1
|
Philippu A. Brain mapping: topography of neurons and their transmitters involved in various brain functions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02523-4. [PMID: 37184687 DOI: 10.1007/s00210-023-02523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Use of the demanding techniques microdialysis or push-pull superfusion makes it possible to identify neurons in distinct brain areas involved in central control of peripheral functions, thus enabling brain mapping. Investigations with the push-pull superfusion technique have shown that mainly catecholaminergic neurons of the posterior and anterior hypothalamus, the locus coeruleus, and the nucleus of the solitary tract are of crucial importance for blood pressure regulation. Experimentally induced blood pressure changes also modify the release of histamine, glutamate, and taurine in the posterior hypothalamus and of serotonin in the locus coeruleus. Furthermore, histaminergic neurons of the nucleus accumbens are involved in memory, serotonergic neurons of the locus coeruleus in response to noxious stimuli, while nitric oxide of striatum has been implicated in neurotoxicity elicited by amphetamines. The involvement of several neurons in one brain function is discussed.
Collapse
Affiliation(s)
- Athineos Philippu
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Kranebitter Allee 26, A-6020, Innsbruck, Austria.
| |
Collapse
|
2
|
Bipolar disorder: An evolutionary psychoneuroimmunological approach. Neurosci Biobehav Rev 2021; 122:28-37. [PMID: 33421542 DOI: 10.1016/j.neubiorev.2020.12.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/19/2020] [Accepted: 12/27/2020] [Indexed: 12/19/2022]
Abstract
Bipolar disorder is a mental health disorder characterized by extreme shifts in mood, high suicide rate, sleep problems, and dysfunction of psychological traits like self-esteem (feeling inferior when depressed and superior when manic). Bipolar disorder is rare among populations that have not adopted contemporary Western lifestyles, which supports the hypothesis that bipolar disorder results from a mismatch between Homo sapiens's evolutionary and current environments. Recent studies have connected bipolar disorder with low-grade inflammation, the malfunctioning of the internal clock, and the resulting sleep disturbances. Stress is often a triggering factor for mania and sleep problems, but stress also causes low-grade inflammation. Since inflammation desynchronizes the internal clock, chronic stress and inflammation are the primary biological mechanisms behind bipolar disorder. Chronic stress and inflammation are driven by contemporary Western lifestyles, including stressful social environments, unhealthy dietary patterns, limited physical activity, and obesity. The treatment of bipolar disorder should focus on reducing stress, stress sensitivity, and inflammation by lifestyle changes rather than just temporarily alleviating symptoms with psychopharmacological interventions.
Collapse
|
3
|
Saffarpour S, Nasirinezhad F. The CA1 hippocampal serotonin alterations involved in anxiety-like behavior induced by sciatic nerve injury in rats. Scand J Pain 2020; 21:135-144. [PMID: 32892185 DOI: 10.1515/sjpain-2020-0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Several clinical and experimental studies reported the anxiety as one of the neuropathic pain comorbidities; however, the mechanisms involved in this comorbidity are incompletely cleared. The current study investigated the consequence of pain induced by peripheral neuropathy on the serotonin (5-HT) level of the CA1 region of the hippocampus, which is known as a potential reason, for anxiety associated with neuropathic pain. METHODS In this manner, 72 male rats were inconstantly subdivided into three experimental groups as follows: control, sham, and chronic constriction injury (CCI). Neuropathic pain was initiated by the CCI of the sciatic nerve, and then, mechanical allodynia, thermal hyperalgesia, and anxiety-like behavior were evaluated using the von Frey filaments, radiant heat, open field test (OFT), and elevated plus maze (EPM) respectively. To investigate the probable mechanisms, the in vivo extracellular levels of 5-HT were assessed by microdialysis and using reverse-phase high-pressure liquid chromatography (HPLC) in the CA1 region of hippocampus on days 16 and 30 post-CCI. RESULTS Our data suggested that CCI caused anxiety-like behavior in OFT and EPM test. 5-HT concentration in the CA1 region of the hippocampus significantly (F=43.8, p=0.000) reduced in CCI rats, when the pain threshold was minimum. Nevertheless, these alterations reversed while the pain threshold innate increased. CONCLUSIONS Neuropathic pain, initiated by constriction of the sciatic nerve can induce anxiety-like behavior in rats. This effect accompanies the reduction in 5-HT concentration in the CA1 region of the hippocampus. When the pain spontaneously alleviated, 5-HT level increased and anxiety-like behavior relieved.
Collapse
Affiliation(s)
- Sepideh Saffarpour
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Farinaz Nasirinezhad
- Physiological Research Center, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ortega JE, Mendiguren A, Pineda J, Meana JJ. Regulation of central noradrenergic activity by 5-HT3 receptors located in the locus coeruleus of the rat. Neuropharmacology 2012; 62:2472-9. [DOI: 10.1016/j.neuropharm.2012.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
|
5
|
Sub-threshold cross-modal sensory interaction in the thalamus: lemniscal auditory response in the medial geniculate nucleus is modulated by somatosensory stimulation. Neuroscience 2011; 174:200-15. [DOI: 10.1016/j.neuroscience.2010.11.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/19/2010] [Accepted: 11/19/2010] [Indexed: 11/19/2022]
|
6
|
Lu A, Steiner MA, Whittle N, Vogl AM, Walser SM, Ableitner M, Refojo D, Ekker M, Rubenstein JL, Stalla GK, Singewald N, Holsboer F, Wotjak CT, Wurst W, Deussing JM. Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior. Mol Psychiatry 2008; 13:1028-42. [PMID: 18475271 DOI: 10.1038/mp.2008.51] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypersecretion of central corticotropin-releasing hormone (CRH) has been implicated in the pathophysiology of affective disorders. Both, basic and clinical studies suggested that disrupting CRH signaling through CRH type 1 receptors (CRH-R1) can ameliorate stress-related clinical conditions. To study the effects of CRH-R1 blockade upon CRH-elicited behavioral and neurochemical changes we created different mouse lines overexpressing CRH in distinct spatially restricted patterns. CRH overexpression in the entire central nervous system, but not when overexpressed in specific forebrain regions, resulted in stress-induced hypersecretion of stress hormones and increased active stress-coping behavior reflected by reduced immobility in the forced swim test and tail suspension test. These changes were related to acute effects of overexpressed CRH as they were normalized by CRH-R1 antagonist treatment and recapitulated the effect of stress-induced activation of the endogenous CRH system. Moreover, we identified enhanced noradrenergic activity as potential molecular mechanism underlying increased active stress-coping behavior observed in these animals. Thus, these transgenic mouse lines may serve as animal models for stress-elicited pathologies and treatments that target the central CRH system.
Collapse
Affiliation(s)
- A Lu
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ebner K, Singewald GM, Whittle N, Ferraguti F, Singewald N. Neurokinin 1 receptor antagonism promotes active stress coping via enhanced septal 5-HT transmission. Neuropsychopharmacology 2008; 33:1929-41. [PMID: 17957216 DOI: 10.1038/sj.npp.1301594] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antagonists of the substance P (SP) preferring neurokinin 1 receptor (NK1R) represent a promising novel class of drugs for the treatment of stress-related disorders such as depression and anxiety disorders; however, the involved neuronal pathways releasing SP in response to stressors are ill defined. By using in vivo microdialysis in combination with a highly sensitive and selective radioimmunoassay we found that exposure to forced swim stress increased SP release in the rat lateral septum (LS), a key area in processing emotions and stress responses. Acute administration of the selective NK1R antagonist L-822429 injected either systemically or locally into the LS reduced passive and facilitated active stress-coping strategies in the forced swim test. This effect seems to be mediated by enhanced intraseptal serotonergic transmission via serotonin (5-HT)1A receptors since NK1R blockade reversed the swim stress-induced decrease to an increase in extracellular 5-HT efflux, and furthermore the behavioral effects of L-822429 were blocked by intraseptal 5-HT1A receptor antagonism. A direct heterosynaptic regulation by NK1R on 5-HT release from serotonergic fibers was ruled out by immunocytochemistry at the light and electron microscopic level indicating involvement of GABAergic interneuron(s) in this interaction. Taken together, our data identify the LS as a critical brain area for the involvement of SP transmission in the modulation of stress responses and demonstrate that NK1R blockade can elicit a functionally significant facilitatory effect on 5-HT transmission, which does not necessarily involve the previously proposed interaction with neuronal firing at the cell body level of raphe neurons.
Collapse
Affiliation(s)
- Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens-University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
8
|
Laederach-Hofmann K, Rüddel H, Mussgay L. Pathological baroreceptor sensitivity in patients suffering from somatization disorders: do they correlate with symptoms? Biol Psychol 2008; 79:243-9. [PMID: 18611426 DOI: 10.1016/j.biopsycho.2008.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/04/2008] [Accepted: 06/10/2008] [Indexed: 11/17/2022]
Abstract
AIM We conducted a study to investigate whether patients with somatization disorders (ICD-10, F45.0) show abnormal values in autonomic testing. METHOD 35 patients with a diagnosis of somatization disorder (SP) were matched to 35 healthy volunteers (HV). International standardized autonomic testing based on heart rate variation and continuously measured blood pressure signals was used to assess autonomic activity and establish baroreceptor sensitivity (BRS). Three different statistical procedures were used to confirm the reliability of the findings. RESULTS There were no statistical differences between the 2 groups in age, BMI, systolic and diastolic blood pressures, and spectral values (total power, low, and high frequency power). However, heart rate was higher (p=0.044) and baroreceptor sensitivity was lower (p=0.002) in the patients compared to the healthy volunteers. Median BRS (+/-S.E.M.) of patients was 9.09+/-0.65 compared to 12.04+/-0.94 ms/mmHg in healthy volunteers. Twenty-two of the 35 patients had a BRS of -1.0S.D. below the mean of HV. SP with lower values differed from SP with normal BRS in values of total power, low-, mid-, and high-frequency bands (p<0.01 to <0.0001). No differences in psychometric testing were found between patients with lower or higher BRS. In addition, no correlation whatsoever was found in relation to autonomic variables between HV and SP, except for a higher LF/HF quotient in the latter (p<0.05). CONCLUSION Autonomic regulation was impaired in 62% of patients with a somatization disorder. Severity of clinical symptoms measured by psychometric instruments did not preclude autonomic function impairment. Accordingly, autonomic dysfunction may constitute an independent somatic factor in this patient group.
Collapse
Affiliation(s)
- Kurt Laederach-Hofmann
- Psychobiology and Psychosomatic Center, Department of Behavioural Medicine and Rehabilitation, University of Trier, St-Franziska-Stift Psychosomatic Hospital, Bad Kreuznach, Germany.
| | | | | |
Collapse
|
9
|
Whittle N, Sartori SB, Dierssen M, Lubec G, Singewald N. Fetal Down syndrome brains exhibit aberrant levels of neurotransmitters critical for normal brain development. Pediatrics 2007; 120:e1465-71. [PMID: 17998315 DOI: 10.1542/peds.2006-3448] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In the immature developing fetal brain, amino acids (such as gamma-aminobutyric acid, and taurine) and monoamines (serotonin, noradrenaline, and dopamine) act as developmental signals or regulators. In subjects with Down syndrome, dysfunctional brain development is evident from birth as reduction in brain weight, as well as volume reductions in specific brain regions, and an altered number of neurons, dendrites, and dendritic branching is observed. However, mechanisms that underlie the observed dysfunctional brain development in Down syndrome are not clear. OBJECTIVES Because diverse amino acids and monoamines are critical for normal brain development, we wanted to determine whether dysfunctional brain development observed in subjects with Down syndrome is associated with altered brain amino acid and/or monoamine levels. DESIGN/METHODS We quantified tissue concentrations of diverse amino acids, including gamma-aminobutyric acid and taurine, and the monoamines serotonin, noradrenaline, and dopamine in the frontal cortex of fetal Down syndrome tissue at a gestational age of approximately 20 weeks versus age-matched control aborted fetuses. RESULTS Fetal Down syndrome brains showed reductions in the levels of serotonin, gamma-aminobutyric acid, taurine, and dopamine in the frontal cortex. No alteration in the levels of arginine, aspartate, glutamine, glutamate, glycine, histidine, serine, or noradrenaline was observed. CONCLUSIONS Serotonin, gamma-aminobutyric acid, taurine, and dopamine are critical for the acquisition of brain morphologic features, neuronal and glia proliferation, and synapse formation. The detected reductions in the levels of these neurotransmitters may indicate potential mechanisms for the observed dysfunctional neuronal development in the Down syndrome fetal brain.
Collapse
Affiliation(s)
- Nigel Whittle
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
10
|
Esler M, Lambert E, Alvarenga M, Socratous F, Richards J, Barton D, Pier C, Brenchley C, Dawood T, Hastings J, Guo L, Haikerwal D, Kaye D, Jennings G, Kalff V, Kelly M, Wiesner G, Lambert G. Increased brain serotonin turnover in panic disorder patients in the absence of a panic attack: reduction by a selective serotonin reuptake inhibitor. Stress 2007; 10:295-304. [PMID: 17613943 DOI: 10.1080/10253890701300904] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Since the brain neurotransmitter changes characterising panic disorder remain uncertain, we quantified brain noradrenaline and serotonin turnover in patients with panic disorder, in the absence of a panic attack. Thirty-four untreated patients with panic disorder and 24 matched healthy volunteers were studied. A novel method utilising internal jugular venous sampling, with thermodilution measurement of jugular blood flow, was used to directly quantify brain monoamine turnover, by measuring the overflow of noradrenaline and serotonin metabolites from the brain. Radiographic depiction of brain venous sinuses allowed differential venous sampling from cortical and subcortical regions. The relation of brain serotonin turnover to serotonin transporter genotype and panic disorder severity were evaluated, and the influence of an SSRI drug, citalopram, on serotonin turnover investigated. Brain noradrenaline turnover in panic disorder patients was similar to that in healthy subjects. In contrast, brain serotonin turnover, estimated from jugular venous overflow of the metabolite, 5-hydroxyindole acetic acid, was increased approximately 4-fold in subcortical brain regions and in the cerebral cortex (P < 0.01). Serotonin turnover was highest in patients with the most severe disease, was unrelated to serotonin transporter genotype, and was reduced by citalopram (P < 0.01). Normal brain noradrenaline turnover in panic disorder patients argues against primary importance of the locus coeruleus in this condition. The marked increase in serotonin turnover, in the absence of a panic attack, possibly represents an important underlying neurotransmitter substrate for the disorder, although this point remains uncertain. Support for this interpretation comes from the direct relationship which existed between serotonin turnover and illness severity, and the finding that SSRI administration reduced serotonin turnover. Serotonin transporter genotyping suggested that increased whole brain serotonin turnover most likely derived not from impaired serotonin reuptake, but from increased firing in serotonergic midbrain raphe neurons projecting to both subcortical brain regions and the cerebral cortex.
Collapse
Affiliation(s)
- Murray Esler
- Baker Heart Research Institute, Melbourne, Vic., Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Esler M, Alvarenga M, Pier C, Richards J, El-Osta A, Barton D, Haikerwal D, Kaye D, Schlaich M, Guo L, Jennings G, Socratous F, Lambert G. The neuronal noradrenaline transporter, anxiety and cardiovascular disease. J Psychopharmacol 2006; 20:60-6. [PMID: 16785272 DOI: 10.1177/1359786806066055] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Panic disorder can serve as a clinical model for testing whether mental stress can cause heart disease. Potential neural mechanisms of cardiac risk are the sympathetic activation during panic attacks, continuing release of adrenaline as a co-transmitter in the cardiac sympathetic nerves, and impairment of noradrenaline neuronal reuptake, augmenting sympathetic neural respnses. The phenotype of impaired neuronal reuptake of noradrenaline: an epigenetic mechanism? We suspect that this phenotype, in sensitizing people to heart symptom development, is a cause of panic disorder, and by magnifying the sympathetic neural signal in the heart, underlies increased cardiac risk. No loss of function mutations of the coding region of the norepinephrine transporter (NET) are evident, but we do detect hypermethylation of CpG islands in the NET gene promoter region. Chromatin immunoprecipitation methodology demonstrates binding of the inhibitory transcription factor, MeCP2, to promoter region DNA in panic disorder patients. Cardiovascular illnesses co-morbid with panic disorder. Panic disorder commonly coexists with essential hypertension and the postural tachycardia syndrome. In both of these cardiovascular disorders the impaired neuronal noradrenaline reuptake phenotype is also present and, as with panic disorder, is associated with NET gene promoter region DNA hypermethylation. An epigenetic 'co-morbidity' perhaps underlies the clinical concordance. Brain neurotransmitters. Using internal jugular venous sampling, in the absence of a panic attack we find normal norepinephrine turnover, but based on measurements of the overflow of the serotonin metabolite, 5HIAA, a marked increase (six to sevenfold) in brain serotonin turnover in patients with panic disorder. This appears to represent the underlying neurotransmitter substrate for the disorder. Whether this brain serotonergic activation is a prime mover, or consequential on other primary causes of panic disorder, including cardiac sensitization by faulty neuronal noradrenaline reuptake leading to cardiac symptoms and the enhanced vigilance which accompanies them, is unclear at present.
Collapse
Affiliation(s)
- Murray Esler
- Baker Heart Research Institute, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Salchner P, Singewald N. 5-HT receptor subtypes involved in the anxiogenic-like action and associated Fos response of acute fluoxetine treatment in rats. Psychopharmacology (Berl) 2006; 185:282-8. [PMID: 16521035 DOI: 10.1007/s00213-005-0247-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 10/24/2005] [Indexed: 12/24/2022]
Abstract
RATIONALE We have recently reported that acute treatment with the selective serotonin reuptake inhibitor fluoxetine exacerbates escape responses to airjet and facilitates airjet-induced activation of locus coeruleus (LC) neurons. OBJECTIVE Here we aimed to identify the 5-HT receptor subtype(s) mediating the anxiogenic-like effects of acute fluoxetine in this paradigm and to study whether chronic fluoxetine treatment would alter these responses. METHODS The expression of the immediate early gene c-fos was used as a marker of neuronal activation. RESULTS Acute fluoxetine increased the airjet-induced escape behaviour and Fos expression in the LC of saline-pretreated rats. Pretreatment with the 5-HT(2C/2B) antagonist SB 206553, but not with the 5-HT1A antagonist WAY 100635, the 5-HT1B antagonist SB 224289 or the 5-HT3 antagonist Y-25130 inhibited the fluoxetine-induced increase in escape behaviour and the associated elevated LC Fos response. The selective 5-HT2C agonist MK-212 mimicked the anxiogenic response of fluoxetine. Chronic treatment with fluoxetine abolished the anxiogenic-like effect and led to a normalization of the enhanced fluoxetine-induced Fos response to airjet. CONCLUSIONS Taken together, the results indicate that the anxiogenic-like effect as well as the facilitated neuronal reactivity induced by acute fluoxetine in the airjet model is mediated primarily by activation of 5-HT2C receptors.
Collapse
Affiliation(s)
- Peter Salchner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Strasse 1, 6020 Innsbruck, Austria
| | | |
Collapse
|
13
|
Kouvelas D, Singewald N, Kaehler ST, Philippu A. Sinoaortic denervation abolishes blood pressure-induced GABA release in the locus coeruleus of conscious rats. Neurosci Lett 2006; 393:194-9. [PMID: 16233953 DOI: 10.1016/j.neulet.2005.09.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 09/22/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
Male Sprague-Dawley rats underwent sinoaortic denervation (SAD) or sham operation. We examined changes in the release rates of GABA, glutamate and arginine in the locus coeruleus (LC) elicited by experimental blood pressure increases (i.v. noradrenaline infusion for 3 min, 4 microg kg(-1)min(-1)) or decreases (i.v. sodium nitroprusside infusion for 3 min, 150 microg kg(-1)min(-1)). The release of the neurotransmitters was monitored by the push-pull superfusion technique. Mean blood pressure did not differ between sham-operated and SAD rats but blood pressure lability was greatly enhanced in SAD rats and accompanied by increased basal release of glutamate in the LC. GABA release was not affected. A rise in blood pressure induced by noradrenaline enhanced GABA release in the LC of sham-operated rats. This effect was abolished by SAD. Glutamate release did not respond to hypertension either in SAD or in sham-operated rats. Nitroprusside led to a fall in blood pressure which was more pronounced and lasted longer in SAD than in sham-operated rats. In SAD rats, glutamate release was enhanced by nitroprusside. The depressor response had no effect on glutamate release in sham-operated rats. GABA release did not respond to this stimulus in either SAD or sham-operated rats. SAD and blood pressure changes did not influence the release rate of arginine. In conclusion, experimental hypertension increases GABAergic activity in the LC by stimulating peripheral baroreceptors. In SAD rats, augmented blood pressure lability seems to be at least partly due to elevated glutamate outflow within the LC.
Collapse
Affiliation(s)
- Dimitrios Kouvelas
- Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, P.O. Box 1532, 54006 Thessaloniki, Greece.
| | | | | | | |
Collapse
|
14
|
Keck ME, Sartori SB, Welt T, Müller MB, Ohl F, Holsboer F, Landgraf R, Singewald N. Differences in serotonergic neurotransmission between rats displaying high or low anxiety/depression-like behaviour: effects of chronic paroxetine treatment. J Neurochem 2005; 92:1170-9. [PMID: 15715667 DOI: 10.1111/j.1471-4159.2004.02953.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disturbances in serotonergic neurotransmission have been suggested to be closely interlinked with hyperactivity of the hypothalamic-pituitary-adrenocortical (HPA) system, and are likely to be involved in the pathophysiology of anxiety disorders and major depression. We therefore investigated markers of serotonergic transmission and their modulation by chronic paroxetine in rats selectively bred for high (HAB) or low (LAB) anxiety-related behaviour, both under basal conditions and in response to emotional stress. Hippocampal serotonin 1 A (5-HT1A) receptor mRNA expression was reduced in HAB rats, whereas 5-HT concentrations in hippocampal microdialysates did not differ between HAB and LAB rats under basal conditions. In the hippocampus, overall expression of serotonin transporter binding sites was increased in HAB compared with LAB rats. Exposure to emotional stress failed to increase intrahippocampal 5-HT release in HAB rats whereas LAB rats displayed a physiological, albeit small rise. Chronic paroxetine treatment markedly increased the stress-induced rise in hippocampal 5-HT in HAB, but not LAB rats. This effect may be (at least in part) related to a greater down-regulation of hippocampal serotonin transporter binding sites by paroxetine in HABs compared with LABs, while 5-HT1A receptor expression remained unaffected in this brain area. The findings indicate reduced hippocampal serotonergic transmission in HAB rats as compared with LAB rats, which is evident both at the presynaptic (5-HT release) and the postsynaptic (5-HT1A receptor) level. Chronic paroxetine enhanced the presynaptic responsivity in HAB rats, but not LAB rats, pointing to a preferential efficacy of paroxetine in rats with enhanced anxiety/depression-related behaviour.
Collapse
Affiliation(s)
- Martin E Keck
- Max Planck Institute of Psychiatry, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Stress, corticotropin-releasing factor and serotonergic neurotransmission. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
16
|
Bandoh T, Hayashi M, Ino K, Takada S, Ushizawa D, Hoshi K. Acute effect of milnacipran on the relationship between the locus coeruleus noradrenergic and dorsal raphe serotonergic neuronal transmitters. Eur Neuropsychopharmacol 2004; 14:471-8. [PMID: 15589386 DOI: 10.1016/j.euroneuro.2004.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 01/06/2004] [Accepted: 01/09/2004] [Indexed: 11/23/2022]
Abstract
The present studies sought to investigate the effect of milnacipran called the serotonin (5-HT) and noradrenaline (NA) reuptake inhibitor (SNRI) on the interaction of central locus coeruleus noradrenergic and dorsal raphe nucleus serotonergic functional activity by utilizing in vivo microdialysis. A single administration of milnacipran (60 mg/kg, s.c.) markedly decreased the levels of NA and its metabolite, 4-hydroxy-3-methoxymandelic acid (HMMA), in the locus coeruleus and the levels of, a metabolite of 5-hydroxytryptamine (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA) in the dorsal raphe nucleus. Combined administration of yohimbine (2 mg/kg, s.c.),?alpha(2)-adrenoceptor?antagonist, at 2 h after milnacipran (60 mg/kg, s.c.) led to a significant increase in NA levels in the locus coeruleus, although yohimbine alone had no effect on these levels. Under similar experimental condition, 5-HIAA levels in the dorsal raphe nucleus remained unchanged. NAN-190 (1 mg/kg, s.c.), 5-HT(1A) receptor partial agonist, alone markedly decreased the levels of 5-HIAA in the dorsal raphe nucleus, although this level was not affected by WAY100635, the selective 5-HT(1A) receptor antagonist. WAY100635 recovered the milnacipran-induced decrease of 5-HIAA levels in the dorsal raphe nucleus to control levels. On the other hand, NAN-190 did not affect the milnacipran-induced decrease of 5-HIAA levels. Behavioral signs (locomotion and rearing) were markedly observed following milnacipran alone or combined administration of milnacipran and yohimbine. However, the behavioral signs after coadministration of milnacipran and WAY100635 or NAN-190 were relatively poor. These results may suggest that an increase of NA in the locus coeruleus with the treatment of yohimbine after milnacipran results from negative feedback following the blockade of alpha(2)-adrenoceptors achieved with yohimbine, and that WAY100635 but not NAN-190 recovered milnacipran-induced decrease of 5-HIAA in the dorsal raphe nucleus to control levels by preventing the activation for the presynaptic 5-HT(1A) autoreceptor.
Collapse
Affiliation(s)
- T Bandoh
- Department of Clinical Pharmacology, Hokkaido College of Pharmacy, 7-1 Katsuraoka-cho, Otaru Hokkaido 047-0264, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Kaehler ST, Salchner P, Singewald N, Philippu A. Differential amino acid transmission in the locus coeruleus of Wistar Kyoto and spontaneously hypertensive rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2004; 370:381-7. [PMID: 15526108 DOI: 10.1007/s00210-004-0987-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 09/07/2004] [Indexed: 11/25/2022]
Abstract
In addition to differences in their blood pressure, Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) are known to differ in their emotional behaviour. The neurochemistry underlying these differences is not well understood. In the present study the release rates of the two main regulatory amino acids in the locus coeruleus, glutamate and gamma-aminobutyric acid (GABA), were monitored in WKY rats and SHR to investigate whether basal and/or challenged neurotransmission differs between these strains. The strains differed in their basal blood pressure (WKY 102+/-2 mmHg, SHR 140+/-4 mmHg), as well as in their emotional behaviour, since WKY rats displayed enhanced anxiety-related behaviour in the open field test (time in centre: WKY 197+/-40 s/30 min, SHR 741+/-93 s/30 min). Basal glutamate and GABA release rates did not differ between WKY rats and SHR. A rise in blood pressure induced by intravenous infusion of noradrenaline for 10 min enhanced GABA release in WKY rats by 60%, while no effect was observed in SHR. Glutamate release did not respond to experimental hypertension in both strains. Intravenous infusion of sodium nitroprusside led to a fall in blood pressure, which was less pronounced and was of shorter duration in WKY rats than in SHR. The depressor response had no effect on amino acid release in the locus coeruleus of both strains. Mild stress induced by noise or tail pinch led to slight rises in arterial blood pressure (10 mmHg and 20 mmHg respectively), which were similar in WKY rats and SHR. Tail pinch enhanced the release rates of glutamate and GABA in the locus coeruleus of WKY rats and SHR; however, no strain differences were noted. Noise stress did not significantly influence amino acid release. These findings demonstrate that SHR and WKY rats differ in GABAergic neurotransmission, which is revealed in response to specific cardiovascular challenges, but not to mild stressors. The observed lack of GABA response to blood pressure elevation in SHR may reflect a disturbed mechanism counteracting high blood pressure, possibly contributing to hypertension in this strain.
Collapse
Affiliation(s)
- S T Kaehler
- Department of Pharmacology and Toxicology, University of Innsbruck, Peter-Mayr-Strasse 1, 6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
18
|
Hayashi M, Bandoh T, Ushizawa D, Takada S, Hoshi K. Effects of acute and short-term administration of tryptophan plus ethanol on noradrenaline and serotonin metabolites in the locus coeruleus. Alcohol 2004; 34:225-32. [PMID: 15902917 DOI: 10.1016/j.alcohol.2004.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effects of acute and short-term administration of tryptophan or tryptophan plus ethanol on serotonin [5-hydroxytryptamine (5-HT)] and two of its metabolites, 5-hydroxyindoleacetic acid (5-HIAA) and 5-hydroxytryptophol (5-HTPL), in the locus coeruleus were investigated in rats by using the microdialysis method. In addition, the acute effects of these drugs on noradrenaline and its metabolite 4-hydroxy-3-methoxymandelic acid (HMMA) were addressed. A single co-administration of tryptophan (50 mg/kg, i.p.) and ethanol (1.25 g/kg, i.p.) did not change the concentrations of either noradrenaline or its metabolite in the locus coeruleus. In contrast, administration of tryptophan (50 mg/kg, i.p.) for three consecutive days caused an increase in the concentration of 5-HIAA, but not that of 5-HT, in the locus coeruleus. Combined administration of tryptophan plus ethanol for 3 days resulted in marked increases in 5-HIAA concentrations in the locus coeruleus, but not in 5-HTPL concentrations. However, administration of ethanol (1.25 g/kg) for 3 days had no effect on the concentrations of 5-HT and its metabolites. The increased 5-HIAA concentration that resulted with combined tryptophan plus ethanol administration was remarkably suppressed by disulfiram. Moreover, in comparison with tryptophan-treated rats, the behavioral sign of teeth-chattering was significantly detected in tryptophan plus ethanol-treated rats, but the enhancement of behavioral signs with combined treatment was markedly suppressed by disulfiram. Results of the current study seem to indicate that the stimulation of 5-HT metabolism in locus coeruleus serotonergic neurons by tryptophan was strengthened by the simultaneous administration of ethanol in short-term experiments, and that the increased 5-HIAA concentrations in the locus coeruleus are responsible for behavioral activation.
Collapse
Affiliation(s)
- Masahiro Hayashi
- Department of Clinical Pharmacology, Hokkaido College of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | | | | | | | | |
Collapse
|
19
|
Sinnegger-Brauns MJ, Hetzenauer A, Huber IG, Renström E, Wietzorrek G, Berjukov S, Cavalli M, Walter D, Koschak A, Waldschütz R, Hering S, Bova S, Rorsman P, Pongs O, Singewald N, Striessnig J. Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca 2+ channels. J Clin Invest 2004; 113:1430-9. [PMID: 15146240 PMCID: PMC406526 DOI: 10.1172/jci20208] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Accepted: 02/17/2004] [Indexed: 11/17/2022] Open
Abstract
Ca(v)1.2 and Ca(v)1.3 L-type Ca(2+) channels (LTCCs) are believed to underlie Ca(2+) currents in brain, pancreatic beta cells, and the cardiovascular system. In the CNS, neuronal LTCCs control excitation-transcription coupling and neuronal plasticity. However, the pharmacotherapeutic implications of CNS LTCC modulation are difficult to study because LTCC modulators cause cardiovascular (activators and blockers) and neurotoxic (activators) effects. We selectively eliminated high dihydropyridine (DHP) sensitivity from Ca(v)1.2 alpha 1 subunits (Ca(v)1.2DHP-/-) without affecting function and expression. This allowed separation of the DHP effects of Ca(v)1.2 from those of Ca(v)1.3 and other LTCCs. DHP effects on pancreatic beta cell LTCC currents, insulin secretion, cardiac inotropy, and arterial smooth muscle contractility were lost in Ca(v)1.2DHP-/- mice, which rules out a direct role of Ca(v)1.3 for these physiological processes. Using Ca(v)1.2DHP-/- mice, we established DHPs as mood-modifying agents: LTCC activator-induced neurotoxicity was abolished and disclosed a depression-like behavioral effect without affecting spontaneous locomotor activity. LTCC activator BayK 8644 (BayK) activated only a specific set of brain areas. In the ventral striatum, BayK-induced release of glutamate and 5-HT, but not dopamine and noradrenaline, was abolished. This animal model provides a useful tool to elucidate whether Ca(v)1.3-selective channel modulation represents a novel pharmacological approach to modify CNS function without major peripheral effects.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Affect/drug effects
- Affect/physiology
- Animals
- Calcium Channels, L-Type/deficiency
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/physiology
- Cardiovascular Physiological Phenomena
- Dihydropyridines/pharmacology
- Islets of Langerhans/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Protein Isoforms/deficiency
- Protein Isoforms/genetics
- Protein Isoforms/physiology
Collapse
|
20
|
Esler M, Alvarenga M, Lambert G, Kaye D, Hastings J, Jennings G, Morris M, Schwarz R, Richards J. Cardiac Sympathetic Nerve Biology and Brain Monoamine Turnover in Panic Disorder. Ann N Y Acad Sci 2004; 1018:505-14. [PMID: 15240408 DOI: 10.1196/annals.1296.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Panic disorder serves as a clinical model for testing whether mental stress can cause heart disease. Our own cardiologic management of panic disorder provides case material of recurrent emergency room attendances with angina and electrocardiogram ischemia, triggered arrhythmias (atrial fibrillation, ventricular fibrillation), and documented coronary artery spasm, in some cases with coronary spasm being complicated by coronary thrombosis. Application of radiotracer catecholamine kinetics and clinical microneurography methodology suggests there is a genetic predisposition to panic disorder that involves faulty neuronal norepinephrine uptake, possibly sensitizing the heart to symptom generation. During panic attacks there are large sympathetic bursts, recorded by clinical microneurography in the muscle sympathetic nerve neurogram, and large increases in cardiac norepinephrine spillover, accompanied by surges of adrenal medullary epinephrine secretion. In other conditions such as heart failure and presumably here also, a high level of sympathetic nervous activation can mediate increased cardiac risk. The sympathetic nerve cotransmitter, neuropeptide Y (NPY), is released from the cardiac sympathetics during panic attacks, an intriguing finding given that NPY can cause coronary artery spasm. There is ongoing, continuous release of epinephrine from the heart in panic sufferers, perhaps attributable to epinephrine loading of cardiac sympathetic nerves by uptake from plasma during panic attacks, or possibly to in situ synthesis of epinephrine through the action of intracardiac phenylethanolamine-N-methytransferase (PNMT) activated by repeated cortisol responses. We have used internal jugular venous sampling and measurement of overflowing lipophilic brain monoamine metabolites to quantify brain norepinephrine and serotonin turnover in untreated patients with panic disorder. We find normal norepinephrine turnover but a marked increase in brain serotonin turnover in patients with panic disorder, in the absence of a panic attack, which presumably represents an underlying neurotransmitter substrate for the condition.
Collapse
Affiliation(s)
- Murray Esler
- Baker Heart Research Institute, PO Box 6492, St. Kilda Road Central, Melbourne, Victoria 8008, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee HS. Interconnections between the rat dorsal raphe and the locus coeruleus nuclei demonstrated by anterograde tracing with phaseolus vulgaris leucoagglutinin. ACTA ACUST UNITED AC 2004. [DOI: 10.1080/12265071.2004.9647754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Hayashi M, Nakai T, Bandoh T, Hoshi K. Acute effect of simultaneous administration of tryptophan and ethanol on serotonin metabolites in the locus coeruleus in rats. Eur J Pharmacol 2003; 462:61-6. [PMID: 12591096 DOI: 10.1016/s0014-2999(03)01318-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using the microdialysis method, we investigated whether the levels of serotonin (5-hydroxytryptamine, 5-HT) and its metabolites, 5-hydroxyindoleacetic acid (5-HIAA) and 5-hydroxytryptophol (5-HTPL), in the locus coeruleus are influenced by tryptophan alone or simultaneous administration of tryptophan and ethanol. Tryptophan (50 mg/kg, i.p.) led to a significant increase in the levels of 5-HIAA, but not 5-HT in the locus coeruleus. However, ethanol (1.25 g/kg) had no effect on the levels of 5-HT and its metabolites. Combined administration of tryptophan and ethanol caused very marked increases in 5-HIAA and 5-HTPL levels in the locus coeruleus. A time lag in the increased 5-HIAA levels between tryptophan alone and tryptophan plus ethanol was observed. Moreover, 5-HIAA levels in the locus coeruleus induced by tryptophan were abolished by microinjection of 5,7-dihydroxytryptamine (150 microg/4 microl) into the dorsal raphe nucleus. Judging from the present results, the serotonergic afferents to the locus coeruleus may originate for about 20-30% from cell bodies located in the dorsal raphe nucleus. Teeth-chattering was significantly detected in the tryptophan plus ethanol-treated rats when compared with the tryptophan-treated rats, but not in the saline-treated controls. These results may suggest that the increased levels of 5-HIAA and 5-HTPL in the locus coeruleus induced by tryptophan are potentiated by ethanol, and that these levels are partly responsible for behavioral activation.
Collapse
Affiliation(s)
- Masahiro Hayashi
- Department of Clinical Pharmacology, Hokkaido College of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | | | | | | |
Collapse
|
23
|
Ferrari PF, van Erp AMM, Tornatzky W, Miczek KA. Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats. Eur J Neurosci 2003; 17:371-8. [PMID: 12542674 DOI: 10.1046/j.1460-9568.2003.02447.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Autonomic and limbic neural activities are linked to aggressive behavior, and it is hypothesized that activities in the cardiovascular and monoaminergic systems play a role in preparing for an aggressive challenge. The objective was to learn about the emergence of monoamine activity in nucleus accumbens before an aggressive confrontation that was omitted at the regular time of occurrence, dissociating the motoric from the aminergic activity. Dopamine, serotonin, heart rate and behavioral activity were monitored before, during and after a single 10-min confrontation in resident male Long-Evans rats fitted with a microdialysis probe in the n. accumbens and with a telemetry sender (experiment 1). DA, but not 5-HT efflux, was confirmed to increase in n. accumbens during and after a single aggressive episode. In aggressive males that confronted an opponent daily for 10 days (experiment 2) heart rate rose 1 h before the regularly scheduled encounter relative to control rats, as measured on day 11 in the absence of any aggression. Concurrently, DA levels increased by 60-70% over baseline levels and 5-HT levels decreased by 30-35% compared to baseline levels. These changes were sustained over 1 h, and contrasted with no significant changes in DA, 5-HT, heart rate or behavioral activity in control rats. The rise in mesolimbic DA appears to be significant in anticipating the physiological and behavioral demands of an aggressive episode, and the fall in 5-HT in its termination, dissociated from the actual execution of the behavior.
Collapse
Affiliation(s)
- P F Ferrari
- Department of Psychology, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
24
|
Harro J, Oreland L. Depression as a spreading adjustment disorder of monoaminergic neurons: a case for primary implication of the locus coeruleus. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 38:79-128. [PMID: 11750928 DOI: 10.1016/s0165-0173(01)00082-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A model for the pathophysiology of depression is discussed in the context of other existing theories. The classic monoamine theory of depression suggests that a deficit in monoamine neurotransmitters in the synaptic cleft is the primary cause of depression. More recent elaborations of the classic theory also implicitly include this postulate, other theories of depression frequently prefer to depart from the monoamine-based model altogether. We suggest that the primary defect emerges in the regulation of firing rates in brainstem monoaminergic neurons, which brings about a decrease in the tonic release of neurotransmitters in their projection areas, an increase in postsynaptic sensitivity, and concomitantly, exaggerated responses to acute increases in the presynaptic firing rate and transmitter release. It is proposed that the initial defect involves, in particular, the noradrenergic innervation from the locus coeruleus (LC). Dysregulation of the LC projection activities may lead in turn to dysregulation of serotonergic and dopaminergic neurotransmission. Failure of the LC function could explain the basic impairments in the processing of novel information, intensive processing of irrational beliefs, and anxiety. Concomitant impairments in the serotonergic neurotransmission may contribute to the mood changes and reduction in the mesotelencephalic dopaminergic activity to loss of motivation, and anhedonia. Dysregulation of CRF and other neuropeptides such as neuropeptide Y, galanin and substance P may reinforce the LC dysfunction and thus further weaken the adaptivity to stressful stimuli.
Collapse
Affiliation(s)
- J Harro
- Department of Psychology, University of Tartu, Tiigi 78, EE-50410 Tartu, Estonia.
| | | |
Collapse
|
25
|
Kergozien S, Menétrey D. Environmental influences on viscero(noci)ceptive brain activities: the effects of sheltering. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 2000; 10:111-7. [PMID: 10978698 DOI: 10.1016/s0926-6410(00)00033-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Visceral disorders are always accompanied by pain and/or a sense of ill-being that entails people to isolate themselves both physically and socially. By analogy with what happens in human beings, we have transferred to the rat the question of whether a protective, dark and quiet environment would influence the brain activities induced by visceral chemically-induced (cyclophosphamide [CP], 100 mg/kg/ip) adverse conditions of life. CP is an antitumoral drug that induces severe side effects (cystitis, headache, nausea, photophobia, phonophobia) and produces a strong state of ill-being in human beings. Brain activities were quantified using the expression of the Fos protein, a molecular marker of neuronal activity. The results compare data from groups of paired animals having been offered a shelter or not. Data were collected 4 h after the injection of CP, i. e., when cystitis was fully developed. Sheltered and unsheltered groups did not differ in bladder pathology. Intentional sheltering was shown to attenuate the expression of the CP-related Fos-Li activity within the locus coeruleus (LC) without affecting that of the structures known preferentially to process nociceptive inputs of bladder origin (dorsal vagal complex, ventrocaudal bulbar reticular formation, nucleus centralis of amygdala, dorsolateral portion of bed nucleus of stria terminalis). The LC levels of tyrosine hydroxylase and galanin neuronal contents were not affected. The LC belongs to the emotional activation system and can respond to a wide range of somatosensory and viscerosensory stimuli. Our hypothesis is that the LC would be processing the nervous activities that accompany the sense of ill-being coming from adverse conditions of life, including visceral disorders, and that voluntary isolation, by reducing its activity, would enable animals to minimize their level of distress.
Collapse
Affiliation(s)
- S Kergozien
- Institut National de la Santé et de la Recherche Médicale Unité 161, 2 rue d'Alésia, 75014, Paris, France
| | | |
Collapse
|
26
|
Mateo Y, Ruiz-Ortega JA, Pineda J, Ugedo L, Meana JJ. Inhibition of 5-hydroxytryptamine reuptake by the antidepressant citalopram in the locus coeruleus modulates the rat brain noradrenergic transmission in vivo. Neuropharmacology 2000; 39:2036-43. [PMID: 10963747 DOI: 10.1016/s0028-3908(00)00041-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The in vivo effect of the serotonin (5-HT) reuptake inhibitor antidepressant citalopram, administered in the locus coeruleus (LC), on noradrenergic transmission was evaluated in the rat brain. In dual-probe microdialysis assays, citalopram (0.1-100 microM), in a concentration-dependent manner, increased extracellular noradrenaline (NA) in the LC and simultaneously decreased extracellular NA in the cingulate cortex (Cg). These effects of citalopram were abolished by pretreatment with the 5-HT synthesis inhibitor p-chlorophenylalanine (400 mg/kg, i.p.). When the alpha(2)-adrenoceptor antagonist RS79948 (1 microM) was perfused in the LC, local citalopram increased NA dialysate in the LC but no longer modified NA dialysate in the Cg. In electrophysiological experiments, the administration of citalopram (100 microM) in the LC by reversal dialysis, decreased the firing rate of LC neurones. The results demonstrate in vivo that local administration of citalopram in the LC leads to a decreased release of NA in the Cg. This modulation seems to be the result of an increase in NA concentration in the LC and the subsequent inhibition of LC neurones via alpha(2)-adrenoceptors. The effects of citalopram are dependent on the presence of endogenous 5-HT in the LC.
Collapse
Affiliation(s)
- Y Mateo
- Department of Pharmacology, University of the Basque Country, E-48940 Leioa, Bizkaia, Spain
| | | | | | | | | |
Collapse
|
27
|
Singewald N, Kouvelas D, Kaehler ST, Sinner C, Philippu A. Peripheral chemoreceptor activation enhances 5-hydroxytryptamine release in the locus coeruleus of conscious rats. Neurosci Lett 2000; 289:17-20. [PMID: 10899398 DOI: 10.1016/s0304-3940(00)01241-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Intravenous bolus injection of KCN (40 microg) elicited brief but pronounced tachypnea, bradycardia and pressor response, and led to a 37% increase in 5-hydroxytryptamine (serotonin) (5-HT) release in the locus coeruleus (LC) of freely moving rats. Slow infusion of KCN (15 microg/min) for 10 min induced only a slight pressor response, but increased the respiration rate (+39 breaths/min), as well as 5-HT release in the LC (+60%) throughout the infusion. In rats with transected chemoreceptor afferents, neither injection or infusion of KCN changed 5-HT release, suggesting that in intact animals, the effect on extracellular 5-HT was due to activation of peripheral chemoreceptors. In summary, we report that peripheral chemoreceptor activation enhances 5-HT release in the LC, indicating that 5-HT might be involved in the modulation of LC activity by ascending chemosensory information.
Collapse
Affiliation(s)
- N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Peter-Mayr-Strasse 1, A-6020, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
28
|
Martin C, Duclos M, Mormède P, Manier G, Chaouloff F. Hippocampal and striatal [(3)H]5-HT reuptake under acute stressors in two rat strains differing for their emotivity. Neurosci Lett 2000; 288:246-8. [PMID: 10889353 DOI: 10.1016/s0304-3940(00)01246-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spontaneously hypertensive rats and Lewis rats differ in their anxiety levels and in their serotonergic and corticotropic responses to stress. Since the 5-HT transporter plays a key role in 5-HT neurotransmission, we have analyzed whether hippocampal and/or striatal [(3)H]5-HT reuptake kinetics are altered by stress in a strain-dependent manner. It was found that forced swimming, treadmill running, or restraint for 30 min affected neither hippocampal nor striatal [(3)H]5-HT reuptake K(m) and V(max) values in the two rat strains. This study, which is the first to examine the impact of acute stress on [(3)H]5-HT reuptake with respect to the nature of the stressor, the brain region analyzed, and the rat strain, could reinforce the hypothesis that extracellular 5-HT levels during stress are representative of 5-HT release.
Collapse
Affiliation(s)
- C Martin
- Laboratoire de Physiologie de l'Exercice Musculaire et du Sport, Université Bordeaux II, 33076, Bordeaux, France
| | | | | | | | | |
Collapse
|
29
|
Abstract
There is evidence for stressor- and brain region-specific selectivity in serotonergic transmission responses to aversive stimuli. The aim of the present review is to provide an overview of the effects of different acute and repeated/chronic stressors on serotonin (5-HT) release and reuptake, extracellular 5-HT levels, and 5-HT pre- and postsynaptic receptors in areas tightly linked to the control of fear and anxiety, namely the dorsal and median raphe nuclei, the frontal cortex, the amygdala and the hippocampus. In addition, our knowledge of the impacts of corticoids on serotonergic systems in these brain areas is also briefly provided to examine whether the hypothalamo-pituitary-adrenal axis may play a role in stress-induced alterations in 5-HT neurotransmission. Taken together, the data presented reinforce the hypothesis that stress affects such a transmission, partly through the actions of corticoids. However, we are still left with unanswered, albeit crucial questions. First, the question of the specificity of the serotonergic responses to stress, with regard to the site of action and the nature of the stressor still remains open due to the heterogeneity of the results obtained so far. This could indicate that environmental factors, other than the stressor itself, may have enduring consequences on 5-HT sensitivity to stress. Second, the question regarding the role of stress-elicited changes in 5-HT transmission within coping processes finds in most cases no clearcut answer. In keeping with human symptomatology, the need to consider the environment (including the early one) and the genetic status when assessing the effects of stress on 5-HT neurotransmission is underlined. Such a consideration could help to answer the questions raised.
Collapse
Affiliation(s)
- F Chaouloff
- NeuroGénétique and Stress, INSERM U471, Institut F. Magendie, Bordeaux, France.
| |
Collapse
|
30
|
Seidl R, Kaehler ST, Prast H, Singewald N, Cairns N, Gratzer M, Lubec G. Serotonin (5-HT) in brains of adult patients with Down syndrome. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2000; 57:221-32. [PMID: 10666678 DOI: 10.1007/978-3-7091-6380-1_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Down syndrome (DS) is a genetic disease with developmental brain abnormalities resulting in early mental retardation and precocious, age dependent Alzheimer-type neurodegeneration. Furthermore, non-cognitive symptoms may be a cardinal feature of functional decline in adults with DS. As the serotonergic system plays a well known role in integrating emotion, cognition and motor function, serotonin (5-HT) and its main metabolite, 5-hydroxyindol-3-acetic acid (5-HIAA) were investigated in post-mortem tissue samples from temporal cortex, thalamus, caudate nucleus, occipital cortex and cerebellum of adult patients with DS, Alzheimer's disease (AD) and controls by use of high performance liquid chromatography (HPLC). In DS, 5-HT was found to be age-dependent significantly decreased in caudate nucleus by 60% (DS: mean +/- SD 58.6 +/- 28.2 vs. Co: 151.7 +/- 58.4 pmol/g wet tissue weight) and in temporal cortex by about 40% (196.8 +/- 108.5 vs. 352.5 +/- 183.0 pmol/g), insignificantly reduced in the thalamus, comparable to controls in cerebellum, whereas occipital cortex showed increased levels (204.5 +/- 138.0 vs. 82.1 +/- 39.1 pmol/g). In all regions of DS samples, alterations of 5-HT were paralleled by levels of 5-HIAA, reaching significance compared to controls in thalamus and caudate nucleus. In AD, 5-HT was insignificantly reduced in temporal cortex and thalamus, unchanged in cerebellum, but significantly elevated in caudate nucleus (414.3 +/- 273.7 vs. 151.7 +/- 58.4 pmol/g) and occipital cortex (146.5 +/- 76.1 vs. 82.1 +/- 39.1 pmol/g). The results of this study confirm and extend putatively specific 5-HT dysfunction in basal ganglia (caudate nucleus) of adult DS, which is not present in AD. These findings may be relevant to the pathogenesis and treatment of cognitive and non-cognitive (behavioral) features in DS.
Collapse
Affiliation(s)
- R Seidl
- Department of Pediatrics, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
31
|
Kaehler ST, Singewald N, Sinner C, Thurnher C, Philippu A. Conditioned fear and inescapable shock modify the release of serotonin in the locus coeruleus. Brain Res 2000; 859:249-54. [PMID: 10719071 DOI: 10.1016/s0006-8993(00)01967-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to investigate the importance of the serotonergic transmission in the locus coeruleus (LC) to conditioned fear. Rats were conditioned to fear by exposing them to noise signal (N), light signal (L) and electric foot shock (S) for 4 days. Control rats were exposed to the same events without receiving S. The LC was superfused with artificial cerebrospinal fluid (aCSF) through a push-pull cannula, and the release of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) was determined in the superfusate. Motility, blood pressure (BP) and heart rate (HR) were telemetrically recorded. (1) The process of moving animals from their home cage into the grid-floor chamber transiently increased the release rate of 5-HT and the outflow of 5-HIAA in control and naive rats. In conditioned rats, 5-HT release was similarly increased during transfer but was permanently decreased in the grid-floor chamber. Control rats showed phases of enhanced motility in the chamber, while conditioned animals displayed continuous immobility. In naive rats, enhanced motility persisted in the novel environment. (2) Exposure of rats to N+L+S increased the release of 5-HT and the outflow of 5-HIAA to the same extent in conditioned and naive rats. These changes were associated with elevated motility, rise in BP and tachycardia. (3) In conditioned subjects, exposure to N+L in the fifth day led to a pronounced and sustained decrease in the release rate of 5-HT and to tachycardia, while no effects were observed in control rats or naive rats. The findings suggest that conditioned fear attenuates serotonergic neurotransmission within the LC. Telemetric recording of HR proves to be a valuable index for fear and stress processes.
Collapse
Affiliation(s)
- S T Kaehler
- Department of Pharmacology, University of Innsbruck, Peter-Mayr Strasse 1, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
32
|
Chung KK, Martinez M, Herbert J. Central serotonin depletion modulates the behavioural, endocrine and physiological responses to repeated social stress and subsequent c-fos expression in the brains of male rats. Neuroscience 1999; 92:613-25. [PMID: 10408610 DOI: 10.1016/s0306-4522(99)00028-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intraspecific confrontation has been used to study effect of depleting central serotonin on the adaptation of male rats to repeated social stress (social defeat). Four groups of adult male rats were used (serotonin depletion/sham: stressed; serotonin depletion/sham: non-stressed). Central serotonin was reduced (by 59-97%) by a single infusion of the neurotoxin 5,7-dihydroxtryptamine (150 microg) into the cerebral ventricles; levels of dopamine and noradrenaline were unaltered (rats received appropriate uptake blockers prior to neurotoxic infusions). Sham-operated animals received solute only. Rats were then either exposed daily for 10 days to a second larger aggressive male in the latter's home cage, or simply transferred to an empty cage (control procedure). Rats with reduced serotonin failed to show the increased freezing behaviour during the pre-defeat phase of the social interaction test characteristic of sham animals. There was no change in the residents' behaviour. Core temperature increased during aggressive interaction in sham rats, and this did not adapt with repeated stress. By contrast, stress-induced hyperthermia was accentuated in serotonin-reduced rats as the number of defeat sessions increased. Basal core temperature was unaffected by serotonin depletion. Heart rate increased during social defeat, but this did not adapt with repeated stress; serotonin depletion had no effect on this cardiovascular response. Basal corticosterone was increased in serotonin-depleted rats, but the progressive reduction in stress response over days was not altered. C-fos expression in the brain was not altered in control (non-stressed) rats by serotonin reduction in the areas examined, but there was increased expression after repeated social stress in the medial amygdala of 5-HT depleted rats. These experiments show that reduction of serotonin alters responses to repeated social stress in male rats, and suggests a role for serotonin in the adaptive process.
Collapse
Affiliation(s)
- K K Chung
- Department of Anatomy, MRC Cambridge Centre for Brain Repair, University of Cambridge, UK
| | | | | |
Collapse
|
33
|
Kohlhauser C, Kaehler S, Mosgoeller W, Singewald N, Kouvelas D, Prast H, Hoeger H, Lubec B. Histological changes and neurotransmitter levels three months following perinatal asphyxia in the rat. Life Sci 1999; 64:2109-24. [PMID: 10372653 DOI: 10.1016/s0024-3205(99)00160-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The involvement of excitatory amino acids (EAA) in the pathogenesis of hypoxic-ischemic states is well-documented. Information on the role of overexcitation by EAA in perinatalasphyxia (PA), however, is limited and data from adult models cannot be directly extrapolated to immature systems. Moreover, most adult models of ischemia are representing stroke rather than PA. We decided to study long term effects in a non-invasive rat model of PA resembling the clinical situation three months following the asphyctic insult. Morphometry on Nissl - stained sections was used to determine neuronal death in frontal cortex, striatum, hippocampus CA1, hypothalamus and cerebellum L1, and the amino acids glutamate, glutamine, aspartate, GABA, taurine, arginine as well as histamine, serotonin and 5-hydroxy-indoleacetic acid were determined in several brain regions and areas. Morphometry revealed that neuronal loss was present in the hippocampal area CA1 in all groups with PA and that morphological alterations were significantly higher in the cerebellar granular layer. The prominent light microscopical finding in all areas of asphyctic rats studied was decreased Nissl-staining, suggesting decreased cellular RNA levels. Glutamate, aspartate and glutamine were significantly elevated in the hypothalamus of asphyctic rats probably indicating overstimulation by EAA. Excitotoxicity in this area would be compatible with findings of emotional / behavioral deficits observed in a parallel study in our model of PA. Our observations point to and may help to explain behavioral and emotional deficits in Man with a history of perinatal asphyxia.
Collapse
Affiliation(s)
- C Kohlhauser
- University of Vienna, Dpt of Pediatrics, Austria
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kaehler ST, Sinner C, Chatterjee SS, Philippu A. Hyperforin enhances the extracellular concentrations of catecholamines, serotonin and glutamate in the rat locus coeruleus. Neurosci Lett 1999; 262:199-202. [PMID: 10218890 DOI: 10.1016/s0304-3940(99)00087-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hyperforin is the main antidepressant component of hypericum perforatum (St. John's Wort). Using the push-pull superfusion technique we tested whether hyperforin influences extracellular concentrations of neurotransmitters in the rat locus coeruleus. Hyperforin (10 mg/kg, i.p.) not only enhanced the extracellular levels of the monoamines dopamine, noradrenaline and serotonin, but also that of the excitatory amino acid glutamate. The levels of the main serotonin metabolite 5-hydroxyindolacetic acid, as well as those of the amino acids GABA, taurine, aspartate, serine and arginine, were not influenced. Together with in vitro studies, our findings suggest that the antidepressant property of hyperforin is due to enhanced concentrations of monoamines and glutamate in the synaptic cleft, probably as a consequence of uptake inhibition.
Collapse
Affiliation(s)
- S T Kaehler
- Department of Pharmacology and Toxicology, University of Innsbruck, Austria
| | | | | | | |
Collapse
|
35
|
Lacosta S, Merali Z, Anisman H. Behavioral and neurochemical consequences of lipopolysaccharide in mice: anxiogenic-like effects. Brain Res 1999; 818:291-303. [PMID: 10082815 DOI: 10.1016/s0006-8993(98)01288-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic administration of lipopolysaccharide (LPS) induces sickness behaviors, as well as alterations of hypothalamic-pituitary-adrenal functioning commonly associated with stressors. In the present investigation, it was demonstrated that systemic LPS treatment induced a sickness-like behavioral profile (reduced active behaviors, soporific effects, piloerection, ptosis), which appeared to be dependent upon the novelty of the environmental context in which animals were tested. As well, LPS induced anxiogenic-like responses, including decreased time spent in the illuminated portion of a light-dark box, reduced open-arm entries in a plus-maze test, and decreased contact with a novel stimulus object in an open-field situation. The behavioral changes were accompanied by increased plasma ACTH and corticosterone levels. As well, LPS induced increased turnover of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) in the paraventricular nucleus (PVN), median eminence plus arcuate nucleus, hippocampus, as well as NE turnover within the locus coeruleus and DA turnover within the nucleus accumbens. Although these neurochemical variations were reminiscent of those elicited by stressors, LPS was not particularly effective in modifying DA activity within the prefrontal cortex or NE within the amygdala, variations readily induced by stressors. Whether the LPS-induced anxiogenic-like responses were secondary to the illness engendered by the endotoxin remains to be determined. Nevertheless, it ought to be considered that bacterial endotoxin challenge, and the ensuing cytokine changes, may contribute to emotionality and perhaps even anxiety-related behavioral disturbances.
Collapse
Affiliation(s)
- S Lacosta
- Institute of Neuroscience, Life Sciences Research Center, Carleton University, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
36
|
Deboer T, Sanford LD, Ross RJ, Morrison AR. Effects of electrical stimulation in the amygdala on ponto-geniculo-occipital waves in rats. Brain Res 1998; 793:305-10. [PMID: 9630691 DOI: 10.1016/s0006-8993(98)00178-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined the role of the amygdala in the modulation of sleep and ponto-geniculo-occipital (PGO) waves in the rat. The amygdala projects massively, via its central nucleus, into brainstem regions involved in alerting and in the generation of rapid-eye movement (REM) sleep and PGO waves. Electrical stimulation of the central nucleus of the amygdala during REM sleep increased PGO wave amplitude. Stimulation during non-REM sleep decreased PGO wave frequency. The results indicate that the amygdala has a role in modulating brainstem neural mechanisms underlying alerting during sleep.
Collapse
Affiliation(s)
- T Deboer
- Dept. of Animal Biology, Laboratory for Study of the Brain in Sleep, The School of Veterinary Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Dystonia is a common movement disorder which is thought to represent a disease of the basal ganglia. However, the pathogenesis of the idiopathic dystonias, i.e. the neuroanatomic and neurochemical basis, is still a mystery. Research in dystonia is complicated by the existence of various phenotypic and genotypic subtypes of idiopathic dystonia, probably related to heterogeneous dysfunctions. In neurological diseases in which no obvious neuronal degeneration can be found, such as in idiopathic dystonia, the identification of a primary defect is difficult, because of the large number of chemically distinct, but functionally interrelated, neurotransmitter systems in the brain. The variable response to pharmacological agents in patients with idiopathic dystonia supports the notion that the underlying biochemical dysfunctions vary in the subtypes of idiopathic dystonia. Hence, in basic research it is important to clearly define the involved type of dystonia. Animal models of dystonias were described as limited. However, over the last years, there has been considerable progress in the evaluation of animal models for different types of dystonia. Apart from animal models of symptomatic dystonia, genetic animal models with inherited dystonia which occurs in the absence of pathomorphological alterations in brain and spinal cord are describe. This review will focus mainly on genetic animal models of different idiopathic dystonias and pathophysiological findings. In particular, in the case of the mutant dystonic (dt) rat, a model of generalized dystonia, and in the case of the genetically dystonic hamster (dt(sz)), a model of paroxysmal dystonic choreoathetosis has been used, as these show great promise in contributing to the identification of underlying mechanisms in idiopathic dystonias, although even a proper animal model will probably never be equivalent to a human disease. Several pathophysiological findings from animal models are in line with clinical observations in dystonic patients, indicating abnormalities not only in the basal ganglia and thalamic nuclei, but also in the cerebellum and brainstem. Through clinical studies and neurochemical data several similarities were found in the genetic animal models, although the current data indicates different defects in dystonic animals which is consistent with the notion that dystonia is a heterogenous disorder. Different supraspinal dysfunctions appear to lead to manifestation of dystonic movements and postures. In addition to increasing our understanding of the pathophysiology of idiopathic dystonia, animal models may help to improve therapeutic strategies for this movement disorder.
Collapse
Affiliation(s)
- A Richter
- Department of Pharmacology, Toxicology and Pharmacy, School of Veterinary Medicine, Hannover, Germany.
| | | |
Collapse
|
38
|
Singewald N, Kaehler ST, Hemeida R, Philippu A. Influence of excitatory amino acids on basal and sensory stimuli-induced release of 5-HT in the locus coeruleus. Br J Pharmacol 1998; 123:746-52. [PMID: 9517395 PMCID: PMC1565214 DOI: 10.1038/sj.bjp.0701656] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The interactions between 5-hydroxytryptaminergic neurones and excitatory amino acid utilizing neurones were studied in the locus coeruleus of conscious, freely moving rats. The locus coeruleus was superfused with artificial cerebrospinal fluid through a push-pull cannula and 5-hydroxytryptamine (5-HT) was determined in the superfusate that was continuously collected in time periods of 10 min. 2. Superfusion of the locus coeruleus with the NMDA receptor antagonist AP5 (10 microM), kynurenic acid (1 mM), or the AMPA/kainate receptor antagonist DNQX (10 microM) reduced the 5-HT release in the locus coeruleus. 3. Superfusion with the agonists NMDA (50 microM), kainic acid (50 microM) or AMPA (10 microM) enhanced the release rate of 5-HT. AP5 (10 microM) blocked the stimulant effect of NMDA, while tetrodotoxin (1 microM) failed to influence the NMDA-induced release of 5-HT. In the presence of 10 microM DNQX, the releasing effect of 50 microM kainic acid was abolished. 4. Pain elicited by tail pinch, as well as noise-induced stress, increased the release of 5-HT. Superfusion of the locus coeruleus with 10 microM AP5 reduced the tail pinch-induced 5-HT release. AP5 (10 microM) did not affect the noise-induced release of 5-HT which was reduced, when the locus coeruleus was superfused simultaneously with this concentration of AP5 and 1 microM kynurenic acid. DNQX (10 mM) failed to influence the release of 5-HT induced by tail pinch or noise. 5. The findings suggest that 5-hydroxytryptaminergic neurones of the locus coeruleus are tonically modulated by excitatory amino acids via NMDA and AMPA/kainate receptors. The release of 5-HT elicited by tail pinch and noise is mediated to a considerable extent through endogenous excitatory amino acids acting on NMDA receptors, while AMPA/kainate receptors are not involved in this process.
Collapse
Affiliation(s)
- N Singewald
- Department of Pharmacology and Toxicology, University of Innsbruck, Austria
| | | | | | | |
Collapse
|