1
|
Masliukov PM, Emanuilov AI, Budnik AF. Sympathetic innervation of the development, maturity, and aging of the gastrointestinal tract. Anat Rec (Hoboken) 2023; 306:2249-2263. [PMID: 35762574 DOI: 10.1002/ar.25015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
The sympathetic nervous system inhibits gut motility, secretion, and blood flow in the gut microvasculature and can modulate gastrointestinal inflammation. Sympathetic neurons signal via catecholamines, neuropeptides, and gas mediators. In the current review, we summarize the current understanding of the mature sympathetic innervation of the gastrointestinal tract with a focus mainly on the prevertebral sympathetic ganglia as the main output to the gut. We also highlight recent work regarding the developmental processes of sympathetic innervation. The anatomy, neurochemistry, and connections of the sympathetic prevertebral ganglia with different parts of the gut are considered in adult organisms during prenatal and postnatal development and aging. The processes and mechanisms that control the development of sympathetic neurons, including their migratory pathways, neuronal differentiation, and aging, are reviewed.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department of Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Andrey I Emanuilov
- Department of Human Anatomy, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Antonina F Budnik
- Department of Normal and Pathological Anatomy, Kabardino-Balkarian State University named after H.M. Berbekov, Nalchik, Russia
| |
Collapse
|
2
|
PROneurotrophins and CONSequences. Mol Neurobiol 2017; 55:2934-2951. [DOI: 10.1007/s12035-017-0505-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/21/2017] [Indexed: 01/12/2023]
|
3
|
Guha I, Slamova I, Chun S, Clegg A, Golos M, Thrasivoulou C, Simons JP, Al-Shawi R. The effects of short-term JNK inhibition on the survival and growth of aged sympathetic neurons. Neurobiol Aging 2016; 46:138-48. [PMID: 27490965 DOI: 10.1016/j.neurobiolaging.2016.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/30/2016] [Accepted: 06/24/2016] [Indexed: 11/27/2022]
Abstract
During the course of normal aging, certain populations of nerve growth factor (NGF)-responsive neurons become selectively vulnerable to cell death. Studies using dissociated neurons isolated from neonates have shown that c-Jun N-terminal kinases (JNKs) are important in regulating the survival and neurite outgrowth of NGF-responsive sympathetic neurons. Unlike neonatal neurons, adult sympathetic neurons are not dependent on NGF for their survival. Moreover, the NGF precursor, proNGF, is neurotoxic for aging but not young adult NGF-responsive neurons. Because of these age-related differences, the effects of JNK inhibition on the survival and growth of sympathetic neurons isolated from aged mice were studied. Aged neurons, as well as glia, were found to be dependent on JNK for their growth but not their survival. Conversely, proNGF neurotoxicity was JNK-dependent and mediated by the p75-interacting protein NRAGE, whereas neurite outgrowth was independent of NRAGE. These results have implications for the potential use of JNK inhibitors as therapies for ameliorating age-related neurodegenerative disease.
Collapse
Affiliation(s)
- Isa Guha
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Ivana Slamova
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Soyon Chun
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Arthur Clegg
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Michal Golos
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Chris Thrasivoulou
- Research Department of Cell and Developmental Biology, University College London, London, UK
| | - J Paul Simons
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK.
| | - Raya Al-Shawi
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK.
| |
Collapse
|
4
|
Abstract
Current treatments for PTSD are often not effective or acceptable to the patient. There are a number of emerging new treatments. One promising new one is stellate ganglion block, an anesthetic treatment for pain which relieves symptoms of severe and chronic PTSD in some patients. The focus of this chapter is to summarize clinical evidence available for the effectiveness of cervical sympathetic ganglion injection called stellate ganglion block (SGB), as well as demonstrate possible clinical applications of its use. Cervical sympathetic blockade involves injecting a local anesthetic next to a group of nerves (ganglion) in the neck. The technique has been used clinically since 1925 with very few side effects. Finally, the neurobiology of SGB is discussed. Challenges to the use of SGB include the lack of randomized clinical trials and practitioners familiar with the use of SGB for PTSD.
Collapse
Affiliation(s)
- Eugene Lipov
- Advanced Pain Centers, 2260 W Higgins Rd Ste 101, Hoffman Estates, IL, 60169, USA,
| | | |
Collapse
|
5
|
Lipov E, Kelzenberg B. Sympathetic system modulation to treat post-traumatic stress disorder (PTSD): a review of clinical evidence and neurobiology. J Affect Disord 2012; 142:1-5. [PMID: 22840634 DOI: 10.1016/j.jad.2012.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/24/2012] [Accepted: 04/17/2012] [Indexed: 11/19/2022]
Abstract
A review of clinical evidence and neurobiology on the effects of modulation of sympathetic system modulation to treat post-traumatic stress disorder (PTSD) is being presented . The review provides an overview of currently available treatments followed by efficacy of orally effective sympathetic blocking agents. The main focus of the review is the application of stellate ganglion blocks (SGBs) or a local anesthetic blockade of the sympathetic ganglion in the neck.
Collapse
Affiliation(s)
- Eugene Lipov
- Advanced Pain Centers, 2660 W. Higgins Road, Suite 101, Hoffman Estates, IL 60169, United States.
| | | |
Collapse
|
6
|
Lipov E, Kelzenberg B, Rothfeld C, Abdi S. Modulation of NGF by cortisol and the Stellate Ganglion Block – Is this the missing link between memory consolidation and PTSD? Med Hypotheses 2012; 79:750-3. [DOI: 10.1016/j.mehy.2012.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 08/09/2012] [Accepted: 08/20/2012] [Indexed: 01/23/2023]
|
7
|
ThyagaRajan S, Madden KS, Teruya B, Stevens SY, Felten DL, Bellinger DL. Age-associated alterations in sympathetic noradrenergic innervation of primary and secondary lymphoid organs in female Fischer 344 rats. J Neuroimmunol 2011; 233:54-64. [PMID: 21186063 PMCID: PMC3074019 DOI: 10.1016/j.jneuroim.2010.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/24/2010] [Accepted: 11/28/2010] [Indexed: 11/21/2022]
Abstract
Normal aging processes, as well as, psychological stress affect the immune system; each can act alone, or interact with each other, to cause dysregulation of immune function substantially altering physical and mental health. The sympathetic nervous system (SNS), a major mediator of stress effects on immune function, is significantly affected by normal aging process, and stress can affect aging of the SNS. Previously, we have shown age-associated changes in sympathetic noradrenergic (NA) innervation of lymphoid organs in male rodents that affect immune regulation. The purpose of this study was to investigate sympathetic innervation of lymphoid organs and associated alterations in immune responses in young and aging female Fischer 344 (F344) rats. Histofluorescence and immunocytochemistry for NA innervation, and neurochemistry for norepinephrine (NE) levels were performed in the thymus, spleen, and mesenteric lymph nodes (MLN) isolated from 3-month-old young (normal estrous cycle), 8- to 9-month-old (onset of irregular estrous cycling), and 24-25 month, and 30-31 month female F344 rats (acyclic) at diestrus based on vaginal smears. Age-related alterations in natural killer (NK) cell activity, interleukin-2 (IL-2) and interferon-γ (IFN-γ) production, T and B lymphocyte proliferation were examined in splenocytes. Sympathetic NA innervation and NE levels increased with aging in the thymus, declined in spleen and MLN, and was accompanied by significant reductions in NK cell activity, IL-2 and IFN-γ production, and T and B cell proliferation in old female rats. In 8-9 mo rats, NE levels in the hilar region of the spleen and IFN-γ production were unaltered, while NE levels in the end region of the spleen and IL-2 production were reduced. Collectively, these results suggest that aging is characterized by significant alterations in sympathetic NA innervation in the thymus, spleen, and MLN associated with immunosuppression, and that there is a marked shift in NA activity and immune reactivity occurring during middle-aged female rats.
Collapse
Affiliation(s)
- Srinivasan ThyagaRajan
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Kovacic U, Zele T, Mars T, Sketelj J, Bajrović FF. Aging impairs collateral sprouting of nociceptive axons in the rat. Neurobiol Aging 2010; 31:339-50. [PMID: 18499304 DOI: 10.1016/j.neurobiolaging.2008.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/25/2008] [Accepted: 03/29/2008] [Indexed: 01/15/2023]
Abstract
Sprouting of uninjured nociceptive axons was examined in young adult, middle aged and aged rats. Axon sprouting from the spared sural nerve, both into adjacent denervated skin and into end-to-side coapted nerve graft, was significantly higher in young rats than in aged rats. Cross-transplantations of the end-to-side coapted nerve grafts between young and aged rats demonstrated that axon sprouting from young recipient nerves into aged donor nerve grafts was significantly deteriorated, whereas the axon sprouting from aged recipient nerves into young donor nerve grafts was not statistically significantly affected. The levels of laminin polypeptides in peripheral nerves were 50-100% higher in young adult than in aged rats. However, the levels of peripherin, NGF isoforms and TrkA in skin, peripheral nerves and DRG, respectively, were not significantly reduced in aged rats. Therefore, impaired sprouting of nociceptive axons in aged rats is due rather to the alterations in peripheral neural pathways, than to the limited sprouting capacity of aged sensory neurons. Decreased levels of extracellular matrix components might be important in this respect.
Collapse
Affiliation(s)
- Uros Kovacic
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
9
|
Mulvaney SW, McLean B, De Leeuw J. The Use of Stellate Ganglion Block in the Treatment of Panic/Anxiety Symptoms with Combat-Related Post-Traumatic Stress Disorder; Preliminary Results of Long-Term Follow-Up: A Case Series. Pain Pract 2010; 10:359-65. [DOI: 10.1111/j.1533-2500.2010.00373.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Synergistic effects of osteonectin and NGF in promoting survival and neurite outgrowth of superior cervical ganglion neurons. Brain Res 2009; 1289:1-13. [PMID: 19596278 DOI: 10.1016/j.brainres.2009.06.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 01/01/2023]
Abstract
Schwann cells (SCs) play a major role in the successful regeneration of peripheral nerves regeneration. Here we examined the effects of osteonectin (ON), a major factor secreted by SCs, on survival and neuritogenesis of mouse superior cervical ganglion (SCG) neurons. SC conditioned medium (SCCM) not only promoted the survival and neuritogenesis of SCG neurons at a level comparable to nerve growth factor (NGF) but also doubled the neurite length of NGF-treated SCG neurons. SCCM neuritogenic effects were not blocked by the tyrosine kinase receptor (Trk) inhibitor K252a demonstrating that these are not due solely to classical neurotrophic factors. Anti-ON neutralizing antibody diminished the SCCM-induced survival and neuritogenesis significantly. In the presence of K252a, the SCCM neuritogenic effects were blocked completely by anti-ON which suggests synergistic effects of ON with Trk-mediated growth factors. ON alone increased the survival and neurite outgrowth of SCG neurons significantly at high density cultures. ON at low concentration acts synergistically with NGF which induced maximum survival and neurite outgrowth (>50% increase). However, ON at high concentration was detrimental to survival (64% decrease) and neurite outgrowth (87% decrease) even in the presence of NGF. The well documented counter-adhesive effect of ON may account for this observation. Nevertheless, the growth promoting effects of ON became more pronounced as the cell density increased which suggests a possible interaction of ON with growth factors secreted by SCG neurons (autocrine or paracrine effects). Taken together, our study indicates that ON plays important roles in nervous system repair through its synergistic effects with growth factors.
Collapse
|
11
|
Lipov EG, Joshi JR, Sanders S, Slavin KV. A unifying theory linking the prolonged efficacy of the stellate ganglion block for the treatment of chronic regional pain syndrome (CRPS), hot flashes, and posttraumatic stress disorder (PTSD). Med Hypotheses 2009; 72:657-61. [PMID: 19237252 DOI: 10.1016/j.mehy.2009.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 01/08/2009] [Accepted: 01/12/2009] [Indexed: 11/19/2022]
Abstract
The mechanism of action of the stellate ganglion block (SGB) is still uncertain; however it has been used successfully in treatment of chronic regional pain syndrome (CRPS) for many years. Our new insights in to the mechanism of action of the stellate ganglion block were first reported in 2007 in our publication detailing the control of hot flashes with the use of stellate ganglion blockade. We have demonstrated very significant results in the treatment of hot flashes and our most recent application of this block has been for the treatment of posttraumatic stress disorder (PTSD). Stellate ganglion has been demonstrated to have second and third order neurons connections with the central nervous system nuclei that modulate body temperature, neuropathic pain, the manifestations of PTSD, and many other areas. We believe that the commonality between the CRPS, HF and PTSD is the trigger of increased nerve growth factor (NGF) leading to the increase in brain norepinephrine (NR), which in turn is affected by the SGB leading to a prolonged reduction of NGF and eventually a decrease in NR. This, in turn, leads to a reduction or elimination of many of the symptoms of CRPS, Hot flashes, and PTSD.
Collapse
Affiliation(s)
- Eugene G Lipov
- Advanced Pain Centers S.C., 2260 W. Higgins Rd., Ste. 101, Hoffman Estates, IL 60169, USA.
| | | | | | | |
Collapse
|
12
|
Chizhmakov I, Mamenko N, Volkova T, Khasabova I, Simone DA, Krishtal O. P2X receptors in sensory neurons co-cultured with cancer cells exhibit a decrease in opioid sensitivity. Eur J Neurosci 2009; 29:76-86. [PMID: 19077126 PMCID: PMC5518933 DOI: 10.1111/j.1460-9568.2008.06556.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Opioids are known to control the activity of P2X receptors in the sensory neurons of rats. These receptors are important in persistent pain signaling. However, there are extremely severe pain states, such as those associated with metastatic diseases, that are refractory to opioid treatment. We have tested the possibility that cancer cells affect the sensitivity of P2X(2/3) and P2X(2) receptors to opiates. The sensitivity of ATP-activated currents to the selective mu-opioid receptor agonist endomorphin-1 was evaluated in rat nodose neurons co-cultured (on separate coverslips) with fibrosarcoma cells (NCTC 2472) using whole-cell patch-clamp recordings. Both in control and in co-cultured neurons, P2X-mediated responses exhibited highly variable biphasic desensitization kinetics with fast and slow components. However, ATP-activated currents in co-cultured neurons acquired a new feature: the degree of their inhibition by endomorphin-1 demonstrated strong dependence on their desensitization kinetics. The neurons with 'slower' responses were subject to a smaller inhibitory effect of the opioid. The 'ultra-slow' responses completely lost their sensitivity to the opioid. The occurrence of such responses, rarely observed in the control neurons, was considerably increased with the duration of co-culturing. Application of endomorphin-1 to nodose neurons, co-cultured with rapidly proliferating but non-malignant cells (fibroblasts), resulted in data similar to those for the control. In summary, fibrosarcoma cells release diffusible factors altering the properties of desensitization kinetics of P2X receptors and, in particular, decrease their sensitivity to opioid inhibitory control. These phenomena may increase neuronal excitability initiated by peripheral ATP release and thereby contribute to the decreased sensitivity of cancer pain to opioids.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Cell Culture Techniques
- Cell Line, Tumor
- Cells, Cultured
- Coculture Techniques
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Drug Resistance/physiology
- Fibrosarcoma/metabolism
- Kinetics
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Neoplasms/complications
- Neoplasms/metabolism
- Nociceptors/drug effects
- Nociceptors/metabolism
- Nodose Ganglion/drug effects
- Nodose Ganglion/metabolism
- Oligopeptides/pharmacology
- Patch-Clamp Techniques
- Rats
- Rats, Wistar
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X
- Sensory Receptor Cells/drug effects
- Sensory Receptor Cells/metabolism
- Time Factors
Collapse
Affiliation(s)
- I Chizhmakov
- Bogomoletz Institute of Physiology, Ukraine Bogomoletz Institute of Physiology, Kiev, Ukraine
| | | | | | | | | | | |
Collapse
|
13
|
Eldredge LC, Gao XM, Quach D, Li L, Han X, Lomasney J, Tourtellotte WG. Abnormal sympathetic nervous system development and physiological dysautonomia in Egr3-deficient mice. Development 2008; 135:2949-57. [PMID: 18653557 PMCID: PMC2613541 DOI: 10.1242/dev.023960] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sympathetic nervous system development depends upon many factors that mediate neuron migration, differentiation and survival. Target tissue-derived nerve growth factor (NGF) signaling-induced gene expression is required for survival, differentiation and target tissue innervation of post-migratory sympathetic neurons. However, the transcriptional regulatory mechanisms mediated by NGF signaling are very poorly defined. Here, we identify Egr3, a member of the early growth response (Egr) family of transcriptional regulators, as having an important role in sympathetic nervous system development. Egr3 is regulated by NGF signaling and it is expressed in sympathetic neurons during development when they depend upon NGF for survival and target tissue innervation. Egr3-deficient mice have severe sympathetic target tissue innervation abnormalities and profound physiological dysautonomia. Unlike NGF, which is essential for sympathetic neuron survival and for axon branching within target tissues, Egr3 is required for normal terminal axon extension and branching, but not for neuron survival. The results indicate that Egr3 is a novel NGF signaling effector that regulates sympathetic neuron gene expression required for normal target tissue innervation and function. Egr3-deficient mice have a phenotype that is remarkably similar to humans with sympathetic nervous system disease, raising the possibility that it may have a role in some forms of human dysautonomia, most of which have no known cause.
Collapse
Affiliation(s)
| | - Xiaoguang M. Gao
- Department of Pathology, Northwestern University, Chicago, IL, 60611
| | - David Quach
- Department of Pathology, Northwestern University, Chicago, IL, 60611
| | - Lin Li
- Department of Pathology, Northwestern University, Chicago, IL, 60611
| | - Xiaoqiang Han
- Department of Pathology, Northwestern University, Chicago, IL, 60611
| | - Jon Lomasney
- Department of Pathology, Northwestern University, Chicago, IL, 60611
| | - Warren G. Tourtellotte
- Department of Pathology, Northwestern University, Chicago, IL, 60611
- Department of Neurology, Northwestern University, Chicago, IL, 60611
- Division of Neuropathology, Northwestern University, Chicago, IL, 60611
| |
Collapse
|
14
|
Al-Shawi R, Hafner A, Olsen J, Olson J, Chun S, Raza S, Thrasivoulou C, Lovestone S, Killick R, Simons P, Cowen T. Neurotoxic and neurotrophic roles of proNGF and the receptor sortilin in the adult and ageing nervous system. Eur J Neurosci 2008; 27:2103-14. [PMID: 18412630 DOI: 10.1111/j.1460-9568.2008.06152.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The precursor form of the nerve growth factor (proNGF), forms a heterotrimeric complex with the receptors p75 and sortilin; this complex has been implicated in neuron cell death. However, it is not known whether proNGF and the receptors p75 and sortilin contribute to age- and disease-related neurodegeneration. Here we show that proNGF induces cell death in subpopulations of basal forebrain and peripheral sympathetic neurons of old, but not of young, adult rodents. In contrast, proNGF appears to induce neurite outgrowth rather than cell death of young adult sympathetic neurons. We have examined the neurotoxic role of proNGF in old age, and find that proNGF protein is elevated during ageing in the projection areas of some populations of vulnerable central and peripheral neurons; caloric restriction, which has known neuroprotective effects, partially prevents these increases. Sortilin was found to play a significant part in the observed patterns of age-related proNGF-mediated neurotoxicity. In particular, survival of aged neurons was rescued by neurotensin, an alternative sortilin ligand that blocks the sortilin-mediated effects of proNGF. Furthermore, sortilin immunoreactivity increases markedly in ageing rodent basal forebrain and sympathetic neurons; in contrast, p75 levels are either unchanged or reduced. From these data we propose that selective age-related neuronal atrophy and neurodegeneration may be mediated by increased sortilin expression in neurons, together with elevated levels of proNGF expression in some targets.
Collapse
Affiliation(s)
- Raya Al-Shawi
- Centre for Biomedical Sciences, University College London, Hampstead Campus, Rowland Hill Campus, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jansen P, Giehl K, Nyengaard JR, Teng K, Lioubinski O, Sjoegaard SS, Breiderhoff T, Gotthardt M, Lin F, Eilers A, Petersen CM, Lewin GR, Hempstead BL, Willnow TE, Nykjaer A. Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat Neurosci 2007; 10:1449-57. [PMID: 17934455 DOI: 10.1038/nn2000] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 09/24/2007] [Indexed: 01/16/2023]
Abstract
Neurotrophins are essential for development and maintenance of the vertebrate nervous system. Paradoxically, although mature neurotrophins promote neuronal survival by binding to tropomyosin receptor kinases and p75 neurotrophin receptor (p75(NTR)), pro-neurotrophins induce apoptosis in cultured neurons by engaging sortilin and p75(NTR) in a death-signaling receptor complex. Substantial amounts of neurotrophins are secreted in pro-form in vivo, yet their physiological significance remains unclear. We generated a sortilin-deficient mouse to examine the contribution of the p75(NTR)/sortilin receptor complex to neuronal viability. In the developing retina, Sortilin 1 (Sort1)(-/-) mice showed reduced neuronal apoptosis that was indistinguishable from that observed in p75(NTR)-deficient (Ngfr(-/-)) mice. To our surprise, although sortilin deficiency did not affect developmentally regulated apoptosis of sympathetic neurons, it did prevent their age-dependent degeneration. Furthermore, in an injury protocol, lesioned corticospinal neurons in Sort1(-/-) mice were protected from death. Thus, the sortilin pathway has distinct roles in pro-neurotrophin-induced apoptotic signaling in pathological conditions, but also in specific stages of neuronal development and aging.
Collapse
Affiliation(s)
- Pernille Jansen
- MIND Center, Department of Medical Biochemistry, Ole Worms Allé 1170, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Loesch A, Cowen T. On the presence of neurotrophin p75 receptor on rat sympathetic cerebrovascular nerves. J Mol Histol 2007; 39:57-68. [PMID: 17671845 DOI: 10.1007/s10735-007-9126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
Although the presence of neurotrophin p75 receptor on sympathetic nerves is a well-recognised feature, there is still a scarcity of details of the distribution of the receptor on cerebrovascular nerves. This study examined the distribution of p75 receptor on perivascular sympathetic nerves of the middle cerebral artery and the basilar artery of healthy young rats using immunohistochemical methods at the laser confocal microscope and transmission electron microscope levels. Immunofluorescence methods of detection of tyrosine hydroxylase (TH) in sympathetic nerves, p75 receptor associated with the nerves, and also S-100 protein in Schwann cells were applied in conjunction with confocal microscopy, while the pre-embedding single and double immunolabelling methods (ExtrAvidin and immuno-gold-silver) were applied for the electron microscopic examination. Immunofluorescence studies revealed "punctuate" distribution of the p75 receptor on sympathetic nerves including accompanying Schwann cells. Image analysis of the nerves showed that the level of co-localization of p75 receptor and TH was low. Immunolabelling applied at the electron microscope level also showed scarce co-localization of TH (which was intra-axonal) and p75. Immunoreactivity for p75 receptor was present on the cell membrane of perivascular axons and to a greater extent on the processes of accompanying Schwann cells. Some Schwann cell processes were adjacent to each other displaying strong immunoreactivity for p75 receptor; immunoreactivity was located on the extracellular sites of the adjacent cell membranes suggesting that the receptor was involved in cross talk between these. It is likely that variability of locations of p75 receptor detected in the study reflects diverse interactions of p75 receptor with axons and Schwann cells. It might also imply a diverse role for the receptor and/or the plasticity of sympathetic cerebrovascular nerves to neurotrophin signalling.
Collapse
Affiliation(s)
- Andrzej Loesch
- Department of Anatomy and Developmental Biology (Hampstead Campus), Royal Free and University College Medical School, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| | | |
Collapse
|
17
|
Toescu EC, Verkhratsky A. The importance of being subtle: small changes in calcium homeostasis control cognitive decline in normal aging. Aging Cell 2007; 6:267-73. [PMID: 17517038 DOI: 10.1111/j.1474-9726.2007.00296.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aging is a complex, multifactorial process. One of the features of normal aging of the brain is a decline in cognitive functions and much experimental attention has been devoted to understanding this process. Evidence accumulated in the last decade indicates that such functional changes are not due to gross morphological alterations, but to subtle functional modification of synaptic connectivity and intracellular signalling and metabolism. Such synaptic modifications are compatible with a normal level of activity and allow the maintenance of a certain degree of functional reserve. This is in contrast to the changes in various neurodegenerative diseases, characterized by significant neuronal loss and dramatic and irreversible functional deficit. This whole special issue has been initiated with the intention of focusing on the processes of normal brain aging. In this review, we present data that shows how subtle changes in Ca(2+) homeostasis or in the state of various Ca(2+)-dependent processes or molecules, which occur in aging can have significant functional consequences.
Collapse
Affiliation(s)
- Emil C Toescu
- Department of Physiology, Division of Medical Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK.
| | | |
Collapse
|
18
|
Thrasivoulou C, Soubeyre V, Ridha H, Giuliani D, Giaroni C, Michael GJ, Saffrey MJ, Cowen T. Reactive oxygen species, dietary restriction and neurotrophic factors in age-related loss of myenteric neurons. Aging Cell 2006; 5:247-57. [PMID: 16842497 DOI: 10.1111/j.1474-9726.2006.00214.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have studied the mechanisms underlying nonpathological age-related neuronal cell death. Fifty per cent of neurons in the rat enteric nervous system are lost between 12 and 18 months of age in ad libitum (AL) fed rats. Caloric restriction (CR) protects almost entirely against this neuron loss. Using the ROS-sensitive dyes, dihydrorhodamine (DHR) and 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (HPF) in vitro, we show that the onset of cell death is linked with elevated intraneuronal levels of reactive oxygen species (ROS). Treatment with the neurotrophic factors NT3 and GDNF enhances neuronal antioxidant defence in CR rats at 12-15 months and 24 months but not in adult or aged AL-fed animals. To examine the link between elevated ROS and neuronal cell death, we assessed apoptotic cell death following in vitro treatment with the redox-cycling drug, menadione. Menadione fails to increase apoptosis in 6-month neurons. However, in 12-15mAL fed rats, when age-related cell death begins, menadione induces a 7- to 15-fold increase in the proportion of apoptotic neurons. CR protects age-matched neurons against ROS-induced apoptosis. Treatment with neurotrophic factors, in particular GDNF, rescues neurons from menadione-induced cell death, but only in 12-15mCR animals. We hypothesize that CR enhances antioxidant defence through neurotrophic factor signalling, thereby reducing age-related increases in neuronal ROS levels and in ROS-induced cell death.
Collapse
Affiliation(s)
- C Thrasivoulou
- Department of Anatomy and Developmental Biology, University College London, Royal Free Campus, London NW3 2PF, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Keast JR. Plasticity of pelvic autonomic ganglia and urogenital innervation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:141-208. [PMID: 16487791 DOI: 10.1016/s0074-7696(06)48003-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pelvic ganglia contain a mixture of sympathetic and parasympathetic neurons and provide most of the motor innervation of the urogenital organs. They show a remarkable sensitivity to androgens and estrogens, which impacts on their development into sexually dimorphic structures and provide an array of mechanisms by which plasticity of these neurons can occur during puberty and adulthood. The structure of pelvic ganglia varies widely among species, ranging from rodents, which have a pair of large ganglia, to humans, in whom pelvic ganglion neurons are distributed in a large, complex plexus. This plexus is frequently injured during pelvic surgical procedures, yet strategies for its repair have yet to be developed. Advances in this area will come from a better understanding of the effects of injury on the cellular signaling process in pelvic neurons and also the role of neurotrophic factors during development, maintenance, and repair of these axons.
Collapse
Affiliation(s)
- Janet R Keast
- Pain Management Research Institute, University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
20
|
Bierl MA, Isaacson LG. Increased NGF proforms in aged sympathetic neurons and their targets. Neurobiol Aging 2005; 28:122-34. [PMID: 16377033 DOI: 10.1016/j.neurobiolaging.2005.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 11/11/2005] [Accepted: 11/17/2005] [Indexed: 11/23/2022]
Abstract
Target-derived neurotrophins such as nerve growth factor (NGF) and neurotrophin-3 (NT-3) regulate sympathetic neuron survival. Here, NGF and NT-3 protein and transcript were examined in sympathetic neurons and targets in order to determine their role in age-related neuronal atrophy. One obvious alteration was a dramatic increase (up to 50-fold) in NGF protein forms, corresponding to proNGF-B, in the superior cervical ganglion (SCG) and targets where sympathetic innervation shows atrophy. In the iris, where sympathetic innervation is protected into old age, proNGF-B was decreased. Alterations in NGF transcript paralleled changes in NGF protein, albeit to a lesser degree. Though significantly increased in aged SCG, NT-3 protein, found primarily as the 'mature' form, showed only minor changes in most tissues, though NT-3 mRNA generally was decreased. In contrast, both NT-3 transcript and NT-3 precursors were increased in iris. The dramatic increases in proNGF, together with minimal changes in NT-3, suggest that alterations in NGF regulation may contribute to the loss of sympathetic innervation observed in many aged peripheral targets.
Collapse
Affiliation(s)
- Michael A Bierl
- Center for Neuroscience, Department of Zoology, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|