1
|
Devienne G, Le Gac B, Piquet J, Cauli B. Single Cell Multiplex Reverse Transcription Polymerase Chain Reaction After Patch-clamp. J Vis Exp 2018. [PMID: 29985318 DOI: 10.3791/57627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The cerebral cortex is composed of numerous cell types exhibiting various morphological, physiological, and molecular features. This diversity hampers easy identification and characterization of these cell types, prerequisites to study their specific functions. This article describes the multiplex single cell reverse transcription polymerase chain reaction (RT-PCR) protocol, which allows, after patch-clamp recording in slices, to detect simultaneously the expression of tens of genes in a single cell. This simple method can be implemented with morphological characterization and is widely applicable to determine the phenotypic traits of various cell types and their particular cellular environment, such as in the vicinity of blood vessels. The principle of this protocol is to record a cell with the patch-clamp technique, to harvest and reverse transcribe its cytoplasmic content, and to detect qualitatively the expression of a predefined set of genes by multiplex PCR. It requires a careful design of PCR primers and intracellular patch-clamp solution compatible with RT-PCR. To ensure a selective and reliable transcript detection, this technique also requires appropriate controls from cytoplasm harvesting to amplification steps. Although precautions discussed here must be strictly followed, virtually any electrophysiological laboratory can use the multiplex single cell RT-PCR technique.
Collapse
Affiliation(s)
- Gabrielle Devienne
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université
| | - Benjamin Le Gac
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université
| | - Juliette Piquet
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université
| | - Bruno Cauli
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université;
| |
Collapse
|
2
|
Lin WC, Tsai MC, Davenport CM, Smith CM, Veit J, Wilson NM, Adesnik H, Kramer RH. A Comprehensive Optogenetic Pharmacology Toolkit for In Vivo Control of GABA(A) Receptors and Synaptic Inhibition. Neuron 2015; 88:879-891. [PMID: 26606997 DOI: 10.1016/j.neuron.2015.10.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 08/21/2015] [Accepted: 10/01/2015] [Indexed: 01/27/2023]
Abstract
Exogenously expressed opsins are valuable tools for optogenetic control of neurons in circuits. A deeper understanding of neural function can be gained by bringing control to endogenous neurotransmitter receptors that mediate synaptic transmission. Here we introduce a comprehensive optogenetic toolkit for controlling GABA(A) receptor-mediated inhibition in the brain. We developed a series of photoswitch ligands and the complementary genetically modified GABA(A) receptor subunits. By conjugating the two components, we generated light-sensitive versions of the entire GABA(A) receptor family. We validated these light-sensitive receptors for applications across a broad range of spatial scales, from subcellular receptor mapping to in vivo photo-control of visual responses in the cerebral cortex. Finally, we generated a knockin mouse in which the "photoswitch-ready" version of a GABA(A) receptor subunit genomically replaces its wild-type counterpart, ensuring normal receptor expression. This optogenetic pharmacology toolkit allows scalable interrogation of endogenous GABA(A) receptor function with high spatial, temporal, and biochemical precision.
Collapse
Affiliation(s)
- Wan-Chen Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ming-Chi Tsai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher M Davenport
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Caleb M Smith
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julia Veit
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Neil M Wilson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Yamamoto K, Takei H, Koyanagi Y, Koshikawa N, Kobayashi M. Presynaptic cell type-dependent regulation of GABAergic synaptic transmission by nitric oxide in rat insular cortex. Neuroscience 2015; 284:65-77. [DOI: 10.1016/j.neuroscience.2014.09.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/13/2014] [Accepted: 09/28/2014] [Indexed: 11/26/2022]
|
4
|
Fast-spiking Cell to Pyramidal Cell Connections Are the Most Sensitive to Propofol-induced Facilitation of GABAergic Currents in Rat Insular Cortex. Anesthesiology 2014; 121:68-78. [DOI: 10.1097/aln.0000000000000183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Background:
Propofol facilitates γ-aminobutyric acid–mediated inhibitory synaptic transmission. In the cerebral cortex, γ-aminobutyric acidergic interneurons target both excitatory pyramidal cells (Pyr) and fast-spiking (FS) and non-FS interneurons. Therefore, the propofol-induced facilitation of inhibitory transmission results in a change in the balance of excitatory and inhibitory inputs to Pyr. However, it is still unknown how propofol modulates γ-aminobutyric acidergic synaptic transmission in each combination of Pyr and interneurons.
Methods:
The authors examined whether propofol differentially regulates inhibitory postsynaptic currents (IPSCs) depending on the presynaptic and postsynaptic cell subtypes using multiple whole cell patch clamp recording from γ-aminobutyric acidergic interneurons and Pyr in rat insular cortex.
Results:
Propofol (10 μM) consistently prolonged decay kinetics of unitary IPSCs (uIPSCs) in all types of inhibitory connections without changing paired-pulse ratio of the second to first uIPSC amplitude or failure rate. The FS→Pyr connections exhibited greater enhancement of uIPSC charge transfer (2.2 ± 0.5 pC, n = 36) compared with that of FS→FS/non-FS connections (0.9 ± 0.2 pC, n = 37), whereas the enhancement of charge transfer in non-FS→Pyr (0.3 ± 0.1 pC, n = 15) and non-FS→FS/non-FS connections (0.2 ± 0.1 pC, n = 36) was smaller to those in FS→Pyr/FS/non-FS. Electrical synapses between FS pairs were not affected by propofol.
Conclusions:
The principal inhibitory connections (FS→Pyr) are the most sensitive to propofol-induced facilitation of uIPSCs, which is likely mediated by postsynaptic mechanisms. This preferential uIPSC enhancement in FS→Pyr connections may result in suppressed neural activities of projection neurons, which in turn reduces excitatory outputs from cortical local circuits.
Collapse
|
5
|
Cauli B, Zhou X, Tricoire L, Toussay X, Staiger JF. Revisiting enigmatic cortical calretinin-expressing interneurons. Front Neuroanat 2014; 8:52. [PMID: 25009470 PMCID: PMC4067953 DOI: 10.3389/fnana.2014.00052] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/05/2014] [Indexed: 12/18/2022] Open
Abstract
Cortical calretinin (CR)-expressing interneurons represent a heterogeneous subpopulation of about 10-30% of GABAergic interneurons, which altogether total ca. 12-20% of all cortical neurons. In the rodent neocortex, CR cells display different somatodendritic morphologies ranging from bipolar to multipolar but the bipolar cells and their variations dominate. They are also diverse at the molecular level as they were shown to express numerous neuropeptides in different combinations including vasoactive intestinal polypeptide (VIP), cholecystokinin (CCK), neurokinin B (NKB) corticotrophin releasing factor (CRF), enkephalin (Enk) but also neuropeptide Y (NPY) and somatostatin (SOM) to a lesser extent. CR-expressing interneurons exhibit different firing behaviors such as adapting, bursting or irregular. They mainly originate from the caudal ganglionic eminence (CGE) but a subpopulation also derives from the dorsal part of the medial ganglionic eminence (MGE). Cortical GABAergic CR-expressing interneurons can be divided in two main populations: VIP-bipolar interneurons deriving from the CGE and SOM-Martinotti-like interneurons originating in the dorsal MGE. Although bipolar cells account for the majority of CR-expressing interneurons, the roles they play in cortical neuronal circuits and in the more general metabolic physiology of the brain remained elusive and enigmatic. The aim of this review is, firstly, to provide a comprehensive view of the morphological, molecular and electrophysiological features defining this cell type. We will, secondly, also summarize what is known about their place in the cortical circuit, their modulation by subcortical afferents and the functional roles they might play in neuronal processing and energy metabolism.
Collapse
Affiliation(s)
- Bruno Cauli
- Sorbonne Universités, UPMC University Paris 06, UM CR18, Neuroscience Paris Seine Paris, France ; Centre National de la Recherche Scientifique, UMR 8246, Neuroscience Paris Seine Paris, France ; Institut National de la Santé et de la Recherche Médicale, UMR-S 1130, Neuroscience Paris Seine Paris, France
| | - Xiaojuan Zhou
- Institute for Neuroanatomy, UMG, Georg-August-University Göttingen Göttingen, Germany
| | - Ludovic Tricoire
- Sorbonne Universités, UPMC University Paris 06, UM CR18, Neuroscience Paris Seine Paris, France ; Centre National de la Recherche Scientifique, UMR 8246, Neuroscience Paris Seine Paris, France ; Institut National de la Santé et de la Recherche Médicale, UMR-S 1130, Neuroscience Paris Seine Paris, France
| | - Xavier Toussay
- Sorbonne Universités, UPMC University Paris 06, UM CR18, Neuroscience Paris Seine Paris, France ; Centre National de la Recherche Scientifique, UMR 8246, Neuroscience Paris Seine Paris, France ; Institut National de la Santé et de la Recherche Médicale, UMR-S 1130, Neuroscience Paris Seine Paris, France
| | - Jochen F Staiger
- Institute for Neuroanatomy, UMG, Georg-August-University Göttingen Göttingen, Germany
| |
Collapse
|
6
|
Kelley MH, Ortiz J, Shimizu K, Grewal H, Quillinan N, Herson PS. Alterations in Purkinje cell GABAA receptor pharmacology following oxygen and glucose deprivation and cerebral ischemia reveal novel contribution of β1 -subunit-containing receptors. Eur J Neurosci 2012; 37:555-63. [PMID: 23176253 DOI: 10.1111/ejn.12064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 10/23/2012] [Accepted: 10/25/2012] [Indexed: 11/26/2022]
Abstract
Cerebellar Purkinje cells (PCs) are particularly sensitive to cerebral ischemia, and decreased GABA(A) receptor function following injury is thought to contribute to PC sensitivity to ischemia-induced excitotoxicity. Here we examined the functional properties of the GABA(A) receptors that are spared following ischemia in cultured Purkinje cells from rat and in vivo ischemia in mouse. Using subunit-specific positive modulators of GABA(A) receptors, we observed that oxygen and glucose deprivation (OGD) and cardiac arrest-induced cerebral ischemia cause a decrease in sensitivity to the β(2/3) -subunit-preferring compound, etomidate. However, sensitivity to propofol, a β-subunit-acting compound that modulates β(1-3) -subunits, was not affected by OGD. The α/γ-subunit-acting compounds, diazepam and zolpidem, were also unaffected by OGD. We performed single-cell reverse transcription-polymerase chain reaction on isolated PCs from acutely dissociated cerebellar tissue and observed that PCs expressed the β(1) -subunit, contrary to previous reports examining GABA(A) receptor subunit expression in PCs. GABA(A) receptor β(1) -subunit protein was also detected in cultured PCs by western blot and by immunohistochemistry in the adult mouse cerebellum and levels remained unaffected by ischemia. High concentrations of loreclezole (30 μm) inhibited PC GABA-mediated currents, as previously demonstrated with β(1) -subunit-containing GABA(A) receptors expressed in heterologous systems. From our data we conclude that PCs express the β(1) -subunit and that there is a greater contribution of β(1) -subunit-containing GABA(A) receptors following OGD.
Collapse
Affiliation(s)
- Melissa H Kelley
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | |
Collapse
|
7
|
Ali AB, Thomson AM. Synaptic alpha 5 subunit-containing GABAA receptors mediate IPSPs elicited by dendrite-preferring cells in rat neocortex. Cereb Cortex 2007; 18:1260-71. [PMID: 17951598 DOI: 10.1093/cercor/bhm160] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Previous studies indicated that one class of dendrite-preferring hippocampal interneurones inhibits pyramidal cells via alpha 5 gamma-aminobutyric acid (GABA(A)) receptors whereas parvalbumin- and CCK-containing basket cells act via alpha1 and alpha2/3 GABA(A) receptors, respectively. This study asked whether there is selective insertion of different alpha subunit-containing GABA(A) receptors at neocortical inhibitory synapses innervated by specific classes of interneurones. The benzodiazepine site pharmacology of inhibitory postsynaptic potentials (IPSPs) elicited in neocortical pyramidal cells by 3 classes of interneurones was explored with dual whole-cell recordings in neocortical slices from juvenile rats (P18-23). Fast IPSPs activated by multipolar interneurones with narrow spikes and nonadapting firing patterns were powerfully enhanced by the alpha1-preferring agonist zolpidem, suggesting mediation via larger proportion of alpha1 GABA(A) receptors than those activated by multipolar, adapting interneurones, which were less strongly enhanced by zolpidem, but equally insensitive to the alpha 5-selective inverse agonist IA alpha 5 (MSD, Essex, UK) suggesting mediation predominantly via alpha2/3 GABA(A) receptors. In contrast, the IPSPs elicited by bitufted, dendrite-preferring interneurones were reduced by IA alpha 5 and by zinc and insensitive to zolpidem despite enhancement by the broad-spectrum agonist, diazepam. Thus insertion of GABA(A) receptors at synapses on neocortical pyramids is input-specific, with proximal inhibition employing alpha1 and alpha2/3 GABA(A) receptors and dendrite-preferring bitufted interneurones activating alpha 5 GABA(A) receptors.
Collapse
Affiliation(s)
- Afia B Ali
- Department of Pharmacology, School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
8
|
Vela J, Gutierrez A, Vitorica J, Ruano D. Rat hippocampal GABAergic molecular markers are differentially affected by ageing. J Neurochem 2003; 85:368-77. [PMID: 12675913 DOI: 10.1046/j.1471-4159.2003.01681.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously reported that the pharmacological properties of the hippocampal GABAA receptor and the expression of several subunits are modified during normal ageing. However, correlation between these post-synaptic modifications and pre-synaptic deficits were not determined. To address this issue, we have analysed the mRNA levels of several GABAergic molecular markers in young and old rat hippocampus, including glutamic acid decarboxylase enzymes, parvalbumin, calretinin, somatostatin, neuropeptide Y and vasoactive intestinal peptide (VIP). There was a differential age-related decrease in these interneuronal mRNAs that was inversely correlated with up-regulation of the alpha1 GABA receptor subunit. Somatostatin and neuropeptide Y mRNAs were most frequently affected (75% of the animals), then calretinin and VIP mRNAs (50% of the animals), and parvalbumin mRNA (25% of the animals) in the aged hippocampus. This selective vulnerability was well correlated at the protein/cellular level as analysed by immunocytochemistry. Somatostatin interneurones, which mostly innervate principal cell distal dendrites, were more vulnerable than calretinin interneurones, which target other interneurones. Parvalbumin interneurones, which mostly innervate perisomatic domains of principal cells, were preserved. This age-dependent differential reduction of specific hippocampal inteneuronal subpopulations might produce functional alterations in the GABAergic tone which might be compensated, at the post-synaptic level, by up-regulation of the expression of the alpha1 GABAA receptor subunit.
Collapse
Affiliation(s)
- José Vela
- Departamento de Bioquímica, Bromatología, Toxicología y Medicina Legal Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | | | | |
Collapse
|
9
|
Dixon AK, Lee K, Richardson PJ, Bell MI, Skynner MJ. Single cell expression analysis--pharmacogenomic potential. Pharmacogenomics 2002; 3:809-22. [PMID: 12437482 DOI: 10.1517/14622416.3.6.809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A fundamental challenge in biology is to correlate physiology with gene expression in specific cell types. This can only be achieved by understanding gene expression at the level of the single cell because, in many systems, each cell has the capacity to express a unique set of genes. Therefore, each cell can be considered to be functionally distinct. A clearer understanding of gene expression differences at such a discrete level provides an opportunity to develop drugs with more targeted pharmacologies or with decreased side effects.
Collapse
Affiliation(s)
- A K Dixon
- Cambridge Biotechnology Ltd, Dept of Pharmacology, Tennis Court Road, UK
| | | | | | | | | |
Collapse
|
10
|
Vela J, Vitorica J, Ruano D. Rapid PCR-mediated synthesis of competitor molecules for accurate quantification of beta(2) GABA(A) receptor subunit mRNA. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2001; 8:184-90. [PMID: 11733194 DOI: 10.1016/s1385-299x(01)00109-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We describe a fast and easy method for the synthesis of competitor molecules based on non-specific conditions of PCR. RT-competitive PCR is a sensitive technique that allows quantification of very low quantities of mRNA molecules in small tissue samples. This technique is based on the competition established between the native and standard templates for nucleotides, primers or other factors during PCR. Thus, the most critical parameter is the use of good internal standards to generate a standard curve from which the amount of native sequences can be properly estimated. At the present time different types of internal standards and methods for their synthesis have been described. Normally, most of these methods are time-consuming and require the use of different sets of primers, different rounds of PCR or specific modifications, such as site-directed mutagenesis, that need subsequent analysis of the PCR products. Using our method, we obtained in a single round of PCR and with the same primer pair, competitor molecules that were successfully used in RT-competitive PCR experiments. The principal advantage of this method is high versatility and economy. Theoretically it is possible to synthesize a specific competitor molecule for each primer pair used. Finally, using this method we have been able to quantify the increase in the expression of the beta(2) GABA(A) receptor subunit mRNA that occurs during rat hippocampus development.
Collapse
Affiliation(s)
- J Vela
- Departamento de Bioquimica, Bromatologia, Toxicologia y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González s/n, 41012 Seville, Spain
| | | | | |
Collapse
|
11
|
del Río JC, Araujo F, Ramos B, Ruano D, Vitorica J. Prevalence between different alpha subunits performing the benzodiazepine binding sites in native heterologous GABA(A) receptors containing the alpha2 subunit. J Neurochem 2001; 79:183-91. [PMID: 11595770 DOI: 10.1046/j.1471-4159.2001.00551.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The presence of two heterologous alpha subunits and a single benzodiazepine binding site in the GABA(A) receptor implicates the existence of pharmacologically active and inactive alpha subunits. This fact raises the question of whether a particular alpha subtype could predominate performing the benzodiazepine binding site. The hippocampal formation expresses high levels of alpha subunits with different benzodiazepine binding properties (alpha1, alpha2 and alpha5). Thus, we first demonstrated the existence of alpha2-alpha1 (36.3 +/- 5.2% of the alpha2 population) and alpha2-alpha5 (20.2 +/- 2.1%) heterologous receptors. A similar alpha2-alpha1 association was observed in cortex. This association allows the direct comparison of the pharmacological properties of heterologous native GABA(A) receptors containing a common (alpha2) and a different (alpha1 or alpha5) alpha subunit. The alpha2 subunit pharmacologically prevailed over the alpha1 subunit in both cortex and hippocampus (there was an absence of high-affinity binding sites for Cl218,872, zolpidem and [3H]zolpidem). This prevalence was directly probed by zolpidem displacement experiments in alpha2-alpha1 double immunopurified receptors (K(i) = 295 +/- 56 nM and 200 +/- 8 nM in hippocampus and cortex, respectively). On the contrary, the alpha5 subunit pharmacologically prevailed over the alpha2 subunit (low- and high-affinity binding sites for zolpidem and [3H]L-655,708, respectively). This prevalence was probed in alpha2-alpha5 double immunopurified receptors. Zolpidem displayed a single low-affinity binding site (K(i) = 1.73 +/- 0.54 microM). These results demonstrated the existence of a differential dominance between the different alpha subunits performing the benzodiazepine binding sites in the native GABA(A) receptors.
Collapse
Affiliation(s)
- J C del Río
- Department of Bioquimica, Bromatologia y Toxicologia, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | | | | | | | | |
Collapse
|
12
|
Abstract
Chronic stressors produce changes in hippocampal neurochemistry, neuronal morphology, and hippocampal-dependent learning and memory processes. In rats, stress-induced changes in CA3 apical dendritic structure are mediated by corticosterone (CORT) acting, in part, on excitatory amino acid neurotransmission. CORT also alters GABA-mediated inhibitory neurotransmission, so the GABA(A) receptor system may also contribute to dendritic remodeling and other stress-related changes in hippocampal function. A previous study indicated that chronic CORT treatment produces complex changes in GABA(A) receptor subunit mRNA levels, so we hypothesized that CORT alters the pharmacological properties of hippocampal GABA(A) receptors. To test this, adult male rats were treated with CORT or vehicle pellets for 10 d, after which we quantified [(35)S]t-butylbicyclophosphorothionate ([(35)S]TBPS) and [(3)H]flunitrazepam binding to GABA(A) receptors using in vitro receptor autoradiography. Pharmacological properties of receptors were assessed by examining the allosteric regulation of binding at both sites by GABA and 5alpha-pregnane-3alpha,21-diol-20-one (THDOC), an endogenous anxiolytic steroid. We found striking regional differences in the modulation of [(35)S]TBPS binding, particularly between strata radiatum and strata oriens, suggesting a functional heterogeneity among hippocampal GABA(A) receptors even within the apical versus basal dendrites of pyramidal neurons. Furthermore, we found that CORT treatment decreased the negative modulation of hippocampal [(35)S]TBPS binding by both GABA and THDOC and increased the enhancement of [(3)H]flunitrazepam binding by GABA and THDOC in the dentate gyrus. Together, these data suggest that prolonged exposure to stress levels of corticosteroids may alter hippocampal inhibitory tone by regulating the pharmacological properties of GABA(A) receptors in discrete dendritic subfields.
Collapse
|
13
|
Sim JA, Skynner MJ, Pape JR, Herbison AE. Late postnatal reorganization of GABA(A) receptor signalling in native GnRH neurons. Eur J Neurosci 2000; 12:3497-504. [PMID: 11029619 DOI: 10.1046/j.1460-9568.2000.00261.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular and cellular characteristics of the gonadotropin-releasing hormone (GnRH) neurons have been difficult to ascertain due to their scattered distribution within the basal forebrain. Using morphological criteria coupled with single cell RT-PCR postidentification, we have developed a method for investigating native GnRH neurons in the mouse brain and used it to examine the development of GABA(A) receptor signalling in this phenotype. Following the harvesting of the cytoplasmic contents of individual GnRH neurons, single cell multiplex RT-PCR experiments demonstrated that GABAA receptor alpha1-5, beta1-3 and gamma2 & 3 subunit transcripts were expressed by both neonatal (postnatal day 5) and juvenile (day 15-20) GnRH neurons in a heterogeneous manner. Following puberty, this profile was reduced to a predominant alpha1, alpha5, beta1, gamma2 subunit complement in rostral preoptic area GnRH neurons of the adult female. Whole-cell patch-clamp recordings revealed little difference between juvenile and adult GnRH neurons in their resting membrane potential and spontaneous firing rates. All GnRH neurons were found to be subjected to a tetrodotoxin-insensitive, tonic GABAergic barrage signalling through the GABA(A) receptor. However, marked heterogeneity in the sensitivity of individual juvenile GnRH neurons to GABA was revealed and, in parallel with the change in subunit mRNA profile, this was dramatically reduced in the reproductively competent adult GnRH neurons. These findings provide the first electrical and molecular characterization of the GnRH phenotype and demonstrate a novel pattern of late postnatal reorganization of native GABA(A) receptor gene expression and signalling in the GnRH neuronal population.
Collapse
Affiliation(s)
- J A Sim
- Laboratory of Neuroendocrinology, The Babraham Institute, Cambridge CB2 4AT, UK
| | | | | | | |
Collapse
|
14
|
Perrais D, Ropert N. Altering the concentration of GABA in the synaptic cleft potentiates miniature IPSCs in rat occipital cortex. Eur J Neurosci 2000; 12:400-4. [PMID: 10651898 DOI: 10.1046/j.1460-9568.2000.00957.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have tested the effect of dextran (40 kDa, 5%) on miniature IPSCs (mIPSCs) recorded in layer V cortical pyramidal cells. This compound increases the amplitude of mIPSCs at room and physiological temperatures by 15%, leaving their duration unaffected at room temperature and slightly increased at physiological temperature. The amplitude increase is attributable to an increase in the number of receptors bound by GABA during synaptic transmission, as shown by the occlusion between the effects of dextran and zolpidem on mIPSC amplitude at room temperature. As dextran presumably enhances the concentration and dwell time of GABA in the synaptic cleft, these results demonstrate that the postsynaptic GABAA receptors are not saturated at room and physiological temperatures.
Collapse
Affiliation(s)
- D Perrais
- Institut Alfred Fessard, CNRS UPR 2212, 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
15
|
Dunning DD, Hoover CL, Soltesz I, Smith MA, O'Dowd DK. GABA(A) receptor-mediated miniature postsynaptic currents and alpha-subunit expression in developing cortical neurons. J Neurophysiol 1999; 82:3286-97. [PMID: 10601460 DOI: 10.1152/jn.1999.82.6.3286] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have described maturational changes in GABAergic inhibitory synaptic transmission in the rodent somatosensory cortex during the early postnatal period. To determine whether alterations in the functional properties of synaptically localized GABA(A) receptors (GABA(A)Rs) contribute to development of inhibitory transmission, we used the whole cell recording technique to examine GABAergic miniature postsynaptic currents (mPSCs) in developing cortical neurons. Neurons harvested from somatosensory cortices of newborn mice showed a progressive, eightfold increase in GABAergic mPSC frequency during the first 4 wk of development in dissociated cell culture. A twofold decrease in the decay time of the GABAergic mPSCs, between 1 and 4 wk, demonstrates a functional change in the properties of GABA(A)Rs mediating synaptic transmission in cortical neurons during development in culture. A similar maturational profile observed in GABAergic mPSC frequency and decay time in cortical neurons developing in vivo (assessed in slices), suggests that these changes in synaptically localized GABA(A)Rs contribute to development of inhibition in the rodent neocortex. Pharmacological and reverse transcription-polymerase chain reaction (RT-PCR) studies were conducted to determine whether changes in subunit expression might contribute to the observed developmental alterations in synaptic GABA(A)Rs. Zolpidem (300 nM), a subunit-selective benzodiazepine agonist with high affinity for alpha1-subunits, caused a reversible slowing of the mPSC decay kinetics in cultured cortical neurons. Development was characterized by an increase in the potency of zolpidem in modulating the mPSC decay, suggesting a maturational increase in percentage of functionally active GABA(A)Rs containing alpha1 subunits. The relative expression of alpha1 versus alpha5 GABA(A)R subunit mRNA in cortical tissue, both in vivo and in vitro, also increased during this same period. Furthermore, single-cell RT-multiplex PCR analysis revealed more rapidly decaying mPSCs in individual neurons in which alpha1 versus alpha5 mRNA was amplified. Together these data suggest that changes in alpha-subunit composition of GABA(A)Rs contribute to the maturation of GABAergic mPSCs mediating inhibition in developing cortical neurons.
Collapse
Affiliation(s)
- D D Dunning
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-1280, USA
| | | | | | | | | |
Collapse
|
16
|
Comer AM, Gibbons HM, Qi J, Kawai Y, Win J, Lipski J. Detection of mRNA species in bulbospinal neurons isolated from the rostral ventrolateral medulla using single-cell RT-PCR. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1999; 4:367-77. [PMID: 10592347 DOI: 10.1016/s1385-299x(99)00042-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The rostral ventrolateral medulla (RVL) contains neurons which are critically involved in the tonic and reflex control of blood pressure. Some of these neurons project to the intermediolateral cell column of the thoracolumbar spinal cord and excite preganglionic sympathetic neurons. In order to gain a better understanding of the properties of the RVL neurons at the cellular and molecular level, a protocol was developed utilizing acute dissociation and the reverse transcription-polymerase chain reaction (RT-PCR) to study the expression of several genes in single RVL neurons. Neurons were dissociated from the RVL region of young rats, and classified as spinally projecting or non-spinal by the presence or absence of retrogradely transported fluorescent beads injected into the upper thoracic segments of the spinal cord. Individual neurons were collected by aspiration into a glass micropipette and analysed by RT-PCR. The presence of either glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or neuron-specific enolase (NSE) mRNA was used as the criterion for selecting cells for further analysis. A subpopulation (50%) of spinally projecting, GAPDH- or NSE-positive neurons expressed mRNA for tyrosine hydroxylase (TH) or phenylethanolamine N-methyltransferase (PNMT), indicative of catecholaminergic or C1 adrenergic neurons, respectively. Some bulbospinal RVL neurons, including those that were TH- or PNMT-positive, were also found to express mRNA for the mineralocorticoid receptor (MR), the glucocorticoid receptor (GR), noradrenaline transporter (NET), and neuronal glutamate transporter (EAAC1). The glial glutamate transporter (GLT), glycine transporter (GLYT2), glutamic acid decarboxylase (GAD67) and gamma-amino butyric acid (GABA) transporter (GAT-1) were not expressed. The single-cell RT-PCR protocol is a powerful, yet simple and relatively rapid method for analysis of mRNA expression in a defined neuronal population. It can be combined with whole-cell patch-clamp recording prior to RT-PCR analysis, allowing linkage of the molecular analysis of mRNA expression to the electrophysiological and pharmacological properties of single neurons. The method is very sensitive, enabling mRNA transcripts in low abundance to be detected, and its application in our recent studies provided novel information about neurons involved in blood-pressure regulation at the molecular and cellular level.
Collapse
Affiliation(s)
- A M Comer
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
17
|
Skynner MJ, Sim JA, Herbison AE. Detection of estrogen receptor alpha and beta messenger ribonucleic acids in adult gonadotropin-releasing hormone neurons. Endocrinology 1999; 140:5195-201. [PMID: 10537149 DOI: 10.1210/endo.140.11.7146] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The behavior of the gonadotropin-releasing hormones (GnRH) neurons controlling fertility is dependent upon cyclic fluctuations in circulating concentrations of estrogen. However, the nature of estrogen action upon these cells has remained controversial due to their dispersed distribution within the brain, and evidence indicating that they do not express nuclear estrogen receptors (ERs) in vivo. We report here an acute brain slice preparation that enables individual living GnRH neurons to be identified within the mouse brain and show, using single cell multiplex RT-PCR, that the greater than 50% of GnRH neurons in adult and prepubertal females contain ERalpha messenger RNA. Approximately 10% of GnRH neurons contained ERbeta transcripts that were always coexistent with ERalpha. Single cell RT-PCR analysis of nonGnRH cells located in the medial preoptic area revealed a similar coexpression pattern of ERalpha and ERbeta transcripts. In contrast, single striatal cells were not found to contain ERbeta despite ERalpha being present in approximately 25% of cells. The analysis of single GnRH neurons in cycling female mice revealed that the detection of ERalpha and ERbeta transcripts was lowest on proestrus (ERalpha, 18% of all GnRH neurons; ERbeta, 0%) compared with diestrus (44% and 6%) and estrus (75% and 19%, respectively). Using a novel approach that enables single cell RT-PCR analysis of GnRH neurons, we present here evidence for the cyclic expression of ERalpha and ERbeta messenger RNAs within prepubertal and adult female GnRH neurons.
Collapse
Affiliation(s)
- M J Skynner
- Laboratory of Neuroendocrinology, The Babraham Institute, Cambridge, United Kingdom
| | | | | |
Collapse
|
18
|
Chen S, Huang X, Zeng XJ, Sieghart W, Tietz EI. Benzodiazepine-mediated regulation of alpha1, alpha2, beta1-3 and gamma2 GABA(A) receptor subunit proteins in the rat brain hippocampus and cortex. Neuroscience 1999; 93:33-44. [PMID: 10430468 DOI: 10.1016/s0306-4522(99)00118-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prolonged flurazepam exposure regulates the expression of selected (alpha1, beta2, beta3) GABA(A) receptor subunit messenger RNAs in specific regions of the hippocampus and cortex with a time-course consistent with benzodiazepine tolerance both in vivo and in vitro. In this report, the immunostaining density of six specific GABA(A) receptor subunit (alpha1, beta2, beta1-3 and gamma2) antibodies was measured in the hippocampus and cortex, among other brain areas, in slide-mounted brain sections from flurazepam-treated and control rats using quantitative computer-assisted image analysis techniques. In parallel with the localized reduction in alpha1 and beta3 subunit messenger RNA expression detected in a previous study, relative alpha1 and beta3 subunit antibody immunostaining density was significantly decreased in flurazepam-treated rat hippocampal CA1, CA3 and dentate dendritic regions, and in specific cortical layers. Quantitative western blot analysis showed that beta3 subunit protein levels in crude homogenates of the hippocampal dentate region from flurazepam-treated rats, an area which showed fairly uniform decreases in beta3 subunit immunostaining (16-21%), were reduced to a similar degree (18%). The latter findings provide independent support that relative immunostaining density may provide an accurate estimate of protein levels. Consistent with the absence of the regulation of their respective messenger RNAs immediately after ending flurazepam administration, no changes in the density of alpha2, beta1 or beta2 subunit antibody immunostaining were found in any brain region. gamma2 subunit antibody staining was changed only in the dentate molecular layer. The selective changes in GABA(A) receptor subunit antibody immunostaining density in the hippocampus suggested that a change in the composition of GABA(A) receptors involving specific subunits (alpha1 and beta3) may be one mechanism underlying benzodiazepine anticonvulsant tolerance.
Collapse
Affiliation(s)
- S Chen
- Department of Pharmacology, Medical College of Ohio, Toledo 43614-5804, USA
| | | | | | | | | |
Collapse
|
19
|
Guyon A, Laurent S, Paupardin-Tritsch D, Rossier J, Eugène D. Incremental conductance levels of GABAA receptors in dopaminergic neurones of the rat substantia nigra pars compacta. J Physiol 1999; 516 ( Pt 3):719-37. [PMID: 10200421 PMCID: PMC2269308 DOI: 10.1111/j.1469-7793.1999.0719u.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. Molecular and biophysical properties of GABAA receptors of dopaminergic (DA) neurones of the pars compacta of the rat substantia nigra were studied in slices and after acute dissociation. 2. Single-cell reverse transcriptase-multiplex polymerase chain reaction confirmed that DA neurones contained mRNAs encoding for the alpha3 subunit of the GABAA receptor, but further showed the presence of alpha4 subunit mRNAs. alpha2, beta1 and gamma1 subunit mRNAs were never detected. Overall, DA neurones present a pattern of expression of GABAA receptor subunit mRNAs containing mainly alpha3/4beta2/3gamma3. 3. Outside-out patches were excised from DA neurones and GABAA single-channel patch-clamp currents were recorded under low doses (1-5 microM) of GABA or isoguvacine, a selective GABAA agonist. Recordings presented several conductance levels which appeared to be integer multiples of an elementary conductance of 4-5 pS. This property was shared by GABAA receptors of cerebellar Purkinje neurones recorded in slices (however, with an elementary conductance of 3 pS). Only the 5-6 lowest levels were analysed. 4. A progressive change in the distribution of occupancy of these levels was observed when increasing the isoguvacine concentration (up to 10 microM) as well as when adding zolpidem (20-200 nM), a drug acting at the benzodiazepine binding site: both treatments enlarged the occupancy of the highest conductance levels, while decreasing that of the smallest ones. Conversely, Zn2+ (10 microM), a negative allosteric modulator of GABAA receptor channels, decreased the occupancy of the highest levels in favour of the lowest ones. 5. These properties of alpha3/4beta2/3gamma3-containing GABAA receptors would support the hypothesis of either single GABAA receptor channels with multiple open states or that of a synchronous recruitment of GABAA receptor channels that could involve their clustering in the membranes of DA neurones.
Collapse
Affiliation(s)
- A Guyon
- Neurobiologie Cellulaire, Institut des Neurosciences, CNRS-Universite Pierre et Marie Curie, 9 quai Saint-Bernard, F-75005 Paris, France.
| | | | | | | | | |
Collapse
|
20
|
Zawar C, Plant TD, Schirra C, Konnerth A, Neumcke B. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J Physiol 1999; 514 ( Pt 2):327-41. [PMID: 9852317 PMCID: PMC2269073 DOI: 10.1111/j.1469-7793.1999.315ae.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The distribution of ATP-sensitive K+ channels (KATP channels) was investigated in four cell types in hippocampal slices prepared from 10- to 13-day-old rats: CA1 pyramidal cells, interneurones of stratum radiatum in CA1, complex glial cells of the same area and granule cells of the dentate gyrus. The neuronal cell types were identified visually and characterized by the shapes and patterns of their action potentials and by neurobiotin labelling. 2. The patch-clamp technique was used to study the sensitivity of whole-cell currents to diazoxide (0.3 mM), a KATP channel opener, and to tolbutamide (0.5 mM) or glibenclamide (20 microM), two KATP channel inhibitors. The fraction of cells in which whole-cell currents were activated by diazoxide and inhibited by tolbutamide was 26% of pyramidal cells, 89 % of interneurones, 100% of glial cells and 89% of granule cells. The reversal potential of the diazoxide-induced current was at the K+ equilibrium potential and a similar current activated spontaneously when cells were dialysed with an ATP-free pipette solution. 3. Using the single-cell RT-PCR method, the presence of mRNA encoding KATP channel subunits (Kir6.1, Kir6.2, SUR1 and SUR2) was examined in CA1 pyramidal cells and interneurones. Subunit mRNA combinations that can result in functional KATP channels (Kir6.1 together with SUR1, Kir6.2 together with SUR1 or SUR2) were detected in only 17% of the pyramidal cells. On the other hand, KATP channels may be formed in 75% of the interneurones, mainly by the combination of Kir6.2 with SUR1 (58% of all interneurones). 4. The results of these combined analyses indicate that functional KATP channels are present in principal neurones, interneurones and glial cells of the rat hippocampus, but at highly different densities in the four cell types studied.
Collapse
Affiliation(s)
- C Zawar
- I. Physiologisches Institut der Universitat des Saarlandes, D-66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Properties of GABAA receptors underlying inhibitory synaptic currents in neocortical pyramidal neurons. J Neurosci 1997. [PMID: 9295368 DOI: 10.1523/jneurosci.17-19-07220.1997] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rapid applications of GABA (from 10 microM to 10 mM) to outside-out patches were used to study the role that the kinetic properties of GABAA receptors play in determining the time course of IPSCs in neocortical pyramidal neurons. Currents induced by rapid applications of brief (1 msec) pulses of GABA (1 mM) showed a biexponential decay phase that seems to involve the entry of GABAA receptors into desensitized states. This conclusion is based on the similar fast decay kinetics of the response to brief and prolonged pulses of GABA and on the correlation between the degree of paired-pulse depression and the decay rate of the currents induced by brief pulses. Under nonequilibrium conditions we found that the concentration-response curve of pyramidal GABAA receptors has an EC50 of 185 microM (GABA pulse of 1 msec). The decay time course of the patch currents in response to brief applications of GABA was insensitive to agonist concentrations at the range from 50 microM to 10 mM. Faster decay rates were observed only in response to pulses of 10 microM GABA. These data are compatible with the suggestion that briefer openings derive from a monoliganded state and that these are negligible when receptor activation is >2%. Assuming that GABA transients at neocortical synapses are fast, a several millimolar GABA concentration would be needed to saturate the postsynaptic GABAA receptors.
Collapse
|