correlated with local tumor stage. Gain- and loss-of-function assays showed that USP22 promoted gastric cancer cell growth and cell cycle transition while suppressing apoptosis in vitro. Consistent results were observed in a xenograft mouse model. Chromatin immunoprecipitation revealed that the overexpression of USP22 induced the upregulation of RAS activator son of sevenless 1 (SOS1) in SGC7901 cells. Western blot analysis showed that USP22 overexpression also induced activation of the RAS/ERK and PI3K/AKT pathways in SGC7901 cells and xenograft tumor tissues. Furthermore, SOS1 silencing could reverse the effects of USP22 on gastric cancer cell behavior and RAS signaling both in vitro and in vivo. Conclusions Our results suggest that USP22 acts as an oncogene in gastric cancer in a SOS1-dependent manner, identifying the USP22/SOS1/RAS axis as a potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- ChitChoon Lim
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| | - Jia-Cheng Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| | - Tian-Yin Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| | - Jia-Xin Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| | - Wei-Feng Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| | - Jian-Wei Hu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| | - Quan-Lin Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| | - Yi-Qun Zhang
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai, 200032 China
| |
Collapse
|
12
|
McCann JJ, Vasilevskaya IA, Poudel Neupane N, Shafi AA, McNair C, Dylgjeri E, Mandigo AC, Schiewer MJ, Schrecengost RS, Gallagher P, Stanek TJ, McMahon SB, Berman-Booty LD, Ostrander WF, Knudsen KE. USP22 Functions as an Oncogenic Driver in Prostate Cancer by Regulating Cell Proliferation and DNA Repair. Cancer Res 2020; 80:430-443. [PMID: 31740444 PMCID: PMC7814394 DOI: 10.1158/0008-5472.can-19-1033] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/02/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Emerging evidence indicates the deubiquitinase USP22 regulates transcriptional activation and modification of target substrates to promote pro-oncogenic phenotypes. Here, in vivo characterization of tumor-associated USP22 upregulation and unbiased interrogation of USP22-regulated functions in vitro demonstrated critical roles for USP22 in prostate cancer. Specifically, clinical datasets validated that USP22 expression is elevated in prostate cancer, and a novel murine model demonstrated a hyperproliferative phenotype with prostate-specific USP22 overexpression. Accordingly, upon overexpression or depletion of USP22, enrichment of cell-cycle and DNA repair pathways was observed in the USP22-sensitive transcriptome and ubiquitylome using prostate cancer models of clinical relevance. Depletion of USP22 sensitized cells to genotoxic insult, and the role of USP22 in response to genotoxic insult was further confirmed using mouse adult fibroblasts from the novel murine model of USP22 expression. As it was hypothesized that USP22 deubiquitylates target substrates to promote protumorigenic phenotypes, analysis of the USP22-sensitive ubiquitylome identified the nucleotide excision repair protein, XPC, as a critical mediator of the USP22-mediated response to genotoxic insult. Thus, XPC undergoes deubiquitylation as a result of USP22 function and promotes USP22-mediated survival to DNA damage. Combined, these findings reveal unexpected functions of USP22 as a driver of protumorigenic phenotypes and have significant implications for the role of USP22 in therapeutic outcomes. SIGNIFICANCE: The studies herein present a novel mouse model of tumor-associated USP22 overexpression and implicate USP22 in modulation of cellular survival and DNA repair, in part through regulation of XPC.
Collapse
Affiliation(s)
- Jennifer J McCann
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Irina A Vasilevskaya
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | | | - Ayesha A Shafi
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Christopher McNair
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Emanuela Dylgjeri
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Amy C Mandigo
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Matthew J Schiewer
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Randy S Schrecengost
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Peter Gallagher
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Timothy J Stanek
- Department of Biochemistry & Molecular Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Steven B McMahon
- Department of Biochemistry & Molecular Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Lisa D Berman-Booty
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - William F Ostrander
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Karen E Knudsen
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania.
| |
Collapse
|
13
|
The POU2F1/miR-4490/USP22 axis regulates cell proliferation and metastasis in gastric cancer. Cell Oncol (Dordr) 2020; 43:1017-1033. [PMID: 32857323 PMCID: PMC7716863 DOI: 10.1007/s13402-020-00553-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Growing evidence indicates that aberrant expression of microRNAs contributes to tumor development. However, the biological role of microRNA-4490 (miR-4490) in gastric cancer (GC) remains to be clarified. METHODS To explore the function of miR-4490 in GC, we performed colony formation, EdU incorporation, qRT-PCR, Western blotting, in situ hybridization (ISH), immunohistochemistry (IHC), flow cytometry, ChIP and dual-luciferase reporter assays. In addition, the growth, migration and invasion capacities of GC cells were evaluated. RESULTS We found that miR-4490 was significantly downregulated in primary GC samples and in GC-derived cell lines compared with normal controls, and that this expression level was negatively correlated with GC malignancy. Exogenous miR-4490 expression not only reduced cell cycle progression and proliferation, but also significantly inhibited GC cell migration, invasion and epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, we found that miR-4490 directly targets USP22, which mediates inhibition of GC cell proliferation and EMT-induced metastasis in vitro and in vivo. Moreover, we found through luciferase and ChIP assays that transcription factor POU2F1 can directly bind to POU2F1 binding sites within the miR-4490 and USP22 promoters and, by doing so, modulate their transcription. Spearman's correlation analysis revealed a positive correlation between USP22 and POU2F1 expression and negative correlations between miR-4490 and USP22 as well as miR-4490 and POU2F1 expression in primary GC tissues. CONCLUSION Based on our results we conclude that miR-4490 acts as a tumor suppressor, and that the POU2F1/miR-4490/USP22 axis plays an important role in the regulation of growth, invasion and EMT of GC cells.
Collapse
|
14
|
Li J, Yuan S, Norgard RJ, Yan F, Yamazoe T, Blanco A, Stanger BZ. Tumor Cell-Intrinsic USP22 Suppresses Antitumor Immunity in Pancreatic Cancer. Cancer Immunol Res 2019; 8:282-291. [PMID: 31871120 DOI: 10.1158/2326-6066.cir-19-0661] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/06/2019] [Accepted: 12/19/2019] [Indexed: 01/04/2023]
Abstract
Although immune checkpoint blockade (ICB) improves clinical outcome in several types of malignancies, pancreatic ductal adenocarcinoma (PDA) remains refractory to this therapy. Preclinical studies have demonstrated that the relative abundance of suppressive myeloid cells versus cytotoxic T cells determines the efficacy of combination immunotherapies, which include ICB. Here, we evaluated the role of the ubiquitin-specific protease 22 (USP22) as a regulator of the immune tumor microenvironment (TME) in PDA. We report that deletion of USP22 in pancreatic tumor cells reduced the infiltration of myeloid cells and promoted the infiltration of T cells and natural killer (NK) cells, leading to an improved response to combination immunotherapy. We also showed that ablation of tumor cell-intrinsic USP22 suppressed metastasis of pancreatic tumor cells in a T-cell-dependent manner. Finally, we provide evidence that USP22 exerted its effects on the immune TME by reshaping the cancer cell transcriptome through its association with the deubiquitylase module of the SAGA/STAGA transcriptional coactivator complex. These results indicated that USP22 regulates immune infiltration and immunotherapy sensitivity in preclinical models of pancreatic cancer.
Collapse
Affiliation(s)
- Jinyang Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Salina Yuan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert J Norgard
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fangxue Yan
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Taiji Yamazoe
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrés Blanco
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
He J, Cheng J, Guan Q, Yan H, Li Y, Zhao W, Guo Z, Wang X. Qualitative transcriptional signature for predicting pathological response of colorectal cancer to FOLFOX therapy. Cancer Sci 2019; 111:253-265. [PMID: 31785020 PMCID: PMC6942442 DOI: 10.1111/cas.14263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
FOLFOX (5‐fluorouracil, leucovorin and oxaliplatin) is one of the main chemotherapy regimens for colorectal cancer (CRC), but only half of CRC patients respond to this regimen. Using gene expression profiles of 96 metastatic CRC patients treated with FOLFOX, we first selected gene pairs whose within‐sample relative expression orderings (REO) were significantly associated with the response to FOLFOX using the exact binomial test. Then, from these gene pairs, we applied an optimization procedure to obtain a subset that achieved the largest F‐score in predicting pathological response of CRC to FOLFOX. The REO‐based qualitative transcriptional signature, consisting of five gene pairs, was developed in the training dataset consisting of 96 samples with an F‐score of 0.90. In an independent test dataset consisting of 25 samples with the response information, an F‐score of 0.82 was obtained. In three other independent survival datasets, the predicted responders showed significantly better progression‐free survival than the predicted non‐responders. In addition, the signature showed a better predictive performance than two published FOLFOX signatures across different datasets and is more suitable for CRC patients treated with FOLFOX than 5‐fluorouracil‐based signatures. In conclusion, the REO‐based qualitative transcriptional signature can accurately identify metastatic CRC patients who may benefit from the FOLFOX regimen.
Collapse
Affiliation(s)
- Jun He
- Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jun Cheng
- Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qingzhou Guan
- Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Haidan Yan
- Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yawei Li
- Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wenyuan Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zheng Guo
- Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xianlong Wang
- Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
USP22-dependent HSP90AB1 expression promotes resistance to HSP90 inhibition in mammary and colorectal cancer. Cell Death Dis 2019; 10:911. [PMID: 31801945 PMCID: PMC6892875 DOI: 10.1038/s41419-019-2141-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022]
Abstract
As a member of the 11-gene “death-from-cancer” gene expression signature, overexpression of the Ubiquitin-Specific Protease 22 (USP22) was associated with poor prognosis in various human malignancies. To investigate the function of USP22 in cancer development and progression, we sought to detect common USP22-dependent molecular mechanisms in human colorectal and breast cancer cell lines. We performed mRNA-seq to compare gene expression profiles of various colorectal (SW837, SW480, HCT116) and mammary (HCC1954 and MCF10A) cell lines upon siRNA-mediated knockdown of USP22. Intriguingly, while USP22 depletion had highly heterogeneous effects across the cell lines, all cell lines displayed a common reduction in the expression of Heat Shock Protein 90 Alpha Family Class B Member 1 (HSP90AB1). The downregulation of HSP90AB1 was confirmed at the protein level in these cell lines as well as in colorectal and mammary tumors in mice with tissue-specific Usp22 deletions. Mechanistically, we detected a significant reduction of H3K9ac on the HSP90AB1 gene in USP22-deficient cells. Interestingly, USP22-deficient cells displayed a high dependence on HSP90AB1 expression and diminishing HSP90 activity further using the HSP90 inhibitor Ganetespib resulted in increased therapeutic vulnerability in both colorectal and breast cancer cells in vitro. Accordingly, subcutaneously transplanted CRC cells deficient in USP22 expression displayed increased sensitivity towards Ganetespib treatment in vivo. Together, we discovered that HSP90AB1 is USP22-dependent and that cooperative targeting of USP22 and HSP90 may provide an effective approach to the treatment of colorectal and breast cancer.
Collapse
|
17
|
Kosinsky RL, Zerche M, Saul D, Wang X, Wohn L, Wegwitz F, Begus-Nahrmann Y, Johnsen SA. USP22 exerts tumor-suppressive functions in colorectal cancer by decreasing mTOR activity. Cell Death Differ 2019; 27:1328-1340. [PMID: 31527800 DOI: 10.1038/s41418-019-0420-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/01/2019] [Accepted: 09/02/2019] [Indexed: 11/09/2022] Open
Abstract
USP22, the deubiquitinating subunit of the SAGA transcriptional cofactor complex, is a member of an 11-gene "death-from-cancer" signature. USP22 has been considered an attractive therapeutic target since high levels of its expression were associated with distant metastasis, poor survival, and high recurrence rates in a wide variety of solid tumors, including colorectal cancer (CRC). We sought to investigate the role of Usp22 during tumorigenesis in vivo using a mouse model for intestinal carcinogenesis with a tissue-specific Usp22 ablation. In addition, we assessed the effects of USP22 depletion in human CRC cells on tumorigenic potential and identified underlying molecular mechanisms. For the first time, we report that USP22 has an unexpected tumor-suppressive function in vivo. Intriguingly, intestine-specific Usp22 deletion exacerbated the tumor phenotype caused by Apc mutation, resulting in significantly decreased survival and higher intestinal tumor incidence. Accordingly, human CRC cells showed increased tumorigenic properties upon USP22 reduction in vitro and in vivo and induced gene expression signatures associated with an unfavorable outcome in CRC patients. Notably, USP22 loss resulted in increased mTOR activity with the tumorigenic properties elicited by the loss of USP22 being reversible by mTOR inhibitor treatment in vitro and in vivo. Here, we demonstrate that USP22 can exert tumor-suppressive functions in CRC where its loss increases CRC burden by modulating mTOR activity. Importantly, our data uncover a tumor- and context-specific role of USP22, suggesting that USP22 expression could serve as a marker for therapeutic stratification of cancer patients.
Collapse
Affiliation(s)
- Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany.
| | - Maria Zerche
- Department of General, Visceral and Pediatric Surgery, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | - Dominik Saul
- Department of Trauma, Orthopedics and Reconstructive Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Xin Wang
- Department of General, Visceral and Pediatric Surgery, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | - Luisa Wohn
- Department of General, Visceral and Pediatric Surgery, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | - Yvonne Begus-Nahrmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany. .,Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Jeusset LMP, McManus KJ. Developing Targeted Therapies That Exploit Aberrant Histone Ubiquitination in Cancer. Cells 2019; 8:cells8020165. [PMID: 30781493 PMCID: PMC6406838 DOI: 10.3390/cells8020165] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Histone ubiquitination is a critical epigenetic mechanism regulating DNA-driven processes such as gene transcription and DNA damage repair. Importantly, the cellular machinery regulating histone ubiquitination is frequently altered in cancers. Moreover, aberrant histone ubiquitination can drive oncogenesis by altering the expression of tumor suppressors and oncogenes, misregulating cellular differentiation and promoting cancer cell proliferation. Thus, targeting aberrant histone ubiquitination may be a viable strategy to reprogram transcription in cancer cells, in order to halt cellular proliferation and induce cell death, which is the basis for the ongoing development of therapies targeting histone ubiquitination. In this review, we present the normal functions of histone H2A and H2B ubiquitination and describe the role aberrant histone ubiquitination has in oncogenesis. We also describe the key benefits and challenges associated with current histone ubiquitination targeting strategies. As these strategies are predicted to have off-target effects, we discuss additional efforts aimed at developing synthetic lethal strategies and epigenome editing tools, which may prove pivotal in achieving effective and selective therapies targeting histone ubiquitination, and ultimately improving the lives and outcomes of those living with cancer.
Collapse
Affiliation(s)
- Lucile M-P Jeusset
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Kirk J McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
19
|
Role of RNF20 in cancer development and progression - a comprehensive review. Biosci Rep 2018; 38:BSR20171287. [PMID: 29934362 PMCID: PMC6043722 DOI: 10.1042/bsr20171287] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Evolving strategies to counter cancer initiation and progression rely on the identification of novel therapeutic targets that exploit the aberrant genetic changes driving oncogenesis. Several chromatin associated enzymes have been shown to influence post-translational modification (PTM) in DNA, histones, and non-histone proteins. Any deregulation of this core group of enzymes often leads to cancer development. Ubiquitylation of histone H2B in mammalian cells was identified over three decades ago. An exciting really interesting new gene (RING) family of E3 ubiquitin ligases, known as RNF20 and RNF40, monoubiquitinates histone H2A at K119 or H2B at K120, is known to function in transcriptional elongation, DNA double-strand break (DSB) repair processes, maintenance of chromatin differentiation, and exerting tumor suppressor activity. RNF20 is somatically altered in breast, lung, prostate cancer, clear cell renal cell carcinoma (ccRCC), and mixed lineage leukemia, and its reduced expression is a key factor in initiating genome instability; and it also functions as one of the significant driving factors of oncogenesis. Loss of RNF20/40 and H2B monoubiquitination (H2Bub1) is found in several cancers and is linked to an aggressive phenotype, and is also an indicator of poor prognosis. In this review, we summarized the current knowledge of RNF20 in chronic inflammation-driven cancers, DNA DSBs, and apoptosis, and its impact on chromatin structure beyond the single nucleosome level.
Collapse
|
20
|
Yang X, Zang H, Luo Y, Wu J, Fang Z, Zhu W, Li Y. High expression of USP22 predicts poor prognosis and advanced clinicopathological features in solid tumors: a meta-analysis. Onco Targets Ther 2018; 11:3035-3046. [PMID: 29872315 PMCID: PMC5973323 DOI: 10.2147/ott.s148662] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction The expression of USP22 has been demonstrated to play a pivotal role in solid tumors. However, the prognostic value of USP22 still remains unknown. Materials and methods A systematic meta-analysis was performed to assess the prognostic value of USP22 in cancers. A literature collection was conducted from inception to June 8, 2017 by searching PubMed, Cochrane Library, Embase, Ovid and Web of Science databases. The pooled hazard ratio (HR) and odds ratio (OR) were used to correlate high expression of USP22 with overall survival (OS) and clinicopathological features. Results The results, pooled by 19 studies with 2,876 cases, indicated that high expression of USP22 predicted poor OS (HR=2.48, 95% CI: 2.11–2.84, p<0.001) and disease-free survival (DFS; HR=2.55, 95% CI: 2.05–3.05, p<0.001) of cancer patients. Furthermore, high expression of USP22 was also significantly associated with advanced clinicopathological parameters, including tumor stage, tumor differentiation, metastasis, nodal status and tumor size. Conclusion Our finding revealed that USP22 might be an indicator of poor prognosis and advanced clinicopathological features of solid tumors and could be served as a novel biomarker.
Collapse
Affiliation(s)
- Xiaohui Yang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyang Zang
- Department of Spleen and Stomach, Xinyi Municipal Hospital of Traditional Chinese Medicine, Xinyi, Jiangsu, China
| | - Yingbin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhihong Fang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weikang Zhu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Wang X, Zhang Q, Wang Y, Zhuang H, Chen B. Clinical Significance of Ubiquitin Specific Protease 7 (USP7) in Predicting Prognosis of Hepatocellular Carcinoma and its Functional Mechanisms. Med Sci Monit 2018; 24:1742-1750. [PMID: 29574466 PMCID: PMC5882160 DOI: 10.12659/msm.909368] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) accounts for one of the most prevalent cancer types in the world. The ubiquitin specific protease 7 (USP7), a kind of deubiquitylating enzyme, has been reported to play multifaceted roles in different tumor types. The aim of this study was to investigate the expression and function of USP7 in HCC. MATERIAL AND METHODS Immunohistochemical staining and quantitative PCR were performed to explore the expression of USP7 in both HCC tissues and adjacent normal liver tissues. Chi-square test, univariate analysis, and multivariate analysis were conducted to statistically evaluate the clinical significance of USP7 in HCC. Proliferation, migration, and invasion capacities of HCC cells were assessed after overexpressing or silencing USP7. RESULTS Both the RNA and protein levels of USP7 were upregulated in HCC tissues compared to normal liver tissues. High expression of USP7 was correlated with advanced tumor stage and poor overall survival. Moreover, USP7 was identified as a novel independent prognostic factor for HCC patients. Cellular studies showed that USP7 could enhance the proliferation, migration, and invasion capacities of HCC cells, thereby promoting tumor progression. CONCLUSIONS High expression of USP7 is frequent in HCC tissues, which promotes tumor proliferation and invasion, and is correlated with a poor overall survival. Targeting USP7 may be a novel direction for the drug development of HCC therapy.
Collapse
Affiliation(s)
- Xujing Wang
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University in Shanghai, Shanghai, China (mainland)
| | - Qiqi Zhang
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University in Shanghai, Shanghai, China (mainland)
| | - Yongkun Wang
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University in Shanghai, Shanghai, China (mainland)
| | - Huiren Zhuang
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University in Shanghai, Shanghai, China (mainland)
| | - Bo Chen
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated to Tongji University in Shanghai, Shanghai, China (mainland)
| |
Collapse
|
22
|
Shanmugam MK, Arfuso F, Arumugam S, Chinnathambi A, Jinsong B, Warrier S, Wang LZ, Kumar AP, Ahn KS, Sethi G, Lakshmanan M. Role of novel histone modifications in cancer. Oncotarget 2018; 9:11414-11426. [PMID: 29541423 PMCID: PMC5834259 DOI: 10.18632/oncotarget.23356] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/01/2017] [Indexed: 01/02/2023] Open
Abstract
Oncogenesis is a multistep process mediated by a variety of factors including epigenetic modifications. Global epigenetic post-translational modifications have been detected in almost all cancers types. Epigenetic changes appear briefly and do not involve permanent changes to the primary DNA sequence. These epigenetic modifications occur in key oncogenes, tumor suppressor genes, and transcription factors, leading to cancer initiation and progression. The most commonly observed epigenetic changes include DNA methylation, histone lysine methylation and demethylation, histone lysine acetylation and deacetylation. However, there are several other novel post-translational modifications that have been observed in recent times such as neddylation, sumoylation, glycosylation, phosphorylation, poly-ADP ribosylation, ubiquitination as well as transcriptional regulation and these have been briefly discussed in this article. We have also highlighted the diverse epigenetic changes that occur during the process of tumorigenesis and described the role of histone modifications that can occur on tumor suppressor genes as well as oncogenes, which regulate tumorigenesis and can thus form the basis of novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Surendar Arumugam
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Bian Jinsong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, India
| | - Ling Zhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
- Department of Pathology, National University Hospital Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Ubiquitin Specific Peptidase 22 Regulates Histone H2B Mono-Ubiquitination and Exhibits Both Oncogenic and Tumor Suppressor Roles in Cancer. Cancers (Basel) 2017; 9:cancers9120167. [PMID: 29210986 PMCID: PMC5742815 DOI: 10.3390/cancers9120167] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Ubiquitin-Specific Peptidase 22 (USP22) is a ubiquitin hydrolase, notably catalyzing the removal of the mono-ubiquitin moiety from histone H2B (H2Bub1). Frequent overexpression of USP22 has been observed in various cancer types and is associated with poor patient prognosis. Multiple mechanisms have been identified to explain how USP22 overexpression contributes to cancer progression, and thus, USP22 has been proposed as a novel drug target in cancer. However, gene re-sequencing data from numerous cancer types show that USP22 expression is frequently diminished, suggesting it may also harbor tumor suppressor-like properties. This review will examine the current state of knowledge on USP22 expression in cancers, describe its impact on H2Bub1 abundance and present the mechanisms through which altered USP22 expression may contribute to oncogenesis, including an emerging role for USP22 in the maintenance of genome stability in cancer. Clarifying the impact aberrant USP22 expression and abnormal H2Bub1 levels have in oncogenesis is critical before precision medicine therapies can be developed that either directly target USP22 overexpression or exploit the loss of USP22 expression in cancer cells.
Collapse
|
24
|
Zhang D, Jiang F, Wang X, Li G. Downregulation of Ubiquitin-Specific Protease 22 Inhibits Proliferation, Invasion, and Epithelial-Mesenchymal Transition in Osteosarcoma Cells. Oncol Res 2017; 25:743-751. [PMID: 27983930 PMCID: PMC7841257 DOI: 10.3727/096504016x14772395226335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ubiquitin-specific protease 22 (USP22), a novel deubiquitinating enzyme, belongs to an extended family of proteins that have ubiquitin hydrolase activity. Recently, USP22 has attracted widespread attention because of its implication in carcinogenesis. However, there have been no studies, to our knowledge, investigating the expression of USP22 in osteosarcoma (OS) and its association with OS progression. In this study, we explored the role of USP22 in OS. We demonstrated that USP22 was highly expressed in OS tissue and cell lines. Downregulation of USP22 inhibited OS cell proliferation, invasion, and epithelial-mesenchymal transition (EMT) in vitro. In addition, downregulation of USP22 suppressed OS tumor growth and metastasis in vivo. We also found that the PI3K/Akt signaling pathway was involved in the tumor-promoting effect of USP22 on OS progression. Taken together, we suggest USP22 as a novel therapeutic target for OS.
Collapse
Affiliation(s)
- Dengfeng Zhang
- Orthopedics Department, Huaihe Hospital of Henan University, Kaifeng, P.R. China
| | - Feng Jiang
- Orthopedics Department, Huaihe Hospital of Henan University, Kaifeng, P.R. China
| | - Xiao Wang
- Orthopedics Department, Huaihe Hospital of Henan University, Kaifeng, P.R. China
| | - Guojun Li
- Orthopedics Department, Huaihe Hospital of Henan University, Kaifeng, P.R. China
| |
Collapse
|
25
|
Wang A, Ning Z, Lu C, Gao W, Liang J, Yan Q, Tan G, Liu J. USP22 Induces Cisplatin Resistance in Lung Adenocarcinoma by Regulating γH2AX-Mediated DNA Damage Repair and Ku70/Bax-Mediated Apoptosis. Front Pharmacol 2017; 8:274. [PMID: 28567015 PMCID: PMC5434448 DOI: 10.3389/fphar.2017.00274] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/01/2017] [Indexed: 11/13/2022] Open
Abstract
Resistance to platinum-based chemotherapy is one of the most important reasons for treatment failure in advanced non-small cell lung cancer, but the underlying mechanism is extremely complex and unclear. The present study aimed to investigate the correlation of ubiquitin-specific peptidase 22 (USP22) with acquired resistance to cisplatin in lung adenocarcinoma. In this study, we found that overexpression of USP22 could lead to cisplatin resistance in A549 cells. USP22 and its downstream proteins γH2AX and Sirt1 levels are upregulated in the cisplatin- resistant A549/CDDP cell line. USP22 enhances DNA damage repair and induce cisplatin resistance by promoting the phosphorylation of histone H2AX via deubiquitinating histone H2A. In addition, USP22 decreases the acetylation of Ku70 by stabilizing Sirt1, thus inhibiting Bax-mediated apoptosis and inducing cisplatin resistance. The cisplatin sensitivity in cisplatin-resistant A549/CDDP cells was restored by USP22 inhibition in vivo and vitro. In summary, our findings reveal the dual mechanism of USP22 involvement in cisplatin resistance that USP22 can regulate γH2AX-mediated DNA damage repair and Ku70/Bax-mediated apoptosis. USP22 is a potential target in cisplatin-resistant lung adenocarcinoma and should be considered in future therapeutic practice.
Collapse
Affiliation(s)
- Aman Wang
- Department of Oncology, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Zhen Ning
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Chang Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Wei Gao
- City College, Zhejiang UniversityHangzhou, China
| | - Jinxiao Liang
- Department of Thoracic Surgery, Zhejiang Cancer HospitalHangzhou, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical UniversityDalian, China
| | - Guang Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| |
Collapse
|
26
|
Li Y, Li J, Liu H, Liu Y, Cui B. Expression of MYSM1 is associated with tumor progression in colorectal cancer. PLoS One 2017; 12:e0177235. [PMID: 28498834 PMCID: PMC5428969 DOI: 10.1371/journal.pone.0177235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer, the third most common cancer in both men and women, has gradually increased in recent years. MYSM1has been investigated as a regulator of hematopoiesis and lymphocyte development in human. It has been reported that some tumor-related genes were modulated by MYSM1. However, its exact role in cancer development remains unclear. Herein, we aimed to examine the expression level of MYSM1 in tumor tissues and its correlation with clinicopathology and survivals of patients with colorectal cancer (CRC).MYSM1expressions in tumor specimens resected from 123 CRC patients were detected by immunochemistry and Western blot analysis. The results showed that MYSM1 was significantly highly expressed in carcinoma tissues compared with adjacent normal mucosa tissues (P<0.05). Correlation analyses by Pearson's chi-square test demonstrated that MYSM1 in tumors was positively correlated with tumor status (pathological assessment of the primary tumor (pT, P<0.001), regional lymph nodes (pN, P = 0.013), distant metastasis (pM, P<0.001)) and clinic stage (P<0.001); Whereas, MYSM1 was not associated with tumor size of CRC patients and was positively associated with tumor differentiation grade (P = 0.015). Patients with positiveMYSM1expression showed poor survival compared with the MYSM1 negative group (P<0.001).Simultaneously, multivariate Cox regression analysis indicated thatMYSM1 expression in tumor cells was an independent factor for reduced overall survival in CRC patients (P<0.001).Additionally,MYSM1 in CRC SW480 cells was silenced by small interference RNA (siRNA) technology. Scratch assay and Transwell assay showed that MYSM1 silencing decreased migration and invasion abilities of SW480 cells. These data suggested that expression of MYSM1 was associated with the progression of CRC and might be a potential biomarker for clinical prognosis.
Collapse
Affiliation(s)
- Yongmin Li
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Jingwen Li
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - He Liu
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Yanlong Liu
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Binbin Cui
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
27
|
Zhai R, Tang F, Gong J, Zhang J, Lei B, Li B, Wei Y, Liang X, Tang B, He S. The relationship between the expression of USP22, BMI1, and EZH2 in hepatocellular carcinoma and their impacts on prognosis. Onco Targets Ther 2016; 9:6987-6998. [PMID: 27920552 PMCID: PMC5125798 DOI: 10.2147/ott.s110985] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown that deubiquitination plays a key role in tumor progression, metastasis, resistance to chemotherapy drugs, and prognosis. In this study, we investigated the effects of the deubiquitinating enzyme USP22 on the expression of the drug-resistance genes BMI1 and EZH2 in hepatocellular carcinoma (HCC) and on prognosis. Downregulation of USP22 expression with interference ribonucleic acid in resistant HCC cell lines with high USP22 expression resulted in decreased BMI1 expression, but had no effect on EZH2 expression. USP22, BMI1, and EZH2 were highly expressed in HCC tissue, and the expression levels were positively correlated with tumor grade and clinical stage. Correlation analysis showed that USP22 expression was positively correlated with that of BMI1. Kaplan–Meier analysis showed that high levels of USP22 and BMI1 expression were associated with poor overall survival and relapse-free survival in all of the cases and in patients treated with transcatheter arterial chemoembolization. These results suggested that high levels of USP22 expression played an important role in drug resistance to chemotherapeutic drugs in HCC patients by upregulating the expression of BMI1; therefore, coexpression of USP22 and BMI1 may become a new predictor for HCC prognosis and may help guide clinical treatment.
Collapse
Affiliation(s)
- Run Zhai
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, People's Republic of China; Department of Hepatobiliary Surgery, Affiliated Hospital, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Fang Tang
- Pathology Department, Affiliated Hospital, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Jianhua Gong
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, People's Republic of China; Department of Hepatobiliary Surgery, Affiliated Hospital, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Jing Zhang
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, People's Republic of China; Department of Hepatobiliary Surgery, Affiliated Hospital, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Biao Lei
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, People's Republic of China; Department of Hepatobiliary Surgery, Affiliated Hospital, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Bo Li
- Department of Hepatobiliary Surgery, Affiliated Hospital, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Yangchao Wei
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, People's Republic of China; Department of Hepatobiliary Surgery, Affiliated Hospital, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Xingsi Liang
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Bo Tang
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, People's Republic of China; Department of Hepatobiliary Surgery, Affiliated Hospital, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Songqing He
- Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, Guangxi, People's Republic of China; Department of Hepatobiliary Surgery, Affiliated Hospital, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
28
|
Zhao HD, Tang HL, Liu NN, Zhao YL, Liu QQ, Zhu XS, Jia LT, Gao CF, Yang AG, Li JT. Targeting ubiquitin-specific protease 22 suppresses growth and metastasis of anaplastic thyroid carcinoma. Oncotarget 2016; 7:31191-31203. [PMID: 27145278 PMCID: PMC5058749 DOI: 10.18632/oncotarget.9098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin-specific protease 22 (USP22) aberrance has been implicated in several malignancies; however, whether USP22 plays a role in anaplastic thyroid carcinoma (ATC) remains unclear. Here, we report that USP22 expression is highly elevated in ATC tissues, which positively correlated with tumor size, extracapsular invasion, clinical stages, and poor prognosis of ATC patients. In vitro assays showed that USP22 depletion suppressed ATC cell survival and proliferation by decreasing Rb phosphorylation and cyclin D2, inactivating Akt, and simultaneously upregulating Rb; USP22 silencing restrained cell migration and invasion by inhibiting epithelial-mesenchymal transition; USP22 knockdown promoted mitochondrion- mediated and caspase-dependent apoptosis by upregulating Bax and Bid and promoting caspase-3 activation. Consistent with in vitro findings, downregulation of USP22 in ATC cells impeded tumor growth and lung metastasis in vivo. These results raise the applicability for USP22 as a useful predictor of ATC prognosis and a potential therapeutic target for ATC.
Collapse
Affiliation(s)
- Hua-Dong Zhao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hai-Li Tang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ning-Ning Liu
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Ya-Li Zhao
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Qin-Qin Liu
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Xiao-Shan Zhu
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Lin-Tao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chun-Fang Gao
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan 471031, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jun-Tang Li
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan 471031, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
29
|
Tang B, Tang F, Li B, Yuan S, Xu Q, Tomlinson S, Jin J, Hu W, He S. High USP22 expression indicates poor prognosis in hepatocellular carcinoma. Oncotarget 2016; 6:12654-67. [PMID: 25909224 PMCID: PMC4494964 DOI: 10.18632/oncotarget.3705] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/05/2015] [Indexed: 02/07/2023] Open
Abstract
Ubiquitin-specific protease 22 (USP22) removes ubiquitin from histones, thus regulating gene transcription. The expression frequency and expression levels of USP22 were significantly higher in hepatocellular carcinoma (HCC) than in normal liver tissues. High USP22 expression in HCC was significantly correlated with clinical stage and tumor grade. Kaplan-Meier analysis showed that elevated USP22 expression predicted poorer overall survival and recurrence-free survival. High USP22 expression was also associated with shortened survival time in patients at advanced tumor stages and with high grade HCC. Multivariate analyses revealed that USP22 expression is an independent prognostic parameter in HCC. These findings provide evidence that high USP22 expression might be important in tumor progression and serves as an independent molecular marker for poor HCC prognosis. Thus, USP22 overexpression identifies patients at high risk and represents a novel therapeutic molecular target for this tumor.
Collapse
Affiliation(s)
- Bo Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin, Guangxi, People's Republic of China
| | - Fang Tang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Bo Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin, Guangxi, People's Republic of China
| | - Shengguang Yuan
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin, Guangxi, People's Republic of China
| | - Qing Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin, Guangxi, People's Republic of China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin, Guangxi, People's Republic of China
| | - Wei Hu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Songqing He
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
30
|
Zhuang YJ, Liao ZW, Yu HW, Song XL, Liu Y, Shi XY, Lin XD, Zhou TC. ShRNA-mediated silencing of the ubiquitin-specific protease 22 gene restrained cell progression and affected the Akt pathway in nasopharyngeal carcinoma. Cancer Biol Ther 2015; 16:88-96. [PMID: 25482932 DOI: 10.4161/15384047.2014.987029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ubiquitin-specific protease 22 (USP22) is closely related with poor prognosis of cancer patients. However, the role of USP22 expression in nasopharyngeal carcinoma (NPC) has not been determined. The main aim of this study was to determine the role of USP22 in the pathologic processes of NPC. Immunohistochemistry (IHC), western blot (WB), and real-time polymerase chain reaction (RT-PCR) were used to measure the expression of USP22 in cell lines and tissues of NPC in comparison with expression in non-cancerous cells and tissues. USP22-specific short hairpin RNA (shRNA) was used to knock down USP22 expression in the NPC cell line CNE-1 and CNE-2. Furthermore, the impact of USP22 in cellular proliferation, growth, and cell cycle were detected respectively. WB was used to determine the role of USP22 in the AKT/GSK-3/Cyclin signaling pathway. The expression levels of USP22 were remarkably higher in NPC cell lines and tissues. With cell counting and the MTS assay, cellular growth and proliferation progression of USP22 knockdown cell line was shown to be effectively restrained. The USP22 silencing both in CNE-1 and CNE-2 cells caused them to accumulate in the G0/G1 phase of the cell cycle. USP22 knockdown was also found to modulate the AKT/GSK-3/Cyclin pathway, resulting in downregulation of p-AKT, p-GSK-3β, and cyclinD1. This study suggests that USP22 plays a critical regulatory role in the pathologic processes of NPC, and that it may be a potential biological treatment target in the future.
Collapse
Key Words
- AKT/GSK-3/Cyclin pathway
- DUBs, Deubiquitinating Enzymes
- EB, Epstein-Barr
- IHC, Immunohistochemistry
- NC, Negative Control
- NPC, Nasopharyngeal carcinoma
- Nasopharyngeal carcinoma
- ORF, Open Reading Frame
- RT-PCR, real-time polymerase chain reaction
- USP22
- USP22, Ubiquitin-specific Protease 22
- WB, Western Blot
- cell cycle
- cell growth
- cell proliferation
- hSAGA, human Spt-Ada-Gcn5 acetyltransferase
- shRNA, short hairpin RNA
- shUSP22, small hairpin RNA of USP22
Collapse
Affiliation(s)
- Ya-Jing Zhuang
- a Department of Radiation Oncology ; Cancer Center of Guangzhou Medical University ; Guangzhou , China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu YL, Zheng J, Tang LJ, Han W, Wang JM, Liu DW, Tian QB. The deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth. Gene 2015; 572:49-56. [PMID: 26143114 DOI: 10.1016/j.gene.2015.06.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/10/2015] [Accepted: 06/28/2015] [Indexed: 01/07/2023]
Abstract
Ubiquitin-specific protease 22 (USP22) can regulate the cell cycle and apoptosis in many cancer cell types, while it is still unclear whether the deubiquitinating enzyme activity of USP22 is necessary for these processes. As little is known about the impact of USP22 on the growth of HeLa cell, we observed whether USP22 can effectively regulate HeLa cell growth as well as the necessity of deubiquitinating enzyme activity for these processes in HeLa cell. In this study, we demonstrate that USP22 can regulate cell cycle but not apoptosis in HeLa cell. The deubiquitinating enzyme activity of USP22 is necessary for this process as confirmed by an activity-deleted mutant (C185S) and an activity-decreased mutant (Y513C). In addition, the deubiquitinating enzyme activity of USP22 is related to the levels of BMI-1, c-Myc, cyclin D2 and p53. Our findings indicate that the deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth, and it promotes cell proliferation via the c-Myc/cyclin D2, BMI-1 and p53 pathways in HeLa cell.
Collapse
Affiliation(s)
- Ying-Li Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Jie Zheng
- Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang, China
| | - Li-Juan Tang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Wei Han
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Jian-Min Wang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Dian-Wu Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Qing-Bao Tian
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China.
| |
Collapse
|
32
|
Wang Z, Zhu L, Guo T, Wang Y, Yang J. Decreased H2B monoubiquitination and overexpression of ubiquitin-specific protease enzyme 22 in malignant colon carcinoma. Hum Pathol 2015; 46:1006-14. [DOI: 10.1016/j.humpath.2015.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 02/07/2023]
|
33
|
Ao N, Liu Y, Bian X, Feng H, Liu Y. Ubiquitin-specific peptidase 22 inhibits colon cancer cell invasion by suppressing the signal transducer and activator of transcription 3/matrix metalloproteinase 9 pathway. Mol Med Rep 2015; 12:2107-13. [PMID: 25902005 DOI: 10.3892/mmr.2015.3661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/10/2015] [Indexed: 11/06/2022] Open
Abstract
Colon cancer is associated with increased cell migration and invasion. In the present study, the role of ubiquitin-specific peptidase 22 (USP22) in signal transducer and activator of transcription 3 (STAT3)-mediated colon cancer cell invasion was investigated. The messenger RNA levels of STAT3 target genes were measured by reverse transcription-quantitative polymerase chain reaction, following USP22 knockdown by RNA interference in SW480 colon cancer cells. The matrix metalloproteinase 9 (MMP9) proteolytic activity and invasion potential of SW480 cells were measured by zymography and Transwell assay, respectively, following combined USP22 and STAT3 short interfering (si)RNA treatment or STAT3 siRNA treatment alone. Similarly, a cell counting kit-8 assay was used to detect the proliferation potential of SW480 cells. The protein expression levels of USP22, STAT3 and MMP9 were detected by immunohistochemistry in colon cancer tissue microarrays (TMAs) and the correlation between USP22, STAT3 and MMP9 was analyzed. USP22/STAT3 co-depletion partly rescued the MMP9 proteolytic activity and invasion of SW480 cells, compared with that of STAT3 depletion alone. However, the proliferation of USP22/STAT3si-SW480 cells was decreased compared with that of STAT3si-SW480 cells. USP22 expression was positively correlated with STAT3 and MMP9 expression in colon cancer TMAs. In conclusion, USP22 attenuated the invasion capacity of colon cancer cells by inhibiting the STAT3/MMP9 signaling pathway.
Collapse
Affiliation(s)
- Ning Ao
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, P.R. China
| | - Yanyan Liu
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, P.R. China
| | - Xiaocui Bian
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, P.R. China
| | - Hailiang Feng
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, P.R. China
| | - Yuqin Liu
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, P.R. China
| |
Collapse
|
34
|
Ubiquitin-specific peptidase 22 overexpression may promote cancer progression and poor prognosis in human gastric carcinoma. Transl Res 2015; 165:407-16. [PMID: 25445209 DOI: 10.1016/j.trsl.2014.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/24/2014] [Accepted: 09/09/2014] [Indexed: 11/20/2022]
Abstract
Ubiquitin-specific peptidase 22 (USP22) was recently identified as a new tumor cell marker, and previous studies demonstrated its expression in a variety of tumors and its correlation with tumor progression. Because tumor progression plays an important role in cancer, researchers are paying more attention to the correlation between USP22 expression and metastatic potential, resistance to chemotherapy, and patient prognosis. This study showed that USP22 is highly expressed in gastric cancer tissues, and significant differences in USP22 expression (P < 0.01) were identified between different types of gastric cancer (the highest expression was found in poorly differentiated adenocarcinomas). In addition USP22 expression was found to be correlated with the promotion of cancer evolution, tumor invasion, and lymph node metastasis. The C-myc protein was also shown to have synergistic effects with USP22 in gastric cancer tissue. On the basis of the results, USP22 expression may play an important role in gastric carcinoma tissue, particularly in precancerous lesions during the gastric cancer evolution process.
Collapse
|
35
|
USP22 promotes NSCLC tumorigenesis via MDMX up-regulation and subsequent p53 inhibition. Int J Mol Sci 2014; 16:307-20. [PMID: 25547493 PMCID: PMC4307248 DOI: 10.3390/ijms16010307] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/15/2014] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence suggests that ubiquitin-specific protease 22 (USP22) has great clinicopathologic significance in oncology. In this study, we investigated the role of USP22 in human NSCLC tumorigenesis along with the underlying mechanisms of action. First, we determined the expression of USP22 in human NSCLC, as well as normal tissues and cell lines. We then studied the effects of USP22 silencing by shRNA on NSCLC cell growth in vitro and tumorigenesis in vivo, along with the effect on the p53 pathway. We found that USP22 is overexpressed in human NSCLC tissues and cell lines. USP22 silencing by shRNA inhibits proliferation, induces apoptosis and arrests cells at the G0/G1 phases in NSCLC cells and curbs human NSCLC tumor growth in a mouse xenograft model. Additionally, USP22 silencing downregulates MDMX protein expression and activates the p53 pathway. Our co-immunoprecipitation analysis shows that USP22 interacts with MDMX in NSCLC cells. Furthermore, MDMX silencing leads to growth arrest and apoptosis in NSCLC cells, and over-expression of MDMX reverses the USP22 silencing-induced effects. Taken together, our results suggest that USP22 promotes NSCLC tumorigenesis in vitro and in vivo through MDMX upregulation and subsequent p53 inhibition. USP22 may represent a novel target for NSCLC treatment.
Collapse
|
36
|
Thompson LL, Guppy BJ, Sawchuk L, Davie JR, McManus KJ. Regulation of chromatin structure via histone post-translational modification and the link to carcinogenesis. Cancer Metastasis Rev 2014; 32:363-76. [PMID: 23609752 DOI: 10.1007/s10555-013-9434-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The loss of genome integrity contributes to the development of tumors. Although genome instability is associated with virtually all tumor types including both solid and liquid tumors, the aberrant molecular origins that drive this instability are poorly understood. It is now becoming clear that epigenetics and specific histone post-translational modifications (PTMs) have essential roles in maintaining genome stability under normal conditions. A strong relationship exists between aberrant histone PTMs, genome instability, and tumorigenesis. Changes in the genomic location of specific histone PTMs or alterations in the steady-state levels of the PTM are the consequence of imbalances in the enzymes and their activities catalyzing the addition of PTMs ("writers") or removal of PTMs ("erasers"). This review focuses on the misregulation of three specific types of histone PTMs: histone H3 phosphorylation at serines 10 and 28, H4 mono-methylation at lysine 20, and H2B ubiquitination at lysine 120. We discuss the normal regulation of these PTMs by the respective "writers" and "erasers" and the impact of their misregulation on genome stability.
Collapse
Affiliation(s)
- Laura L Thompson
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
37
|
Ji M, Shi H, Xie Y, Zhao Z, Li S, Chang C, Cheng X, Li Y. Ubiquitin specific protease 22 promotes cell proliferation and tumor growth of epithelial ovarian cancer through synergy with transforming growth factor β1. Oncol Rep 2014; 33:133-40. [PMID: 25369910 DOI: 10.3892/or.2014.3580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/22/2014] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin specific protease 22 (USP22) is an oncogene that is upregulated in many cancer types, and aberrant expression of USP22 correlates with clinical outcome. However, its potential functional impact in epithelial ovarian cancer (EOC) has not been determined. Here, we report that USP22 was upregulated in EOC specimens and EOC cell lines with important functional consequences. A high level of USP22 in EOC tissues was associated with advanced clinical FIGO stage, lymph node metastasis and worse prognosis. Patients with higher USP22 expression had shorter relapse-free and overall survival. Depletion of USP22 suppressed cell proliferation in vitro and tumor growth in vivo. We found that inhibition of USP22 suppressed cell proliferation by inducing G1 phase cell cycle arrest through synergy with oncogenic transforming growth factor-β1 (TGFB1). Our results indicate that USP22 functions as an oncogene in EOC, and thus USP22 may serve as a potential therapeutic target for individualized EOC treatment.
Collapse
Affiliation(s)
- Mei Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huirong Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ya Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhao Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shunshuang Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Cheng Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xinghan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yue Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
38
|
Liang JX, Ning Z, Gao W, Ling J, Wang AM, Luo HF, Liang Y, Yan Q, Wang ZY. Ubiquitin‑specific protease 22‑induced autophagy is correlated with poor prognosis of pancreatic cancer. Oncol Rep 2014; 32:2726-34. [PMID: 25241857 DOI: 10.3892/or.2014.3508] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/05/2014] [Indexed: 11/05/2022] Open
Abstract
Ubiquitin‑specific protease 22 (USP22) is a component of the transcription regulatory histone acetylation complex SAGA, which broadly regulates gene transcription and correlates with cancer progression, metastasis and prognosis. Autophagy is a cell pathway with dual functions that promotes cell survival or death. However, it is not known whether USP22 can regulate autophagy in pancreatic cancer. In the present study, we first identified that USP22 was overexpressed in a large number of pancreatic cancer patient samples, concomitant with the increased expression of LC3, a marker of autophagy. Statistical analysis revealed that the increase in USP22 and autophagy was positively correlated with poor prognosis of pancreatic cancer patients. Further investigation using a human pancreatic cancer cell (Panc‑1) identified that the overexpression of USP22 increased the processing of LC3 into the active form LC3‑II and the number of autophagosomes, thus leading to enhanced autophagy. Activation of ERK1/2 kinase rather than AKT1 by USP22 was found to be one of the mechanisms promoting LC3 processing. USP22‑induced autophagy was also found to enhance cell proliferation and resistance to starvation and chemotherapeutic drugs in Panc‑1 cells, therefore expressing an overall effect that promotes cell survival. Collectively, the present study demonstrated a new function of USP22 that induces autophagy, thus leading to the poor prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Jin-Xiao Liang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Zhen Ning
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Wei Gao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jun Ling
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA 18509, USA
| | - A-Man Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hai-Feng Luo
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yong Liang
- Department of Clinical Medicine, Taizhou University Medical School, Taizhou, Zhejiang 318000, P.R. China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhong-Yu Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
39
|
Histone H2B ubiquitination promotes the function of the anaphase-promoting complex/cyclosome in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2014; 4:1529-38. [PMID: 24948786 PMCID: PMC4132182 DOI: 10.1534/g3.114.012625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ubiquitination and deubiquitination of proteins are reciprocal events involved in many cellular processes, including the cell cycle. During mitosis, the metaphase to anaphase transition is regulated by the ubiquitin ligase activity of the anaphase-promoting complex/cyclosome (APC/C). Although the E3 ubiquitin ligase function of the APC/C has been well characterized, it is not clear whether deubiquitinating enzymes (DUBs) play a role in reversing APC/C substrate ubiquitination. Here we performed a genetic screen to determine what DUB, if any, antagonizes the function of the APC/C in the fission yeast Schizosaccharomyces pombe. We found that deletion of ubp8, encoding the Spt-Ada-Gcn5-Acetyl transferase (SAGA) complex associated DUB, suppressed temperature-sensitive phenotypes of APC/C mutants cut9-665, lid1-6, cut4-533, and slp1-362. Our analysis revealed that Ubp8 antagonizes APC/C function in a mechanism independent of the spindle assembly checkpoint and proteasome activity. Notably, suppression of APC/C mutants was linked to loss of Ubp8 catalytic activity and required histone H2B ubiquitination. On the basis of these data, we conclude that Ubp8 antagonizes APC/C function indirectly by modulating H2B ubiquitination status.
Collapse
|
40
|
Liang J, Zhang X, Xie S, Zhou X, Shi Q, Hu J, Wang W, Qi W, Yu R. Ubiquitin-specific protease 22: a novel molecular biomarker in glioma prognosis and therapeutics. Med Oncol 2014; 31:899. [PMID: 24573640 DOI: 10.1007/s12032-014-0899-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Ubiquitin-specific protease 22 (USP22) exhibits an important function in tumor progression and oncogenesis. The aim of this study was to investigate the role of USP22 and the association with its potential targets in patients with glioma. To our knowledge, this is the first study that determines the relationship between USP22 expression and clinicopathological significance in glioma. In our study, USP22 protein levels were detected by Western blot analysis. The protein levels of USP22 in glioma tissues were significantly higher than non-tumors. The immunohistochemistry results showed that USP22 protein was overexpressed in glioma tissues compared with non-tumors. The higher the grade of gliomas, the higher the level of USP22 expression. Further, the results of Kaplan-Meier analysis indicated that patients with high USP22 expression had significantly worse overall survival than patients with low expression of USP22. It suggested that USP22 overexpression may be associated with poor prognosis in patients with glioma. It may represent a novel prognostic biomarker or a target for improving the treatment efficiency of patients with glioma.
Collapse
Affiliation(s)
- Jun Liang
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Prados J, Melguizo C, Roldan H, Alvarez PJ, Ortiz R, Arias JL, Aranega A. RNA interference in the treatment of colon cancer. BioDrugs 2014; 27:317-27. [PMID: 23553339 DOI: 10.1007/s40259-013-0019-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Colorectal cancer is the third most common cancer in both men and women and has shown a progressive increase over the past 20 years. Current chemotherapy has major limitations, and a novel therapeutic approach is required. Given that neoplastic transformation of colon epithelial cells is a consequence of genetic and epigenetic alterations, RNA interference (RNAi) has been proposed as a new therapeutic strategy that offers important advantages over conventional treatments, with high specificity and potency and low toxicity. RNAi has been employed as an effective tool to study the function of genes, preventing their expression and leading to the development of new approaches to cancer treatment. In malignancies, including colon cancer, RNAi is being used for "silencing" genes that are deregulated by different processes such as gene amplification, mutation, or overexpression and may be the cause of oncogenesis. This strategy not only provides information on the involvement of certain genes in colon cancer, but also opens up a new perspective for its treatment. However, most studies have used adenovirus or lentivirus vectors to transport RNAi into tumor cells or tumors in animal models, because several technical obstacles must be overcome before RNAi can be used in the clinical setting. The aim of this study was to review current knowledge on the use of RNAi techniques in the treatment of colon cancer.
Collapse
Affiliation(s)
- Jose Prados
- Institute of Biopathology and Regenerative Medicine, University of Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Dou QP. Deubiquitinating Enzymes as Novel Targets for Cancer Therapies. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2014. [PMCID: PMC7123001 DOI: 10.1007/978-3-319-06752-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Most ubiquitinated proteins can be recognized and degraded by the 26S proteasome. In the meantime, protein deubiquitination by various deubiquitinating enzymes (DUBs) regulates protein stability within cells, and it can counterbalance intracellular homeostasis mediated by ubiquitination. Numerous reports have demonstrated that an aberrant process of the ubiquitin-proteasome pathway (UPP) regulated by the ubiquitination and deubiquitination systems results in failure of balancing between protein stability and degradation, and this failure can lead to tumorigenesis in various organs and tissues of mammals. The identification of molecular properties for various DUBs is very critical to understand cancer development and tumorigenesis. Therefore, knowledge of DUBs and their association with cancer and diseases is indispensible for developing effective inhibitors for DUBs. This chapter describes various features and functions of cancer-related DUBs. In addition, we summarize several inhibitors that specifically target certain DUBs in cancer and suggest that DUBs may be one of the most ideal and attractive therapeutic targets.
Collapse
Affiliation(s)
- Q. Ping Dou
- Wayne State University, Detroit, Michigan USA
| |
Collapse
|
43
|
Ubiquitin-specific protease 22: a novel molecular biomarker in cervical cancer prognosis and therapeutics. Tumour Biol 2013; 35:929-34. [PMID: 23979981 DOI: 10.1007/s13277-013-1121-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022] Open
Abstract
Ubiquitin-specific protease 22 (USP22) exhibits an important function in tumor progression and oncogenesis. The aim of this study was to investigate the role of USP22 and the association with its potential targets in patients with cervical cancer. To our knowledge, this is the first study that determines the relationship between USP22 expression and clinicopathological significance in cervical cancer. The immunohistochemistry results showed that USP22 protein was overexpressed in cervical cancer samples compared with normal cervical tissues (P < 0.001). Moreover, clinicopathological analysis showed that USP22 expression was highly related to International Federation of Gynecology and Obstetrics stage, Ki67, lymph node metastasis, and histology grade. The results of Kaplan-Meier analysis indicated that patients with high USP22 expression had significantly shorter overall survival (OS) and disease-free survival (DFS) than patients with low expression of USP22 (P < 0.001). Multivariate Cox regression analysis revealed that USP22 expression status was an independent prognostic marker for both OS and DFS of patients with cervical cancer. It is suggested that USP22 overexpression may be associated with poor prognosis in cervical cancer. It may represent a novel prognostic biomarker or a target for improving the treatment efficiency of patients with cervical cancer.
Collapse
|
44
|
Increased expression of USP22 is associated with disease progression and patient prognosis of salivary duct carcinoma. Oral Oncol 2013; 49:796-801. [PMID: 23664741 DOI: 10.1016/j.oraloncology.2013.03.454] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/27/2013] [Accepted: 03/31/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Ubiquitin-specific protease 22 (USP22) could exhibit a critical function in pathological processes, including oncogenesis and cell cycle progression. This study examines the protein expression of USP22 in salivary duct carcinoma (SDC) in association with patient survival and other clinicopathologic parameters. MATERIALS AND METHODS Quantitative RT-PCR and immunohistochemistry (IHC) were used to determine the expression of USP22 protein in 44 SDCs in comparison with 20 non-cancerous salivary tissues. Furthermore, we analyzed the correlation between the expression of the USP22 protein and various clinicopathologic factors including survival status of patients with SDC. RESULTS The incidence of positive USP22 expression was 63.7% in 44 SDC tissues. The mRNA level of USP22 expression in SDC samples was significantly higher than that in non-cancerous salivary tissues (P < 0.001), which was consistent with the IHC result (P < 0.001). Moreover, statistical analysis showed that positive USP22 expression was positively related to pT classification, pN classification and AJCC stage. Notably, high USP22 expression was significantly associated with shorter overall survival (P = 0.023) and disease-specific survival (P = 0.019). Multivariate Cox regression analysis revealed that USP22 expression level was an independent prognostic factor for both overall survival (P < 0.001) and disease-free survival (P < 0.001). CONCLUSION Our results indicate that activation of USP22 correlates with SDC progression and therapy failure. Overexpression of USP22 may contribute to the progression of SDC and thus may serve as a new molecular marker to predict the prognosis of SDC patients.
Collapse
|
45
|
Ning J, Zhang J, Liu W, Lang Y, Xue Y, Xu S. Overexpression of ubiquitin-specific protease 22 predicts poor survival in patients with early-stage non-small cell lung cancer. Eur J Histochem 2012; 56:e46. [PMID: 23361242 PMCID: PMC3567765 DOI: 10.4081/ejh.2012.e46] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/11/2012] [Accepted: 07/26/2012] [Indexed: 01/16/2023] Open
Abstract
Ubiquitin-specific protease 22 (USP22), a novel ubiquitin hydrolase, has been implicated in oncogenesis and cancer progression in various types of human cancer. However, the clinical significance of USP22 expression in non-small cell lung cancer (NSCLC) has not been determined. In the present study, USP22 messenger RNA (mRNA) and protein levels were analyzed by quantitative real-time polymerase chain reaction (PCR) and western blot analysis in 30 cases of NSCLC and in corresponding non-tumor tissue samples. Furthermore, immunohistochemistry was performed to detect USP22 protein expression in 86 primary tumor tissues derived from clinically annotated NSCLC cases at stage I-II. In our analysis we found that both USP22 mRNA and protein levels in NSCLC tissues were significantly higher than those in corresponding non-tumor tissues and that there was a significant correlation between the expression of USP22 mRNA and protein (P=0.000, κ=0.732). In addition, a high-level of USP22 expression was observed in 53.3% (39 out of 86) cases and it was correlated with large tumor size (P=0.029) and lymph node metastasis (P=0.026). Patients with tumors displaying a high-level of USP22 expression showed significantly shorter survival (P=0.006, log-rank test). Importantly, multivariate analysis showed that high USP22 protein expression was an independent prognostic factor for NSCLC patients (P=0.003). In sum, our data suggest that USP22 plays an important role in NSCLC progression at the early stage, and that overexpression of USP22 in tumor tissues could be used as a potential prognostic marker for patients with early clinical stage of NSCLC.
Collapse
Affiliation(s)
- J Ning
- Department of Thoracic Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
46
|
Prognostic Impact of del(17p) and del(22q) as assessed by interphase FISH in sporadic colorectal carcinomas. PLoS One 2012; 7:e42683. [PMID: 22912721 PMCID: PMC3422354 DOI: 10.1371/journal.pone.0042683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 07/11/2012] [Indexed: 12/11/2022] Open
Abstract
Background Most sporadic colorectal cancer (sCRC) deaths are caused by metastatic dissemination of the primary tumor. New advances in genetic profiling of sCRC suggest that the primary tumor may contain a cell population with metastatic potential. Here we compare the cytogenetic profile of primary tumors from liver metastatic versus non-metastatic sCRC. Methodology/Principal Findings We prospectively analyzed the frequency of numerical/structural abnormalities of chromosomes 1, 7, 8, 13, 14, 17, 18, 20, and 22 by iFISH in 58 sCRC patients: thirty-one non-metastatic (54%) vs. 27 metastatic (46%) disease. From a total of 18 probes, significant differences emerged only for the 17p11.2 and 22q11.2 chromosomal regions. Patients with liver metastatic sCRC showed an increased frequency of del(17p11.2) (10% vs. 67%;p<.001) and del(22q11.2) (0% vs. 22%;p = .02) versusnon-metastatic cases. Multivariate analysis of prognostic factors for overall survival (OS) showed that the only clinical and cytogenetic parameters that had an independent adverse impact on patient outcome were the presence of del(17p) with a 17p11.2 breakpoint and del(22q11.2). Based on these two cytogenetic variables, patients were classified into three groups: low- (no adverse features), intermediate- (one adverse feature) and high-risk (two adverse features)- with significantly different OS rates at 5-years (p<.001): 92%, 53% and 0%, respectively. Conclusions/Significance Our results unravel the potential implication of del(17p11.2) in sCRC patients with liver metastasis as this cytogenetic alteration appears to be intrinsically related to an increased metastatic potential and a poor outcome, providing additional prognostic information to that associated with other cytogenetic alterations such as del(22q11.2). Additional prospective studies in larger series of patients would be required to confirm the clinical utility of the new prognostic markers identified.
Collapse
|
47
|
Piao S, Liu Y, Hu J, Guo F, Ma J, Sun Y, Zhang B. USP22 is useful as a novel molecular marker for predicting disease progression and patient prognosis of oral squamous cell carcinoma. PLoS One 2012; 7:e42540. [PMID: 22880026 PMCID: PMC3411815 DOI: 10.1371/journal.pone.0042540] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 07/09/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The significance of ubiquitin-specific protease 22 (USP22) as a potential marker has been growing in the field of oncology. The aim of this study was to investigate the role of USP22 and the association with its potential targets in oral squamous cell carcinoma (OSCC). METHODS Immunohistochemistry was used to determine the expression of USP22 protein in 319 OSCC patients in comparison with 42 healthy controls. The clinical correlations and prognostic significance of the aberrantly expressed protein was evaluated to identify novel biomarker of OSCC. RESULTS The incidence of positive USP22 expression was 63.32% in 319 conventional OSCC tissues. The protein expression level of USP22 was concomitantly up-regulated from non-cancerous mucosa to primary carcinoma and from carcinomas to lymph node metastasis (P<0.001). Moreover, statistical analysis showed that positive USP22 expression was positively related to lymph node metastasis, Ki67, Cox-2 and recurrence. Furthermore, it was shown that patients with positive USP22 expression had significantly poorer outcome compared with patients with negative expression of USP22 for patients with positive lymph nodes. Multivariate Cox regression analysis revealed that USP22 expression level was an independent prognostic factor for both overall survival and disease-free survival (P<0.001 and P<0.001, respectively). Cancer cells with reduced USP22 expression exhibited reduced proliferation and colony formation evaluated by MTT and soft agar assays. CONCLUSION To our knowledge, this is the first study that determines the relationship between USP22 expression and prognosis in OSCC. We found that increased expression of USP22 is associated with poor prognosis in OSCC. USP22 may represent a novel and useful prognostic marker for OSCC.
Collapse
Affiliation(s)
- Songlin Piao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yanlong Liu
- Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Jing Hu
- Department of Breast Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Fulin Guo
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- * E-mail: (FG); (BZ)
| | - Jie Ma
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yao Sun
- Hard Tissue Lab, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Bin Zhang
- Hard Tissue Lab, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- * E-mail: (FG); (BZ)
| |
Collapse
|
48
|
Li J, Wang Z, Li Y. USP22 nuclear expression is significantly associated with progression and unfavorable clinical outcome in human esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 2012; 138:1291-7. [PMID: 22447106 DOI: 10.1007/s00432-012-1191-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/28/2012] [Indexed: 12/12/2022]
Abstract
PURPOSE To detect the expression levels of ubiquitin-specific protease 22 (USP22) in human esophageal squamous cell carcinoma (ESCC) and to correlate it with clinicopathologic and prognostic data. METHODS The immunoreactivity of USP22 protein was analyzed in 157 pathologically characterized ESCC tissues by immunohistochemistry. All statistical analyses were performed with SPSS statistical software to evaluate the association of USP22 protein with clinicopathologic factors and survival. RESULTS High expression of USP22 protein was detected in 50.96 % of 157 ESCC tissues and significantly associated with invasion depth, lymph node metastasis, pathologic stage and tumor relapse (P < 0.05, respectively). Univariate survival analysis showed that patients with high expression of USP22 protein had a significantly poorer 5-year disease-specific survival (P = 0.002), and multivariate survival analysis showed that high expression of USP22 protein was an independent prognosticator for unfavorable disease-specific survival (P = 0.039). Further survival analysis stratified by pathologic stage demonstrated that high expression of USP22 protein significantly predicted unfavorable clinical outcome (P = 0.029) among patients with pathologic stage II(b)-III diseases. CONCLUSION USP22 protein plays an essential role in ESCC progression and has clinical potentials not only as a promising biomarker to identify the subgroup of patients with more aggressive tumors and poor prognostic potential but also as an attractively therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jun Li
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jing Wu Wei Qi Lu 324#, Jinan, 250021 Shandong Province, China
| | | | | |
Collapse
|
49
|
Expression patterns of USP22 and potential targets BMI-1, PTEN, p-AKT in non-small-cell lung cancer. Lung Cancer 2012; 77:593-9. [PMID: 22717106 DOI: 10.1016/j.lungcan.2012.05.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recent researches document that an oncogenic role of USP22 activation may contribute to progression and predict the prognosis. We have reported that USP22 mediates cell survival and proliferation by promoting the expression of BMI-1 and upregulation of activated AKT pathway in colon cancer cells. However, little is known about its mechanisms in non-small-cell lung cancer (NSCLC). Here the authors investigated the significance of activation of USP22 and potential targets BMI-1, PTEN and phospho-AKT (p-AKT) in NSCLC. METHODS Expression levels of USP22, BMI-1, PTEN and p-AKT in samples from 114 patients with NSCLC were evaluated immunohistochemically using the tissue microarray method. Clinical significance was analyzed by multivariate Cox regression analysis, Kaplan-Meier curves and the log-rank test. RESULTS Immunohistochemically, USP22, BMI-1, p-AKT and PTEN were positive in 66.66%, 78.07%, 71.92% and 43.85% of NSCLC samples, respectively. Statistical correlation analysis showed USP22 to be significantly correlated with BMI-1 (r=0.315, P=0.001), p-AKT (r=0.271, P=0.003), and PTEN (r=-0.384, P<0.0001). NSCLCs with positive expression of USP22, BMI-1, p-AKT, and negative expression of PTEN were significantly correlated to tumor size (P=0.0240), differentiation (P=0.0457), pT classification (P=0.0077), pN classification (P=0.0064), and AJCC stage (P=0.0363) and poor overall survival (P<0.001). Multivariate Cox proportional hazards model analysis showed that the combined 4 markers was the independent prognostic indicator of overall survival (P<0.001; HR, 5.974; 95% CI, 3.307-10.791). CONCLUSIONS The simultaneous targeting of USP22, and its downstream signal transduction molecules seem highly informative in stratification of the cancer into subgroups with distinct likelihood of therapy failure, which contribute to make decision process regarding the individualized therapy selection and optimization.
Collapse
|
50
|
Kalady MF, Coffey JC, Dejulius K, Jarrar A, Church JM. High-throughput arrays identify distinct genetic profiles associated with lymph node involvement in rectal cancer. Dis Colon Rectum 2012; 55:628-39. [PMID: 22595841 DOI: 10.1097/dcr.0b013e3182507511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Preoperative clinical diagnosis of lymph node involvement guides treatment decisions for rectal cancer. Unfortunately, clinical staging still suffers from a lack of accuracy. OBJECTIVE The aim of this study was to evaluate objective genetic differences in primary rectal cancers with and without associated lymph node metastasis. DESIGN cDNA microarrays were generated from fresh-frozen tumors. Normalized data underwent global unsupervised hierarchical clustering analysis, and discriminating genes were mapped. Top discriminating genes were compared between stage II and III rectal cancers by use of an empirical Bayes 2 group t test with the Statistical Analysis of Microarrays and the Reproducibility-Optimized Test Statistic software separately to guide data reduction and deal with the difficulties of simultaneous statistical inference. Ingenuity Pathways Analysis software was used to analyze discriminating genes in terms of function and biological processes. PATIENTS Fifty-five patients with stage II and 22 patients with stage III rectal adenocarcinomas not treated with chemoradiation were included. RESULTS Two major unsupervised clusters emerged representing stage II and III cancers. In 1 cluster, 11 of 12 patients (92%) had stage III cancer; in the other cluster, 54 of 65 patients (83%) had stage II (p < 0.001). Five significantly differentially expressed genes characterized the stage III cluster: interleukin-8, 3-hydroxy-3-methylglutaryl coenzyme A synthase, carbonic anhydrase, ubiquitin, and cystatin (all p < 0.05). Of the 12 patients with differential expression of the 5 marker genes, only one had stage II cancer. Fifty-four of 55 stage II patients clustered with alternative expression patterns of the predictor genes. Differentially expressed genes are related to cancer-associated processes, pathways, and networks. LIMITATIONS The identified gene signatures have not yet been validated in independent patient populations. CONCLUSIONS Distinct gene expression signatures from primary rectal adenocarcinomas can help differentiate the presence or absence of lymph node metastases. These data are informative, and validation of this gene signature may provide a novel approach for more appropriate individualized treatment selection.
Collapse
Affiliation(s)
- Matthew F Kalady
- Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | | | | | |
Collapse
|