1
|
de Ruiter P. Ecology: Complexity and functionality in forests. Curr Biol 2025; 35:R285-R287. [PMID: 40262533 DOI: 10.1016/j.cub.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Forests are species-rich ecosystems and provide vital ecosystem services. A new study highlights how tree diversity, mycorrhizal fungi and soil food web structure govern forest functionality, and how tiny energy fluxes can be critical for community persistence. The findings provide new insights into how to sustainably manage forests.
Collapse
Affiliation(s)
- Peter de Ruiter
- Biometris, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Tomita KM, Manlick PJ, Makoto K, Fujii S, Hyodo F, Miyashita T, Tsunoda T. The underappreciated roles of aboveground vertebrates on belowground communities. Trends Ecol Evol 2025; 40:364-374. [PMID: 39814653 DOI: 10.1016/j.tree.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
In recent decades, evidence of interactions between aboveground and belowground (i.e., soil) subsystems has accumulated. The effects of aboveground vertebrates on belowground communities have traditionally focused on plant-mediated pathways, but we show that aboveground vertebrates impact belowground communities and ecological functions without plant-mediated pathways via both consumptive and non-consumptive processes. We then show that mobile, aboveground vertebrates have significant but often unrealized potential to structure soil communities from local to macroecological scales by linking aboveground and belowground food webs across habitats and ecosystems. Collectively, this synthesis of aboveground vertebrate effects on belowground communities integrates multiple ecological disciplines to advance a more comprehensive understanding of aboveground-belowground linkages across space and time.
Collapse
Affiliation(s)
- Kanji M Tomita
- Faculty of Agriculture and Marine Science Kochi University, Kochi, Japan.
| | - Philip J Manlick
- Pacific Northwest Research Station, USDA Forest Service, Juneau, AK, USA
| | - Kobayashi Makoto
- Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan
| | - Saori Fujii
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Ibaraki, Japan
| | - Fujio Hyodo
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
| | - Tadashi Miyashita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomonori Tsunoda
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| |
Collapse
|
3
|
DeLong JP, Coblentz KE, La Sorte FA, Uiterwaal SF. The global diet diversity spectrum in avian apex predators. Proc Biol Sci 2024; 291:20242156. [PMID: 39657802 PMCID: PMC11631488 DOI: 10.1098/rspb.2024.2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Some predators depend heavily on one or a few prey types, and others have exceptionally broad diets. It is unclear how this diet variation arises. Here, we demonstrate a strong link between diet species richness and Shannon entropy of prey frequencies (a diet diversity spectrum) for a globally distributed group of apex predators-raptors. For many raptors, diet entropy is consistent with random sampling expectations given a lognormal distribution of abundances among prey species. Yet most species-rich diets often approach the maximum possible diet entropy, indicating an unexpected level of diet evenness that is not predicted by theory. Positioning along this diet diversity spectrum is linked to evolutionary history, the types of prey that are acceptable and the role of raptors as food web integrators through cross-habitat sampling. These results suggest that raptors may have a highly stabilizing effect on terrestrial food webs and play an important role in maintaining biodiversity.
Collapse
Affiliation(s)
- John P. DeLong
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Kyle E. Coblentz
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Frank A. La Sorte
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | - Stella F. Uiterwaal
- Living Earth Collaborative, Washington University in St Louis, St Louis, MO, USA
- Department of Biology, Saint Louis University, St Louis, MO, USA
- Institute for Conservation Medicine, Saint Louis Zoo, St Louis, MO, USA
- National Great Rivers Research and Education Center, East Alton, IL, USA
| |
Collapse
|
4
|
Gutgesell M, McCann K, O'Connor R, Kc K, Fraser EDG, Moore JC, McMeans B, Donohue I, Bieg C, Ward C, Pauli B, Scott A, Gillam W, Gedalof Z, Hanner RH, Tunney T, Rooney N. The productivity-stability trade-off in global food systems. Nat Ecol Evol 2024; 8:2135-2149. [PMID: 39227681 DOI: 10.1038/s41559-024-02529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Historically, humans have managed food systems to maximize productivity. This pursuit has drastically modified terrestrial and aquatic ecosystems globally by reducing species diversity and body size while creating very productive, yet homogenized, environments. Such changes alter the structure and function of ecosystems in ways that ultimately erode their stability. This productivity-stability trade-off has largely been ignored in discussions around global food security. Here, we synthesize empirical and theoretical literature to demonstrate the existence of the productivity-stability trade-off and argue the need for its explicit incorporation in the sustainable management of food systems. We first explore the history of human management of food systems, its impacts on average body size within and across species and food web stability. We then demonstrate how reductions in body size are symptomatic of a broader biotic homogenization and rewiring of food webs. We show how this biotic homogenization decompartmentalizes interactions among energy channels and increases energy flux within the food web in ways that threaten their stability. We end by synthesizing large-scale ecological studies to demonstrate the prevalence of the productivity-stability trade-off. We conclude that management strategies promoting landscape heterogeneity and maintenance of key food web structures are critical to sustainable food production.
Collapse
Affiliation(s)
| | | | | | - Krishna Kc
- University of Guelph, Guelph, Ontario, Canada
| | | | - John C Moore
- Colorado State University, Fort Collins, CO, USA
| | - Bailey McMeans
- University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | | | | | - Brett Pauli
- University of Guelph, Guelph, Ontario, Canada
| | - Alexa Scott
- University of Guelph, Guelph, Ontario, Canada
| | | | | | | | - Tyler Tunney
- Fisheries and Oceans Canada, Moncton, New Brunswick, Canada
| | - Neil Rooney
- University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Maitland BM, Bootsma HA, Bronte CR, Bunnell DB, Feiner ZS, Fenske KH, Fetzer WW, Foley CJ, Gerig BS, Happel A, Höök TO, Keppeler FW, Kornis MS, Lepak RF, McNaught AS, Roth BM, Turschak BA, Hoffman JC, Jensen OP. Testing food web theory in a large lake: The role of body size in habitat coupling in Lake Michigan. Ecology 2024; 105:e4413. [PMID: 39234980 DOI: 10.1002/ecy.4413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/27/2024] [Indexed: 09/06/2024]
Abstract
The landscape theory of food web architecture (LTFWA) describes relationships among body size, trophic position, mobility, and energy channels that serve to couple heterogenous habitats, which in turn promotes long-term system stability. However, empirical tests of the LTFWA are rare and support differs among terrestrial, freshwater, and marine systems. Further, it is unclear whether the theory applies in highly altered ecosystems dominated by introduced species such as the Laurentian Great Lakes. Here, we provide an empirical test of the LTFWA by relating body size, trophic position, and the coupling of different energy channels using stable isotope data from species throughout the Lake Michigan food web. We found that body size was positively related to trophic position, but for a given trophic position, organisms predominately supported by pelagic energy had smaller body sizes than organisms predominately supported by nearshore benthic energy. We also found a hump-shaped trophic relationship in the food web where there is a gradual increase in the coupling of pelagic and nearshore energy channels with larger body sizes as well as higher trophic positions. This highlights the important role of body size and connectivity among habitats in structuring food webs. However, important deviations from expectations are suggestive of how species introductions and other anthropogenic impacts can affect food web structure in large lakes. First, native top predators appear to be flexible couplers that may provide food web resilience, whereas introduced top predators may confer less stability when they specialize on a single energy pathway. Second, some smaller bodied prey fish and invertebrates, in addition to mobile predators, coupled energy from pelagic and nearshore energy channels, which suggests that some prey species may also be important integrators of energy pathways in the system. We conclude that patterns predicted by the LTFWA are present in the face of species introductions and other anthropogenic stressors to a degree, but time-series evaluations are needed to fully understand the mechanisms that promote stability.
Collapse
Affiliation(s)
- Bryan M Maitland
- Center for Limnology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Aquatic Science Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Rocky Mountain Research Station, U.S. Forest Service, Boise, Idaho, USA
| | - Harvey A Bootsma
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Charles R Bronte
- Green Bay Fish and Wildlife Conservation Office, US Fish and Wildlife Service, New Franken, Wisconsin, USA
| | - David B Bunnell
- Great Lakes Science Center, U.S. Geological Survey, Ann Arbor, Michigan, USA
| | - Zachary S Feiner
- Center for Limnology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Office of Applied Science, Wisconsin Department of Natural Resources, Madison, Wisconsin, USA
| | - Kari H Fenske
- Bureau of Fisheries Management, Wisconsin Department of Natural Resources, Madison, Wisconsin, USA
| | - William W Fetzer
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Carolyn J Foley
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
- Illinois-Indiana Sea Grant, West Lafayette, Indiana, USA
| | - Brandon S Gerig
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Austin Happel
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, Illinois, USA
| | - Tomas O Höök
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
- Illinois-Indiana Sea Grant, West Lafayette, Indiana, USA
| | | | - Matthew S Kornis
- Green Bay Fish and Wildlife Conservation Office, US Fish and Wildlife Service, New Franken, Wisconsin, USA
| | - Ryan F Lepak
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota, USA
| | - A Scott McNaught
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Brian M Roth
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Benjamin A Turschak
- Charlevoix Fisheries Research Station, Michigan Department of Natural Resources, Charlevoix, Michigan, USA
| | - Joel C Hoffman
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota, USA
| | - Olaf P Jensen
- Center for Limnology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Stukel MR, Décima M, Fender CK, Gutierrez-Rodriguez A, Selph KE. Gelatinous filter feeders increase ecosystem efficiency. Commun Biol 2024; 7:1039. [PMID: 39179787 PMCID: PMC11343865 DOI: 10.1038/s42003-024-06717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
Gelatinous filter feeders (e.g., salps, doliolids, and pyrosomes) have high filtration rates and can feed at predator:prey size ratios exceeding 10,000:1, yet are seldom included in ecosystem or climate models. We investigated foodweb and trophic dynamics in the presence and absence of salp blooms using traditional productivity and grazing measurements combined with compound-specific isotopic analysis of amino acids estimation of trophic position during Lagrangian framework experiments in the Southern Ocean. Trophic positions of salps ranging 10-132 mm in size were 2.2 ± 0.3 (mean ± std) compared to 2.6 ± 0.4 for smaller (mostly crustacean) mesozooplankton. The mostly herbivorous salp trophic position was maintained despite biomass dominance of ~10-µm-sized primary producers. We show that potential energy flux to >10-cm organisms increases by approximately an order of magnitude when salps are abundant, even without substantial alteration to primary production. Comparison to a wider dataset from other marine regions shows that alterations to herbivore communities are a better predictor of ecosystem transfer efficiency than primary-producer dynamics. These results suggest that diverse consumer communities and intraguild predation complicate climate change predictions (e.g., trophic amplification) based on linear food chains. These compensatory foodweb dynamics should be included in models that forecast marine ecosystem responses to warming and reduced nutrient supply.
Collapse
Affiliation(s)
- Michael R Stukel
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA.
- Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL, USA.
| | - Moira Décima
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | - Christian K Fender
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| | | | - Karen E Selph
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
7
|
Arancibia PA. The topology of spatial networks affects stability in experimental metacommunities. Proc Biol Sci 2024; 291:20240567. [PMID: 38864323 PMCID: PMC11338566 DOI: 10.1098/rspb.2024.0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024] Open
Abstract
Understanding the drivers of community stability has been a central goal in ecology. Traditionally, emphasis has been placed on studying the effects of biotic interactions on community variability, and less is understood about how the spatial configuration of habitats promotes or hinders metacommunity stability. To test the effects of contrasting spatial configurations on metacommunity stability, I designed metacommunities with patches connected as random or scale-free networks. In these microcosms, two prey and one protist predator dispersed, and I evaluated community persistence, tracked biomass variations, and measured synchrony between local communities and the whole metacommunity. After 30 generations, scale-free metacommunities had lower global biomass variability and higher persistence, suggesting higher stability. Synchrony between patches was lower in scale-free metacommunities. Patches in scale-free metacommunities showed a positive relationship between variability and patch connectivity, indicating higher stability in isolated communities. No clear relationship between variability and patch connectivity was observed in random networks. These results suggest the increased heterogeneity in connectivity of scale-free networks favours the prevalence of isolated patches of the metacommunity, which likely act as refugia against competition-the dominant interaction in this system-resulting in higher global stability. These results highlight the importance of accounting for network topology in the study of spatial dynamics.
Collapse
Affiliation(s)
- Paulina A. Arancibia
- Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ, USA
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
8
|
Srednick G, Swearer SE. Effects of protection and temperature variation on temporal stability in a marine reserve network. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14220. [PMID: 37937466 DOI: 10.1111/cobi.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Understanding the drivers of ecosystem stability has been a key focus of modern ecology as the impacts of the Anthropocene become more prevalent and extreme. Marine protected areas (MPAs) are tools used globally to promote biodiversity and mediate anthropogenic impacts. However, assessing the stability of natural ecosystems and responses to management actions is inherently challenging due to the complex dynamics of communities with many interdependent taxa. Using a 12-year time series of subtidal community structure in an MPA network in the Channel Islands (United States), we estimated species interaction strength (competition and predation), prey species synchrony, and temporal stability in trophic networks, as well as temporal variation in sea surface temperature to explore the causal drivers of temporal stability at community and metacommunity scales. At the community scale, only trophic networks in MPAs at Santa Rosa Island showed greater temporal stability than reference sites, likely driven by reduced prey synchrony. Across islands, competition was sometimes greater and predation always greater in MPAs compared with reference sites. Increases in interaction strength resulted in lower temporal stability of trophic networks. Although MPAs reduced prey synchrony at the metacommunity scale, reductions were insufficient to stabilize trophic networks. In contrast, temporal variation in sea surface temperature had strong positive direct effects on stability at the regional scale and indirect effects at the local scale through reductions in species interaction strength. Although MPAs can be effective management strategies for protecting certain species or locations, our findings for this MPA network suggest that temperature variation has a stronger influence on metacommunity temporal stability by mediating species interactions and promoting a mosaic of spatiotemporal variation in community structure of trophic networks. By capturing the full spectrum of environmental variation in network planning, MPAs will have the greatest capacity to promote ecosystem stability in response to climate change.
Collapse
Affiliation(s)
- Griffin Srednick
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen E Swearer
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Allen DC, Larson J, Murphy CA, Garcia EA, Anderson KE, Busch MH, Argerich A, Belskis AM, Higgins KT, Penaluna BE, Saenz V, Jones J, Whiles MR. Global patterns of allochthony in stream-riparian meta-ecosystems. Ecol Lett 2024; 27:e14401. [PMID: 38468439 DOI: 10.1111/ele.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
Ecosystems that are coupled by reciprocal flows of energy and nutrient subsidies can be viewed as a single "meta-ecosystem." Despite these connections, the reciprocal flow of subsidies is greatly asymmetrical and seasonally pulsed. Here, we synthesize existing literature on stream-riparian meta-ecosystems to quantify global patterns of the amount of subsidy consumption by organisms, known as "allochthony." These resource flows are important since they can comprise a large portion of consumer diets, but can be disrupted by human modification of streams and riparian zones. Despite asymmetrical subsidy flows, we found stream and riparian consumer allochthony to be equivalent. Although both fish and stream invertebrates rely on seasonally pulsed allochthonous resources, we find allochthony varies seasonally only for fish, being nearly three times greater during the summer and fall than during the winter and spring. We also find that consumer allochthony varies with feeding traits for aquatic invertebrates, fish, and terrestrial arthropods, but not for terrestrial vertebrates. Finally, we find that allochthony varies by climate for aquatic invertebrates, being nearly twice as great in arid climates than in tropical climates, but not for fish. These findings are critical to understanding the consequences of global change, as ecosystem connections are being increasingly disrupted.
Collapse
Affiliation(s)
- Daniel C Allen
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - James Larson
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, USA
| | - Christina A Murphy
- U.S. Geological Survey, Maine Cooperative Fish and Wildlife Research Unit, Orono, Maine, USA
| | - Erica A Garcia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northwest Territories, Australia
| | - Kurt E Anderson
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Michelle H Busch
- Kansas Biological Survey, University of Kansas, Lawrence, Kansas, USA
| | - Alba Argerich
- School of Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - Alice M Belskis
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kierstyn T Higgins
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Veronica Saenz
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jay Jones
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Matt R Whiles
- Soil, Water, and Ecosystems Sciences Department, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Siqueira T, Hawkins CP, Olden JD, Tonkin J, Comte L, Saito VS, Anderson TL, Barbosa GP, Bonada N, Bonecker CC, Cañedo-Argüelles M, Datry T, Flinn MB, Fortuño P, Gerrish GA, Haase P, Hill MJ, Hood JM, Huttunen KL, Jeffries MJ, Muotka T, O'Donnell DR, Paavola R, Paril P, Paterson MJ, Patrick CJ, Perbiche-Neves G, Rodrigues LC, Schneider SC, Straka M, Ruhi A. Understanding temporal variability across trophic levels and spatial scales in freshwater ecosystems. Ecology 2024; 105:e4219. [PMID: 38037301 DOI: 10.1002/ecy.4219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
A tenet of ecology is that temporal variability in ecological structure and processes tends to decrease with increasing spatial scales (from locales to regions) and levels of biological organization (from populations to communities). However, patterns in temporal variability across trophic levels and the mechanisms that produce them remain poorly understood. Here we analyzed the abundance time series of spatially structured communities (i.e., metacommunities) spanning basal resources to top predators from 355 freshwater sites across three continents. Specifically, we used a hierarchical partitioning method to disentangle the propagation of temporal variability in abundance across spatial scales and trophic levels. We then used structural equation modeling to determine if the strength and direction of relationships between temporal variability, synchrony, biodiversity, and environmental and spatial settings depended on trophic level and spatial scale. We found that temporal variability in abundance decreased from producers to tertiary consumers but did so mainly at the local scale. Species population synchrony within sites increased with trophic level, whereas synchrony among communities decreased. At the local scale, temporal variability in precipitation and species diversity were associated with population variability (linear partial coefficient, β = 0.23) and population synchrony (β = -0.39) similarly across trophic levels, respectively. At the regional scale, community synchrony was not related to climatic or spatial predictors, but the strength of relationships between metacommunity variability and community synchrony decreased systematically from top predators (β = 0.73) to secondary consumers (β = 0.54), to primary consumers (β = 0.30) to producers (β = 0). Our results suggest that mobile predators may often stabilize metacommunities by buffering variability that originates at the base of food webs. This finding illustrates that the trophic structure of metacommunities, which integrates variation in organismal body size and its correlates, should be considered when investigating ecological stability in natural systems. More broadly, our work advances the notion that temporal stability is an emergent property of ecosystems that may be threatened in complex ways by biodiversity loss and habitat fragmentation.
Collapse
Affiliation(s)
- Tadeu Siqueira
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Charles P Hawkins
- Department of Watershed Sciences, National Aquatic Monitoring Center, and Ecology Center, Utah State University, Logan, Utah, USA
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Jonathan Tonkin
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Te Pūnaha Matatini, Centre of Research Excellence in Complex Systems, Bioprotection Aotearoa, Centre of Research Excellence, Auckland, New Zealand
| | - Lise Comte
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Victor S Saito
- Department of Environmental Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Thomas L Anderson
- Department of Biological Sciences, Southern Illinois University, Edwardsville, Illinois, USA
| | - Gedimar P Barbosa
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Núria Bonada
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Miguel Cañedo-Argüelles
- FEHM-Lab, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Thibault Datry
- INRAE, UR RiverLy, Centre Lyon-Grenoble Auvergne-Rhône-Alpes, Villeurbanne Cedex, France
| | - Michael B Flinn
- Hancock Biological Station, Biological Sciences, Murray State University, Murray, Kentucky, USA
| | - Pau Fortuño
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Gretchen A Gerrish
- University of Wisconsin Madison, Center for Limnology-Trout Lake Station, Boulder Junction, Wisconsin, USA
| | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum, Frankfurt, Germany
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthew J Hill
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, UK
| | - James M Hood
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Timo Muotka
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Daniel R O'Donnell
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, California, USA
| | - Riku Paavola
- Oulanka Research Station, University of Oulu, Oulu, Finland
| | - Petr Paril
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michael J Paterson
- International Institute for Sustainable Development Experimental Lakes Area, Kenora, Ontario, Canada
| | | | | | | | | | - Michal Straka
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- T.G. Masaryk Water Research Institute p.r.i., Brno Branch Office, Brno, Czech Republic
| | - Albert Ruhi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
11
|
Tabi A, Gilarranz LJ, Wood SA, Dunne JA, Saavedra S. Protection promotes energetically efficient structures in marine communities. PLoS Comput Biol 2023; 19:e1011742. [PMID: 38127830 PMCID: PMC10769090 DOI: 10.1371/journal.pcbi.1011742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 01/05/2024] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The sustainability of marine communities is critical for supporting many biophysical processes that provide ecosystem services that promote human well-being. It is expected that anthropogenic disturbances such as climate change and human activities will tend to create less energetically-efficient ecosystems that support less biomass per unit energy flow. It is debated, however, whether this expected development should translate into bottom-heavy (with small basal species being the most abundant) or top-heavy communities (where more biomass is supported at higher trophic levels with species having larger body sizes). Here, we combine ecological theory and empirical data to demonstrate that full marine protection promotes shifts towards top-heavy energetically-efficient structures in marine communities. First, we use metabolic scaling theory to show that protected communities are expected to display stronger top-heavy structures than disturbed communities. Similarly, we show theoretically that communities with high energy transfer efficiency display stronger top-heavy structures than communities with low transfer efficiency. Next, we use empirical structures observed within fully protected marine areas compared to disturbed areas that vary in stress from thermal events and adjacent human activity. Using a nonparametric causal-inference analysis, we find a strong, positive, causal effect between full marine protection and stronger top-heavy structures. Our work corroborates ecological theory on community development and provides a quantitative framework to study the potential restorative effects of different candidate strategies on protected areas.
Collapse
Affiliation(s)
- Andrea Tabi
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Te Pūnaha Matatini, Centre of Research Excellence in Complex Systems, Auckland, New Zealand
- Institute for Cross‑Disciplinary Physics and Complex Systems (IFISC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Balearic Islands, Palma de Mallorca, Spain
| | - Luis J. Gilarranz
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland
| | - Spencer A. Wood
- eScience Institute, University of Washington, Seattle, Washington, United States of America
| | | | - Serguei Saavedra
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| |
Collapse
|
12
|
Bak TM, Camp RJ, Heim NA, McCauley DJ, Payne JL, Knope ML. A global ecological signal of extinction risk in marine ray-finned fishes (class Actinopterygii). CAMBRIDGE PRISMS. EXTINCTION 2023; 1:e25. [PMID: 40078675 PMCID: PMC11895746 DOI: 10.1017/ext.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 03/14/2025]
Abstract
Many marine fish species are experiencing population declines, but their extinction risk profiles are largely understudied in comparison to their terrestrial vertebrate counterparts. Selective extinction of marine fish species may result in rapid alteration of the structure and function of ocean ecosystems. In this study, we compiled an ecological trait dataset for 8,185 species of marine ray-finned fishes (class Actinopterygii) from FishBase and used phylogenetic generalized linear models to examine which ecological traits are associated with increased extinction risk, based on the International Union for the Conservation of Nature Red List. We also assessed which threat types may be driving these species toward greater extinction risk and whether threatened species face a greater average number of threat types than non-threatened species. We found that larger body size and/or fishes with life histories involving movement between marine, brackish, and freshwater environments are associated with elevated extinction risk. Commercial harvesting threatens the greatest number of species, followed by pollution, development, and then climate change. We also found that threatened species, on average, face a significantly greater number of threat types than non-threatened species. These results can be used by resource managers to help address the heightened extinction risk patterns we found.
Collapse
Affiliation(s)
- Trevor M. Bak
- Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawaiʻi at Hilo, Hilo, HI, USA
| | - Richard J. Camp
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI, USA
| | - Noel A. Heim
- Department of Earth & Ocean Sciences, Tufts University, Medford, MA, USA
| | - Douglas J. McCauley
- Department of Ecology, Evolution, and Marine Biology and Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Jonathan L. Payne
- Department of Geological Sciences, Stanford University, Stanford, CA, USA
| | - Matthew L. Knope
- Department of Biology, University of Hawaiʻi at Hilo, Hilo, HI, USA
| |
Collapse
|
13
|
Bertellotti F, Sommer NR, Schmitz OJ, McCary MA. Impacts of habitat connectivity on grassland arthropod metacommunity structure: A field-based experimental test of theory. Ecol Evol 2023; 13:e10686. [PMID: 38020703 PMCID: PMC10630154 DOI: 10.1002/ece3.10686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Metacommunity theory has advanced scientific understanding of how species interactions and spatial processes influence patterns of biodiversity and community structure across landscapes. While the central tenets of metacommunity theory have been promoted as pivotal considerations for conservation management, few field experiments have tested the validity of metacommunity predictions. Here, we tested one key prediction of metacommunity theory-that decreasing habitat connectivity should erode metacommunity structure by hindering species movement between patches. For 2 years, we manipulated an experimental old-field grassland ecosystem via mowing to represent four levels of habitat connectivity: (1) open control, (2) full connectivity, (3) partial connectivity, and (4) no connectivity. Within each treatment plot (10 × 10 m, n = 4 replicates), we measured the abundance and diversity (i.e., alpha and beta) of both flying and ground arthropods using sticky and pitfall traps, respectively. We found that the abundance and diversity of highly mobile flying arthropods were unaffected by habitat connectivity, whereas less mobile ground arthropods were highly impacted. The mean total abundance of ground arthropods was 2.5× and 2× higher in the control and partially connected plots compared to isolated patches, respectively. We also reveal that habitat connectivity affected the trophic interactions of ground arthropods, with predators (e.g., wolf spiders, ground spiders) being highly positively correlated with micro-detritivores (springtails, mites) but not macro-detritivores (millipedes, isopods) as habitat connectivity increased. Together these findings indicate that changes in habitat connectivity can alter the metacommunity structure for less mobile organisms such as ground arthropods. Because of their essential roles in terrestrial ecosystem functioning and services, we recommend that conservationists, restoration practitioners, and land managers include principles of habitat connectivity for ground arthropods when designing biodiversity management programs.
Collapse
Affiliation(s)
| | | | | | - Matthew A. McCary
- School of the EnvironmentYale UniversityNew HavenConnecticutUSA
- Department of BiosciencesRice UniversityHoustonTexasUSA
| |
Collapse
|
14
|
Albert G, Gauzens B, Ryser R, Thébault E, Wang S, Brose U. Animal and plant space-use drive plant diversity-productivity relationships. Ecol Lett 2023; 26:1792-1802. [PMID: 37553981 DOI: 10.1111/ele.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023]
Abstract
Plant community productivity generally increases with biodiversity, but the strength of this relationship exhibits strong empirical variation. In meta-food-web simulations, we addressed if the spatial overlap in plants' resource access and animal space-use can explain such variability. We found that spatial overlap of plant resource access is a prerequisite for positive diversity-productivity relationships, but causes exploitative competition that can lead to competitive exclusion. Space-use of herbivores causes apparent competition among plants, resulting in negative relationships. However, space-use of larger top predators integrates sub-food webs composed of smaller species, offsetting the negative effects of exploitative and apparent competition and leading to strongly positive diversity-productivity relationships. Overall, our results show that spatial overlap of plants' resource access and animal space-use can greatly alter the strength and sign of such relationships. In particular, the scaling of animal space-use effects opens new perspectives for linking landscape processes without effects on biodiversity to productivity patterns.
Collapse
Affiliation(s)
- Georg Albert
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Department of Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| | - Benoit Gauzens
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Remo Ryser
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Elisa Thébault
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Science (iEES), Paris, France
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
15
|
Calcagno V, David P, Jarne P, Massol F. Coevolution of species colonisation rates controls food-chain length in spatially structured food webs. Ecol Lett 2023; 26 Suppl 1:S140-S151. [PMID: 37303299 DOI: 10.1111/ele.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023]
Abstract
How the complexity of food webs depends on environmental variables is a long-standing ecological question. It is unclear though how food-chain length should vary with adaptive evolution of the constitutive species. Here we model the evolution of species colonisation rates and its consequences on occupancies and food-chain length in metacommunities. When colonisation rates can evolve, longer food-chains can persist. Extinction, perturbation and habitat loss all affect evolutionarily stable colonisation rates, but the strength of the competition-colonisation trade-off has a major role: weaker trade-offs yield longer chains. Although such eco-evo dynamics partly alleviates the spatial constraint on food-chain length, it is no magic bullet: the highest, most vulnerable, trophic levels are also those that least benefit from evolution. We provide qualitative predictions regarding how trait evolution affects the response of communities to disturbance and habitat loss. This highlights the importance of eco-evolutionary dynamics at metacommunity level in determining food-chain length.
Collapse
Affiliation(s)
- Vincent Calcagno
- Institut Sophia Agrobiotech, Université Côte d'Azur - CNRS - INRAE, Sophia Antipolis Cedex, France
| | - Patrice David
- CEFE, UMR 5175, CNRS - Université de Montpellier - IRD - EPHE, Montpellier Cedex 5, France
| | - Philippe Jarne
- CEFE, UMR 5175, CNRS - Université de Montpellier - IRD - EPHE, Montpellier Cedex 5, France
| | - François Massol
- Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
16
|
Blanchfield PJ, McKee G, Guzzo MM, Chapelsky AJ, Cott PA. Seasonal variation in activity and nearshore habitat use of Lake Trout in a subarctic lake. MOVEMENT ECOLOGY 2023; 11:54. [PMID: 37653451 PMCID: PMC10468872 DOI: 10.1186/s40462-023-00417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND In lake ecosystems, predatory fish can move and forage across both nearshore and offshore habitats. This coupling of sub-habitats, which is important in stabilizing lake food webs, has largely been assessed from a dietary perspective and has not included movement data. As such, empirical estimates of the seasonal dynamics of these coupling movements by fish are rarely quantified, especially for northern lakes. Here we collect fine-scale fish movement data on Lake Trout (Salvelinus namaycush), a predatory cold-water fish known to link nearshore and offshore habitats, to test for seasonal drivers of activity, habitat use and diet in a subarctic lake. METHODS We used an acoustic telemetry positioning array to track the depth and spatial movements of 43 Lake Trout in a subarctic lake over two years. From these data we estimated seasonal 50% home ranges, movements rates, tail beat activity, depth use, and nearshore habitat use. Additionally, we examined stomach contents to quantify seasonal diet. Data from water temperature and light loggers were used to monitor abiotic lake conditions and compare to telemetry data. RESULTS Lake Trout showed repeatable seasonal patterns of nearshore habitat use that peaked each spring and fall, were lower throughout the long winter, and least in summer when this habitat was above preferred temperatures. Stomach content data showed that Lake Trout acquired the most nearshore prey during the brief spring season, followed by fall, and winter, supporting telemetry results. Activity rates were highest in spring when feeding on invertebrates and least in summer when foraging offshore, presumably on large-bodied prey fish. High rates of nearshore activity in fall were associated with spawning. Nearshore habitat use was widespread and not localized to specific regions of the lake, although there was high overlap of winter nearshore core areas between years. CONCLUSIONS We provide empirical demonstrations of the seasonal extent to which a mobile top predator links nearshore and offshore habitats in a subarctic lake. Our findings suggest that the nearshore is an important foraging area for Lake Trout for much of the year, and the role of this zone for feeding should be considered in addition to its traditional importance as spawning habitat.
Collapse
Affiliation(s)
- Paul J Blanchfield
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada.
- Department of Biology, Queen's University, Kingston, ON, Canada.
| | - Graydon McKee
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Matthew M Guzzo
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | - Peter A Cott
- Environment and Climate Change, Government of the Northwest Territories, Yellowknife, NT, Canada
| |
Collapse
|
17
|
Pereira AC, Nardoto GB, Colli GR. Sources of intraspecific variation in the isotopic niche of a semi-aquatic predator in a human-modified landscape. PeerJ 2023; 11:e15915. [PMID: 37663285 PMCID: PMC10474837 DOI: 10.7717/peerj.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Intraspecific variation modulates patterns of resource use by species, potentially affecting the structure and stability of food webs. In human-modified landscapes, habitat disturbance modifies trophic interactions and intraspecific niche variation, impacting population persistence. Here, we investigated the relationship of sex, ontogeny, and habitat factors with the trophic niche of Caiman crocodilus in an agricultural landscape. We evaluated temporal variation in the trophic niche parameters using carbon and nitrogen stable isotope analysis from different body tissues. We found that caimans exploit the same carbon and nitrogen pools through time, with low isotopic variability between seasons, partly due to the slow isotope turnover rates of tissues in crocodilians. Conversely, the trophic niche of caimans varied across habitats, but with no evidence of a difference between natural and anthropogenic habitats. It apparently results from the influence of habitat suitability, connectivity, and caiman movements during the foraging. Our findings highlight the broader niches of juvenile caimans relative to adults, possibly in response of territorialism and opportunistic foraging strategy. Although using similar resources, females had a larger niche than males, probably associated with foraging strategies during nesting. Considering the sex and body size categories, caimans occupied distinct isotopic regions in some habitats, indicating apparent niche segregation. Ontogenetic trophic shifts in the isotopes (δ13C and δ15N) depended on sex, leading to resource partitioning that can potentially reduce intraspecific competition. Decision-makers and stakeholders should consider the trophic dynamics of sex and body size groups for the sustainable management and conservation of caiman populations, which implies in the maintenance of wetland habitats and landscape heterogeneity in the Formoso River floodplain.
Collapse
Affiliation(s)
- André Costa Pereira
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Distrito Federal, Brazil
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Distrito Federal, Brazil
| | - Gabriela Bielefeld Nardoto
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Distrito Federal, Brazil
| | - Guarino Rinaldi Colli
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Distrito Federal, Brazil
| |
Collapse
|
18
|
Ortiz E, Borthagaray AI, Ramos-Jiliberto R, Arim M. Scaling of biological rates with body size as a backbone in the assembly of metacommunity biodiversity. Biol Lett 2023; 19:20220618. [PMID: 37340811 PMCID: PMC10282573 DOI: 10.1098/rsbl.2022.0618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
The dispersal-body mass association has been highlighted as a main determinant of biodiversity patterns in metacommunities. However, less attention has been devoted to other well-recognized determinants of metacommunity diversity: the scaling in density and regional richness with body size. Among active dispersers, the increase in movement with body size may enhance local richness and decrease β-diversity. Nevertheless, the reduction of population size and regional richness with body mass may determine a negative diversity-body size association. Consequently, metacommunity assembly probably emerges from a balance between the effect of these scalings. We formalize this hypothesis by relating the exponents of size-scaling rules with simulated trends in α-, β- and γ-diversity with body size. Our results highlight that the diversity-body size relationship in metacommunities may be driven by the combined effect of different scaling rules. Given their ubiquity in most terrestrial and aquatic biotas, these scaling rules may represent the basic determinants-backbone-of biodiversity, over which other mechanisms operate determining metacommunity assembly. Further studies are needed, aimed at explaining biodiversity patterns from functional relationships between biological rates and body size, as well as their association with environmental conditions and species interactions.
Collapse
Affiliation(s)
- Esteban Ortiz
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional Este (CURE), Universidad de la República, Maldonado, 20000, Uruguay
| | - Ana I. Borthagaray
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional Este (CURE), Universidad de la República, Maldonado, 20000, Uruguay
| | - Rodrigo Ramos-Jiliberto
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, 8580000, Chile
| | - Matías Arim
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional Este (CURE), Universidad de la República, Maldonado, 20000, Uruguay
| |
Collapse
|
19
|
Li F, Zhang Y, Altermatt F, Yang J, Zhang X. Destabilizing Effects of Environmental Stressors on Aquatic Communities and Interaction Networks across a Major River Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7828-7839. [PMID: 37155929 DOI: 10.1021/acs.est.3c00456] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human-driven environmental stressors are increasingly threatening species survival and diversity of river systems worldwide. However, it remains unclear how the stressors affect the stability changes across aquatic multiple communities. Here, we used environmental DNA (eDNA) data sets from a human-dominated river in China over 3 years and analyzed the stability changes in multiple communities under persistent anthropogenic stressors, including land use and pollutants. First, we found that persistent stressors significantly reduced multifaceted species diversity (e.g., species richness, Shannon's diversity, and Simpson's diversity) and species stability but increased species synchrony across multiple communities. Second, the structures of interaction networks inferred from an empirical meta-food web were significantly changed under persistent stressors, for example, resulting in decreased network modularity and negative/positive cohesion. Third, piecewise structural equation modeling proved that the persistent stress-induced decline in the stability of multiple communities mainly depended upon diversity-mediated pathways rather than the direct effects of stress per se; specifically, the increase of species synchrony and the decline of interaction network modularity were the main biotic drivers of stability variation. Overall, our study highlights the destabilizing effects of persistent stressors on multiple communities as well as the mechanistic dependencies, mainly through reducing species diversity, increasing species synchrony, and changing interaction networks.
Collapse
Affiliation(s)
- Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
20
|
Yan H, Li F, Liu G. Diminishing influence of negative relationship between species richness and evenness on the modeling of grassland α-diversity metrics. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1108739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Species richness and evenness have been widely used to investigate the spatiotemporal variation of α-diversity. However, some studies have indicated that a negative relationship exists between species richness and evenness. The question is how the differing sensitivity of α-diversity metrics and interactive behavior between richness and evenness affect the modeling of α-diversity variation. Here, we explored the response of species diversity, represented by three Hill numbers (i.e., species richness, exponential of Shannon index – expShannon, and inverse of Simpson index – invSimpson) focusing on the abundance of rare and common species, and Pielou index underlining the evenness of a community, to α-diversity variation through structural equation modeling (SEM). The model scheme integrated three categories of variables, spectral variation hypothesis (SVH), community pattern, and vertical structure, along the precipitation gradient spanning three steppes, including meadow steppe, typical steppe, and desert steppe. Our results showed that there were large differences in species richness across the three steppes, with v-shaped patterns emerging along the gradient (low-point in the typical steppe). Differences between steppes were diminished in the expShannon or invSimpson indices, though the v-shaped patterns persisted. The Pielou index showed the opposite pattern, with the peak in the typical steppe. Accordingly, a negative relationship between species richness and Pielou index was found across the three steppes. The concurrent increases in annual species number and dominant species abundance in response to precipitation variations led to the negative relationship. As a result, the SEM fitness on expShannon and invSimpson indices over the region was substantially diminished by the negative relationship. Overall, community pattern better explained the variation in species richness, invSimpson and Pielou indices. The performance of SVH differed among α-diversity metrics due to the collinearity with the variables of community pattern and vertical structure. This study emphasizes the variability of α-diversity metrics in response to environmental change. Particularly, distinguishing the asynchronous behaviors between species richness and evenness is paramount to account for α-diversity variation over heterogeneous ecosystems.
Collapse
|
21
|
Moisan L, Gravel D, Legagneux P, Gauthier G, Léandri-Breton DJ, Somveille M, Therrien JF, Lamarre JF, Bêty J. Scaling migrations to communities: An empirical case of migration network in the Arctic. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1077260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Seasonal migrants transport energy, nutrients, contaminants, parasites and diseases, while also connecting distant food webs between communities and ecosystems, which contributes to structuring meta-communities and meta-ecosystems. However, we currently lack a framework to characterize the structure of the spatial connections maintained by all migratory species reproducing or wintering in a given community. Here, we use a network approach to represent and characterize migratory pathways at the community level and provide an empirical description of this pattern from a High-Arctic terrestrial community. We define community migration networks as multipartite networks representing different biogeographic regions connected with a focal community through the seasonal movements of its migratory species. We focus on the Bylot Island High-Arctic terrestrial community, a summer breeding ground for several migratory species. We define the non-breeding range of each species using tracking devices, or range maps refined by flyways and habitat types. We show that the migratory species breeding on Bylot Island are found across hundreds of ecoregions on several continents during the non-breeding period and present a low spatial overlap. The migratory species are divided into groups associated with different sets of ecoregions. The non-random structure observed in our empirical community migration network suggests evolutionary and geographic constraints as well as ecological factors act to shape migrations at the community level. Overall, our study provides a simple and generalizable framework as a starting point to better integrate migrations at the community level. Our framework is a far-reaching tool that could be adapted to address the seasonal transport of energy, contaminants, parasites and diseases in ecosystems, as well as trophic interactions in communities with migratory species.
Collapse
|
22
|
Peller T, Guichard F, Altermatt F. The significance of partial migration for food web and ecosystem dynamics. Ecol Lett 2023; 26:3-22. [PMID: 36443028 DOI: 10.1111/ele.14143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/30/2022] [Indexed: 11/30/2022]
Abstract
Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world.
Collapse
Affiliation(s)
- Tianna Peller
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
23
|
Gobel N, Laufer G, González-Bergonzoni I, Soutullo Á, Arim M. Invariant and vulnerable food web components after bullfrog invasion. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
24
|
Flood PJ, Loftus WF, Trexler JC. Fishes in a seasonally pulsed wetland show spatiotemporal shifts in diet and trophic niche but not shifts in trophic position. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Cuellar-Gempeler C, terHorst CP, Mason OU, Miller T. Predator dispersal influences predator distribution but not prey diversity in pitcher plant microbial metacommunities. Ecology 2022; 104:e3912. [PMID: 36335567 DOI: 10.1002/ecy.3912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022]
Abstract
The spatial distribution of predators can affect both the distribution and diversity of their prey. Therefore, differences in predator dispersal ability that affect their spatial distribution, could also affect prey communities. Here, we use the microbial communities within pitcher plant leaves as a model system to test the relationship between predator (protozoa) dispersal ability and distribution, and its consequences for prey (bacteria) diversity and composition. We hypothesized that limited predator dispersal results in clustered distributions and heterogeneous patches for prey species, whereas wide predator dispersal and distribution could homogenize prey metacommunities. We analyzed the distribution of two prominent bacterivore protozoans from a 2-year survey of an intact field of Sarracenia purpurea pitcher plants, and found a clustered distribution of Tetrahymena and homogeneous distribution of Poterioochromonas. We manipulated the sources of protozoan colonists and recorded protozoan recruitment and bacterial diversity in target leaves in a field experiment. We found the large ciliate, Tetrahymena, was dispersal limited and occupied few leaves, whereas the small flagellate Poterioochromonas was widely dispersed. However, the bacterial communities these protozoans feed on was unaffected by clustering of Tetrahymena, but likely influenced by Poterioochromonas and other bacterivores dispersing in the field. We propose that bacterial communities in this system are structured by a combination of well dispersed bacterivores, bacterial dispersal, and bottom-up mechanisms. Clustered predators could become strong drivers of prey communities if they were specialists or keystone predators, or if they exerted a dominant influence on other predators in top-down controlled systems. Linking dispersal ability within trophic levels and its consequences for trophic dynamics can lead to a more robust perspective on trophic metacommunities.
Collapse
Affiliation(s)
- Catalina Cuellar-Gempeler
- Department of Biological Sciences, California State Polytechnic University, Humboldt, California, USA
| | - Casey P terHorst
- Department of Biology, California State University, Northridge, California, USA
| | - Olivia U Mason
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - Thomas Miller
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
26
|
Jordán F. The network perspective: Vertical connections linking organizational levels. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Forde AJ, Feller IC, Parker JD, Gruner DS. Insectivorous birds reduce herbivory but do not increase mangrove growth across productivity zones. Ecology 2022; 103:e3768. [PMID: 35608609 PMCID: PMC9786852 DOI: 10.1002/ecy.3768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 12/30/2022]
Abstract
Top-down effects of predators and bottom-up effects of resources are important drivers of community structure and function in a wide array of ecosystems. Fertilization experiments impose variation in resource availability that can mediate the strength of predator impacts, but the prevalence of such interactions across natural productivity gradients is less clear. We studied the joint impacts of top-down and bottom-up factors in a tropical mangrove forest system, leveraging fine-grained patchiness in resource availability and primary productivity on coastal cays of Belize. We excluded birds from canopies of red mangrove (Rhizophoraceae: Rhizophora mangle) for 13 months in zones of phosphorus-limited, stunted dwarf mangroves, and in adjacent zones of vigorous mangroves that receive detrital subsidies. Birds decreased total arthropod densities by 62%, herbivore densities more than fivefold, and reduced rates of leaf and bud herbivory by 45% and 52%, respectively. Despite similar arthropod densities across both zones of productivity, leaf and bud damage were 2.0 and 4.3 times greater in productive stands. Detrital subsidies strongly impacted a suite of plant traits in productive stands, potentially making leaves more nutritious and vulnerable to damage. Despite consistently strong impacts on herbivory, we did not detect top-down forcing that impacted mangrove growth, which was similar with and without birds. Our results indicated that both top-down and bottom-up forces drive arthropod community dynamics, but attenuation at the plant-herbivore interface weakens top-down control by avian insectivores.
Collapse
Affiliation(s)
| | - Ilka C. Feller
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
| | - John D. Parker
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
| | | |
Collapse
|
28
|
Teng W, Maqsood I, Wang H, Ma J, Rong K. Correlation and Influence of Seasonal Variation of Diet with Gut Microbiota Diversity and Metabolism Profile of Chipmunk. Animals (Basel) 2022; 12:2586. [PMID: 36230327 PMCID: PMC9559678 DOI: 10.3390/ani12192586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Tamias Sibiricus is the only member of the genus Tamias, a significant and vigorous seed distributor and vital food for their predators. No information is known about the strict diet, gut microbiota structure, and metabolism profile of chipmunks and how they diversify seasonally. The above factors, as well as flexibility toward seasonal shifts, are critical in defining its growth rates, health, survivorship, and population stability. This study explored the diet, gut microbiota composition, and chipmunk metabolism. Additionally, the influence of different seasons was also investigated by using next-generation sequencing. Results revealed that seasons strongly affected a diet: streptophyte accounted for 37% in spring, which was lower than in summer (34.3%) and autumn (31.4%). Further, Ascomycota was observed at 43.8% in spring, which reduced to 36.6% in summer and the lowest (31.3%) in autumn. Whereas, nematodes showed maximum abundance from spring (15.8%) to summer (20.6%) and autumn (24.1%). These results signify the insectivorous nature of the chipmunk in summer and autumn. While herbivorous and fungivorous nature in spring. The DNA analysis revealed that chipmunk mainly feeds on fungi, including Aspergillus and Penicillium genus. Similar to diet composition, the microbiome also exhibited highly significant dissimilarity (p < 0.001, R = 0.235) between spring/autumn and spring/summer seasons. Proteobacteria (35.45%), Firmicutes (26.7%), and Bacteroidetes (23.59%) were shown to be the better discriminators as they contributed the most to causing differences between seasons. Moreover, PICRUSt showed that the assimilation of nutrients were also varied seasonally. The abundance of carbohydrates, lipids, nucleotides, xenobiotics, energy, terpenoids, and polyketides metabolism was higher in spring than in other seasons. Our study illustrates that seasonal reconstruction in the chipmunk diet has a significant role in shaping temporal variations in gut microbial community structure and metabolism profile.
Collapse
Affiliation(s)
- Wei Teng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Iram Maqsood
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Department of Zoology, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan
| | - Huan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianzhang Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Ke Rong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
29
|
Andolina C, Signa G, Cilluffo G, Iannucci S, Mazzola A, Vizzini S. Coexisting with the alien: Evidence for environmental control on trophic interactions between a native (Atherina boyeri) and a non-indigenous fish species (Gambusia holbrooki) in a Mediterranean coastal ecosystem. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.958467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological invasions are a widespread problem worldwide, as invasive non-indigenous species (NIS) may affect native populations through direct (e. g., predation) or indirect (e.g., competition) trophic interactions, leading to changes in the food web structure. The trophic relationships of the invasive eastern mosquitofish Gambusia holbrooki and the native big-scale sand smelt Atherina boyeri coexisting in three Mediterranean coastal ponds characterized by different trophic statuses (from oligotrophic to hypereutrophic) were assessed in spring through isotopic niche analysis and Bayesian mixing models. The two fish relied on the distinctive trophic pathways in the different ponds, with the evidence of minimal interspecific niche overlap indicating site-specific niche divergence mechanisms. In more detail, under hypereutrophic and mesotrophic conditions, the two species occupied different trophic positions but relying on a single trophic pathway, whereas, under oligotrophic conditions, both occupied a similar trophic position but belonging to distinct trophic pathways. Furthermore, the invaders showed the widest niche breadth while the native species showed a niche compression and displacement in the ponds at a higher trophic status compared to the oligotrophic pond. We argue that this may be the result of an asymmetric competition arising between the two species because of the higher competitive ability of G. holbrooki and may have been further shaped by the trophic status of the ponds, through a conjoint effect of prey availability and habitat complexity. While the high trophic plasticity and adaptability of both species to different environmental features and resource availability may have favored their coexistence through site-specific mechanisms of niche segregation, we provide also empirical evidence of the importance of environmental control in invaded food webs, calling for greater attention to this aspect in future studies.
Collapse
|
30
|
de Necker L, Brendonck L, Gerber R, Lemmens P, Soto DX, Ikenaka Y, Ishizuka M, Wepener V, Smit NJ. Drought altered trophic dynamics of an important natural saline lake: A stable isotope approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155338. [PMID: 35452726 DOI: 10.1016/j.scitotenv.2022.155338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Climate change and associated droughts threaten the ecology and resilience of natural saline lakes globally. There is a distinct lack of research regarding their ecological response to climatic events in the Global South. This region is predicted to experience climatic events such as El Niño-Southern Oscillation (ENSO) more often and with greater severity with the potential to alter the structure and functioning of aquatic ecosystems significantly. From 2015 to 2016 South Africa experienced one of the most severe country-wide droughts as a result of a strong ENSO event. Our study aimed to investigate the effect of this supra-seasonal drought on the trophic structure of fish communities in a naturally saline shallow lake of a Ramsar wetland using stable isotope techniques. Fishes and potential basal sources were collected from the lake, during predrought conditions in 2010 and after severe drought (recovery phase; 2017). The δ13C and δ15N values of food web elements were determined and analysed using Bayesian mixing models and Bayesian Laymen metrics to establish the proportional contribution of C3 and C4 basal sources to the fish (consumer) diets, and examine the fish community in terms of isotopic niche and trophic structure, respectively. Fish consumers relied predominantly on C3 basal sources in the predrought and shifted to greater reliance on C4 basal sources, decreased isotopic niche space use and a reduction in trophic length in the recovery phase. Drought altered the type and abundance of the basal sources available by limiting sources to those that are more drought-tolerant, reducing the trophic pathways of the food web with no significant alterations in the fish community. These results demonstrate the resilience and biological plasticity of Lake Nyamithi and its aquatic fauna, highlighting the importance of freshwater inflow to saline lakes with alterations thereof posing a significant threat to their continued functioning.
Collapse
Affiliation(s)
- Lizaan de Necker
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda 6139, South Africa.
| | - Luc Brendonck
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Animal Ecology, Global Change and Sustainable Development, Department of Biology, University of Leuven, 32 Charles Deberiotstraat, Leuven 3000, Belgium.
| | - Ruan Gerber
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Pieter Lemmens
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.
| | - David X Soto
- Department of Nuclear Sciences and Applications, Division of Physical and Chemical Sciences, Isotope Hydrology Section, International Atomic Energy Agency, Vienna, Austria.
| | - Yoshinori Ikenaka
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; One Health Research Center, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
31
|
Borzone Mas D, Scarabotti P, Alvarenga P, Arim M. Symmetries and asymmetries in the topological roles of piscivorous fishes between occurrence networks and food webs. J Anim Ecol 2022; 91:2061-2073. [DOI: 10.1111/1365-2656.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/17/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Dalmiro Borzone Mas
- Laboratorio de Ictiología, Instituto Nacional de Limnología (UNL‐CONICET), Santa Fe Argentina
- Depto. de Ecología y Gestión Ambiental, Centro Universitario Regional del Este, Universidad de la República Uruguay
| | - Pablo Scarabotti
- Laboratorio de Ictiología, Instituto Nacional de Limnología (UNL‐CONICET), Santa Fe Argentina
- Facultad de Humanidades y Ciencias, Departamento de Ciencias Naturales, Universidad Nacional del Litoral, Ciudad Universitaria Santa Fe Argentina
| | - Patricio Alvarenga
- Laboratorio de Ictiología, Instituto Nacional de Limnología (UNL‐CONICET), Santa Fe Argentina
| | - Matias Arim
- Depto. de Ecología y Gestión Ambiental, Centro Universitario Regional del Este, Universidad de la República Uruguay
| |
Collapse
|
32
|
Gao Z, Liu S, Li W. Biological control for predation invasion based on pair approximation. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:10252-10274. [PMID: 36031993 DOI: 10.3934/mbe.2022480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biological invasions have been paid more attention since invasive species may cause certain threats to local ecosystems. When biological control is adopted, selecting control species for effect better becomes the focus of latest studies. A food web system, with one native species, one invasive species as predator, and one introduced control species preying on both native and invasive species, is established based on pair approximation, in which the spatial landscape of biological invasion and control is concerned, and the local and global dispersal strategies of invasive species, in addition to the predation preferences of control species for native and invasive species, are considered. The influence of the initial density and initial spatial structures of the control species is investigated and the effects of control species releasing time are analyzed. Generally, the earlier the species introduction, the better the control effect, especially for invasive species dispersing globally. Interestingly, too low control species predation preference for native species can lead to unsuccessful introduction, while too much predation preference will have a weak control effect. The larger the control species predatory preference for invasive species is, the more conducive it is to biological control. The extinction of the invasive species is closely related to the initial density and concentration of the control species. This study gives some insights on selecting control species, its appropriate releasing time, and the density and spatial aggregation of it. Some real-life examples are elaborated on, which provides references for biological invasion control.
Collapse
Affiliation(s)
- Zhiyin Gao
- School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
| | - Sen Liu
- School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
| | - Weide Li
- School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
- Center of Applied Mathematics of Gansu, Lanzhou 730000, China
- Center for Data Science, Laboratory of Applied Mathematics and Complex System, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
33
|
Quévreux P, Loreau M. Synchrony and Stability in Trophic Metacommunities: When Top Predators Navigate in a Heterogeneous World. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.865398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecosystem stability strongly depends on spatial aspects since localized perturbations spread across an entire region through species dispersal. Assessing the synchrony of the response of connected populations is fundamental to understand stability at different scales because if populations fluctuate asynchronously, the risk of their simultaneous extinction is low, thus reducing the species' regional extinction risk. Here, we consider a metacommunity model consisting of two food chains connected by dispersal and we review the various mechanisms governing the transmission of small perturbations affecting populations in the vicinity of equilibrium. First, we describe how perturbations propagate vertically (i.e., within food chains through trophic interactions) and horizontally (i.e., between food chains through dispersal) in metacommunities. Then, we discuss the mechanisms susceptible to alter synchrony patterns such as density-depend dispersal or spatial heterogeneity. Density-dependent dispersal, which is the influence of prey or predator abundance on dispersal, has a major impact because the species with the highest coefficient of variation of biomass governs the dispersal rate of the dispersing species and determines the synchrony of its populations, thus bypassing the classic vertical transmission of perturbations. Spatial heterogeneity, which is a disparity between patches of the attack rate of predators on prey in our model, alters the vertical transmission of perturbations in each patch, thus making synchrony dependent on which patch is perturbed. Finally, by combining our understanding of the impact of each of these mechanisms on synchrony, we are able to full explain the response of realistic metacommunities such as the model developed by Rooney et al. (2006). By disentangling the main mechanisms governing synchrony, our metacommunity model provides a broad insight into the consequences of spacial aspects on food web stability.
Collapse
|
34
|
Massing JC, Gross T. Generalized Structural Kinetic Modeling: A Survey and Guide. Front Mol Biosci 2022; 9:825052. [PMID: 35573734 PMCID: PMC9098827 DOI: 10.3389/fmolb.2022.825052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Many current challenges involve understanding the complex dynamical interplay between the constituents of systems. Typically, the number of such constituents is high, but only limited data sources on them are available. Conventional dynamical models of complex systems are rarely mathematically tractable and their numerical exploration suffers both from computational and data limitations. Here we review generalized modeling, an alternative approach for formulating dynamical models to gain insights into dynamics and bifurcations of uncertain systems. We argue that this approach deals elegantly with the uncertainties that exist in real world data and enables analytical insight or highly efficient numerical investigation. We provide a survey of recent successes of generalized modeling and a guide to the application of this modeling approach in future studies such as complex integrative ecological models.
Collapse
Affiliation(s)
- Jana C. Massing
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Helmholtz Centre for Marine and Polar Research, Alfred-Wegener-Institute, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University, Oldenburg, Germany
- *Correspondence: Jana C. Massing,
| | - Thilo Gross
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Helmholtz Centre for Marine and Polar Research, Alfred-Wegener-Institute, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University, Oldenburg, Germany
| |
Collapse
|
35
|
Replicating nature's fabric: High information markets and the sustainability of global seafood. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Liao J, Bearup D, Strona G. A patch-dynamic metacommunity perspective on the persistence of mutualistic and antagonistic bipartite networks. Ecology 2022; 103:e3686. [PMID: 35315055 DOI: 10.1002/ecy.3686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 11/06/2022]
Abstract
The structure of interactions between species within a community plays a key role in maintaining biodiversity. Previous studies have found that the effects of these structures might substantially differ depending on interaction type, for example, a highly connected and nested architecture stabilizes mutualistic communities, while the stability of antagonistic communities is enhanced in modular and weakly connected structures. Here we show that, when network dynamics are modelled using a patch-dynamic metacommunity framework, the qualitative differences between antagonistic and mutualistic systems disappear, with nestedness and modularity interacting to promote metacommunity persistence. However, the interactive effects are significantly weaker in antagonistic metacommunities. Our model also predicts an increase in connectance, nestedness and modularity over time in both types of interaction, except in antagonistic networks where nestedness declines. At steady state, we find a strong negative correlation between nestedness and modularity in both mutualistic and antagonistic metacommunities. These predictions are consistent with the structural trends found in a large dataset of real-world antagonistic and mutualistic communities.
Collapse
Affiliation(s)
- Jinbao Liao
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Ziyang Road 99, Nanchang, China
| | - Daniel Bearup
- University of Kent, School of Mathematics, Statistics and Actuarial Sciences, Parkwood Road, Canterbury, UK
| | - Giovanni Strona
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 4, Finland
| |
Collapse
|
37
|
|
38
|
Climate warming and dispersal strategies determine species persistence in a metacommunity. THEOR ECOL-NETH 2022. [DOI: 10.1007/s12080-022-00531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Moi DA, Teixeira-de-Mello F. Cascading impacts of urbanization on multitrophic richness and biomass stock in neotropical streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151398. [PMID: 34742800 DOI: 10.1016/j.scitotenv.2021.151398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The conversion of natural streams to urbanized systems with the intention of supplying the cities' water demand causes species loss across many trophic groups, with negative consequences for ecosystem functioning. High levels of watershed urbanization cause environmental changes through water quality deterioration and loss of habitat heterogeneity. However, it remains unclear how environmental changes resulting from urbanization affect the diversity of multiple trophic groups and ecosystem functions, such as biomass stock in streams. Here, using a dataset from Neotropical streams, we investigate the cascading effects of urbanization (via impoverishment of water quality and habitat heterogeneity) on richness of multiple trophic groups of fish, and their consequences to biomass stock of streams. The increase in urbanization decreased the richness and standing biomass of carnivores, omnivores, and detritivores across streams. Urbanization also decreased habitat heterogeneity and water quality, which driver a huge cascading decrease in the richness of carnivores, omnivores, and detritivores, and ultimately reduced the whole-community standing biomass. Our analysis revealed that urbanization expansion induces a cascading reduction of multitrophic diversity and standing biomass in Neotropical streams. Therefore, the predicted increase in urbanization in the coming decades should impacts the richness of multiple trophic levels, with potential negative consequences to ecosystem functioning of streams.
Collapse
Affiliation(s)
- Dieison André Moi
- Department of Biology, Graduate Program in Ecology of Inland Waters, Nupelia, University of Maringá, Av. Colombo 5790, Bloco H90, Jd. Universitário, Maringá, PR 87020-900, Brazil.
| | - Franco Teixeira-de-Mello
- Departamento de Ecología y Gestión Ambiental CURE, Universidad de la República, Tacuarembó s/n, Maldonado, Uruguay.
| |
Collapse
|
40
|
Baumgartner MT, Bianco Faria LD. The sensitivity of complex dynamic food webs to the loss of top omnivores. J Theor Biol 2022; 538:111027. [DOI: 10.1016/j.jtbi.2022.111027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022]
|
41
|
OUP accepted manuscript. Bioscience 2022. [DOI: 10.1093/biosci/biab144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Ali F, Bai L, Hao Z, Wang C, Tian L, Jiang H. The contribution of sediment desiccation and rewetting process to eutrophication in the presence and absence of emergent macrophytes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7254-7270. [PMID: 34476691 DOI: 10.1007/s11356-021-16131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The purpose of current study was to investigate the effects of sediment desiccation on nutrient dynamics and eutrophication in wetlands during the presence or absence of wiry and sturdy rooted emergent macrophytes, based on the hypothesis that sediment desiccation negatively correlated with plants nutrient uptake abilities and positively with nutrients fluxes at sediment-water interface. Growth of four emergent macrophytes, including two wiry rooted plants, i.e., Alocasia cucullata and Aglaonema commutatum, and two sturdy rooted plants, i.e., Cannabis indica and Acorus calamus, were grown and investigated in dried-rewetted sediments (DS) and constantly wet sediments (WS), respectively, for 6 months. The findings revealed that sediment drying and rewetting process significantly decreased the diffusion of overlying nutrient into sediment and the particle size density, porosity, and nutrients' repository ability in DS treatments, while the sediment bulk density and mineralization of organic macronutrients increased. Compared to WS treatments, the DS treatments impaired plant growth, root biomass, shoot biomass, and stimulated higher fluxes of ammonium nitrogen ([Formula: see text]-N, 0.042-0.081 mg m - 2 d - 1) and phosphate (P[Formula: see text] 0.009-0.030 mg m-2 d-1) at sediment-water interface upon rewetting. The higher internal release of macronutrients and dissolved organic carbon (DOC) from DS led to the higher chlorophyll-a (Chl-a) concentrations (34.47-21.28 to 41.76-33.36 μg L-1) in their water column than in the water column of WS. The wiry rooted plants with higher root biomass displayed lower internal release of [Formula: see text]-N, PO43-P and DOC and water column Chl-a concentrations than the sturdy rooted plants in two sediment types. Root biomass of plants correlated positively with TN (63-87%) and TP (56-78%) removal percentages from WS and DS. These results demonstrated that sediment desiccation process reduced plant growth and enhanced internal loading of nutrients and consequently accelerated eutrophication in these wetlands.
Collapse
Affiliation(s)
- Farasat Ali
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Zheng Hao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chunliu Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Linqi Tian
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
43
|
Peller T, Marleau JN, Guichard F. Traits affecting nutrient recycling by mobile consumers can explain coexistence and spatially heterogeneous trophic regulation across a meta-ecosystem. Ecol Lett 2021; 25:440-452. [PMID: 34971478 DOI: 10.1111/ele.13941] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/27/2021] [Accepted: 11/07/2021] [Indexed: 11/29/2022]
Abstract
Ecosystems are linked through spatial flows of organisms and nutrients that impact their biodiversity and regulation. Theory has predominantly studied passive nutrient flows that occur independently of organism movement. Mobile organisms, however, commonly drive nutrient flows across ecosystems through nutrient recycling. Using a meta-ecosystem model where consumers move between ecosystems, we study how consumer recycling and traits related to feeding and sheltering preferences affect species diversity and trophic regulation. We show local effects of recycling can cascade across space, yielding spatially heterogeneous top-down and bottom-up effects. Consumer traits impact the direction and magnitude of these effects by enabling recycling to favour a single ecosystem. Recycling further modifies outcomes of competition between consumer species by creating a positive feedback on the production of one competitor. Our findings suggest spatial interactions between feeding and recycling activities of organisms are key to predicting biodiversity and ecosystem functioning across spatial scales.
Collapse
Affiliation(s)
- Tianna Peller
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Justin N Marleau
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
44
|
Lovvorn JR, Brooks ML. Feeding on epibenthic zooplankton by Long‐tailed Ducks: patch structure, profitability, and food web implications. Ecosphere 2021. [DOI: 10.1002/ecs2.3780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- James R. Lovvorn
- School of Biological Sciences Southern Illinois University 1125 Lincoln Drive Carbondale Illinois 62901 USA
| | - Marjorie L. Brooks
- School of Biological Sciences Southern Illinois University 1125 Lincoln Drive Carbondale Illinois 62901 USA
| |
Collapse
|
45
|
de Castro F, Adl SM, Allesina S, Bardgett RD, Bolger T, Dalzell JJ, Emmerson M, Fleming T, Garlaschelli D, Grilli J, Hannula SE, de Vries F, Lindo Z, Maule AG, Öpik M, Rillig MC, Veresoglou SD, Wall DH, Caruso T. Local stability properties of complex, species-rich soil food webs with functional block structure. Ecol Evol 2021; 11:16070-16081. [PMID: 34824812 PMCID: PMC8601897 DOI: 10.1002/ece3.8278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/03/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022] Open
Abstract
Ecologists have long debated the properties that confer stability to complex, species-rich ecological networks. Species-level soil food webs are large and structured networks of central importance to ecosystem functioning. Here, we conducted an analysis of the stability properties of an up-to-date set of theoretical soil food web models that account both for realistic levels of species richness and the most recent views on the topological structure (who is connected to whom) of these food webs. The stability of the network was best explained by two factors: strong correlations between interaction strengths and the blocked, nonrandom trophic structure of the web. These two factors could stabilize our model food webs even at the high levels of species richness that are typically found in soil, and that would make random systems very unstable. Also, the stability of our soil food webs is well-approximated by the cascade model. This result suggests that stability could emerge from the hierarchical structure of the functional organization of the web. Our study shows that under the assumption of equilibrium and small perturbations, theoretical soil food webs possess a topological structure that allows them to be complex yet more locally stable than their random counterpart. In particular, results strongly support the general hypothesis that the stability of rich and complex soil food webs is mostly driven by correlations in interaction strength and the organization of the soil food web into functional groups. The implication is that in real-world food web, any force disrupting the functional structure and distribution pattern of interaction strengths (i.e., energy fluxes) of the soil food webs will destabilize the dynamics of the system, leading to species extinction and major changes in the relative abundances of species.
Collapse
Affiliation(s)
| | - Sina M. Adl
- Department of Soil ScienceUniversity of SaskatchewanSaskatoonSKCanada
| | - Stefano Allesina
- Department of Ecology & Evolution and Computation InstituteUniversity of ChicagoChicagoIllinoisUSA
| | - Richard D. Bardgett
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
| | - Thomas Bolger
- School of Biology & Environmental ScienceUniversity College DublinDublin 4Ireland
| | | | - Mark Emmerson
- School of Biological Sciences and Institute for Global Food SecurityQueen's University of BelfastBelfastUK
| | - Thomas Fleming
- Grassland & Plant ScienceAgri‐Food & Biosciences InstituteBelfastUK
| | - Diego Garlaschelli
- IMT School of Advanced StudiesLuccaItaly
- Instituut‐Lorentz for Theoretical PhysicsLeiden Institute of PhysicsUniversity of LeidenLeidenThe Netherlands
| | - Jacopo Grilli
- The Abdus Salam International Centre for Theoretical PhysicsQuantitative Life Science SectionTriesteItaly
| | - Silja Emilia Hannula
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Franciska de Vries
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Zoë Lindo
- Department of BiologyThe University of Western OntarioLondonONCanada
| | - Aaron G. Maule
- School of Biological Sciences and Institute for Global Food SecurityQueen's University of BelfastBelfastUK
| | - Maarja Öpik
- Department of BotanyUniversity of TartuTartuEstonia
| | | | | | - Diana H. Wall
- Department of BiologySchool of Global Environmental SustainabilityColorado State UniversityFort CollinsColoradoUSA
| | - Tancredi Caruso
- School of Biology & Environmental ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
46
|
Greig HS, McHugh PA, Thompson RM, Warburton HJ, McIntosh AR. Habitat size influences community stability. Ecology 2021; 103:e03545. [PMID: 34614210 DOI: 10.1002/ecy.3545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 12/18/2020] [Accepted: 03/15/2021] [Indexed: 11/06/2022]
Abstract
Mechanisms linked to demographic, biogeographic, and food-web processes thought to underpin community stability could be affected by habitat size, but the effects of habitat size on community stability remain relatively unknown. We investigated whether those habitat-size-dependent properties influenced community instability and vulnerability to perturbations caused by disturbance. This is particularly important given that human exploitation is contracting ecosystems, and abiotic perturbations are becoming more severe and frequent. We used a perturbation experiment in which 10 streams, spanning three orders of magnitude in habitat size, were subjected to simulated bed movement akin to a major flood disturbance event. We measured the resistance, resilience, and variability of basal resources, and population and community-level responses across the stream habitat-size gradient immediately before, and at 0.5, 5, 10, 20, and 40 d post-disturbance. Resistance to disturbance consistently increased with stream size in all response variables. In contrast, resilience was significantly higher in smaller streams for some response variables. However, this higher resilience of small ecosystems was insufficient to compensate for their lower resistance, and communities of smaller streams were thus more variable over time than those of larger streams. Compensatory dynamics of populations, especially for predators, stabilized some aspects of communities, but these mechanisms were unrelated to habitat size. Together, our results provide compelling evidence for the links between habitat size and community stability, and should motivate ecologists and managers to consider how changes in the size of habitats will alter the vulnerability of ecosystems to perturbations caused by environmental disturbance.
Collapse
Affiliation(s)
- Hamish S Greig
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, Maine, 04469, USA
| | - Peter A McHugh
- California Department of Fish and Wildlife, 3637 Westwind Blvd, Santa Rosa, California, 95403, USA
| | - Ross M Thompson
- Centre for Applied Water Science and Institute for Applied Ecology, University of Canberra, Kirinari Street, Bruce, Australian Capital Territory, 2617, Australia
| | - Helen J Warburton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Angus R McIntosh
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
47
|
Cloyed CS, Wilson RM, Balmer BC, Hohn AA, Schwacke LH, Zolman ES, Tumlin MC, Wells RS, Barleycorn AA, Allen JB, Carmichael RH. Specialization of a mobile, apex predator affects trophic coupling among adjacent habitats. Sci Rep 2021; 11:19611. [PMID: 34608172 PMCID: PMC8490471 DOI: 10.1038/s41598-021-99017-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/13/2021] [Indexed: 11/23/2022] Open
Abstract
Mobile, apex predators are commonly assumed to stabilize food webs through trophic coupling across spatially distinct habitats. The assumption that trophic coupling is common remains largely untested, despite evidence that individual behaviors might limit trophic coupling. We used stable isotope data from common bottlenose dolphins across the Gulf of Mexico to determine if these apex predators coupled estuarine and adjacent, nearshore marine habitats. δ13C values differed among the sites, likely driven by environmental factors that varied at each site, such as freshwater input and seagrass cover. Within most sites, δ13C values differed such that dolphins sampled in the upper reaches of embayments had values indicative of estuarine habitats while those sampled outside or in lower reaches of embayments had values indicative of marine habitats. δ15N values were more similar among and within sites than δ13C values. Data from multiple tissues within individuals corroborated that most dolphins consistently used a narrow range of habitats but fed at similar trophic levels in estuarine and marine habitats. Because these dolphins exhibited individual habitat specialization, they likely do not contribute to trophic coupling between estuarine and adjacent marine habitats at a regional scale, suggesting that not all mobile, apex predators trophically couple adjacent habitats.
Collapse
Affiliation(s)
- Carl S Cloyed
- Dauphin Island Sea Lab, Dauphin Island, AL, 36528, USA. .,Department of Marine Sciences, University of South Alabama, Mobile, AL, 36688, USA.
| | - Rachel M Wilson
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Brian C Balmer
- National Marine Mammal Foundation, San Diego, CA, 92106, USA
| | - Aleta A Hohn
- NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, Beaufort, NC, 28516, USA
| | - Lori H Schwacke
- National Marine Mammal Foundation, San Diego, CA, 92106, USA
| | - Eric S Zolman
- National Marine Mammal Foundation, San Diego, CA, 92106, USA
| | - Mandy C Tumlin
- Louisiana Department of Wildlife and Fisheries, Baton Rouge, LA, 70808, USA
| | - Randall S Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL, 34236, USA
| | - Aaron A Barleycorn
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL, 34236, USA
| | - Jason B Allen
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL, 34236, USA
| | - Ruth H Carmichael
- Dauphin Island Sea Lab, Dauphin Island, AL, 36528, USA.,Department of Marine Sciences, University of South Alabama, Mobile, AL, 36688, USA
| |
Collapse
|
48
|
Legault S, Wittische J, Cusson M, Brodeur J, James PMA. Landscape-scale population connectivity in two parasitoid species associated with the spruce budworm: Testing the birdfeeder effect using genetic data. Mol Ecol 2021; 30:5658-5673. [PMID: 34473864 DOI: 10.1111/mec.16160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022]
Abstract
Periodic and spatially synchronous outbreaks of insect pests have dramatic consequences for boreal and sub-boreal forests. Within these multitrophic systems, parasitoids can be stabilizing agents by dispersing toward patches containing higher host density (the so-called birdfeeder effect). However, we know little about the dispersal abilities of parasitoids in continuous forested landscapes, limiting our understanding of the spatiotemporal dynamics of host-parasitoid systems, and constraining our ability to predict forest resilience in the context of global changes. In this study, we investigate the spatial genetic structure and spatial variation in genetic diversity of two important species of spruce budworm larval parasitoids during outbreaks: Apanteles fumiferanae Viereck (Braconidae) and Glypta fumiferanae (Viereck) (Ichneumonidae). Using parasitoids sampled in 2014 from 26 and 29 locations across a study area of 350,000 km2 , we identified 1,012 and 992 neutral SNP loci for A. fumiferanae (N = 279 individuals) and G. fumiferanae (N = 382), respectively. Using DAPC, PCA, AMOVA, and IBD analyses, we found evidence for panmixia and high genetic connectivity for both species, matching the previously described genetic structure of the spruce budworm within the same context, suggesting similar effective dispersal during outbreaks and high parasitoid population densities between outbreaks. We also found a significant negative relationship between genetic diversity and latitude for A. fumiferanae but not for G. fumiferanae, suggesting that northern range limits may vary by species within the spruce budworm parasitoid community. These spatial dynamics should be considered when predicting future insect outbreak severities in boreal landscapes.
Collapse
Affiliation(s)
- Simon Legault
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Julian Wittische
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Michel Cusson
- Laurentian Forestry Centre, Natural Resources Canada, Québec, QC, Canada
| | - Jacques Brodeur
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Patrick M A James
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada.,Institute of Forestry and Conservation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Anderson KE, Fahimipour AK. Body size dependent dispersal influences stability in heterogeneous metacommunities. Sci Rep 2021; 11:17410. [PMID: 34465802 PMCID: PMC8408130 DOI: 10.1038/s41598-021-96629-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022] Open
Abstract
Body size affects key biological processes across the tree of life, with particular importance for food web dynamics and stability. Traits influencing movement capabilities depend strongly on body size, yet the effects of allometrically-structured dispersal on food web stability are less well understood than other demographic processes. Here we study the stability properties of spatially-arranged model food webs in which larger bodied species occupy higher trophic positions, while species’ body sizes also determine the rates at which they traverse spatial networks of heterogeneous habitat patches. Our analysis shows an apparent stabilizing effect of positive dispersal rate scaling with body size compared to negative scaling relationships or uniform dispersal. However, as the global coupling strength among patches increases, the benefits of positive body size-dispersal scaling disappear. A permutational analysis shows that breaking allometric dispersal hierarchies while preserving dispersal rate distributions rarely alters qualitative aspects of metacommunity stability. Taken together, these results suggest that the oft-predicted stabilizing effects of large mobile predators may, for some dimensions of ecological stability, be attributed to increased patch coupling per se, and not necessarily coupling by top trophic levels in particular.
Collapse
Affiliation(s)
- Kurt E Anderson
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA.
| | - Ashkaan K Fahimipour
- Department of Computer Science, University of California, Davis, CA, USA.,Institute of Marine Sciences, University of California, Santa Cruz, CA, USA
| |
Collapse
|
50
|
Hemprich-Bennett DR, Kemp VA, Blackman J, Struebig MJ, Lewis OT, Rossiter SJ, Clare EL. Altered structure of bat-prey interaction networks in logged tropical forests revealed by metabarcoding. Mol Ecol 2021; 30:5844-5857. [PMID: 34437745 DOI: 10.1111/mec.16153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
Habitat degradation is pervasive across the tropics and is particularly acute in Southeast Asia, with major implications for biodiversity. Much research has addressed the impact of degradation on species diversity; however, little is known about how ecological interactions are altered, including those that constitute important ecosystem functions such as consumption of herbivores. To examine how rainforest degradation alters trophic interaction networks, we applied DNA metabarcoding to construct interaction networks linking forest-dwelling insectivorous bat species and their prey, comparing old-growth forest and forest degraded by logging in Sabah, Borneo. Individual bats in logged rainforest consumed a lower richness of prey than those in old-growth forest. As a result, interaction networks in logged forests had a less nested structure. These network structures were associated with reduced network redundancy and thus increased vulnerability to perturbations in logged forests. Our results show how ecological interactions change between old-growth and logged forests, with potentially negative implications for ecosystem function and network stability.
Collapse
Affiliation(s)
- David R Hemprich-Bennett
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Victoria A Kemp
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Joshua Blackman
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Matthew J Struebig
- Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent, UK
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, UK
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.,Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|