1
|
Nicola SM. Reassessing wanting and liking in the study of mesolimbic influence on food intake. Am J Physiol Regul Integr Comp Physiol 2016; 311:R811-R840. [PMID: 27534877 PMCID: PMC5130579 DOI: 10.1152/ajpregu.00234.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/09/2016] [Indexed: 01/12/2023]
Abstract
Humans and animals such as rats and mice tend to overconsume calorie-dense foods, a phenomenon that likely contributes to obesity. One often-advanced explanation for why we preferentially consume sweet and fatty foods is that they are more "rewarding" than low-calorie foods. "Reward" has been subdivided into three interdependent psychological processes: hedonia (liking a food), reinforcement (formation of associations among stimuli, actions, and/or the food), and motivation (wanting the food). Research into these processes has focused on the mesolimbic system, which comprises both dopamine neurons in the ventral tegmental area and neurons in their major projection target, the nucleus accumbens. The mesolimbic system and closely connected structures are commonly referred to as the brain's "reward circuit." Implicit in this title is the assumption that "rewarding" experiences are generally the result of activity in this circuit. In this review, I argue that food intake and the preference for calorie-dense foods can be explained without reference to subjective emotions. Furthermore, the contribution of mesolimbic dopamine to food intake and preference may not be a general one of promoting or coordinating behaviors that result in the most reward or caloric intake but may instead be limited to the facilitation of a specific form of neural computation that results in conditioned approach behavior. Studies on the neural mechanisms of caloric intake regulation must address how sensory information about calorie intake affects not just the mesolimbic system but also many other forms of computation that govern other types of food-seeking and food-oriented behaviors.
Collapse
Affiliation(s)
- Saleem M Nicola
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
2
|
du Hoffmann J, Nicola SM. Activation of Dopamine Receptors in the Nucleus Accumbens Promotes Sucrose-Reinforced Cued Approach Behavior. Front Behav Neurosci 2016; 10:144. [PMID: 27471453 PMCID: PMC4943936 DOI: 10.3389/fnbeh.2016.00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/23/2016] [Indexed: 01/19/2023] Open
Abstract
Dopamine receptor activation in the nucleus accumbens (NAc) promotes vigorous environmentally-cued food-seeking in hungry rats. Rats fed ad libitum, however, respond to fewer food-predictive cues, particularly when the value of food reward is low. Here, we investigated whether this difference could be due to differences in the degree of dopamine receptor activation in the NAc. First, we observed that although rats given ad libitum access to chow in their home cages approached a food receptacle in response to reward-predictive cues, the number of such approaches declined as animals accumulated food rewards. Intriguingly, cued approach to food occurred in clusters, with several cued responses followed by successive non-responses. This pattern suggested that behavior was dictated by transitions between two states, responsive and non-responsive. Injection of D1 or D2 dopamine receptor agonists into the NAc dose-dependently increased cue responding by promoting transitions to the responsive state and by preventing transitions to the non-responsive state. In contrast, antagonists of either D1 or D2 receptors promoted long bouts of non-responding by inducing transitions to the non-responsive state and by preventing transitions to the responsive state. Moreover, locomotor behavior during the inter-trial interval was correlated with the responsive state, and was also increased by dopamine receptor agonists. These results suggest that activation of NAc dopamine receptors plays an important role in regulating the probability of approach to food under conditions of normative satiety.
Collapse
Affiliation(s)
- Johann du Hoffmann
- Department of Neuroscience and Psychiatry, Albert Einstein College of Medicine Bronx, NY, USA
| | - Saleem M Nicola
- Department of Neuroscience and Psychiatry, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
3
|
Neasta J, Valmalle C, Coyne A, Carnazzi E, Subra G, Galleyrand J, Gagne D, M'Kadmi C, Bernad N, Bergé G, Cantel S, Marin P, Marie J, Banères J, Kemel M, Daugé V, Puget K, Martinez J. The novel nonapeptide acein targets angiotensin converting enzyme in the brain and induces dopamine release. Br J Pharmacol 2016; 173:1314-28. [PMID: 27027724 PMCID: PMC4940823 DOI: 10.1111/bph.13424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/20/2016] [Accepted: 01/08/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND PURPOSE Using an in-house bioinformatics programme, we identified and synthesized a novel nonapeptide, H-Pro-Pro-Thr-Thr-Thr-Lys-Phe-Ala-Ala-OH. Here, we have studied its biological activity, in vitro and in vivo, and have identified its target in the brain. EXPERIMENTAL APPROACH The affinity of the peptide was characterized using purified whole brain and striatal membranes from guinea pigs and rats . Its effect on behaviour in rats following intra-striatal injection of the peptide was investigated. A photoaffinity UV cross-linking approach combined with subsequent affinity purification of the ligand covalently bound to its receptor allowed identification of its target. KEY RESULTS The peptide bound with high affinity to a single class of binding sites, specifically localized in the striatum and substantia nigra of brains from guinea pigs and rats. When injected within the striatum of rats, the peptide stimulated in vitro and in vivo dopamine release and induced dopamine-like motor effects. We purified the target of the peptide, a ~151 kDa protein that was identified by MS/MS as angiotensin converting enzyme (ACE I). Therefore, we decided to name the peptide acein. CONCLUSION AND IMPLICATIONS The synthetic nonapeptide acein interacted with high affinity with brain membrane-bound ACE. This interaction occurs at a different site from the active site involved in the well-known peptidase activity, without modifying the peptidase activity. Acein, in vitro and in vivo, significantly increased stimulated release of dopamine from the brain. These results suggest a more important role for brain ACE than initially suspected.
Collapse
Affiliation(s)
- Jérémie Neasta
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Charlène Valmalle
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Anne‐Claire Coyne
- INSERM UMR 952, Physiopathologie des Maladies du Système Nerveux CentralParisFrance
| | - Eric Carnazzi
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Gilles Subra
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jean‐Claude Galleyrand
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Didier Gagne
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Céline M'Kadmi
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Nicole Bernad
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Gilbert Bergé
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Sonia Cantel
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, UMR5203, INSERM U661, Rue de la CardonilleUniversité de MontpellierMontpellierFrance
| | - Jacky Marie
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jean‐Louis Banères
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Marie‐Lou Kemel
- CIRB, Collège de France, 11, Place Marcelin BerthelotParisFrance
| | - Valérie Daugé
- INSERM UMR 952, Physiopathologie des Maladies du Système Nerveux CentralParisFrance
| | - Karine Puget
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jean Martinez
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| |
Collapse
|
4
|
Wen D, Zang G, Sun D, Yang S, Yu F, Li S, Ma C, Cong B. Effects of CCK-8 on the reinstatement of morphine-induced CPP and expression of behavioral sensitization in rats. Neuroscience 2013; 238:230-41. [DOI: 10.1016/j.neuroscience.2013.02.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
|
5
|
Affiliation(s)
- Mohammad R Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Burgdorf J, Panksepp J, Beinfeld MC, Kroes RA, Moskal JR. Regional brain cholecystokinin changes as a function of rough-and-tumble play behavior in adolescent rats. Peptides 2006; 27:172-7. [PMID: 16143427 DOI: 10.1016/j.peptides.2005.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/13/2005] [Accepted: 07/14/2005] [Indexed: 11/19/2022]
Abstract
Brain cholecystokinin (CCK) levels have been shown to be elevated in animals defeated during adult social aggression. The present experiment evaluated whether similar effects are evident in prolonged bouts of juvenile social-play fighting, which tend to switch from largely positive to some negative affect after approximately 15 min into a half-hour play session, as indexed by a gradual shift from positively valenced 50 kHz ultrasonic vocalizations (USVs) to negatively valenced 20 kHz USVs. Given the role of CCK in both positive and negative emotional events, we examined levels of CCK-8 in tissue homogenates from 14 brain areas in animals 6h after a 30 min play bout compared to no-play control animals tested similarly in isolation for 30 min. As with patterns observed following adult defeat, significantly higher CCK levels were evident after play in the posterior neo-cortex compared to no-play control animals (+26%). Levels of CCK were also elevated in the midbrain (+35%). However, unlike in adult aggression, CCK levels were reduced in the hypothalamus (-40%) and basal forebrain (-24%) as compared to no-play animals. Posterior cortex CCK levels were positively correlated to the duration that each animal was pinned (r = +.50) which suggests that elevated CCK in the posterior cortex may be related to the negative aspects of play. Hypothalamic CCK levels were negatively related to dorsal contacts and pins (r's = -.57), and suggest that the lower CCK levels may reflect the more positive valenced aspects of play. The data indicate that CCK utilization in the brain is dynamically responsive to rough-and-tumble play.
Collapse
Affiliation(s)
- Jeffrey Burgdorf
- J.P. Scott Center for Neuroscience, Mind and Behavior, Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | | | | | | |
Collapse
|
7
|
Hebb ALO, Poulin JF, Roach SP, Zacharko RM, Drolet G. Cholecystokinin and endogenous opioid peptides: interactive influence on pain, cognition, and emotion. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1225-38. [PMID: 16242828 DOI: 10.1016/j.pnpbp.2005.08.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2005] [Indexed: 11/22/2022]
Abstract
It is well documented that stressful life experiences contribute to the etiology of human mood disorders. Cholecystokinin (CCK) is a neuropeptide found in high concentrations throughout the central nervous system, where it is involved in numerous physiological functions. A role for CCK in the induction and persistence of anxiety and major depression appears to be conspicuous. While increased CCK has been associated with motivational loss, anxiety and panic attacks, an increase in mesocorticolimbic opioid availability has been associated with coping and mood elevation. The close neuroanatomical distribution of CCK with opioid peptides in the limbic system suggests that there may be an opioid-CCK link in the modulation and expression of anxiety or stressor-related behaviors. In effect, while CCK induces relatively protracted behavioral disturbances in both animal and human subjects following stressor applications, opioid receptor activation may change the course of psychopathology. The antagonistic interaction of CCK and opioid peptides is evident in psychological disturbances as well as stress-induced analgesia. There appears to be an intricate balance between the memory-enhancing and anxiety-provoking effects of CCK on one hand, and the amnesic and anxiolytic effects of opioid peptides on the other hand. Potential anxiogenic and mnemonic influences of site-specific mesocorticolimbic CCK and opioid peptide availability, the relative contributions of specific CCK and opioid receptors, as well as the time course underlying neuronal substrates of long-term behavioral disturbances as a result of stressor manipulations, are discussed.
Collapse
Affiliation(s)
- Andrea L O Hebb
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, Canada B3H 1X5.
| | | | | | | | | |
Collapse
|
8
|
Vazquez V, Farley S, Giros B, Daugé V. Maternal deprivation increases behavioural reactivity to stressful situations in adulthood: suppression by the CCK2 antagonist L365,260. Psychopharmacology (Berl) 2005; 181:706-13. [PMID: 16032413 DOI: 10.1007/s00213-005-0029-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 04/03/2005] [Indexed: 11/26/2022]
Abstract
RATIONALE Maternal deprivation can result in long-term impairment of neuronal functions and in the development of long-lasting behavioural disorders. OBJECTIVES This study analysed the effects of a selective cholecystokinin-2 (CCK2) antagonist, 3R-(+)-N-(2,3-dihydro-1methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3yl)-N'-(3-methyl phenyl) urea (L365,260), in anxiety- and stress-related behaviours of adult rats that were deprived (D) from their mother and littermates for 3 h everyday during 14 days after birth. METHODS The behaviour was studied in actimeter, in open field and after food and water deprivation. Corticosterone plasma levels were quantified after food and water deprivation. The effects of L365,260 were studied in the behavioural changes observed in D rats. RESULTS No differences in circadian motor activity between non-deprived (ND) and D rats were observed. D rats showed a 50% decrease in their number of visits to the central (aversive) part of the open field compared to ND rats. This effect was suppressed by L365,260. After 20 h of food and water deprivation, an increase in plasma corticosterone was observed in D and ND rats. However, the raise of corticosterone secretion in D rats was dramatically increased (300%) compared to ND rats, indicating a hypersensitised state revealed by this stressful situation. Consumption of sucrose solution (1%) was higher for D rats than for ND rats after food and water deprivation. Sucrose consumption returned to control values following L365,260 treatment. CONCLUSIONS These results suggest that maternal deprivation led to an increase in anxiety and stress reactivity in adulthood. We propose that these long-lasting changes are partly dependent on CCKergic transmission involving the activation of CCK2 receptors.
Collapse
Affiliation(s)
- Vincent Vazquez
- Laboratoire de Neurobiologie et Psychiatrie, Faculté de Médecine, INSERM U513, 8 rue du Général Sarrail, Créteil, 94010, France
| | | | | | | |
Collapse
|
9
|
Vazquez V, Penit-Soria J, Durand C, Besson MJ, Giros B, Daugé V. Maternal deprivation increases vulnerability to morphine dependence and disturbs the enkephalinergic system in adulthood. J Neurosci 2005; 25:4453-62. [PMID: 15872092 PMCID: PMC6725024 DOI: 10.1523/jneurosci.4807-04.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 03/09/2005] [Accepted: 03/15/2005] [Indexed: 11/21/2022] Open
Abstract
Maternal deprivation can trigger long-lasting molecular and cellular modifications in brain functions and might facilitate the appearance of pathogenic behaviors. This study focuses on the vulnerability to develop morphine dependence in adult rats that were separated from their mother and littermates for 3 h per day for 14 d after birth and examines the adaptive changes in the enkephalinergic pathways. Place-preference conditioning was observed with 2 mg/kg morphine in deprived rats, whereas 5 mg/kg morphine was necessary to induce conditioning in nondeprived animals. A prolonged morphine conditioning was shown in deprived rats. A strong increase in oral morphine self-administration behavior and preference was observed in deprived rats. Only a very slight increase in preference for sucrose solution, a more ethological reinforcer known to interact with the opioid system, was shown in deprived rats. These results indicate that this postnatal environment change leads to a hypersensitivity to the reinforcing properties of morphine and to the development of morphine dependence. A significant decrease in preproenkephalin mRNA expression was observed in the nucleus accumbens and the caudate-putamen nucleus of deprived rats. The basal extracellular levels of the Met-enkephalin-like immunoreactivity in the nucleus accumbens were significantly lower in deprived rats when compared with nondeprived animals, whereas no change in mu-opioid receptor binding occurred. These results strongly support that maternal deprivation leads to a basal hypoactivity of the enkephalinergic system and hypersensitivity to morphine effects. Together, our results suggest that maternal deprivation in pups likely represents a risk factor for morphine dependence in adult rats.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Autoradiography/methods
- Behavior, Animal
- Brain/drug effects
- Brain/metabolism
- Choice Behavior/drug effects
- Conditioning, Psychological/drug effects
- Dialysis/methods
- Dose-Response Relationship, Drug
- Drinking Behavior/drug effects
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacokinetics
- Enkephalin, Methionine/metabolism
- Enkephalins/genetics
- Enkephalins/metabolism
- Female
- In Situ Hybridization/methods
- Maternal Deprivation
- Morphine/administration & dosage
- Morphine Dependence/metabolism
- Narcotics/administration & dosage
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Pregnancy
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA, Messenger/metabolism
- Radioimmunoassay/methods
- Rats
- Rats, Long-Evans
- Receptors, Opioid, mu/metabolism
- Self Administration
- Sucrose/metabolism
- Time Factors
- Tritium/pharmacokinetics
Collapse
Affiliation(s)
- Vincent Vazquez
- Institut National de la Santé et de la Recherche Médicale, U513, Laboratoire de Neurobiologie et Psychiatrie, Université Paris XII, Faculté de Médecine, 94010 Créteil, France
| | | | | | | | | | | |
Collapse
|
10
|
Moinard C, Dauge V, Cynober L. Ornithine alpha-ketoglutarate supplementation influences motor activity in healthy rats. Clin Nutr 2005; 23:485-90. [PMID: 15297083 DOI: 10.1016/j.clnu.2003.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Accepted: 08/23/2003] [Indexed: 11/24/2022]
Abstract
BACKGROUND Ornithine alpha-ketoglutarate (OKG) improves nutritional status in malnourished patients. Published and unpublished data suggest OKG may have effects on the central nervous system that may contribute to its action. OBJECTIVE We investigated the effect of an OKG-enriched diet on behaviour in healthy rats. DESIGN Thirty male Wistar rats were randomised in three groups: the OKG group was fed for 5 days (D0-D5) at 90% of spontaneous food intake with an OKG-enriched diet (5 g/kg/d). The non-essential amino acids (NEAA) group was fed similarly with a regimen enriched with NEAA (glycine, alanine, histidine and serine) to be isonitrogenous to OKG group. The ad libitum (AL) group had no treatment and was fed ad libitum with a standard regimen throughout. Rats were tested at D4 for motor activity by actimetry, and at D5 first for spontaneous alternation behaviour measured in the Y-maze, and then for exploratory behaviour measured using the open-field test (stressful environment). RESULTS We found that OKG supplementation enhanced global motricity by actimetry (AL 772 +/- 55, NEAA 811 +/- 54 vs. OKG 966 +/- 24 arbitrary units, P < 0.05) and total numbers of arms visited in the Y-maze (AL 26 +/- 2, NEAA 30 +/- 3 vs. OKG 38 +/- 3, P < 0.05). The lack of any effect of the OKG-enriched diet in the open-field test shows that the enhancement of locomotion activity was most probably not due to an increase in anxiety or fear in the rats. CONCLUSION An OKG-enriched diet can induce beneficial stimulant effects that may be involved in the mechanism of action of OKG.
Collapse
Affiliation(s)
- Christophe Moinard
- Laboratoire de Biologie de la Nutrition EA 2498, Faculté de Pharmacie, 4, avenue de l'Observatoire, Paris, Cedex 06 75270, France
| | | | | |
Collapse
|
11
|
van den Buuse M, van Driel IR, Samuelson LC, Pijnappel M, Martin S. Reduced effects of amphetamine on prepulse inhibition of startle in gastrin-deficient mice. Neurosci Lett 2005; 373:237-42. [PMID: 15619550 DOI: 10.1016/j.neulet.2004.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 09/27/2004] [Accepted: 10/05/2004] [Indexed: 10/26/2022]
Abstract
The present study was aimed at investigating the role of gastrin in startle, startle habituation and prepulse inhibition (PPI). There were no significant differences between gastrin knockout mice and their wildtype controls in any of these baseline parameters. The disruption of PPI by treatment with 5 mg/kg of amphetamine was absent in gastrin knockout mice. However, a higher dose of amphetamine disrupted PPI in both genotypes. Similarly, treatment with the dopamine receptor agonist, apomorphine, the N-methyl-D-aspartate receptor antagonist, MK-801, and the serotonin-1A receptor agonist, 8-hydroxy-di-propylaminotetralin (8-OH-DPAT) modulated PPI similarly in gastrin knockout mice and wildtype controls. These data suggest a role of gastrin in the brain in modulating dopamine release in areas involved in PPI.
Collapse
Affiliation(s)
- Maarten van den Buuse
- Behavioural Neuroscience Laboratory, Mental Health Research Institute of Victoria, 155 Oak Street, Parkville, Vic. 3052, Australia.
| | | | | | | | | |
Collapse
|
12
|
Bellier B, Crété D, Million ME, Beslot F, Bado A, Garbay C, Daugé V. New CCK2 agonists confirming the heterogeneity of CCK2 receptors: characterisation of BBL454. Naunyn Schmiedebergs Arch Pharmacol 2004; 370:404-13. [PMID: 15480577 DOI: 10.1007/s00210-004-0969-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 07/14/2004] [Indexed: 10/26/2022]
Abstract
Pharmacological studies were undertaken with a new series of cholecystokinin(2) CCK(2) agonists in order to assign to them a CCK(2A) or CCK(2B) pharmacological profile. The open-field test was chosen as the discrimination test of CCK(2B) agonists. The most interesting agonist, BBL454 (0.03-300 microg/kg) induced hyperactivity which was blocked by a CCK(2) antagonist, the D1 antagonist SCH23390, the delta-opioid antagonist naltrindole, but not a CCK(1) antagonist. All compounds active in the open-field test are characterised by a common structural feature, -COCH(2)CO-Trp-NMeNle-Asp-Phe-NH(2), whereas inactive compounds do not possess such a motive. Therefore, this feature can be considered crucial for CCK(2B) activity. BBL454 (0.03-3 microg/kg) improved memory in a two-trial memory test while it was very weakly active on the peripheral CCK(2) receptor, and did not evoke anxiogenic effects in the plus-maze test. The synthesis of BBL454 is simple, its minimal active dose is 30 ng/kg and no "bell-shaped" responses were observed. These results suggest that BBL454 could be considered to be the new CCK(2B) reference agonist.
Collapse
Affiliation(s)
- Bruno Bellier
- Faculté des Sciences Pharmaceutiques et Biologiques, U266 INSERM, FRE 2463CNRS, 4, avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Panksepp J, Burgdorf J, Beinfeld MC, Kroes RA, Moskal JR. Regional brain cholecystokinin changes as a function of friendly and aggressive social interactions in rats. Brain Res 2004; 1025:75-84. [PMID: 15464747 DOI: 10.1016/j.brainres.2004.07.076] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2004] [Indexed: 11/23/2022]
Abstract
Cholecystokinin (CCK) is the most abundant neuropeptide in the mammalian brain, and has been implicated in the regulation of a diversity of emotions and motivations including negative affect and stress responses. In this experiment, we assayed levels of CCK (CCK4/5 and CCK8) from tissue homogenates in intruder animals 6 h after resident-intruder inter-male aggression. Intruder animals that demonstrated submissive behavior (freezing and 22-kHz ultrasonic vocalizations) had higher levels of CCK in the tegmentum and posterior cortex as compared to non-submissive (i.e., "Friendly") intruder animals. Ultrasonic vocalizations (22-kHz) were positively correlated with CCK levels in the tegmentum, posterior cortex and pituitary. These data suggest that CCK may play a role in the generation of negative affective states indexed by 22-kHz ultrasonic calls in certain regions of the brain.
Collapse
Affiliation(s)
- Jaak Panksepp
- J.P. Scott Center for Neuroscience, Mind and Behavior, Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | | | | | | | |
Collapse
|
14
|
Bellier B, Dugave C, Etivant F, Genet R, Gigoux V, Garbay C. Synthesis and biological characterisation of [3H]BBL454, a new CCK2 selective radiolabelled agonist displaying original pharmacological properties. Bioorg Med Chem Lett 2004; 14:369-72. [PMID: 14698161 DOI: 10.1016/j.bmcl.2003.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
[(3)H]BBL454, a new CCK(2) selective tritiated agonist was prepared via the reductive tritiation of a 5-aminopentyn-1-yl moiety introduced on the N-terminal end of a pentapeptide derivative of cholecystokinin. The binding properties of this labelled compound were determined on CHO cells transfected with the rat CCK(2) receptor. [(3)H]BBL454 is able to discriminate two affinity states of the CCK(2) receptor a supplementary indication of its validity for further exploring the heterogeneity of this receptor.
Collapse
Affiliation(s)
- Bruno Bellier
- Laboratoire de Pharmacochimie Moléculaire et Structurale, FRE CNRS 2463-INSERM U266, UFR des Sciences Pharmaceutiques et Biologiques, 4 avenue de l'Observatoire, 75270 Cedex 06, Paris, France
| | | | | | | | | | | |
Collapse
|
15
|
Farook JM, McLachlan CS, Zhu YZ, Lee L, Moochhala SM, Wong PTH. The CCK2 agonist BC264 reverses freezing behavior habituation in PVG hooded rats on repeated exposures to a cat. Neurosci Lett 2004; 355:205-8. [PMID: 14732467 DOI: 10.1016/j.neulet.2003.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our previous studies (NeuroReport 12 (2001) 2717) showed that PVG hooded and not Sprague-Dawley (SD) rats exhibit remarkable freezing behavior on exposure to a cat in the cat freezing test apparatus. In the present study, we further examined the differences between these two strains of rats in response to repeated daily exposure to a cat in the cat freezing test apparatus. Freezing behavior habituation was observed in both PVG hooded (days 5-7) and SD rats (days 3-7). A selective CCK(2) agonist (BC264, 0.3 microg/kg, i.p.) on day 8 reversed habituated freezing behavior and locomotor activity in PVG hooded rats, but not in SD rats. These results suggest that CCK2 receptors mediate habituation to an anxiety-inducing stimulus in PVG hooded rats and further suggest that differential expression of these CCK2 receptors underlies this strain difference.
Collapse
Affiliation(s)
- J M Farook
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Albiston AL, Mustafa T, McDowall SG, Mendelsohn FAO, Lee J, Chai SY. AT4 receptor is insulin-regulated membrane aminopeptidase: potential mechanisms of memory enhancement. Trends Endocrinol Metab 2003; 14:72-7. [PMID: 12591177 DOI: 10.1016/s1043-2760(02)00037-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although angiotensin IV (Ang IV) was thought initially to be an inactive product of Ang II degradation, it was subsequently shown that the hexapeptide markedly enhances learning and memory in normal rodents and reverses the memory deficits seen in animal models of amnesia. These central nervous system effects of Ang IV are mediated by binding to a specific site, known as the AT(4) receptor, which is found in appreciable levels throughout the brain and is concentrated particularly in regions involved in cognition. This field of research was redefined by the identification of the AT(4) receptor as the transmembrane enzyme, insulin-regulated membrane aminopeptidase (IRAP). Here, we explore the potential mechanisms by which Ang IV binding to IRAP leads to the facilitation of learning and memory.
Collapse
Affiliation(s)
- Anthony L Albiston
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Kõks S, Abramov U, Veraksits A, Bourin M, Matsui T, Vasar E. CCK2 receptor-deficient mice have increased sensitivity of dopamine D2 receptors. Neuropeptides 2003; 37:25-9. [PMID: 12637032 DOI: 10.1016/s0143-4179(02)00137-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study supports a role of CCK(2) receptors in the regulation of dopamine neurones. In pharmacological studies conducted on male CCK(2) receptor-deficient mice the changes in the activity of dopamine system were established. A low dose of dopamine agonist apomorphine (0.1 mg/kg), stimulating the pre-synaptic dopamine receptors, induced significantly stronger suppression of locomotor activity in mutant mice (-/-) compared to their wild-type littermates (+/+). The administration of amphetamine (3-6 mg/kg), a drug increasing dopamine release, caused a dose-dependent stimulation of locomotor activity in wild-type mice. In mice lacking CCK(2) receptors, a lower dose of amphetamine (3 mg/kg) tended to suppress the motor activity, whereas the higher dose (6 mg/kg) induced the significantly stronger motor stimulation in mutant mice. Moreover, in the CCK(2) receptor-deficient mice the affinity of dopamine D(2) receptors, but not 5-HT(2) receptors, was increased. Altogether, the targeted genetic suppression of CCK(2) receptors increased the sensitivity of pre- and post-synaptic dopamine D(2) receptors.
Collapse
Affiliation(s)
- S Kõks
- Department of Physiology, Biomedicum, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
18
|
Coutureau E, Léna I, Daugé V, Di Scala G. The entorhinal cortex-nucleus accumbens pathway and latent inhibition: a behavioral and neurochemical study in rats. Behav Neurosci 2002; 116:95-104. [PMID: 11895187 DOI: 10.1037/0735-7044.116.1.95] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Latent inhibition (LI) refers to the decrease in conditioned response produced by the repeated nonrein-forced preexposure to the to-be-conditioned stimulus. Experiment I investigated the effects of electrolytic lesions of the entorhinal cortex on LI in a conditioned emotional response procedure. Entorhinal cortex lesions attenuated LI. Experiments 2 and 3 investigated whether this attenuation of LI could result from a modification in nucleus accumbens (NAcc) dopamine (DA) release. Rats with entorhinal cortex lesions displayed normal spontaneous and amphetamine-induced locomotor activity, as well as normal basal and amphetamine-induced release of DA within the NAcc (assessed by microdialysis). Taken together, these results show that entorhinal cortex lesions disrupt LI in a way that is unlikely to be due to an alteration of DA release within the NAcc.
Collapse
Affiliation(s)
- Etienne Coutureau
- Laboratoire de Neurosciences Comportementales et Cognitives, Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France.
| | | | | | | |
Collapse
|
19
|
Beinfeld MC, Connolly K, Pierce RC. OLETF (Otsuka Long-Evans Tokushima Fatty) rats that lack the CCK 1 (A) receptor develop less behavioral sensitization to repeated cocaine treatment than wild type LETO (Long Evans Tokushima Otsuka) rats. Peptides 2001; 22:1285-90. [PMID: 11457522 DOI: 10.1016/s0196-9781(01)00453-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OLETF (Otsuka Long-Evans Tokushima Fatty) lacking the CCK 1 (A) receptor have similar spontaneous activity and locomotor response (horizontal and vertical activity) in response to a single injection of cocaine as the wild type LETO (Long Evans Tokushima Otsuka) rats. In contrast, the OLETF rats display more stereotypy in response to the first dose of cocaine than the LETO rats. Tested at 7 and 14 days after a one week daily treatment with cocaine, the LETO rats display robust behavioral sensitization to cocaine while the OLETF rats did not. These results support the hypothesis that endogenous CCK released by cocaine treatment and acting at CCK 1 receptors is required for the development and/or expression of this behavior.
Collapse
Affiliation(s)
- M C Beinfeld
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA.
| | | | | |
Collapse
|
20
|
Tieppo CA, Felicio LF, Nasello AG. Cholecystokinin modulation of apomorphine- or amphetamine-induced stereotypy in rats: opposite effects. Peptides 2001; 22:1291-8. [PMID: 11457523 DOI: 10.1016/s0196-9781(01)00454-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Stereotyped behavior can be induced by the dopamine agonist apomorphine or by the releasing agent amphetamine. Cholecystokinin influence on dopamine-mediated behaviors has been extensively studied but a real controversy remains. Our purpose was to further characterize the dopamine-cholecystokinin interaction in apomorphine- and amphetamine-induced stereotyped behavior using sulphated cholecystokinin octapeptide (CCK8) and cholecystokinin tetrapeptide (CCK4) treatments. The results showed that CCK8 decreases apomorphine-induced stereotyped behavior and CCK4 has no effect. CCK4 and CCK8 increased the amphetamine-induced stereotyped behavior; CCK4 was more effective. The results confirm the opposite modulation of apomorphine or amphetamine-induced stereotyped behavior by CCK. These data suggest that this modulation is mediated by both CCK receptors on apomorphine-induced and only by CCK(2) receptors on amphetamine-induced stereotyped behavior.
Collapse
Affiliation(s)
- C A Tieppo
- Department of Physiological Sciences, Medical School of Santa Casa de São Paulo, 01277-900 São Paulo-SP, Brazil.
| | | | | |
Collapse
|
21
|
Daugé V, Beslot F, Matsui T, Roques BP. Mutant mice lacking the cholecystokinin2 receptor show a dopamine-dependent hyperactivity and a behavioral sensitization to morphine. Neurosci Lett 2001; 306:41-4. [PMID: 11403953 DOI: 10.1016/s0304-3940(01)01867-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cholecystokinin2 (CCK2) receptor-deficient mice were used to analyze the in vivo function of CCK2 receptor and especially the incidence of this gene invalidation on enkephalinergic and dopaminergic systems. Hyperlocomotor activity of CCK2 receptor-deficient mice was suppressed by a selective D2 antagonist but not by a D1 antagonist. Injection of amphetamine induced a hyperlocomotor activity in both groups of mice while mutant mice were less sensitive to cocaine. Administration of 6 mg/kg of morphine once every 2 days for 5 days significantly (P<0.05) enhanced motor activity the last day compared to the first day, only in CCK2 receptor-deficient mice. These results emphasize the role of CCK2 receptors in counteracting the effects of dopaminergic systems and suggest that CCK2 receptor invalidation could lead to a slight behavioral sensitization.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Cholecystokinin/metabolism
- Dopamine/metabolism
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Dopamine D2 Receptor Antagonists
- Enkephalins/metabolism
- Female
- Hyperkinesis/chemically induced
- Hyperkinesis/metabolism
- Hyperkinesis/physiopathology
- Male
- Mice
- Mice, Mutant Strains/genetics
- Mice, Mutant Strains/metabolism
- Morphine/pharmacology
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neural Pathways/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Receptors, Cholecystokinin/deficiency
- Receptors, Cholecystokinin/drug effects
- Receptors, Cholecystokinin/genetics
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/metabolism
Collapse
Affiliation(s)
- V Daugé
- Département de Pharmacochimie Moléculaire et Structurale, INSERM U266-CNRS UMR 8600, UFR des Sciences Pharmaceutiques et Biologiques, 4, avenue de l'Observatoire, 75270 Cedex 06, Paris, France.
| | | | | | | |
Collapse
|
22
|
Abstract
From viruses to multicellular organisms, life is inseparable from the genetic instructions aimed at regulating its maintenance, division, multiplication, differentiation and death (apoptosis). Over the past 15 years, structural studies have begun to resolve the complex reactions involved in these fundamental processes in biology. The three-dimensional representations of the complexes formed with peptides and/or proteins have allowed interpretation of the biochemical data and formulation of novel hypotheses about the control and execution of these processes. Moreover, they have opened the way to rational approaches for designing compounds able to interfere with these crucial events in normal or pathological conditions. Various results obtained in our laboratory in these fields are briefly summarized in this review.
Collapse
Affiliation(s)
- B P Roques
- Département de Pharmacochimie Moléculaire et Structurale, INSERM U266, CNRS UMR8600, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France.
| |
Collapse
|
23
|
Duvauchelle CL, Ikegami A, Castaneda E. Conditioned increases in behavioral activity and accumbens dopamine levels produced by intravenous cocaine. Behav Neurosci 2000; 114:1156-66. [PMID: 11142647 DOI: 10.1037/0735-7044.114.6.1156] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In vivo microdialysis, behavioral activity assessments, and a conditioned place preference (CPP) test were used to investigate dopaminergic correlates of cocaine-conditioned behaviors. Over 12 days, rats were given either intravenous cocaine (4.2 mg/kg) or saline (6 cocaine and 6 saline infusions) daily in distinctively different environments. The following day, rats were tested in the cocaine- and saline-paired environments; 48 hr later, CPP was determined. The cocaine-associated environment elicited greater nucleus accumbens dopamine (NAcc DA) levels, hyperactivity, and place preference, though the emergence of DA increases was not in synchrony with peak behavioral activation. Although conditioned behavioral effects after repeated cocaine are well documented, direct evidence of increased NAcc DA in response to a cocaine-paired environment has not been previously reported. Discrepancies with previous work are attributed to a number of methodological differences.
Collapse
Affiliation(s)
- C L Duvauchelle
- Division of Pharmacology/Toxicology, University of Texas at Austin, 78712-1074, USA.
| | | | | |
Collapse
|
24
|
Bellier B, Million ME, DaNascimento S, Meudal H, Kellou S, Maigret B, Garbay C. Replacement of glycine with dicarbonyl and related moieties in analogues of the C-terminal pentapeptide of cholecystokinin: CCK(2) agonists displaying a novel binding mode. J Med Chem 2000; 43:3614-23. [PMID: 11020275 DOI: 10.1021/jm0000416] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent advances in the field of cholecystokinin have indicated the possible occurrence of multiple affinity states of the CCK(2) receptor. Besides, numerous pharmacological experiments performed "in vitro" and "in vivo" support the eventuality of different pharmacological profiles associated to CCK(2) ligands. Indeed, some agonists are essentially anxiogenic and uneffective in memory tests, whereas others are not anxiogenic and appear as able to reinforce memory. The reference compound for the latter profile is the CCK-8 analogue BC 264 (Boc-Tyr(SO(3)H)-gNle-mGly-Trp-(NMe)Nle-Asp-Phe-NH(2)). However, although tetrapeptide ligands based on CCK-4 (Trp-Met-Asp-Phe-NH(2)) are known to possess sufficient structural features for CCK(2) recognition, none shares the properties of BC 264. Hence we have developed new short peptidic or pseudo-peptidic derivatives containing the C-terminal tetrapeptide of BC 264. Our results indicate that some compounds characterized by the presence of two carbonyl groups at the N-terminus, as in 2b (HO(2)C-CH(2)-CONH-Trp-(NMe)Nle-Asp-Phe-NH(2)), are likely to show a BC 264-like profile, bind to the CCK(2) receptor in a specific way, and display remarkable affinities (2b: 0.28 nM on guinea-pig cortex membrane preparations). This original binding mode is discussed and further enlightened by NMR and molecular modeling studies.
Collapse
Affiliation(s)
- B Bellier
- Département de Pharmacochimie Moléculaire et Structurale, U266 INSERM, UMR 8600 CNRS, UFR des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Bucinskaite V, Kurosawa M, Lundeberg T. Exogenous cholecystokinin-8 reduces vagal efferent nerve activity in rats through CCK(A) receptors. Br J Pharmacol 2000; 129:1649-54. [PMID: 10780970 PMCID: PMC1572023 DOI: 10.1038/sj.bjp.0703270] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It has been proposed that the vagus nerve plays a role in mediating cholecystokinin-8 (CCK-8) effect on such gastric functions as motility, emptying and gastric acid secretion. To examine the contribution of the efferent pathways in realizing these effects, efferent mass activity in the ventral gastric vagal nerve in Sprague-Dawley rats was recorded. Intravenous infusion of CCK-8 (0.1-1 nmol) suppressed the efferent activity. The effect of CCK-8 was significantly reduced in animals with total subdiaphragmatic vagotomy in comparison to those with partial vagotomy. Intravenous infusion of CCK(A) receptor antagonist L-364,718 (1-100x10(-6) g) blocked the response of vagal efferent activity to 0.1 nmol CCK-8, but the CCK(B) receptor antagonist L-365,260 (1-100x10(-6) g) did not in the conditions of either partial or total vagotomy. Intracisternal infusion of L-364,718 (1x10(-6) g) blocked the response of vagal efferent activity to 0.1 nmol CCK-8 i.v. Infusion of exogenous CCK-8 did not affect the activity of supradiaphragmatic vagal afferents. The results suggest that the effect of systemically administered CCK-8 on vagal efferent activity is mediated by both peripherally (subdiaphragmatically) and centrally localized CCK(A) receptors.
Collapse
Affiliation(s)
- V Bucinskaite
- Department of Physiology and Pharmacology, Karolinska Institutet, von Eulers väg 4, 171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
26
|
Tieppo CA, Ferreira FS, Sassatani AS, Felicio LF, Nasello AG. Opposite modulation of apomorphine- or amphetamine-induced stereotypy by antagonists of CCK receptors. Eur J Pharmacol 2000; 387:189-96. [PMID: 10650159 DOI: 10.1016/s0014-2999(99)00782-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stereotyped behavior is elicited by activation of dopaminergic systems with drugs such as apomorphine and amphetamine. In previous studies, we have reported that the sulfated cholecystokinin octapeptide (CCK-8) decreased apomorphine-induced stereotypy in animals with normal and supersensitive dopamine receptors. The aim of the present study was to evaluate the effects of CCK(1) and CCK(2) receptor antagonists on stereotyped behavior induced by apomorphine or amphetamine. Rats were pretreated with the CCK(1) (SR 27897B; 1-[[2-(4-(2-chlorophenyl) thiazol-2-yl) aminocarbonyl]indolyl]acetic acid; 500 microg/kg; i.p.) or CCK(2) (L-365,260; 3R-(+)-N-(2,3-dihydro-1-methyl-2-oxo-5 phenyl-1H-1, 4-benzodiazepine-3-yl)-N'-(3-methyl phenyl)-urea; 500 microg/kg; i.p. ) receptor antagonists or saline 15 min before apomorphine (0.6 mg/kg; s.c.) or amphetamine (9.0 mg/kg; i.p.) injection. Both CCK(1) and CCK(2) receptor antagonists significantly increased apomorphine-induced stereotypy. In contrast, only the blockade of CCK(2) receptors significantly decreased amphetamine-induced stereotypy. The results suggest a dual opposite mechanism for CCK-dopamine interactions. These data also suggest that both apomorphine- and amphetamine-induced stereotypy should be used whenever effects of drugs acting on dopaminergic systems are being assessed.
Collapse
Affiliation(s)
- C A Tieppo
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de SP, R. Dr. Cesário Motta Jr, 61, 11 andar, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
27
|
Rat hippocampal neurons are critically involved in physiological improvement of memory processes induced by cholecystokinin-B receptor stimulation. J Neurosci 1999. [PMID: 10436075 DOI: 10.1523/jneurosci.19-16-07230.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The involvement in memory processes of the neuropeptide cholecystokinin (CCK) through its interaction with the CCK-B receptors was studied. The two-trial recognition memory task was used. Control animals showed recognition memory after a 2 hr time interval but not after a 6 hr time interval between the two trials. The improving effect of a selective CCK-B agonist, BC 264, intraperitoneally administered (0.3 microgram/kg) in the retrieval phase of the task (6 hr time interval), was also observed after its injection (1 pmol/0.5 microliter) in the dorsal subiculum/CA1 of the hippocampus but not in the caudate/putamen nucleus or in the prefrontal cortex of rats. The CCK-B antagonist L-365,260 injected (10 ng/0.5 microliter) into this region of the hippocampus abolished the improving effect of BC 264 injected intraperitoneally. Furthermore, L-365,260 injected in the hippocampus suppressed the recognition of the novel arm normally found in the controls (2 hr time interval) when it was injected before the acquisition or the retrieval phase of the task. In addition, an increase of the extracellular levels of CCK-like immunoreactivity in the hippocampus of rats during the acquisition and retention phase of the task was observed. Finally, CCK-B receptor-deficient mice have an impairment of performance in the memory task (2 hr time interval). Together, these results support the physiological involvement of the CCKergic system through its interaction with CCK-B receptors in the hippocampus to improve performance of rodents in the spatial recognition memory test.
Collapse
|
28
|
Abstract
Cholecystokinin (CCK) is a peptide originally discovered in the gastrointestinal tract but also found in high density in the mammalian brain. The C-terminal sulphated octapeptide fragment of cholecystokinin (CCK8) constitutes one of the major neuropeptides in the brain; CCK8 has been shown to be involved in numerous physiological functions such as feeding behavior, central respiratory control and cardiovascular tonus, vigilance states, memory processes, nociception, emotional and motivational responses. CCK8 interacts with nanomolar affinities with two different receptors designated CCK-A and CCK-B. The functional role of CCK and its binding sites in the brain and periphery has been investigated thanks to the development of potent and selective CCK receptor antagonists and agonists. In this review, the strategies followed to design these probes, and their use to study the anatomy of CCK pathways, the neurochemical and pharmacological properties of this peptide and the clinical perspectives offered by manipulation of the CCK system will be reported. The physiological and pathological implication of CCK-B receptor will be confirmed in CCK-B receptor deficient mice obtained by gene targeting (Nagata el al., 1996. Proc. Natl. Acad. Sci. USA 93, 11825-11830). Moreover, CCK receptor gene structure, deletion and mutagenesis experiments, and signal transduction mechanisms will be discussed.
Collapse
Affiliation(s)
- F Noble
- Département de Pharmacochimie Moléculaire et Structurale, INSERM U266-CNRS UMR 8600, Université René Descartes, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | |
Collapse
|
29
|
Daugé V, Samir A, Cupo A, Roques BP. Peripheral stimulation of CCK-B receptors by BC264 induces a hyperexploration, dependent on the delta opioid system in the nucleus accumbens of rat. Neuropharmacology 1999; 38:999-1007. [PMID: 10428418 DOI: 10.1016/s0028-3908(99)00028-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study analyses the influence of the CCKergic system on the enkephalinergic system in the exploratory behavior of rats, using both behavioral and biochemical approaches. The results show that the increase of the spontaneous alternation behavior induced by the selective CCKB agonist, BC264 (3 microg/kg) was not suppressed by the opioid antagonists, naloxone (100 microg/kg), or naltrindole (300 microg/kg). In contrast, BC264 injected at the same dose induced a hyperlocomotor activity measured in the open-field test, which was antagonized by the selective delta opioid antagonist, naltrindole. BC264 (3 microg/kg) significantly increased the extracellular levels of Met-LI in the anterior part of the nucleus accumbens. Furthermore, local injection of naltrindole (0.25 microg/0.5 microl) in the anterior nucleus accumbens completely suppressed the hyperlocomotion induced by BC264. The behavioral effects induced by BC264 cannot be explained by its interaction with gastrinic receptors mediating gastric acid release, since BC264 produced a long-lasting increase of gastric acid output from conscious gastric fistula rats only at doses 100 times higher than those inducing behavioral modifications. The hyperlocomotion obtained after stimulation by BC264 of probably peripheral CCKB receptors, indicates that this receptor type could participate in the transmission of information between the peripheral system and some regions of the CNS involved in motivations and emotions.
Collapse
Affiliation(s)
- V Daugé
- Département de Pharmacochimie Moléculaire et Structurale, INSERM U266-UMR 8600 CNRS, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | |
Collapse
|
30
|
Abstract
This review provides an overview of preclinical and clinical evidence of a role for the neuroactive peptides cholecystokinin (CCK), corticotropin-releasing factor (CRF), neuropeptide Y (NPY), tachykinins (i.e., substance P, neurokinin [NK] A and B), and natriuretic peptides in anxiety and/or stress-related disorders. Results obtained with CCK receptor antagonists in animal studies have been highly variable, and clinical trials with several of these compounds in anxiety disorders have been unsuccessful so far. However, future investigations using CCK receptor antagonists with better pharmacokinetic characteristics and animal models other than those validated with the classical anxiolytics benzodiazepines may permit a more precise evaluation of the potential of these compounds as anti-anxiety agents. Results obtained with peptide CRF receptor antagonists in animal models of anxiety convincingly demonstrated that the blockade of central CRF receptors may yield anxiolytic-like activity. However, the discovery of nonpeptide and more lipophilic CRF receptor antagonists is essential for the development of these agents as anxiolytics. Similarly, there is clear preclinical evidence that the central infusion of NPY and NPY fragments selective for the Y1 receptor display anxiolytic-like effects in a variety of tests. However, synthetic nonpeptide NPY receptor agonists are still lacking, thereby hampering the development of NPY anxiolytics. Unlike selective NK1 receptor antagonists, which have variable effects in anxiety models, peripheral administration of selective NK2 receptor antagonists and central infusion of natriuretic peptides produce clear anxiolytic-like activity. Taken as a whole, these findings suggest that compounds targeting specific neuropeptide receptors may become an alternative to benzodiazepines for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- G Griebel
- CNS Research Department, Synthélabo Recherche, Bagneux, France
| |
Collapse
|
31
|
Abstract
Extensive studies were carried out on the involvement of the CCKergic system in anxiety-, panic- and stress-related behaviour. The stimulation of CCK-A or CCK-B receptors is implicated in the physical and psychological responses of CCK to stress. Furthermore, several selective CCK-B agonists produce anxiogenic-like effects, while CCK-B antagonists induce anxiolytic-like responses in several models of anxiety. However, BC264 a highly selective CCK-B agonist, does not produce anxiogenic-like effects but increases attention and/or memory. These effects are dependent on the dopaminergic systems. Together with biochemical data, this led to the hypothesis of the existence of two CCK-B binding sites, CCK-B1 and CCK-B2, which could correspond to different activation states of a single molecular entity. Investigations into CCK-B1 and CCK-B2 systems might be of critical interest, since only one site, CCK-B1, appears to be responsible for the effects of anxiety. Furthermore, the improvement of attention and/or memory processes by CCK, through CCK-B2 receptors, could offer a new perspective in the treatment of attention and/or memory disorders.
Collapse
Affiliation(s)
- V Daugé
- Département de Pharmacochimie Moléculaire et Structurale, U266 INSERM, URA D1500 CNRS, Université René Descartes, Paris, France
| | | |
Collapse
|
32
|
Ladurelle N, Sebret A, Garbay C, Roques BP, Daugé V. Opposite effects of CCK(B) agonists in grooming behaviour in rats: further evidence for two CCK(B) subsites. Br J Pharmacol 1998; 124:1091-8. [PMID: 9720778 PMCID: PMC1565489 DOI: 10.1038/sj.bjp.0701933] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The hypothesis of the existence of two CCK(B) receptor subsites, CCK(B1) and CCK(B2) corresponding probably to different coupling states of CCK(B) receptors, was studied by measuring grooming behaviour in rats. 2. The B1 receptor agonist, BC197 (300 microg kg(-1), i.p.) produced a 45-50% decrease in grooming activity, which was prevented by both the CCK(B) receptor antagonists CI-988 (20 microg kg(-1) i.p.) and L-365,260 (200 microg kg(-1), i.p.). 3. In contrast, 3, 10 and 30 microg kg(-1), i.p., of the potent B2 receptor agonist, BC264, enhanced grooming (150-190%). This effect was prevented by previous injection of 75 microg kg(-1) of L-365,260 while higher doses (200 microg kg(-1), i.p.) produced only a partial antagonism. Moreover, CI-988 (20 microg kg(-1), i.p.), showed an opposite effect in potentiating the responses induced by BC264. However, 200 microg kg(-1) of CI-988 tended to suppress the increase of grooming induced by BC264. 4. The effects of BC264 were prevented by the D1 receptor (SCH 23390) and D2 receptor (sulpiride) antagonists, while those of BC197 were only antagonized by sulpiride, emphasizing the existence of a link between peptidergic (CCK) and dopaminergic systems. 5. This study brings additional evidence for the existence of the two CCK(B) receptor subsites and suggests that particular attention should be focused on the selectivity of CCK(B) receptor agonists, notably to explain the fact that some compounds such as Boc-CCK4 induce anxiogenic-like effects while others, including BC264, are devoid of these effects.
Collapse
Affiliation(s)
- N Ladurelle
- Département de Pharmacochimie Moléculaire et Structurale, U 266 INSERM, URA D 1500 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | | | |
Collapse
|
33
|
Abstract
The purpose of this study was to assess the effects of continuous intravenous infusion of the central cholecystokinin (CCK) receptor agonist, CCK-4, on short-term memory and psychomotor performance in healthy volunteers in a double-blind, placebo-controlled, parallel group study. Compared to placebo, CCK-4 (0.5 mg/h) significantly impaired performance on free-recall and recognition of words in the middle of the CCK-4 infusion, but did not affect psychomotor acuity. The results of this study indicate that CCK-4 may exert a negative influence on memory consolidation and retrieval.
Collapse
Affiliation(s)
- J Shlik
- Stress and Anxiety Clinical Research Unit, Royal Ottawa Hospital, University of Ottawa, Ontario, Canada.
| | | | | |
Collapse
|