1
|
Ladjel-Mendil A, Ahras-Sifi N, Moussaoui H, Chérifi F, Laraba-Djebari F. Immunomodulatory effect of selective COX-2 inhibitor celecoxib on the neuropathological disorders and immunoinflammatory response induced by Kaliotoxin from Androctonus australis venom. Toxicon 2025; 255:108265. [PMID: 39884560 DOI: 10.1016/j.toxicon.2025.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
The immune response is increasingly being linked to the pathogenic processes underlying neurological disorders including potassium channel malfunction. Few investigations, meanwhile, have shown how cyclooxygenase-2 (COX-2) is involved in the neuroimmunopathology linked to potassium channel failure. Thus, using an animal model of neuropathology caused by kaliotoxin, an exclusive blocker of voltage-gated potassium channels from the scorpion venom of Androctonus australis hector, we examined the immunomodulatory impact of celecoxib (selective inhibitor of COX-2). The neural and systemic pathogenic effects of KTX can be considerably reduced by celecoxib-mediated COX-2 inhibition, according to the results. It most certainly works via controlling the immunoinflammatory exposure by raising IL-10 levels; decreasing proinflammatory cytokine levels including mostly TNFα and IL-6, and balancing oxidative status. Along with that, by significantly promoting tissue healing, COX-2 inhibitor also enhances cellular metabolism. One potential treatment approach for immunoinflammatory exacerbations linked to neurodegenerative is the COX-2 inhibitor.
Collapse
Affiliation(s)
- Amina Ladjel-Mendil
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria.
| | - Nesrine Ahras-Sifi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria.
| | - Hadjila Moussaoui
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria.
| | - Fatah Chérifi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria.
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111, Algiers, Algeria; Algerian Academy of Sciences and Technology, Villa Rais Hamidou, Chemin Omar Kachkar, El Madania, Algiers, Algeria.
| |
Collapse
|
2
|
Franco-Pérez J. Mechanisms Underlying Memory Impairment Induced by Fructose. Neuroscience 2024; 548:27-38. [PMID: 38679409 DOI: 10.1016/j.neuroscience.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Fructose consumption has increased over the years, especially in adolescents living in urban areas. Growing evidence indicates that daily fructose consumption leads to some pathological conditions, including memory impairment. This review summarizes relevant data describing cognitive deficits after fructose intake and analyzes the underlying neurobiological mechanisms. Preclinical experiments show sex-related deficits in spatial memory; that is, while males exhibit significant imbalances in spatial processing, females seem unaffected by dietary supplementation with fructose. Recognition memory has also been evaluated; however, only female rodents show a significant decline in the novel object recognition test performance. According to mechanistic evidence, fructose intake induces neuroinflammation, mitochondrial dysfunction, and oxidative stress in the short term. Subsequently, these mechanisms can trigger other long-term effects, such as inhibition of neurogenesis, downregulation of trophic factors and receptors, weakening of synaptic plasticity, and long-term potentiation decay. Integrating all these neurobiological mechanisms will help us understand the cellular and molecular processes that trigger the memory impairment induced by fructose.
Collapse
Affiliation(s)
- Javier Franco-Pérez
- Laboratorio Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Insurgentes Sur 3877, Col. La Fama, C.P. 14269, CDMX, México, Mexico.
| |
Collapse
|
3
|
Ni H, Guo Z, Wu Y, Wang J, Yang Y, Zhu Z, Wang D. The crucial role that hippocampus Cyclooxygenase-2 plays in memory. Eur J Neurosci 2023; 58:4123-4136. [PMID: 37867375 DOI: 10.1111/ejn.16165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
It is generally accepted that Cyclooxygenase-2 (COX-2) is activated to cause inflammation. However, COX-2 is also constitutively expressed at the postsynaptic dendrites and excitatory terminals of the cortical and spinal cord neurons. Although some evidence suggests that COX-2 release during neuronal signalling may be pivotal for regulating the function of memory, the significance of constitutively expressed COX-2 in neuron is still unclear. This research aims to discover the role of COX-2 in memory beyond neuroinflammation and to determine whether the inhibition of COX-2 can cause cognitive dysfunction by influencing dendritic plasticity and its underlying mechanism. We found COX-2 gene knockout (KO) could significantly impact the learning and memory ability, cause neuronal structure disorder and influence gamma oscillations. These might be mediated by the inhibition of prostaglandin (PG) E2/cAMP pathway and phosphorylated protein kinase A (p-PKA)-phosphorylated cAMP response element binding protein (p-CREB)-brain derived neurotrophic factor (BDNF) axis. It suggested COX-2 might play a critical role in learning, regulating neuronal structure and gamma oscillations in the hippocampus CA1 by regulating COX-2/BDNF signalling pathway.
Collapse
Affiliation(s)
- Hong Ni
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Zhongzhao Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Wu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Jie Wang
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Yang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zilu Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deheng Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Nelson ED, Maynard KR, Nicholas KR, Tran MN, Divecha HR, Collado-Torres L, Hicks SC, Martinowich K. Activity-regulated gene expression across cell types of the mouse hippocampus. Hippocampus 2023; 33:1009-1027. [PMID: 37226416 PMCID: PMC11129873 DOI: 10.1002/hipo.23548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 05/26/2023]
Abstract
Activity-regulated gene (ARG) expression patterns in the hippocampus (HPC) regulate synaptic plasticity, learning, and memory, and are linked to both risk and treatment responses for many neuropsychiatric disorders. The HPC contains discrete classes of neurons with specialized functions, but cell type-specific activity-regulated transcriptional programs are not well characterized. Here, we used single-nucleus RNA-sequencing (snRNA-seq) in a mouse model of acute electroconvulsive seizures (ECS) to identify cell type-specific molecular signatures associated with induced activity in HPC neurons. We used unsupervised clustering and a priori marker genes to computationally annotate 15,990 high-quality HPC neuronal nuclei from N = 4 mice across all major HPC subregions and neuron types. Activity-induced transcriptomic responses were divergent across neuron populations, with dentate granule cells being particularly responsive to activity. Differential expression analysis identified both upregulated and downregulated cell type-specific gene sets in neurons following ECS. Within these gene sets, we identified enrichment of pathways associated with varying biological processes such as synapse organization, cellular signaling, and transcriptional regulation. Finally, we used matrix factorization to reveal continuous gene expression patterns differentially associated with cell type, ECS, and biological processes. This work provides a rich resource for interrogating activity-regulated transcriptional responses in HPC neurons at single-nuclei resolution in the context of ECS, which can provide biological insight into the roles of defined neuronal subtypes in HPC function.
Collapse
Affiliation(s)
- Erik D. Nelson
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kyndall R. Nicholas
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Matthew N Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Heena R. Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205
| |
Collapse
|
5
|
Redzicka A, Wiatrak B, Jęśkowiak-Kossakowska I, Kochel A, Płaczek R, Czyżnikowska Ż. Design, Synthesis, Biological Evaluation, and Molecular Docking Study of 4,6-Dimethyl-5-aryl/alkyl-2-[2-hydroxy-3-(4-substituted-1-piperazinyl)propyl]pyrrolo[3,4- c]pyrrole-1,3(2 H,5 H)-diones as Anti-Inflammatory Agents with Dual Inhibition of COX and LOX. Pharmaceuticals (Basel) 2023; 16:804. [PMID: 37375750 DOI: 10.3390/ph16060804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
In the present study, we characterize the biological activity of a newly designed and synthesized series of 15 compounds 2-[2-hydroxy-3-(4-substituted-1-piperazinyl)propyl] derivatives of pyrrolo[3,4-c]pyrrole 3a-3o. The compounds were obtained with good yields of pyrrolo[3,4-c]pyrrole scaffold 2a-2c with secondary amines in C2H5OH. The chemical structures of the compounds were characterized by 1H-NMR, 13C-NMR, FT-IR, and MS. All the new compounds were investigated for their potencies to inhibit the activity of three enzymes, i.e., COX-1, COX-2, and LOX, by a colorimetric inhibitor screening assay. In order to analyze the structural basis of interactions between the ligands and cyclooxygenase/lipooxygenase, experimental data were supported by the results of molecular docking simulations. The data indicate that all of the tested compounds influence the activity of COX-1, COX-2, and LOX.
Collapse
Affiliation(s)
- Aleksandra Redzicka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | | | - Andrzej Kochel
- Faculty of Chemistry, University of Wroclaw, ul. F.J oliot-Curie 14, 50-383 Wroclaw, Poland
| | - Remigiusz Płaczek
- Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| | - Żaneta Czyżnikowska
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
6
|
Application potential of modulation of cyclooxygenase-2 activity: a cognitive approach. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Cognitive functions of the brain depend largely on the condition of the cell membranes and the proportion of fatty acids. It is known and accepted that arachidonic acid (AA) is one of the main ω-6 fatty acids (phospholipids) in brain cells. Metabolism of that fatty acid depends on the functionality and presence of cyclooxygenase (COX). COX is a primary enzyme in the cycle of transformation of AA to prostanoids, which may mediate response of immune cells, contributing to brain function and cognition. Two COX isoforms (COX-1 and COX-2), as well as a splice variant (COX-3), have been detected in the brain. Findings released in the last decade showed that COX-2 may play an important role in cognition. There are many preclinical and clinical reports showing its engagement in Alzheimer disease, spatial learning, and plasticity. This manuscript focuses on summarizing the above-mentioned discoveries.
Collapse
|
7
|
Jung HY, Kim W, Hahn KR, Nam SM, Yi SS, Kwon HJ, Kang MS, Choi JH, Kim DW, Yoon YS, Hwang IK. Spatial and temporal changes in the PGE2 EP2 receptor in mice hippocampi during postnatal development and its relationship with cyclooxygenase-2. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:908-913. [PMID: 34712420 PMCID: PMC8528246 DOI: 10.22038/ijbms.2021.56286.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/30/2021] [Indexed: 11/06/2022]
Abstract
Objective(s): Prostaglandin E2 E-prostanoid 2 receptor (PGE2 EP2), downstream of cyclooxygenase-2 (COX-2), plays an important role in inflammatory responses, but there are some reports about synaptic functions of COX-2 and PGE2 EP2 in the hippocampus. Materials and Methods: C57BL/6J mice were sacrificed at postnatal days (P) 1, 7, 14, 28, and 56 for immunohistochemical staining for EP2 and doublecortin as well as western blot for EP2. In addition, COX-2 knockout and its wild-type mice were euthanized for immunohistochemical staining for EP2. Results: EP2 immunoreactivity was observed in the majority of the cells in the dentate gyrus at P1 and P7, while at P14, it was detected in the outer granule cell layer and was confined to its subgranular zone at P28 and P56. EP2 protein levels in the hippocampal homogenates were also highest at P7 and lowest at P56. EP2 immunoreactivity was partially colocalized, with doublecortin (DCX)-immunoreactive neuroblasts appearing in the mid-zone of the granule cell layer at P14 and in the subgranular zone of the dentate gyrus at P28. Co-localization of EP2 and DCX was significantly decreased in the dentate gyrus in the P28 group compared with that in the P14 group. In COX-2 knockout mice, EP2 immunoreactivity was significantly decreased in the hippocampal CA1 region (P=0.000165) and dentate gyrus (P=0.00898). Conclusion: EP2 decreases with age, which is expressed in DCX-immunoreactive neuroblasts in the dentate gyrus. This suggests that EP2 is closely linked to structural lamination and adult neurogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, South Korea
| | - Woosuk Kim
- Department of Anatomy, College of Veterinary Medicine, and Veterinary Science Research Institute, Konkuk University, Seoul 05030, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Sung Min Nam
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan 54538, South Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, South Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Min Soo Kang
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
8
|
Non-selective COX inhibitors impair memory formation and short-term but not long-term synaptic plasticity. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1879-1891. [PMID: 33937935 DOI: 10.1007/s00210-021-02092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Cyclooxygenase (COX) plays a critical role in synaptic plasticity. Therefore, long-term administration of acetylsalicylic acid (ASA) and its main metabolite, salicylate, as a COX inhibitor may impair synaptic plasticity and subsequently memory formation. Although different studies have tried to explain the effects of ASA and sodium salicylate (SS) on learning and memory, the results are contradictory and the mechanisms are not exactly known. The present study was designed to investigate the effects of long-term low-dose (equivalent to prophylactic dose) and short-term high-dose (equivalent to analgesic dose) administration of ASA and SS respectively, on spatial learning and memory and hippocampal synaptic plasticity. Animals were treated with a low dose of ASA (2 mg/ml solvated in drinking water, 6 weeks) or a high dose of SS, a metabolite of ASA, (300 mg/kg, 3 days, twice-daily, i.p). Spatial memory and synaptic plasticity were assessed by water maze performance and in vivo field potential recording from CA1, respectively. Animals treated with ASA but not SS showed a significant increase in escape latency and distance moved. Furthermore, in the probe test, animals treated with both drugs spent less time in the target quadrant zone. The paired-pulse ratio (PPR) at 20-ms inter-pulse intervals (IPI) as an index of short-term plasticity in both treated groups was significantly higher than of the control group. Interestingly, none of the administered drugs affected long-term potentiation (LTP). These data suggested that long-term inhibition of COX disrupted memory acquisition and retrieval. Interestingly, cognitive impairments happened along with short-term but not long-term synaptic plasticity disturbance.
Collapse
|
9
|
Fierros-Campuzano J, Ballesteros-Zebadúa P, Manjarrez-Marmolejo J, Aguilera P, Méndez-Diaz M, Prospero-García O, Franco-Pérez J. Irreversible hippocampal changes induced by high fructose diet in rats. Nutr Neurosci 2020; 25:1325-1337. [DOI: 10.1080/1028415x.2020.1853418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Juan Fierros-Campuzano
- Laboratorio Fisiología de la Formación Reticular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, CDMX, México
| | - Paola Ballesteros-Zebadúa
- Laboratorio de Física Medica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, CDMX, México
| | - Joaquín Manjarrez-Marmolejo
- Laboratorio Fisiología de la Formación Reticular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, CDMX, México
| | - Penélope Aguilera
- Laboratorio Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, CDMX, México
| | - Mónica Méndez-Diaz
- Grupo de Neurociencias, Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Oscar Prospero-García
- Grupo de Neurociencias, Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Javier Franco-Pérez
- Laboratorio Fisiología de la Formación Reticular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, CDMX, México
| |
Collapse
|
10
|
Kaur N, Chugh H, Sakharkar MK, Dhawan U, Chidambaram SB, Chandra R. Neuroinflammation Mechanisms and Phytotherapeutic Intervention: A Systematic Review. ACS Chem Neurosci 2020; 11:3707-3731. [PMID: 33146995 DOI: 10.1021/acschemneuro.0c00427] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is indicated in the pathogenesis of several acute and chronic neurological disorders. Acute lesions in the brain parenchyma induce intense and highly complex neuroinflammatory reactions with similar mechanisms among various disease prototypes. Microglial cells in the CNS sense tissue damage and initiate inflammatory responses. The cellular and humoral constituents of the neuroinflammatory reaction to brain injury contribute significantly to secondary brain damage and neurodegeneration. Inflammatory cascades such as proinflammatory cytokines from invading leukocytes and direct cell-mediated cytotoxicity between lymphocytes and neurons are known to cause "collateral damage" in models of acute brain injury. In addition to degeneration and neuronal cell loss, there are secondary inflammatory mechanisms that modulate neuronal activity and affect neuroinflammation which can even be detected at the behavioral level. Hence, several of health conditions result from these pathogenetic conditions which are underlined by progressive neuronal function loss due to chronic inflammation and oxidative stress. In the first part of this Review, we discuss critical neuroinflammatory mediators and their pathways in detail. In the second part, we review the phytochemicals which are considered as potential therapeutic molecules for treating neurodegenerative diseases with an inflammatory component.
Collapse
Affiliation(s)
- Navrinder Kaur
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| | - Heerak Chugh
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Meena K. Sakharkar
- College of Pharmacy and Nutrition, University of Sasketchwan, Saskatoon S7N 5E5, Canada
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), S.S. Nagar, Mysuru-570015, India
- Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research JSS AHER, Mysuru-570015, India
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| |
Collapse
|
11
|
Farrell JS, Colangeli R, Dudok B, Wolff MD, Nguyen SL, Jackson J, Dickson CT, Soltesz I, Teskey GC. In vivo assessment of mechanisms underlying the neurovascular basis of postictal amnesia. Sci Rep 2020; 10:14992. [PMID: 32929133 PMCID: PMC7490395 DOI: 10.1038/s41598-020-71935-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Long-lasting confusion and memory difficulties during the postictal state remain a major unmet problem in epilepsy that lacks pathophysiological explanation and treatment. We previously identified that long-lasting periods of severe postictal hypoperfusion/hypoxia, not seizures per se, are associated with memory impairment after temporal lobe seizures. While this observation suggests a key pathophysiological role for insufficient energy delivery, it is unclear how the networks that underlie episodic memory respond to vascular constraints that ultimately give rise to amnesia. Here, we focused on cellular/network level analyses in the CA1 of hippocampus in vivo to determine if neural activity, network oscillations, synaptic transmission, and/or synaptic plasticity are impaired following kindled seizures. Importantly, the induction of severe postictal hypoperfusion/hypoxia was prevented in animals treated by a COX-2 inhibitor, which experimentally separated seizures from their vascular consequences. We observed complete activation of CA1 pyramidal neurons during brief seizures, followed by a short period of reduced activity and flattening of the local field potential that resolved within minutes. During the postictal state, constituting tens of minutes to hours, we observed no changes in neural activity, network oscillations, and synaptic transmission. However, long-term potentiation of the temporoammonic pathway to CA1 was impaired in the postictal period, but only when severe local hypoxia occurred. Lastly, we tested the ability of rats to perform object-context discrimination, which has been proposed to require temporoammonic input to differentiate between sensory experience and the stored representation of the expected object-context pairing. Deficits in this task following seizures were reversed by COX-2 inhibition, which prevented severe postictal hypoxia. These results support a key role for hypoperfusion/hypoxia in postictal memory impairments and identify that many aspects of hippocampal network function are resilient during severe hypoxia except for long-term synaptic plasticity.
Collapse
Affiliation(s)
- Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Roberto Colangeli
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Marshal D Wolff
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah L Nguyen
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Jesse Jackson
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Clayton T Dickson
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - G Campbell Teskey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
López DE, Ballaz SJ. The Role of Brain Cyclooxygenase-2 (Cox-2) Beyond Neuroinflammation: Neuronal Homeostasis in Memory and Anxiety. Mol Neurobiol 2020; 57:5167-5176. [PMID: 32860157 DOI: 10.1007/s12035-020-02087-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Cyclooxygenases are a group of heme-containing isozymes (namely Cox-1 and Cox-2) that catalyze the conversion of arachidonic acid to largely bioactive prostaglandins (PGs). Cox-1 is the ubiquitous housekeeping enzyme, and the mitogen-inducible Cox-2 is activated to cause inflammation. Interestingly, Cox-2 is constitutively expressed in the brain at the postsynaptic dendrites and excitatory terminals of the cortical and spinal cord neurons. Neuronal Cox-2 is activated in response to synaptic excitation to yield PGE2, the predominant Cox-2 metabolite in the brain, which in turn stimulates the release of glutamate and neuronal firing in a retrograde fashion. Cox-2 is also engaged in the metabolism of new endocannabinoids from 2-arachidonoyl-glycerol to modulate their actions at presynaptic terminals. In addition to these interactions, the induction of neuronal Cox-2 is coupled to the trans-synaptic activation of the dopaminergic mesolimbic system and some serotoninergic receptors, which might contribute to the development of emotional behavior. Although much of the focus regarding the induction of Cox-2 in the brain has been centered on neuroinflammation-related neurodegenerative and psychiatric disorders, some evidence also suggests that Cox-2 release during neuronal signaling may be pivotal for the fine tuning of cortical networks to regulate behavior. This review compiles the evidence supporting the homeostatic role of neuronal Cox-2 in synaptic transmission and plasticity, since neuroinflammation is originally triggered by the induction of glial Cox-2 expression. The goal is to provide perspective on the roles of Cox-2 beyond neuroinflammation, such as those played in memory and anxiety, and whose evidence is still scant.
Collapse
Affiliation(s)
- Diana E López
- Biomedical Sciences Graduate Program, Yachay Tech University, Urcuquí, Ecuador
| | - Santiago J Ballaz
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí, Ecuador.
| |
Collapse
|
13
|
Reinicke M, Dorow J, Bischof K, Leyh J, Bechmann I, Ceglarek U. Tissue pretreatment for LC-MS/MS analysis of PUFA and eicosanoid distribution in mouse brain and liver. Anal Bioanal Chem 2020; 412:2211-2223. [PMID: 31865417 PMCID: PMC7118053 DOI: 10.1007/s00216-019-02170-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) and eicosanoids are important mediators of inflammation. The functional role of eicosanoids in metabolic-syndrome-related diseases has been extensively studied. However, their role in neuroinflammation and the development of neurodegenerative diseases is still unclear. The aim of this study was the development of a sample pretreatment protocol for the simultaneous analysis of PUFAs and eicosanoids in mouse liver and brain. Liver and brain samples of male wild-type C57BL/6J mice (11-122 mg) were used to investigate conditions for tissue rinsing, homogenization, extraction, and storage. A targeted liquid chromatography-negative electrospray ionization tandem mass spectrometry method was applied to quantify 7 PUFAs and 94 eicosanoids. The final pretreatment protocol consisted of a 5-min homogenization step by sonication in 650 μL n-hexane/2-propanol (60:40 v/v) containing 2,6-di-tert-butyl-4-methylphenol at 50 μg/mL. Homogenates representing 1 mg tissue were extracted in a single step with n-hexane/2-propanol (60:40 v/v) containing 0.1% formic acid. Autoxidation was prevented by addition of 2,6-di-tert-butyl-4-methylphenol at 50 μg/mL and keeping the samples at 4 °C during sample preparation. Extracts were dried under nitrogen and reconstituted in liquid chromatography eluent before analysis. Recovery was determined to range from 45% to 149% for both liver and brain tissue. Within-run and between-run variability ranged between 7% and 18% for PUFAs and between 1% and 24% for eicosanoids. In liver, 7 PUFAs and 15 eicosanoids were quantified; in brain, 6 PUFAs and 21 eicosanoids had significant differences within the brain substructures. In conclusion, a robust and reproducible sample preparation protocol for the multiplexed analysis of PUFAs and eicosanoids by liquid chromatography-tandem mass spectrometry in liver and discrete brain substructures was developed.
Collapse
Affiliation(s)
- Madlen Reinicke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany.
| | - Juliane Dorow
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany
| | - Karoline Bischof
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany
| | - Judith Leyh
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany
| |
Collapse
|
14
|
Golia MT, Poggini S, Alboni S, Garofalo S, Ciano Albanese N, Viglione A, Ajmone-Cat MA, St-Pierre A, Brunello N, Limatola C, Branchi I, Maggi L. Interplay between inflammation and neural plasticity: Both immune activation and suppression impair LTP and BDNF expression. Brain Behav Immun 2019; 81:484-494. [PMID: 31279682 DOI: 10.1016/j.bbi.2019.07.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 01/11/2023] Open
Abstract
An increasing number of studies show that both inflammation and neural plasticity act as key players in the vulnerability and recovery from psychiatric disorders and neurodegenerative diseases. However, the interplay between these two players has been limitedly explored. In fact, while a few studies reported an immune activation, others conveyed an immune suppression, associated with an impairment in neural plasticity. Therefore, we hypothesized that deviations in inflammatory levels in both directions may impair neural plasticity. We tested this hypothesis experimentally, by acute treatment of C57BL/6 adult male mice with different doses of two inflammatory modulators: lipopolysaccharide (LPS), an endotoxin, and ibuprofen (IBU), a nonselective cyclooxygenase inhibitor, which are respectively a pro- and an anti-inflammatory agent. The results showed that LPS and IBU have different effects on behavior and inflammatory response. LPS treatment induced a reduction of body temperature, a decrease of body weight and a reduced food and liquid intake. In addition, it led to increased levels of inflammatory markers expression, both in the total hippocampus and in isolated microglia cells, including Interleukin (IL)-1β, and enhanced the concentration of prostaglandin E2 (PGE2). On the other hand, IBU increased the level of anti-inflammatory markers, decreased tryptophan 2,3-dioxygenase (TDO2), the first step in the kynurenine pathway known to be activated during inflammatory conditions, and PGE2 levels. Though LPS and IBU administration differently affected mediators related with pro- or anti-inflammatory responses, they produced overlapping effects on neural plasticity. Indeed, higher doses of both LPS and IBU induced a statistically significant decrease in the amplitude of long-term potentiation (LTP), in Brain-Derived Neurotrophic Factor (BDNF) expression levels and in the phosphorylation of the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor subunit GluR1, compared to the control group. Such effect appears to be dose-dependent since only the higher, but not the lower, dose of both compounds led to a plasticity impairment. Overall, the present findings indicate that acute treatment with pro- and anti-inflammatory agents impair neural plasticity in a dose dependent manner.
Collapse
Affiliation(s)
- Maria Teresa Golia
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur-Italy, Sapienza University of Rome, Italy
| | - Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur-Italy, Sapienza University of Rome, Italy
| | - Naomi Ciano Albanese
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Aurelia Viglione
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy; PhD Program in Neuroscience, Scuola Superiore di Pisa, Pisa, Italy
| | | | - Abygaël St-Pierre
- Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, Canada
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur-Italy, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur-Italy, Sapienza University of Rome, Italy.
| |
Collapse
|
15
|
Dec K, Łukomska A, Skonieczna-Żydecka K, Kolasa-Wołosiuk A, Tarnowski M, Baranowska-Bosiacka I, Gutowska I. Long-term exposure to fluoride as a factor promoting changes in the expression and activity of cyclooxygenases (COX1 and COX2) in various rat brain structures. Neurotoxicology 2019; 74:81-90. [PMID: 31175943 DOI: 10.1016/j.neuro.2019.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Sixty percent of the mammalian brain is composed of lipids including arachidonic acid (AA). AA released from cell membranes is metabolised in the cyclooxygenase (COX) pathway to prostanoids - biologically active substances involved in the regulation of many processes including inflammation. It has been shown that long-term exposure to fluoride in pre and neonatal period is dangerous because this element is able to penetrate through the placenta and to cross the blood-brain barrier. Exposure to fluoride during the development affects metabolism and physiology of neurons and glia which results in the impairment of cognitive functions but the exact mechanisms of fluoride neurotoxicity are not clearly defined. OBJECTIVE The aim of this study was to determine whether exposure to fluoride during the development affects COXes activity and the synthesis of prostanoids. MATERIAL AND METHODS Pre- and postnatal toxicity model in Wistar rats was used. Experimental animals received 50 mg/L of NaF in drinking water ad libitum, while control animals received tap water. In cerebral cortex, hippocampus, cerebellum and striatum were measured fluoride concentration, COX1 and COX2 genes expression, immunolocalization of the enzymatic proteins and concentration of PGE2 and TXB2. RESULTS of this study showed statistically significant changes in the concentration of fluoride in brain structures between study group and control animals. Moreover, significant changes in the expression level of COX1 and COX2, and in the concentration of PGE2 and TXB2 were observed. CONCLUSION Exposure to fluoride in the prenatal and neonatal period result in the increase in COX2 activity and increase in PGE2 concentration in rats brain, which may lead to disturbances in central nervous system homeostasis..
Collapse
Affiliation(s)
- Karolina Dec
- The Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24 Str., 70-460 Szczecin, Poland
| | - Agnieszka Łukomska
- The Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24 Str., 70-460 Szczecin, Poland; Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Karolina Skonieczna-Żydecka
- The Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24 Str., 70-460 Szczecin, Poland
| | - Agnieszka Kolasa-Wołosiuk
- The Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 av., 70-111 Szczecin, Poland
| | - Maciej Tarnowski
- The Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 av., 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- The Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 av., 70-111 Szczecin, Poland
| | - Izabela Gutowska
- The Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24 Str., 70-460 Szczecin, Poland.
| |
Collapse
|
16
|
Kim JH, Quilantang NG, Kim HY, Lee S, Cho EJ. Attenuation of hydrogen peroxide-induced oxidative stress in SH-SY5Y cells by three flavonoids from Acer okamotoanum. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0664-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Abstract
Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) are involved in the pathogenesis of Alzheimer's disease (AD), which is characterized by the accumulation of β-amyloid protein (Aβ) and tau hyperphosphorylation. However, the gaps in our knowledge of the roles of COX-2 and PGs in AD have not been filled. Here, we summarized the literature showing that COX-2 dysregulation obviously influences abnormal cleavage of β-amyloid precursor protein, aggregation and deposition of Aβ in β-amyloid plaques and the inclusion of phosphorylated tau in neurofibrillary tangles. Neuroinflammation, oxidative stress, synaptic plasticity, neurotoxicity, autophagy, and apoptosis have been assessed to elucidate the mechanisms of COX-2 regulation of AD. Notably, an imbalance of these factors ultimately produces cognitive decline. The current review substantiates our understanding of the mechanisms of COX-2-induced AD and establishes foundations for the design of feasible therapeutic strategies to treat AD.-Guan, P.-P., Wang, P. Integrated communications between cyclooxygenase-2 and Alzheimer's disease.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
18
|
Abstract
Prostaglandin E2 (PGE2) has been thought to be an important mediator of inflammation in peripheral tissues, but recent studies clearly show the involvement of PGE2 in inflammatory brain diseases. In some animal models of brain disease, the genetic disruption and chemical inhibition of cyclooxygenase (COX)-2 resulted in the reduction of PGE2 and amelioration of symptoms, and it had been thought that PGE2 produced by COX-2 may be involved in the progression of injuries. However, COX-2 produces not only PGE2, but also some other prostanoids, and thus the protective effects of COX-2 inhibition, as well as severe side effects, may be caused by the inhibition of prostanoids other than PGE2. Therefore, to elucidate the role of PGE2, studies of microsomal prostaglandin E synthase-1 (mPGES-1), an inducible terminal enzyme for PGE2 synthesis, have recently been an active area of research. Studies from mPGES-1 deficient mice provide compelling evidence for its role in a variety of inflammatory brain diseases, such as ischemic stroke, Alzheimer's disease and epilepsy, and clues for developing new therapeutic treatments for brain diseases by targeting mPGES-1. Considering that COX inhibitors may non-selectively suppress the production of many types of prostanoids that are essential for normal physiological functioning of the brain and peripheral tissues, as well as induce gastro-intestinal, renal and cardiovascular complications, mPGES-1 inhibitors are expected to be injury-selective and have fewer side-effects when treating human brain diseases. Thus, this paper focuses on recent studies that have demonstrated the involvement of mPGES-1 in pathological brain diseases.
Collapse
Affiliation(s)
- Yuri Ikeda-Matsuo
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University
| |
Collapse
|
19
|
Recording Field Potentials and Synaptic Plasticity From Freely Behaving Rodents. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Zwamborn RA, Snijders C, An N, Thomson A, Rutten BP, de Nijs L. Wnt Signaling in the Hippocampus in Relation to Neurogenesis, Neuroplasticity, Stress and Epigenetics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:129-157. [DOI: 10.1016/bs.pmbts.2018.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Wang B, Jin X, Kuang X, Tian S. Chronic administration of parecoxib exerts anxiolytic-like and memory enhancing effects and modulates synaptophysin expression in mice. BMC Anesthesiol 2017; 17:152. [PMID: 29132299 PMCID: PMC5684753 DOI: 10.1186/s12871-017-0443-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 11/02/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Previous studies have shown that cyclooxygenase-2, a key enzyme that converts arachidonic acid to prostaglandins, is involved in anxiety and cognitive processes, but few studies have investigated the effects of chronic administration of cyclooxygenase-2 inhibitors on anxiety, learning and memory under normal physiological conditions. The aim of the study was to investigate the effects of chronic administration of parecoxib, a cyclooxygenase-2 inhibitor, on anxiety behavior and memory performance under normal physiological conditions and to explore the possible neural mechanism underlying parecoxib-mediated effects. METHODS Adult male ICR mice were randomly divided into four groups: the control group and three parecoxib groups. Mice received normal saline or parecoxib (2.5, 5.0 or 10 mg/kg) intraperitoneal injection once a day for 21 days, respectively. Elevated plus-maze, novel object recognition and Y maze tests were conducted on day 23, 24 and 26, respectively. Four additional groups that received same drug treatment were used to measure synaptophysin protein levels by western blot and prostaglandin E2 (PGE2) levels by ELISA in the amygdala and hippocampus on day 26. RESULTS Chronic parecoxib exerted an anxiolytic-like effect in the plus-maze test test, and enhanced memory performance in the novel object recognition and Y maze tests. Western blot analysis showed that chronic parecoxib down-regulated synaptophysin levels in the amygdala and up-regulated synaptophysin levels in the hippocampus. ELISA assay showed that chronic parecoxib inhibited PGE2 in the hippocampus but not amygdala. CONCLUSIONS Chronic parecoxib exerts anxiolytic-like and memory enhancing effects, which might be mediated through differential modulation of synaptophysin and PGE2 in the amygdala and hippocampus.
Collapse
Affiliation(s)
- Bo Wang
- Department of Anesthesiology, First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xin Jin
- Department of Anesthesiology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xin Kuang
- Department of Anesthesiology, First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
| | - Shaowen Tian
- Department of Physiology, College of Medicine, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
| |
Collapse
|
22
|
McGuiness JA, Scheinert RB, Asokan A, Stadler VC, Lee CS, Rani A, Kumar A, Foster TC, Ormerod BK. Indomethacin Increases Neurogenesis across Age Groups and Improves Delayed Probe Trial Difference Scores in Middle-Aged Rats. Front Aging Neurosci 2017; 9:280. [PMID: 28928652 PMCID: PMC5591789 DOI: 10.3389/fnagi.2017.00280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/11/2017] [Indexed: 01/20/2023] Open
Abstract
We tested whether indomethacin or rosiglitazone treatment could rejuvenate spatial ability and hippocampal neurogenesis in aging rats. Young (4 mo; n = 30), middle-aged (12 mo; n = 31), and aged (18 mo; n = 31) male Fischer 344 rats were trained and then tested in a rapid acquisition water maze task and then fed vehicle (500 μl strawberry milk), indomethacin (2.0 mg/ml), or rosiglitazone (8.0 mg/ml) twice daily for the remainder of the experiment. A week after drug treatment commenced, the rats were given 3 daily BrdU (50 mg/kg) injections to test whether age-related declines in neurogenesis were reversed. One week after the final BrdU injection (~2.5 weeks after the 1st water maze session), the rats were trained to a find novel hidden water maze platform location, tested on 15 min and 24 h probe trials and then killed 24 h later. During the first water maze session, young rats outperformed aged rats but all rats learned information about the hidden platform location. Middle-aged and aged rats exhibited better memory probe trial performances than young rats in the 2nd water maze session and indomethacin improved memory probe trial performances on the 2nd vs. 1st water maze session in middle-aged rats. Middle-aged rats with more new neurons had fewer phagocytic microglia and exhibited better hidden platform training trial performances on the 2nd water maze session. Regardless of age, indomethacin increased new hippocampal neuron numbers and both rosiglitazone and indomethacin increased subependymal neuroblasts/neuron densities. Taken together, our results suggest the feasibility of studying the effects of longer-term immunomodulation on age-related declines in cognition and neurogenesis.
Collapse
Affiliation(s)
- James A. McGuiness
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Rachel B. Scheinert
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Aditya Asokan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Vivien-Charlott Stadler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Christian S. Lee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| | - Asha Rani
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Ashok Kumar
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Thomas C. Foster
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
| | - Brandi K. Ormerod
- Department of Neuroscience, University of FloridaGainesville, FL, United States
- McKnight Brain Institute, University of FloridaGainesville, FL, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, United States
| |
Collapse
|
23
|
Clossen BL, Reddy DS. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1519-1538. [PMID: 28179120 PMCID: PMC5474195 DOI: 10.1016/j.bbadis.2017.02.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
Abstract
This article describes the recent advances in epileptogenesis and novel therapeutic approaches for the prevention of epilepsy, with a special emphasis on the pharmacological basis of disease-modification of epileptogenesis for curing epilepsy. Here we assess animal studies and human clinical trials of epilepsy spanning 1982-2016. Epilepsy arises from a number of neuronal factors that trigger epileptogenesis, which is the process by which a brain shifts from a normal physiologic state to an epileptic condition. The events precipitating these changes can be of diverse origin, including traumatic brain injury, cerebrovascular damage, infections, chemical neurotoxicity, and emergency seizure conditions such as status epilepticus. Expectedly, the molecular and system mechanisms responsible for epileptogenesis are not well defined or understood. To date, there is no approved therapy for the prevention of epilepsy. Epigenetic dysregulation, neuroinflammation, and neurodegeneration appear to trigger epileptogenesis. Targeted drugs are being identified that can truly prevent the development of epilepsy in at-risk people. The promising agents include rapamycin, COX-2 inhibitors, TRK inhibitors, epigenetic modulators, JAK-STAT inhibitors, and neurosteroids. Recent evidence suggests that neurosteroids may play a role in modulating epileptogenesis. A number of promising drugs are under investigation for the prevention or modification of epileptogenesis to halt the development of epilepsy. Some drugs in development appear rational for preventing epilepsy because they target the initial trigger or related signaling pathways as the brain becomes progressively more prone to seizures. Additional research into the target validity and clinical investigation is essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
24
|
Maingret V, Barthet G, Deforges S, Jiang N, Mulle C, Amédée T. PGE 2 -EP3 signaling pathway impairs hippocampal presynaptic long-term plasticity in a mouse model of Alzheimer's disease. Neurobiol Aging 2017; 50:13-24. [DOI: 10.1016/j.neurobiolaging.2016.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/03/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
|
25
|
Broad KD, Hassell J, Fleiss B, Kawano G, Ezzati M, Rocha-Ferreira E, Hristova M, Bennett K, Fierens I, Burnett R, Chaban B, Alonso-Alconada D, Oliver-Taylor A, Tachsidis I, Rostami J, Gressens P, Sanders RD, Robertson NJ. Isoflurane Exposure Induces Cell Death, Microglial Activation and Modifies the Expression of Genes Supporting Neurodevelopment and Cognitive Function in the Male Newborn Piglet Brain. PLoS One 2016; 11:e0166784. [PMID: 27898690 PMCID: PMC5127656 DOI: 10.1371/journal.pone.0166784] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/03/2016] [Indexed: 12/02/2022] Open
Abstract
Exposure of the brain to general anesthesia during early infancy may adversely affect its neural and cognitive development. The mechanisms mediating this are complex, incompletely understood and may be sexually dimorphic, but include developmentally inappropriate apoptosis, inflammation and a disruption to cognitively salient gene expression. We investigated the effects of a 6h isoflurane exposure on cell death, microglial activation and gene expression in the male neonatal piglet brain. Piglets (n = 6) were randomised to: (i) naive controls or (ii) 6h isoflurane. Cell death (TUNEL and caspase-3) and microglial activation were recorded in 7 brain regions. Changes in gene expression (microarray and qPCR) were assessed in the cingulate cortex. Electroencephalography (EEG) was recorded throughout. Isoflurane anesthesia induced significant increases in cell death in the cingulate and insular cortices, caudate nucleus, thalamus, putamen, internal capsule, periventricular white matter and hippocampus. Dying cells included both neurons and oligodendrocytes. Significantly, microglial activation was observed in the insula, pyriform, hippocampus, internal capsule, caudate and thalamus. Isoflurane induced significant disruption to the expression of 79 gene transcripts, of these 26 are important for the control of transcription and 23 are important for the mediation of neural plasticity, memory formation and recall. Our observations confirm that isoflurane increases apoptosis and inflammatory responses in the neonatal piglet brain but also suggests novel additional mechanisms by which isoflurane may induce adverse neural and cognitive development by disrupting the expression of genes mediating activity dependent development of neural circuits, the predictive adaptive responses of the brain, memory formation and recall.
Collapse
Affiliation(s)
- Kevin D. Broad
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Jane Hassell
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Bobbi Fleiss
- Centre for the Developing Brain, Kings College, St Thomas’s Campus, London, United Kingdom
- Inserm, Paris, France
- University Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Go Kawano
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Mojgan Ezzati
- Institute for Women’s Health, University College London, London, United Kingdom
| | | | - Mariya Hristova
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Kate Bennett
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Igor Fierens
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Ryan Burnett
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Badr Chaban
- Institute for Women’s Health, University College London, London, United Kingdom
| | | | - Aaron Oliver-Taylor
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Ilias Tachsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Jamshid Rostami
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Pierre Gressens
- Centre for the Developing Brain, Kings College, St Thomas’s Campus, London, United Kingdom
- Inserm, Paris, France
- University Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Robert D. Sanders
- Department of Anesthesiology, University of Wisconsin, Madison, United States of America
- Wellcome Department of Imaging Neuroscience, University College London, London, United Kingdom
- Surgical Outcomes Research Centre, University College London Hospital, London, United Kingdom
| | - Nicola J. Robertson
- Institute for Women’s Health, University College London, London, United Kingdom
| |
Collapse
|
26
|
Hewett SJ, Shi J, Gong Y, Dhandapani K, Pilbeam C, Hewett JA. Spontaneous Glutamatergic Synaptic Activity Regulates Constitutive COX-2 Expression in Neurons: OPPOSING ROLES FOR THE TRANSCRIPTION FACTORS CREB (cAMP RESPONSE ELEMENT BINDING) PROTEIN AND Sp1 (STIMULATORY PROTEIN-1). J Biol Chem 2016; 291:27279-27288. [PMID: 27875294 DOI: 10.1074/jbc.m116.737353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 11/10/2016] [Indexed: 11/06/2022] Open
Abstract
Burgeoning evidence supports a role for cyclooxygenase metabolites in regulating membrane excitability in various forms of synaptic plasticity. Two cyclooxygenases, COX-1 and COX-2, catalyze the initial step in the metabolism of arachidonic acid to prostaglandins. COX-2 is generally considered inducible, but in glutamatergic neurons in some brain regions, including the cerebral cortex, it is constitutively expressed. However, the transcriptional mechanisms by which this occurs have not been elucidated. Here, we used quantitative PCR and also analyzed reporter gene expression in a mouse line carrying a construct consisting of a portion of the proximal promoter region of the mouse COX-2 gene upstream of luciferase cDNA to characterize COX-2 basal transcriptional regulation in cortical neurons. Extracts from the whole brain and from the cerebral cortex, hippocampus, and olfactory bulbs exhibited high luciferase activity. Moreover, constitutive COX-2 expression and luciferase activity were detected in cortical neurons, but not in cortical astrocytes, cultured from wild-type and transgenic mice, respectively. Constitutive COX-2 expression depended on spontaneous but not evoked excitatory synaptic activity and was shown to be N-methyl-d-aspartate receptor-dependent. Constitutive promoter activity was reduced in neurons transfected with a dominant-negative cAMP response element binding protein (CREB) and was eliminated by mutating the CRE-binding site on the COX-2 promoter. However, mutation of the stimulatory protein-1 (Sp1)-binding site resulted in an N-methyl-d-aspartate receptor-dependent enhancement of COX-2 promoter activity. Basal binding of the transcription factors CREB and Sp1 to the native neuronal COX-2 promoter was confirmed. In toto, our data suggest that spontaneous glutamatergic synaptic activity regulates constitutive neuronal COX-2 expression via Sp1 and CREB protein-dependent transcriptional mechanisms.
Collapse
Affiliation(s)
- Sandra J Hewett
- From the Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York 13210,
| | - Jingxue Shi
- From the Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York 13210
| | - Yifan Gong
- From the Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York 13210
| | - Krishnan Dhandapani
- the Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, and
| | - Carol Pilbeam
- the Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - James A Hewett
- From the Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York 13210,
| |
Collapse
|
27
|
Snow WM, Albensi BC. Neuronal Gene Targets of NF-κB and Their Dysregulation in Alzheimer's Disease. Front Mol Neurosci 2016; 9:118. [PMID: 27881951 PMCID: PMC5101203 DOI: 10.3389/fnmol.2016.00118] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Although, better known for its role in inflammation, the transcription factor nuclear factor kappa B (NF-κB) has more recently been implicated in synaptic plasticity, learning, and memory. This has been, in part, to the discovery of its localization not just in glia, cells that are integral to mediating the inflammatory process in the brain, but also neurons. Several effectors of neuronal NF-κB have been identified, including calcium, inflammatory cytokines (i.e., tumor necrosis factor alpha), and the induction of experimental paradigms thought to reflect learning and memory at the cellular level (i.e., long-term potentiation). NF-κB is also activated after learning and memory formation in vivo. In turn, activation of NF-κB can elicit either suppression or activation of other genes. Studies are only beginning to elucidate the multitude of neuronal gene targets of NF-κB in the normal brain, but research to date has confirmed targets involved in a wide array of cellular processes, including cell signaling and growth, neurotransmission, redox signaling, and gene regulation. Further, several lines of research confirm dysregulation of NF-κB in Alzheimer's disease (AD), a disorder characterized clinically by a profound deficit in the ability to form new memories. AD-related neuropathology includes the characteristic amyloid beta plaque formation and neurofibrillary tangles. Although, such neuropathological findings have been hypothesized to contribute to memory deficits in AD, research has identified perturbations at the cellular and synaptic level that occur even prior to more gross pathologies, including transcriptional dysregulation. Indeed, synaptic disturbances appear to be a significant correlate of cognitive deficits in AD. Given the more recently identified role for NF-κB in memory and synaptic transmission in the normal brain, the expansive network of gene targets of NF-κB, and its dysregulation in AD, a thorough understanding of NF-κB-related signaling in AD is warranted and may have important implications for uncovering treatments for the disease. This review aims to provide a comprehensive view of our current understanding of the gene targets of this transcription factor in neurons in the intact brain and provide an overview of studies investigating NF-κB signaling, including its downstream targets, in the AD brain as a means of uncovering the basic physiological mechanisms by which memory becomes fragile in the disease.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of ManitobaWinnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
28
|
Berger T. Immunological processes related to cognitive impairment in MS. Acta Neurol Scand 2016; 134 Suppl 200:34-8. [PMID: 27580904 DOI: 10.1111/ane.12647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2016] [Indexed: 12/20/2022]
Abstract
In this review, the immune-to-brain communication pathways are briefly summarized, with emphasis on the impact of immune cells and their mediators on learning, memory and other cognitive domains. Further, the acute response of the central nervous system to peripherally generated inflammatory stimuli - termed as sickness behaviour - is described, and the central role of microglia in this immune-to-brain crosstalk in physiological and pathological conditions is highlighted. Finally, the role and consequences of immunological processes related to cognitive impairment in multiple sclerosis are discussed.
Collapse
Affiliation(s)
- T. Berger
- Clinical Department of Neurology; Medical University of Innsbruck; Innsbruck Austria
| |
Collapse
|
29
|
Codocedo JF, Inestrosa NC. Wnt-5a-regulated miR-101b controls COX2 expression in hippocampal neurons. Biol Res 2016; 49:9. [PMID: 26895946 PMCID: PMC4759731 DOI: 10.1186/s40659-016-0071-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/12/2016] [Indexed: 02/07/2023] Open
Abstract
Background Wnt-5a is a member of the WNT family of secreted lipoglycoproteins, whose expression increases during development; moreover, Wnt-5a plays a key role in synaptic structure and function in the adult nervous system. However, the mechanism underlying these effects is still elusive. MicroRNAs (miRNAs) are a family of small non-coding RNAs that control the gene expression of their targets through hybridization with complementary sequences in the 3′ UTR, thereby inhibiting the translation of the target proteins. Several evidences indicate that the miRNAs are actively involved in the regulation of neuronal function. Results In the present study, we examined whether Wnt-5a modulates the levels of miRNAs in hippocampal neurons. Using PCR arrays, we identified a set of miRNAs that respond to Wnt-5a treatment. One of the most affected miRNAs was miR-101b, which targets cyclooxygenase-2 (COX2), an inducible enzyme that converts arachidonic acid to prostanoids, and has been involved in the injury/inflammatory response, and more recently in neuronal plasticity. Consistent with the Wnt-5a regulation of miR-101b, this Wnt ligand regulates COX2 expression in a time-dependent manner in cultured hippocampal neurons. Conclusion The biological processes induced by Wnt-5a in hippocampal neurons, involve the regulation of several miRNAs including miR-101b, which has the capacity to regulate several targets, including COX-2 in the central nervous system.
Collapse
Affiliation(s)
- Juan Francisco Codocedo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile. .,CARE, Biomedical Research Center, Pontificia Universidad Católica de Chile, Av. Alameda 340, 8331150, Santiago, Chile.
| | - Nibaldo C Inestrosa
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile. .,Faculty of Medicine, Center for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile. .,CARE, Biomedical Research Center, Pontificia Universidad Católica de Chile, Av. Alameda 340, 8331150, Santiago, Chile.
| |
Collapse
|
30
|
Wang P, Guan PP, Yu X, Zhang LC, Su YN, Wang ZY. Prostaglandin I₂ Attenuates Prostaglandin E₂-Stimulated Expression of Interferon γ in a β-Amyloid Protein- and NF-κB-Dependent Mechanism. Sci Rep 2016; 6:20879. [PMID: 26869183 PMCID: PMC4751455 DOI: 10.1038/srep20879] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/11/2016] [Indexed: 12/14/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) has been recently identified as being involved in the pathogenesis of Alzheimer's disease (AD). However, the role of an important COX-2 metabolic product, prostaglandin (PG) I2, in AD development remains unknown. Using mouse-derived astrocytes as well as APP/PS1 transgenic mice as model systems, we firstly elucidated the mechanisms of interferon γ (IFNγ) regulation by PGE2 and PGI2. Specifically, PGE2 accumulation in astrocytes activated the ERK1/2 and NF-κB signaling pathways by phosphorylation, which resulted in IFNγ expression. In contrast, the administration of PGI2 attenuated the effects of PGE2 on stimulating the production of IFNγ via inhibiting the translocation of NF-κB from the cytosol to the nucleus. Due to these observations, we further studied these prostaglandins and found that both PGE2 and PGI2 increased Aβ1-42 levels. In detail, PGE2 induced IFNγ expression in an Aβ1-42-dependent manner, whereas PGI2-induced Aβ1-42 production did not alleviate cells from IFNγ inhibition by PGI2 treatment. More importantly, our data also revealed that not only Aβ1-42 oligomer but also fibrillar have the ability to induce the expression of IFNγ via stimulation of NF-κB nuclear translocation in astrocytes of APP/PS1 mice. The production of IFNγ finally accelerated the deposition of Aβ1-42 in β-amyloid plaques.
Collapse
Affiliation(s)
- Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xin Yu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Li-Chao Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Ya-Nan Su
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
31
|
Wu HF, Yen HJ, Huang CC, Lee YC, Wu SZ, Lee TS, Lin HC. Soluble epoxide hydrolase inhibitor enhances synaptic neurotransmission and plasticity in mouse prefrontal cortex. J Biomed Sci 2015; 22:94. [PMID: 26494028 PMCID: PMC4618874 DOI: 10.1186/s12929-015-0202-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/09/2015] [Indexed: 12/29/2022] Open
Abstract
Background The soluble epoxide hydrolase (sEH) is an important enzyme chiefly involved in the metabolism of fatty acid signaling molecules termed epoxyeicosatrienoic acids (EETs). sEH inhibition (sEHI) has proven to be protective against experimental cerebral ischemia, and it is emerging as a therapeutic target for prevention and treatment of ischemic stroke. However, the role of sEH on synaptic function in the central nervous system is still largely unknown. This study aimed to test whether sEH C-terminal epoxide hydrolase inhibitor, 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA) affects basal synaptic transmission and synaptic plasticity in the prefrontal cortex area (PFC). Whole cell and extracellular recording examined the miniature excitatory postsynaptic currents (mEPSCs) and field excitatory postsynaptic potentials (fEPSPs); Western Blotting determined the protein levels of glutamate receptors and ERK phosphorylation in acute medial PFC slices. Results Application of the sEH C-terminal epoxide hydrolase inhibitor, AUDA significantly increased the amplitude of mEPSCs and fEPSPs in prefrontal cortex neurons, while additionally enhancing long term potentiation (LTP). Western Blotting demonstrated that AUDA treatment increased the expression of the N-methyl-D-aspartate receptor (NMDA) subunits NR1, NR2A, NR2B; the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR1, GluR2, and ERK phosphorylation. Conclusions Inhibition of sEH induced an enhancement of PFC neuronal synaptic neurotransmission. This enhancement of synaptic neurotransmission is associated with an enhanced postsynaptic glutamatergic receptor and postsynaptic glutamatergic receptor mediated synaptic LTP. LTP is enhanced via ERK phosphorylation resulting from the delivery of glutamate receptors into the PFC by post-synapse by treatment with AUDA. These findings provide a possible link between synaptic function and memory processes.
Collapse
Affiliation(s)
- Han-Fang Wu
- Institute and Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Hsin-Ju Yen
- Institute and Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chi-Chen Huang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yi-Chao Lee
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan
| | - Su-Zhen Wu
- Department of Anesthesiology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Tzong-Shyuan Lee
- Institute and Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Hui-Ching Lin
- Institute and Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan. .,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan.
| |
Collapse
|
32
|
Maag JLV, Panja D, Sporild I, Patil S, Kaczorowski DC, Bramham CR, Dinger ME, Wibrand K. Dynamic expression of long noncoding RNAs and repeat elements in synaptic plasticity. Front Neurosci 2015; 9:351. [PMID: 26483626 PMCID: PMC4589673 DOI: 10.3389/fnins.2015.00351] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/16/2015] [Indexed: 01/29/2023] Open
Abstract
Long-term potentiation (LTP) of synaptic transmission is recognized as a cellular mechanism for learning and memory storage. Although de novo gene transcription is known to be required in the formation of stable LTP, the molecular mechanisms underlying synaptic plasticity remain elusive. Noncoding RNAs have emerged as major regulatory molecules that are abundantly and specifically expressed in the mammalian brain. By combining RNA-seq analysis with LTP induction in the dentate gyrus of live rats, we provide the first global transcriptomic analysis of synaptic plasticity in the adult brain. Expression profiles of mRNAs and long noncoding RNAs (lncRNAs) were obtained at 30 min, 2 and 5 h after high-frequency stimulation of the perforant pathway. The temporal analysis revealed dynamic expression profiles of lncRNAs with many positively, and highly, correlated to protein-coding genes with known roles in synaptic plasticity, suggesting their possible involvement in LTP. In light of observations suggesting a role for retrotransposons in brain function, we examined the expression of various classes of repeat elements. Our analysis identifies dynamic regulation of LINE1 and SINE retrotransposons, and extensive regulation of tRNA. These experiments reveal a hitherto unknown complexity of gene expression in long-term synaptic plasticity involving the dynamic regulation of lncRNAs and repeat elements. These findings provide a broader foundation for elucidating the transcriptional and epigenetic regulation of synaptic plasticity in both the healthy brain and in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jesper L V Maag
- Genomics and Epigenetics Division, Garvan Institute of Medical Research Sydney, NSW, Australia ; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Debabrata Panja
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Ida Sporild
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Sudarshan Patil
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Dominik C Kaczorowski
- Genomics and Epigenetics Division, Garvan Institute of Medical Research Sydney, NSW, Australia
| | - Clive R Bramham
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Marcel E Dinger
- Genomics and Epigenetics Division, Garvan Institute of Medical Research Sydney, NSW, Australia ; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Karin Wibrand
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| |
Collapse
|
33
|
New Insights on Retrieval-Induced and Ongoing Memory Consolidation: Lessons from Arc. Neural Plast 2015; 2015:184083. [PMID: 26380114 PMCID: PMC4561316 DOI: 10.1155/2015/184083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 01/08/2023] Open
Abstract
The mainstream view on the neurobiological mechanisms underlying memory formation states that memory traces reside on the network of cells activated during initial acquisition that becomes active again upon retrieval (reactivation). These activation and reactivation processes have been called "conjunctive trace." This process implies that singular molecular events must occur during acquisition, strengthening the connection between the implicated cells whose synchronous activity must underlie subsequent reactivations. The strongest experimental support for the conjunctive trace model comes from the study of immediate early genes such as c-fos, zif268, and activity-regulated cytoskeletal-associated protein. The expressions of these genes are reliably induced by behaviorally relevant neuronal activity and their products often play a central role in long-term memory formation. In this review, we propose that the peculiar characteristics of Arc protein, such as its optimal expression after ongoing experience or familiar behavior, together with its versatile and central functions in synaptic plasticity could explain how familiarization and recognition memories are stored and preserved in the mammalian brain.
Collapse
|
34
|
del Pino J, Moyano-Cires PV, Anadon MJ, Díaz MJ, Lobo M, Capo MA, Frejo MT. Molecular Mechanisms of Amitraz Mammalian Toxicity: A Comprehensive Review of Existing Data. Chem Res Toxicol 2015; 28:1073-94. [PMID: 25973576 DOI: 10.1021/tx500534x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Javier del Pino
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Paula Viviana Moyano-Cires
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Maria Jose Anadon
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - María Jesús Díaz
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Margarita Lobo
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Miguel Andrés Capo
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - María Teresa Frejo
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
35
|
Ahmadian-Attari MM, Dargahi L, Mosaddegh M, Kamalinejad M, Khallaghi B, Noorbala F, Ahmadiani A. Impairment of Rat Spatial Learning and Memory in a New Model of Cold Water-Induced Chronic Hypothermia: Implication for Alzheimer’s Disease. Neurotox Res 2015; 28:95-107. [DOI: 10.1007/s12640-015-9525-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 01/31/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|
36
|
Litteljohn D, Nelson E, Hayley S. IFN-γ differentially modulates memory-related processes under basal and chronic stressor conditions. Front Cell Neurosci 2014; 8:391. [PMID: 25477784 PMCID: PMC4238410 DOI: 10.3389/fncel.2014.00391] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/03/2014] [Indexed: 02/06/2023] Open
Abstract
Cytokines are inflammatory messengers that orchestrate the brain’s response to immunological challenges, as well as possibly even toxic and psychological insults. We previously reported that genetic ablation of the pro-inflammatory cytokine, interferon-gamma (IFN-γ), attenuated some of the corticosteroid, cytokine, and limbic dopaminergic variations induced by 6 weeks of exposure to an unpredictable psychologically relevant stressor. Presently, we sought to determine whether a lack of IFN-γ would likewise modify the impact of chronic stress on hippocampus-dependent memory function and related neurotransmitter and neurotrophin signaling systems. As predicted, chronic stress impaired spatial recognition memory (Y-maze task) in the wild-type animals. In contrast, though the IFN-γ knockouts (KOs) showed memory disturbances in the basal state, under conditions of chronic stress these mice actually exhibited facilitated memory performance. Paralleling these findings, while overall the KOs displayed altered noradrenergic and/or serotonergic activity in the hippocampus and locus coeruleus, norepinephrine utilization in both of these memory-related brain regions was selectively increased among the chronically stressed KOs. However, contrary to our expectations, neither IFN-γ deletion nor chronic stressor exposure significantly affected nucleus accumbens dopaminergic neurotransmission or hippocampal brain-derived neurotrophic factor protein expression. These findings add to a growing body of evidence implicating cytokines in the often differential regulation of neurobehavioral processes in health and disease. Whereas in the basal state IFN-γ appears to be involved in sustaining memory function and the activity of related brain monoamine systems, in the face of ongoing psychologically relevant stress the cytokine may, in fact, act to restrict potentially adaptive central noradrenergic and spatial memory responses.
Collapse
Affiliation(s)
- Darcy Litteljohn
- Department of Neuroscience, Carleton University Ottawa, ON, Canada
| | - Eric Nelson
- Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University Ottawa, ON, Canada
| |
Collapse
|
37
|
Lin TY, Lu CW, Wang CC, Huang SK, Wang SJ. Cyclooxygenase 2 inhibitor celecoxib inhibits glutamate release by attenuating the PGE2/EP2 pathway in rat cerebral cortex endings. J Pharmacol Exp Ther 2014; 351:134-45. [PMID: 25047516 DOI: 10.1124/jpet.114.217372] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The excitotoxicity caused by excessive glutamate is a critical element in the neuropathology of acute and chronic brain disorders. Therefore, inhibition of glutamate release is a potentially valuable therapeutic strategy for treating these diseases. In this study, we investigated the effect of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor that reduces the level of prostaglandin E2 (PGE2), on endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes). Celecoxib substantially inhibited the release of glutamate induced by the K(+) channel blocker 4-aminopyridine (4-AP), and this phenomenon was prevented by chelating the extracellular Ca(2+) ions and by the vesicular transporter inhibitor bafilomycin A1. Celecoxib inhibited a 4-AP-induced increase in cytosolic-free Ca(2+) concentration, and the celecoxib-mediated inhibition of glutamate release was prevented by the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC. However, celecoxib did not alter 4-AP-mediated depolarization and Na(+) influx. In addition, this glutamate release-inhibiting effect of celecoxib was mediated through the PGE2 subtype 2 receptor (EP2) because it was not observed in the presence of butaprost (an EP2 agonist) or PF04418948 [1-(4-fluorobenzoyl)-3-[[6-methoxy-2-naphthalenyl)methyl]-3-azetidinecarboxylic acid; an EP2 antagonist]. The celecoxib effect on 4-AP-induced glutamate release was prevented by the inhibition or activation of protein kinase A (PKA), and celecoxib decreased the 4-AP-induced phosphorylation of PKA. We also determined that COX-2 and the EP2 receptor are present in presynaptic terminals because they are colocalized with synaptophysin, a presynaptic marker. These results collectively indicate that celecoxib inhibits glutamate release from nerve terminals by reducing voltage-dependent Ca(2+) entry through a signaling cascade involving EP2 and PKA.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei, Taiwan (T.-Y.L., C.-W.L., S.K.H.); Department of Mechanical Engineering, Yuan Ze University, Taoyuan, Taiwan (T.-Y.L., C.-W.L.); and Graduate Institute of Basic Medicine (S.-J.W.) and School of Medicine (C.-C.W., S.-J.W.), Fu Jen Catholic University, New Taipei, Taiwan
| | - Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei, Taiwan (T.-Y.L., C.-W.L., S.K.H.); Department of Mechanical Engineering, Yuan Ze University, Taoyuan, Taiwan (T.-Y.L., C.-W.L.); and Graduate Institute of Basic Medicine (S.-J.W.) and School of Medicine (C.-C.W., S.-J.W.), Fu Jen Catholic University, New Taipei, Taiwan
| | - Chia-Chuan Wang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei, Taiwan (T.-Y.L., C.-W.L., S.K.H.); Department of Mechanical Engineering, Yuan Ze University, Taoyuan, Taiwan (T.-Y.L., C.-W.L.); and Graduate Institute of Basic Medicine (S.-J.W.) and School of Medicine (C.-C.W., S.-J.W.), Fu Jen Catholic University, New Taipei, Taiwan
| | - Shu Kuei Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei, Taiwan (T.-Y.L., C.-W.L., S.K.H.); Department of Mechanical Engineering, Yuan Ze University, Taoyuan, Taiwan (T.-Y.L., C.-W.L.); and Graduate Institute of Basic Medicine (S.-J.W.) and School of Medicine (C.-C.W., S.-J.W.), Fu Jen Catholic University, New Taipei, Taiwan
| | - Su-Jane Wang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei, Taiwan (T.-Y.L., C.-W.L., S.K.H.); Department of Mechanical Engineering, Yuan Ze University, Taoyuan, Taiwan (T.-Y.L., C.-W.L.); and Graduate Institute of Basic Medicine (S.-J.W.) and School of Medicine (C.-C.W., S.-J.W.), Fu Jen Catholic University, New Taipei, Taiwan
| |
Collapse
|
38
|
Puppolo M, Varma D, Jansen SA. A review of analytical methods for eicosanoids in brain tissue. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964:50-64. [PMID: 24685838 DOI: 10.1016/j.jchromb.2014.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 12/29/2022]
Abstract
Eicosanoids are potent lipid mediators of inflammation and are known to play an important role in numerous pathophysiological processes. Furthermore, inflammation has been proven to be a mediator of diseases such as hypertension, atherosclerosis, Alzheimer's disease, cancer and rheumatoid arthritis. Hence, these lipid mediators have gained significant attention in recent years. This review focuses on chromatographic and mass spectrometric methods that have been used to analyze arachidonic acid and its metabolites in brain tissue. Recently published analytical methods such as LC-MS/MS and GC-MS/MS are discussed and compared in terms of limit of quantitation and sample preparation procedures, including solid phase extraction and derivatization. Analytical challenges are also highlighted.
Collapse
Affiliation(s)
- Michael Puppolo
- Temple University, Department of Chemistry, 1901 North 13th Street, Philadelphia, PA 19122, United States
| | - Deepti Varma
- Temple University, Department of Chemistry, 1901 North 13th Street, Philadelphia, PA 19122, United States
| | - Susan A Jansen
- Temple University, Department of Chemistry, 1901 North 13th Street, Philadelphia, PA 19122, United States.
| |
Collapse
|
39
|
Chen R, Zhang J, Fan N, Teng ZQ, Wu Y, Yang H, Tang YP, Sun H, Song Y, Chen C. Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling. Cell 2014; 155:1154-1165. [PMID: 24267894 DOI: 10.1016/j.cell.2013.10.042] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/10/2013] [Accepted: 10/18/2013] [Indexed: 12/19/2022]
Abstract
Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here, we show that synaptic and cognitive impairments following repeated exposure to Δ(9)-tetrahydrocannabinol (Δ(9)-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids in the brain. COX-2 induction by Δ(9)-THC is mediated via CB1 receptor-coupled G protein βγ subunits. Pharmacological or genetic inhibition of COX-2 blocks downregulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ(9)-THC exposures. Ablation of COX-2 also eliminates Δ(9)-THC-impaired hippocampal long-term synaptic plasticity, working, and fear memories. Importantly, the beneficial effects of decreasing β-amyloid plaques and neurodegeneration by Δ(9)-THC in Alzheimer's disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2.
Collapse
Affiliation(s)
- Rongqing Chen
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jian Zhang
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ni Fan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Zhao-Qian Teng
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Yan Wu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hongwei Yang
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ya-Ping Tang
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hao Sun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Yunping Song
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Chu Chen
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.,Department of Otorhinolaryngology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
40
|
Cyclooxygenase-1-dependent prostaglandins mediate susceptibility to systemic inflammation-induced acute cognitive dysfunction. J Neurosci 2013; 33:15248-58. [PMID: 24048854 DOI: 10.1523/jneurosci.6361-11.2013] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Systemic inflammatory events often precipitate acute cognitive dysfunction in elderly and demented populations. Delirium is a highly prevalent neuropsychiatric syndrome that is characterized by acute inattention and cognitive dysfunction, for which prior dementia is the major predisposing factor and systemic inflammation is a frequent trigger. Inflammatory mechanisms of delirium remain unclear. We have modeled aspects of delirium during dementia by exploiting progressive neurodegeneration in the ME7 mouse model of prion disease and by superimposing systemic inflammation induced by the bacterial endotoxin lipopolysaccharide (LPS). Here, we have used this model to demonstrate that the progression of underlying disease increases the incidence, severity, and duration of acute cognitive dysfunction. This increasing susceptibility is associated with increased CNS expression of cyclooxygenase (COX)-1 in microglia and perivascular macrophages. The COX-1-specific inhibitor SC-560 provided significant protection against LPS-induced cognitive deficits, and attenuated the disease-induced increase in hippocampal and thalamic prostaglandin E2, while the COX-2-specific inhibitor NS-398 was ineffective. SC-560 treatment did not alter levels of the proinflammatory cytokines interleukin (IL)-1β, tumor necrosis factor-α, IL-6, or C-X-C chemokine ligand 1 in blood or brain, but systemic IL-1RA blocked LPS-induced cognitive deficits, and systemic IL-1β was sufficient to induce similar deficits in the absence of LPS. Furthermore, the well tolerated COX inhibitor ibuprofen was protective against IL-1β-induced deficits. These data demonstrate that progressive microglial COX-1 expression and prostaglandin synthesis can underpin susceptibility to cognitive deficits, which can be triggered by systemic LPS-induced IL-1β. These data contribute to our understanding of how systemic inflammation and ongoing neurodegeneration interact to induce cognitive dysfunction and episodes of delirium.
Collapse
|
41
|
Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D. Neuroinflammation: the role and consequences. Neurosci Res 2013; 79:1-12. [PMID: 24144733 DOI: 10.1016/j.neures.2013.10.004] [Citation(s) in RCA: 491] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 01/05/2023]
Abstract
Neuroinflammation is central to the common pathology of several acute and chronic brain diseases. This review examines the consequences of excessive and prolonged neuroinflammation, particularly its damaging effects on cellular and/or brain function, as well as its relevance to disease progression and possible interventions. The evidence gathered here indicates that neuroinflammation causes and accelerates long-term neurodegenerative disease, playing a central role in the very early development of chronic conditions including dementia. The wide scope and numerous complexities of neuroinflammation suggest that combinations of different preventative and therapeutic approaches may be efficacious.
Collapse
Affiliation(s)
- Monty Lyman
- Section of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Dafydd G Lloyd
- Section of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Marcela P Vizcaychipi
- Section of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Daqing Ma
- Section of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| |
Collapse
|
42
|
Vezzani A, Friedman A, Dingledine RJ. The role of inflammation in epileptogenesis. Neuropharmacology 2013; 69:16-24. [PMID: 22521336 PMCID: PMC3447120 DOI: 10.1016/j.neuropharm.2012.04.004] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/19/2012] [Accepted: 04/02/2012] [Indexed: 12/20/2022]
Abstract
One compelling challenge in the therapy of epilepsy is to develop anti-epileptogenic drugs with an impact on the disease progression. The search for novel targets has focused recently on brain inflammation since this phenomenon appears to be an integral part of the diseased hyperexcitable brain tissue from which spontaneous and recurrent seizures originate. Although the contribution of specific proinflammatory pathways to the mechanism of ictogenesis in epileptic tissue has been demonstrated in experimental models, the role of these pathways in epileptogenesis is still under evaluation. We review the evidence conceptually supporting the involvement of brain inflammation and the associated blood-brain barrier damage in epileptogenesis, and describe the available pharmacological evidence where post-injury intervention with anti-inflammatory drugs has been attempted. Our review will focus on three main inflammatory pathways, namely the IL-1 receptor/Toll-like receptor signaling, COX-2 and the TGF-β signaling. The mechanisms underlying neuronal-glia network dysfunctions induced by brain inflammation are also discussed, highlighting novel neuromodulatory effects of classical inflammatory mediators such as cytokines and prostaglandins. The increase in knowledge about a role of inflammation in disease progression, may prompt the use of specific anti-inflammatory drugs for developing disease-modifying treatments. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Laboratory Experimental Neurology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via G. La Masa 19, 20156 Milano, Italy.
| | | | | |
Collapse
|
43
|
Abstract
The consolidation of long-term memories requires differential gene expression. Recent research has suggested that dynamic changes in chromatin structure play a role in regulating the gene expression program linked to memory formation. The contribution of histone methylation, an important regulatory mechanism of chromatin plasticity that is mediated by the counteracting activity of histone-methyltransferases and histone-demethylases, is, however, not well understood. Here we show that mice lacking the histone-methyltransferase myeloid/lymphoid or mixed-lineage leukemia 2 (mll2/kmt2b) gene in adult forebrain excitatory neurons display impaired hippocampus-dependent memory function. Consistent with the role of KMT2B in gene-activation DNA microarray analysis revealed that 152 genes were downregulated in the hippocampal dentate gyrus region of mice lacking kmt2b. Downregulated plasticity genes showed a specific deficit in histone 3 lysine 4 di- and trimethylation, while histone 3 lysine 4 monomethylation was not affected. Our data demonstrates that KMT2B mediates hippocampal histone 3 lysine 4 di- and trimethylation and is a critical player for memory formation.
Collapse
|
44
|
Ormerod BK, Hanft SJ, Asokan A, Haditsch U, Lee SW, Palmer TD. PPARγ activation prevents impairments in spatial memory and neurogenesis following transient illness. Brain Behav Immun 2013; 29:28-38. [PMID: 23108061 PMCID: PMC3570721 DOI: 10.1016/j.bbi.2012.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/25/2012] [Accepted: 10/19/2012] [Indexed: 11/25/2022] Open
Abstract
The detrimental effects of illness on cognition are familiar to virtually everyone. Some effects resolve quickly while others may linger after the illness resolves. We found that a transient immune response stimulated by lipopolysaccharide (LPS) compromised hippocampal neurogenesis and impaired hippocampus-dependent spatial memory. The immune event caused an ∼50% reduction in the number of neurons generated during the illness and the onset of the memory impairment was delayed and coincided with the time when neurons generated during the illness would have become functional within the hippocampus. Broad spectrum non-steroidal anti-inflammatory drugs attenuated these effects but selective Cox-2 inhibition was ineffective while PPARγ activation was surprisingly effective at protecting both neurogenesis and memory from the effects of LPS-produced transient illness. These data may highlight novel mechanisms behind chronic inflammatory and neuroinflammatory episodes that are known to compromise hippocampus-dependent forms of learning and memory.
Collapse
Affiliation(s)
- Brandi K. Ormerod
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA, 94305,J. Crayton Pruitt Family Department of Biomedical Engineering, McKnight Brain Institute and Neuroscience Department, University of Florida, Gainesville, FL, USA, 32611,To whom correspondence should be addressed: Dr. Brandi K. Ormerod: J. Crayton Pruitt Family Department of Biomedical Engineering, 1600 Center Drive, Room J296, Biomedical Sciences Building, University of Florida, Gainesville, FL, USA, 32611, Phone: 352-273-8125, Fax: 352-273-9222, Or Dr. Theo D. Palmer, Institute for Stem Cell Biology and Regenerative Medicine, Lorey I Lokey Stem Cell Building, Rm1141, 265 Campus Drive, Stanford University, Stanford, CA, USA, 94305. Phone: 650-723-9306, Fax: 650-736-0936,
| | - Simon J. Hanft
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA, 94305
| | - Aditya Asokan
- J. Crayton Pruitt Family Department of Biomedical Engineering, McKnight Brain Institute and Neuroscience Department, University of Florida, Gainesville, FL, USA, 32611
| | - Ursula Haditsch
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA, 94305
| | - Star W. Lee
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA, 94305
| | - Theo D. Palmer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA, 94305,To whom correspondence should be addressed: Dr. Brandi K. Ormerod: J. Crayton Pruitt Family Department of Biomedical Engineering, 1600 Center Drive, Room J296, Biomedical Sciences Building, University of Florida, Gainesville, FL, USA, 32611, Phone: 352-273-8125, Fax: 352-273-9222, Or Dr. Theo D. Palmer, Institute for Stem Cell Biology and Regenerative Medicine, Lorey I Lokey Stem Cell Building, Rm1141, 265 Campus Drive, Stanford University, Stanford, CA, USA, 94305. Phone: 650-723-9306, Fax: 650-736-0936,
| |
Collapse
|
45
|
Borre Y, Lemstra S, Westphal KG, Morgan ME, Olivier B, Oosting RS. Celecoxib delays cognitive decline in an animal model of neurodegeneration. Behav Brain Res 2012; 234:285-91. [DOI: 10.1016/j.bbr.2012.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/06/2012] [Accepted: 07/06/2012] [Indexed: 11/28/2022]
|
46
|
Köstel AS, Bora-Tatar G, Erdem-Yurter H. Spinal muscular atrophy: An oxidative stress response counteracted with curcumin. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.biomag.2012.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Rosiglitazone enhances learning, place cell activity, and synaptic plasticity in middle-aged rats. Neurobiol Aging 2012; 33:835.e13-30. [DOI: 10.1016/j.neurobiolaging.2011.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 07/26/2011] [Accepted: 08/18/2011] [Indexed: 11/23/2022]
|
48
|
Farias SE, Heidenreich KA, Wohlauer MV, Murphy RC, Moore EE. Lipid Mediators in Cerebral Spinal Fluid of Traumatic Brain Injured Patients. ACTA ACUST UNITED AC 2011; 71:1211-8. [DOI: 10.1097/ta.0b013e3182092c62] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Non-steroidal anti-inflammatory drugs and cognitive function: are prostaglandins at the heart of cognitive impairment in dementia and delirium? J Neuroimmune Pharmacol 2011; 7:60-73. [PMID: 21932048 PMCID: PMC3280386 DOI: 10.1007/s11481-011-9312-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/29/2011] [Indexed: 12/11/2022]
Abstract
Studies of non-steroidal anti-inflammatory drugs (NSAIDs) in rheumatoid arthritis imply that inflammation is important in the development of Alzheimer’s disease (AD). However, these drugs have not alleviated the symptoms of AD in those who have already developed dementia. This suggests that the primary mediator targeted by these drugs, PGE2, is not actively suppressing memory function in AD. Amyloid-β oligomers appear to be important for the mild cognitive changes seen in AD transgenic mice, yet amyloid immunotherapy has also proven unsuccessful in clinical trials. Collectively, these findings indicate that NSAIDs may target a prodromal process in mice that has already passed in those diagnosed with AD, and that synaptic and neuronal loss are key determinants of cognitive dysfunction in AD. While the role of inflammation has not yet become clear, inflammatory processes definitely have a negative impact on cognitive function during episodes of delirium during dementia. Delirium is an acute and profound impairment of cognitive function frequently occurring in aged and demented patients exposed to systemic inflammatory insults, which is now recognised to contribute to long-term cognitive decline. Recent work in animal models is beginning to shed light on the interactions between systemic inflammation and CNS pathology in these acute exacerbations of dementia. This review will assess the role of prostaglandin synthesis in the memory impairments observed in dementia and delirium and will examine the relative contribution of amyloid, synaptic and neuronal loss. We will also discuss how understanding the role of inflammatory mediators in delirious episodes will have major implications for ameliorating the rate of decline in the demented population.
Collapse
|
50
|
Ahmed T, Gilani AH. A comparative study of curcuminoids to measure their effect on inflammatory and apoptotic gene expression in an Aβ plus ibotenic acid-infused rat model of Alzheimer's disease. Brain Res 2011; 1400:1-18. [PMID: 21640982 DOI: 10.1016/j.brainres.2011.05.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/02/2011] [Accepted: 05/11/2011] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, which depicts features of chronic inflammatory conditions resulting in cellular death and has limited therapeutic options. We aimed to explore the effect of a curcuminoid mixture and its individual components on inflammatory and apoptotic genes expression in AD using an Aβ+ibotenic acid-infused rat model. After 5 days of treatment with demethoxycurcumin, hippocampal IL-1β levels were decreased to 118.54 ± 47.48 and 136.67 ± 31.96% respectively at 30 and 10mg/kg, compared with the amyloid treated group (373.99 ± 15.28%). After 5 days of treatment, the curcuminoid mixture and demethoxycurcumin effectively decreased GFAP levels in the hippocampus. When studied for their effect on apoptotic genes expression, the curcuminoid mixture and bisdemethoxycurcumin effectively decreased caspase-3 level in the hippocampus after 20 days of treatment, where bisdemethoxycurcumin showed a maximal rescuing effect (92.35 ± 3.07%) at 3mg/kg. The curcuminoid mixture at 30 mg/kg decreased hippocampal FasL level to 70.56 ± 3.36% after 5 days of treatment and 19.01 ± 2.03% after 20 days. In the case of Fas receptor levels, demethoxycurcumin decreased levels after 5 days of treatment with all three doses showing a maximal effect (189.76 ± 15.01%) at 10mg/kg. Each compound was effective after 20 days in reducing Fas receptor levels in the hippocampus. This study revealed the important effect of curcuminoids on genes expression, showing that, each component of the curcuminoid mixture distinctly affects gene expression, thus highlighting the therapeutic potential of curcuminoids in AD.
Collapse
Affiliation(s)
- Touqeer Ahmed
- Natural Products Research Unit, Department of Biological and Biomedical Sciences, The Aga Khan University Medical College, Karachi-Pakistan
| | | |
Collapse
|