1
|
Rincón-Díaz MP, Svendsen GM, Venerus LA, Villanueva-Gomila L, Lattuca ME, Vanella FA, Cuesta Núñez J, Galván DE. Traits related to distributional range shifts of marine fishes. JOURNAL OF FISH BIOLOGY 2025; 106:157-172. [PMID: 39505826 DOI: 10.1111/jfb.15970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
In the context of global change, reviewing the relationships between marine fish traits and their range shifts is required to (1) identify ecological generalizations regarding the influence of traits on range shifts at a global scale and (2) investigate the rationale behind trait inclusion in models describing those relationships. We systematically searched for studies on marine fish assemblages that identified distributional shifts and analyzed the relationship between fish traits and these shifts. We reviewed 29 papers and identified 11 shift type characterizations and 41 traits, noting significant variation in measurement methods and model types used to describe their relationships. We identified global trait redundancies in the relationship between fish traits and latitudinal range shifts. These trends are related to the fishes' latitudinal range, trophic level, water column habitat, body size, size-at-settlement, growth rate, and larval swimming ability. The first four traits, along with fish bottom habitat, biogeographic affinity, diet, and thermal affinity, also showed significant relationships across four ways to characterize horizontal range shifts of fish species. The significance of these traits suggests their relevance in range shifting, regardless of the analyses conducted, biogeographic realm, and range shift type. However, trait redundancies require further consideration, mainly because some traits show opposing relationships in different studies, and important biogeographic research gaps limit global generalizations about the trait-range shift relationship. Half of the studies analyzed provided a rationale for 23 out of 41 traits. We also provide guidelines for future work to better understand the influence of traits on fish range shifts.
Collapse
Affiliation(s)
- Martha P Rincón-Díaz
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico CONICET - Centro Nacional Patagónico, Puerto Madryn, Chubut, Argentina
| | - Guillermo M Svendsen
- Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni, San Antonio Oeste, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Antonio Oeste, Río Negro, Argentina
| | - Leonardo A Venerus
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico CONICET - Centro Nacional Patagónico, Puerto Madryn, Chubut, Argentina
| | - Lujan Villanueva-Gomila
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico CONICET - Centro Nacional Patagónico, Puerto Madryn, Chubut, Argentina
| | - María E Lattuca
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ushuaia, Tierra del Fuego, Argentina
| | - Fabián A Vanella
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ushuaia, Tierra del Fuego, Argentina
| | - Josefina Cuesta Núñez
- Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni, San Antonio Oeste, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - David E Galván
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico CONICET - Centro Nacional Patagónico, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
2
|
Fobane JL, Zekeng JC, Chimi CD, Onana JM, Ebanga AP, Tchonang LD, Talla Makoutsing AC, Mbolo MM. Tree community, vegetation structure and aboveground carbon storage in Atlantic tropical forests of Cameroon. Heliyon 2024; 10:e41005. [PMID: 39759375 PMCID: PMC11700276 DOI: 10.1016/j.heliyon.2024.e41005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Understanding Atlantic tropical forests' ecological dynamics and carbon storage potential in Cameroon is crucial for guiding sustainable management and conservation strategies. These forests play a significant role in carbon sequestration and biodiversity conservation. This study aimed to fill existing knowledge gaps by characterising plant communities, assessing the vegetation structure, and quantifying the potential of carbon stocks. Twelve 1-ha permanent plots were established within the Atlantic forests of Okoroba and Yingui to achieve these objectives. All the trees with diameters at breast height (DBH) ≥10 cm were inventoried, and various environmental data, including soil texture and climate information, were collected. The Multivariate Regression Trees (MRT) technique was employed to analyse species composition and identify different plant communities (PCs). Additionally, multiple regression models were used to examine the effects of environmental variables and stand size structure on non-destructive carbon stock assessments. The MRT analysis was conducted on 6425 trees spanning 317 species, 212 genera and 60 families, and it identified three distinct PCs with unique species compositions and environmental preferences. The study revealed variations in tree density, ranging from 425 to 645 N ha-1, and basal area, from 32 to 38 m2ha-1 among PCs and forest types. Although carbon stocks did not differ significantly between the PCs, they varied in distribution, ranging from 195 to 203 Mg C.ha-1. A single-factor model indicated a significant correlation between tree density with DBH ≥50 cm and aboveground biomass variability (R2 = 0.86). A multi-factor model, considering DBH ranges of 10-30 cm and 30-50 cm, explained 93 % and 94 % of biomass variability, respectively, incorporating elevation and other tree density factors. These findings enhance our understanding of carbon dynamics in Atlantic forests and support conservation and sustainable management practices. They highlight the importance of biodiversity protection in mitigating climate change and maintaining ecosystem health.
Collapse
Affiliation(s)
- Jean Louis Fobane
- Department of Biology, Higher Teachers' Training College, University of Yaounde I, P.O. Box 47, Yaounde, Cameroon
| | - Jules Christian Zekeng
- Department of Forest Engineering, Advanced Teachers Training School for Technical Education, University of Douala, P.O. Box 1872, Douala, Cameroon
- Conservation and Sustainable Natural Resources Management Network (CSNRM-Net), P.O. Box 8554, Yaounde, Cameroon
- Oliver R. Tambo Africa Research Chairs Initiative (ORTARChl) of Environment and Development, School of Natural Resources of the Copperbelt University, P.O. Box 21692, Kitwe, Zambia
| | - Cédric Djomo Chimi
- Conservation and Sustainable Natural Resources Management Network (CSNRM-Net), P.O. Box 8554, Yaounde, Cameroon
- Institute of Agricultural Research for the Development (IRAD), P.O. Box 136, Yokadouma, Cameroon
| | - Jean Michel Onana
- Department of Plant Biology, Faculty of Science, University of Yaounde I, P.O. Box: 812, Yaounde, Cameroon
| | - André Paul Ebanga
- Conservation and Sustainable Natural Resources Management Network (CSNRM-Net), P.O. Box 8554, Yaounde, Cameroon
- Department of Plant Biology, Faculty of Science, University of Yaounde I, P.O. Box: 812, Yaounde, Cameroon
| | - Léonnel Djoumbi Tchonang
- Conservation and Sustainable Natural Resources Management Network (CSNRM-Net), P.O. Box 8554, Yaounde, Cameroon
- Department of Plant Biology, Faculty of Science, University of Yaounde I, P.O. Box: 812, Yaounde, Cameroon
| | - Ameline Clarance Talla Makoutsing
- Conservation and Sustainable Natural Resources Management Network (CSNRM-Net), P.O. Box 8554, Yaounde, Cameroon
- Department of Plant Biology, Faculty of Science, University of Yaounde I, P.O. Box: 812, Yaounde, Cameroon
| | - Marguerite Marie Mbolo
- Department of Plant Biology, Faculty of Science, University of Yaounde I, P.O. Box: 812, Yaounde, Cameroon
| |
Collapse
|
3
|
Devi V, Fulekar MH, Charles B, Reddy CS, Pathak B. Predicting the habitat suitability and species richness of plants of Great Himalayan National Park under different climate change scenarios. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1136. [PMID: 39477861 DOI: 10.1007/s10661-024-13290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/22/2024] [Indexed: 11/14/2024]
Abstract
This study elucidates the distribution of plants in Great Himalayan National Park (GHNP), India, in current and different future climate change scenarios. The distribution of plants and habitat suitability in GHNP due to climate change was analyzed by MaxEnt, species distribution model (SDM) algorithm. In this study, species presence records were retrieved through field survey and published literature. We have projected the distribution of 44 plant species using MaxEnt and tested whether GHNP is performing well in conserving the plant species. Initially, we have constructed a model for each species and created the habitat suitability map from average of ascii files and later we added the maps of all species in order to make binary map to show the species richness in the selected climate scenarios. The model was created using the HADGEM-2 global circulation model in 2050 and 2070 years by using climate change situations of RCP 2.6 and RCP 8.5. The area under curve (AUC) values in the final models of 44 plant species were in the range 0.70-0.97 that indicates statistically significant results. The model identified precipitation of driest month followed by altitude and annual mean temperature as most determining variables in the distribution of plants of GHNP in selected climate scenarios. In the present study, we found that overall suitable habitat increased for nine species, decreased for thirty-four, and unchanged for one plant species in terms of percent area change from current to future scenarios. So these nine species were found to be more adaptable towards changing climate than the other plant species in this study. The species richness was high in western and southwestern parts of GHNP in the current scenario, however under future climatic scenarios, species richness shows a decreasing trend. Based on our findings, it can be concluded that GHNP should be prioritized for conserving the plant species.
Collapse
Affiliation(s)
- Vandna Devi
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | | | - Bipin Charles
- Institute for Biodiversity and Conservation, #17, 302, 3Rd Floor, 3 'A" Cross, Shardamba Nagar, Bangalore, Karnataka, India
| | - Chintala Sudhakar Reddy
- National Remote Sensing Centre, Indian Space Research Organisation, Balanagar, Hyderabad, 500037, India
| | - Bhawana Pathak
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India.
| |
Collapse
|
4
|
Pan T, Zhang C, Orozco Terwengel P, Wang H, Ding L, Yang L, Hu C, Li W, Zhou W, Wu X, Zhang B. Comparative phylogeography reveals dissimilar genetic differentiation patterns in two sympatric amphibian species. Integr Zool 2024; 19:863-886. [PMID: 37880913 DOI: 10.1111/1749-4877.12764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Global climate change is expected to have a profound effect on species distribution. Due to the temperature constraints, some narrow niche species could shift their narrow range to higher altitudes or latitudes. In this study, we explored the correlation between species traits, genetic structure, and geographical range size. More specifically, we analyzed how these variables are affected by differences in fundamental niche breadth or dispersal ability in the members of two sympatrically distributed stream-dwelling amphibian species (frog, Quasipaa yei; salamander, Pachyhynobius shangchengensis), in Dabie Mountains, East China. Both species showed relatively high genetic diversity in most geographical populations and similar genetic diversity patterns (JTX, low; BYM, high) correlation with habitat changes and population demography. Multiple clustering analyses were used to disclose differentiation among the geographical populations of these two amphibian species. Q. yei disclosed the relatively shallow genetic differentiation, while P. shangchengensis showed an opposite pattern. Under different historical climatic conditions, all ecological niche modeling disclosed a larger suitable habitat area for Q. yei than for P. shangchengensis; these results indicated a wider environment tolerance or wider niche width of Q. yei than P. shangchengensis. Our findings suggest that the synergistic effects of environmental niche variation and dispersal ability may help shape genetic structure across geographical topology, particularly for species with extremely narrow distribution.
Collapse
Affiliation(s)
- Tao Pan
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Caiwen Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | | | - Hui Wang
- College of Food and Bioengineering, Bengbu University, Bengbu, China
| | - Ling Ding
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Liuyang Yang
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Chaochao Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Wengang Li
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Wenliang Zhou
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Xiaobing Wu
- Anhui Province Key Laboratory for Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| |
Collapse
|
5
|
Ma K, Li Y, Song W, Zhou J, Liu X, Wang M, Gong X, Wang L, Tu Q. Disentangling drivers of mudflat intertidal DOM chemodiversity using ecological models. Nat Commun 2024; 15:6620. [PMID: 39103321 DOI: 10.1038/s41467-024-50841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Microorganisms consume and transform dissolved organic matter (DOM) into various forms. However, it remains unclear whether the ecological patterns and drivers of DOM chemodiversity are analogous to those of microbial communities. Here, a large-scale investigation is conducted along the Chinese coasts to resolve the intrinsic linkages among the complex intertidal DOM pools, microbial communities and environmental heterogeneity. The abundance of DOM molecular formulae best fits log-normal distribution and follows Taylor's Law. Distance-decay relationships are observed for labile molecular formulae, while latitudinal diversity gradients are noted for recalcitrant molecular formulae. Latitudinal patterns are also observed for DOM molecular features. Negative cohesion, bacterial diversity, and molecular traits are the main drivers of DOM chemodiversity. Stochasticity analyses demonstrate that determinism dominantly shapes the DOM compositional variations. This study unveils the intrinsic mechanisms underlying the intertidal DOM chemodiversity and microbial communities from ecological perspectives, deepening our understanding of microbially driven chemical ecology.
Collapse
Affiliation(s)
- Kai Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yueyue Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Wen Song
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jiayin Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xia Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Mengqi Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaofan Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Linlin Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China.
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China.
| |
Collapse
|
6
|
Li Z, Zhu H, García-Girón J, Gu S, Heino J, Xiong X, Yang J, Zhao X, Jia Y, Xie Z, Zhang J. Historical and dispersal processes drive community assembly of multiple aquatic taxa in glacierized catchments in the Qinghai-Tibet plateau. ENVIRONMENTAL RESEARCH 2024; 251:118746. [PMID: 38513751 DOI: 10.1016/j.envres.2024.118746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Understanding the relative role of dispersal dynamics and niche constraints is not only a core task in community ecology, but also becomes an important prerequisite for bioassessment. Despite the recent progress in our knowledge of community assembly in space and time, patterns and processes underlying biotic communities in alpine glacierized catchments remain mostly ignored. To fill this knowledge gap, we combined the recently proposed dispersal-niche continuum index (DNCI) with traditional constrained ordinations and idealized patterns of species distributions to unravel community assembly mechanisms of different key groups of primary producers and consumers (i.e., phytoplankton, epiphytic algae, zooplankton, macroinvertebrates, and fishes) in rivers in the Qinghai-Tibet Plateau, the World's Third Pole. We tested whether organismal groups with contrasting body sizes differed in their assembly processes, and discussed their applicability in bioassessment in alpine zones. We found that community structure of alpine river biotas was always predominantly explained in terms of dispersal dynamics and historical biogeography. These patterns are most likely the result of differences in species-specific functional attributes, the stochastic colonization-extinction dynamics driven by multi-year glacier disturbances and the repeated hydrodynamic separation among alpine catchments after the rising of the Qilian mountains. Additionally, we found that the strength of dispersal dynamics and niche constraints was partially mediated by organismal body sizes, with dispersal processes being more influential for microscopic primary producers. Finding that zooplankton and macroinvertebrate communities followed clumped species replacement structures (i.e., Clementsian gradients) supports the notion that environmental filtering also contributes to the structure of high-altitude animal communities in glacierized catchments. In terms of the applied fields, we argue that freshwater bioassessment in glacierized catchments can benefit from incorporating the metacommunity perspective and applying novel approaches to (i) detect the optimal spatial scale for species sorting and (ii) identify and eliminate the species that are sensitive to dispersal-related processes.
Collapse
Affiliation(s)
- Zhengfei Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jorge García-Girón
- Department of Biodiversity and Environmental Management, University of León, Campus de Vegazana, 24007, León, Spain; Geography Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
| | - Siyu Gu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
| | - Xiong Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiali Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xianfu Zhao
- Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, China
| | - Yintao Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhicai Xie
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Junqian Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
7
|
Lancaster J, Downes BJ, Kayll ZJ. Bigger is not necessarily better: empirical tests show that dispersal proxies misrepresent actual dispersal ability. Proc Biol Sci 2024; 291:20240172. [PMID: 38772418 DOI: 10.1098/rspb.2024.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/05/2024] [Indexed: 05/23/2024] Open
Abstract
Tests for the role of species' relative dispersal abilities in ecological and biogeographical models rely heavily on dispersal proxies, which are seldom substantiated by empirical measures of actual dispersal. This is exemplified by tests of dispersal-range size relationships and by metacommunity research that often features invertebrates, particularly freshwater insects. Using rare and unique empirical data on dispersal abilities of caddisflies, we tested whether actual dispersal abilities were associated with commonly used dispersal proxies (metrics of wing size and shape; expert opinion). Across 59 species in 12 families, wing morphology was not associated with actual dispersal. Within some families, individual wing metrics captured some dispersal differences among species, although useful metrics varied among families and predictive power was typically low. Dispersal abilities assigned by experts were either no better than random or actually poorer than random. Our results cast considerable doubt on research underpinned by dispersal proxies and scrutiny of previous research results may be warranted. Greater progress may lie in employing innovative survey and experimental design to measure actual dispersal in the field.
Collapse
Affiliation(s)
- Jill Lancaster
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne , , Victoria, 3010, Australia
| | - Barbara J Downes
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne , , Victoria, 3010, Australia
| | - Zachary J Kayll
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne , , Victoria, 3010, Australia
| |
Collapse
|
8
|
Khattar G, Peres-Neto PR. The Geography of Metacommunities: Landscape Characteristics Drive Geographic Variation in the Assembly Process through Selecting Species Pool Attributes. Am Nat 2024; 203:E142-E156. [PMID: 38635361 DOI: 10.1086/729423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractThe nonrandom association between landscape characteristics and the dominant life history strategies observed in species pools is a typical pattern in nature. Here, we argue that these associations determine predictable changes in the relative importance of assembly mechanisms along broadscale geographic gradients (i.e., the geographic context of metacommunity dynamics). To demonstrate that, we employed simulation models in which groups of species with the same initial distribution of niche breadths and dispersal abilities interacted across a wide range of landscapes with contrasting characteristics. By assessing the traits of dominant species in the species pool in each landscape type, we determined how different landscape characteristics select for different life history strategies at the metacommunity level. We analyzed the simulated data using the same analytical approaches used in the study of empirical metacommunities to derive predictions about the causal relationships between landscape characteristics and dominant life histories in species pools, as well as their reciprocal influence on empirical inferences regarding the assembly process. We provide empirical support for these predictions by contrasting the assembly of moth metacommunities in a tropical versus a temperate mountainous landscape. Together, our model framework and empirical analyses demonstrate how the geographic context of metacommunities influences our understanding of community assembly across broadscale ecological gradients.
Collapse
|
9
|
Malanoski CM, Farnsworth A, Lunt DJ, Valdes PJ, Saupe EE. Climate change is an important predictor of extinction risk on macroevolutionary timescales. Science 2024; 383:1130-1134. [PMID: 38452067 DOI: 10.1126/science.adj5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
Anthropogenic climate change is increasing rapidly and already impacting biodiversity. Despite its importance in future projections, understanding of the underlying mechanisms by which climate mediates extinction remains limited. We present an integrated approach examining the role of intrinsic traits versus extrinsic climate change in mediating extinction risk for marine invertebrates over the past 485 million years. We found that a combination of physiological traits and the magnitude of climate change is necessary to explain marine invertebrate extinction patterns. Our results suggest that taxa previously identified as extinction resistant may still succumb to extinction if the magnitude of climate change is great enough.
Collapse
Affiliation(s)
- Cooper M Malanoski
- Department of Earth Sciences, Oxford University, South Parks Road, Oxford OX1 3AN, UK
| | - Alex Farnsworth
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Daniel J Lunt
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Paul J Valdes
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Erin E Saupe
- Department of Earth Sciences, Oxford University, South Parks Road, Oxford OX1 3AN, UK
| |
Collapse
|
10
|
Glass JR, Harrington RC, Cowman PF, Faircloth BC, Near TJ. Widespread sympatry in a species-rich clade of marine fishes (Carangoidei). Proc Biol Sci 2023; 290:20230657. [PMID: 37909084 PMCID: PMC10618865 DOI: 10.1098/rspb.2023.0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023] Open
Abstract
A universal paradigm describing patterns of speciation across the tree of life has been debated for decades. In marine organisms, inferring patterns of speciation using contemporary and historical patterns of biogeography is challenging due to the deficiency of species-level phylogenies and information on species' distributions, as well as conflicting relationships between species' dispersal, range size and co-occurrence. Most research on global patterns of marine fish speciation and biogeography has focused on coral reef or pelagic species. Carangoidei is an ecologically important clade of marine fishes that use coral reef and pelagic environments. We used sequence capture of 1314 ultraconserved elements (UCEs) from 154 taxa to generate a time-calibrated phylogeny of Carangoidei and its parent clade, Carangiformes. Age-range correlation analyses of the geographical distributions and divergence times of sister species pairs reveal widespread sympatry, with 73% of sister species pairs exhibiting sympatric geographical distributions, regardless of node age. Most species pairs coexist across large portions of their ranges. We also observe greater disparity in body length and maximum depth between sympatric relative to allopatric sister species. These and other ecological or behavioural attributes probably facilitate sympatry among the most closely related carangoids.
Collapse
Affiliation(s)
- Jessica R. Glass
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Richard C. Harrington
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Peter F. Cowman
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, Queensland 4810, Australia
| | - Brant C. Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Yale Peabody Museum of Natural History, Division of Vertebrate Zoology. New Haven, CT 06520, USA
| |
Collapse
|
11
|
Estandía A, Sendell-Price AT, Oatley G, Robertson F, Potvin D, Massaro M, Robertson BC, Clegg SM. Candidate gene polymorphisms are linked to dispersive and migratory behaviour: Searching for a mechanism behind the "paradox of the great speciators". J Evol Biol 2023; 36:1503-1516. [PMID: 37750610 DOI: 10.1111/jeb.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/22/2023] [Indexed: 09/27/2023]
Abstract
The "paradox of the great speciators" has puzzled evolutionary biologists for over half a century. A great speciator requires excellent dispersal propensity to explain its occurrence on multiple islands, but reduced dispersal ability to explain its high number of subspecies. A rapid reduction in dispersal ability is often invoked to solve this apparent paradox, but a proximate mechanism has not been identified yet. Here, we explored the role of six genes linked to migration and animal personality differences (CREB1, CLOCK, ADCYAP1, NPAS2, DRD4, and SERT) in 20 South Pacific populations of silvereye (Zosterops lateralis) that range from highly sedentary to partially migratory, to determine if genetic variation is associated with dispersal propensity and migration. We detected genetic associations in three of the six genes: (i) in a partial migrant population, migrant individuals had longer microsatellite alleles at the CLOCK gene compared to resident individuals from the same population; (ii) CREB1 displayed longer average microsatellite allele lengths in recently colonized island populations (<200 years), compared to evolutionarily older populations. Bayesian broken stick regression models supported a reduction in CREB1 length with time since colonization; and (iii) like CREB1, DRD4 showed differences in polymorphisms between recent and old colonizations but a larger sample is needed to confirm. ADCYAP1, SERT, and NPAS2 were variable but that variation was not associated with dispersal propensity. The association of genetic variants at three genes with migration and dispersal ability in silvereyes provides the impetus for further exploration of genetic mechanisms underlying dispersal shifts, and the prospect of resolving a long-running evolutionary paradox through a genetic lens.
Collapse
Affiliation(s)
- Andrea Estandía
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, Oxford, UK
| | - Ashley T Sendell-Price
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, Oxford, UK
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Graeme Oatley
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Fiona Robertson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Dominique Potvin
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, Queensland, Australia
| | - Melanie Massaro
- Gulbali Institute and School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, New South Wales, Australia
| | | | - Sonya M Clegg
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, Oxford, UK
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Tumendemberel O, Hendricks SA, Hohenlohe PA, Sullivan J, Zedrosser A, Saebø M, Proctor MF, Koprowski JL, Waits LP. Range-wide evolutionary relationships and historical demography of brown bears (Ursus arctos) revealed by whole-genome sequencing of isolated central Asian populations. Mol Ecol 2023; 32:5156-5169. [PMID: 37528604 DOI: 10.1111/mec.17091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/02/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Phylogeographic studies uncover hidden pathways of divergence and inform conservation. Brown bears (Ursus arctos) have one of the broadest distributions of all land mammals, ranging from Eurasia to North America, and are an important model for evolutionary studies. Although several whole genomes were available for individuals from North America, Europe and Asia, limited whole-genome data were available from Central Asia, including the highly imperilled brown bears in the Gobi Desert. To fill this knowledge gap, we sequenced whole genomes from nine Asian brown bears from the Gobi Desert of Mongolia, Northern Mongolia and the Himalayas of Pakistan. We combined these data with published brown bear sequences from Europe, Asia and North America, as well as other bear species. Our goals were to determine the evolutionary relationships among brown bear populations worldwide, their genetic diversity and their historical demography. Our analyses revealed five major lineages of brown bears based on a filtered set of 684,081 single nucleotide polymorphisms. We found distinct evolutionary lineages of brown bears in the Gobi, Himalayas, northern Mongolia, Europe and North America. The lowest level of genetic diversity and the highest level of inbreeding were found in Pakistan, the Gobi Desert and Central Italy. Furthermore, the effective population size (Ne ) for all brown bears decreased over the last 70,000 years. Our results confirm the genetic distinctiveness and ancient lineage of brown bear subspecies in the Gobi Desert of Mongolia and the Himalayas of Pakistan and highlight their importance for conservation.
Collapse
Affiliation(s)
- Odbayar Tumendemberel
- Haub School of Environment and Natural Resources, University of Wyoming, Laramie, Wyoming, USA
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway
| | - Sarah A Hendricks
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, USA
| | - Paul A Hohenlohe
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Jack Sullivan
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Andreas Zedrosser
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway
| | - Mona Saebø
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway
| | | | - John L Koprowski
- Haub School of Environment and Natural Resources, University of Wyoming, Laramie, Wyoming, USA
| | - Lisette P Waits
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
13
|
Mantelatto FL, Paixão JM, Robles R, Teles JN, Balbino FC. Evidence using morphology, molecules, and biogeography clarifies the taxonomic status of mole crabs of the genus Emerita Scopoli, 1777 (Anomura, Hippidae) and reveals a new species from the western Atlantic. Zookeys 2023; 1161:169-202. [PMID: 37234742 PMCID: PMC10206660 DOI: 10.3897/zookeys.1161.99432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Uncertainties regarding the taxonomic status and biogeographical distribution of some species of the genus Emerita from the western Atlantic led to thorough examination of the subtle morphological differences between two coexistent species (E.brasiliensis Schmitt, 1935 and E.portoricensis Schmitt, 1935) along the Brazilian coast and compare them using two genetic markers. The molecular phylogenetic analysis based on sequences of the 16S rRNA and COI genes showed that individuals identified as E.portoricensis were clustered into two clades: one containing representatives from the Brazilian coast and another containing specimens distributed in Central America. Our molecular-based phylogeny, combined with a detailed morphological analysis, revealed the Brazilian population as a new species, which is described here as Emeritaalmeidai Mantelatto & Balbino, sp. nov. The number of species in the genus Emerita is now raised to 12, with five of them occurring in the western Atlantic, five in the Indo-Pacific, and two in the eastern Pacific.
Collapse
Affiliation(s)
- Fernando L. Mantelatto
- Laboratory of Bioecology and Crustacean Systematics (LBSC), Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP), Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, BrazilUniversity of São PauloRibeirão PretoBrazil
| | - Juliana M. Paixão
- Laboratory of Bioecology and Crustacean Systematics (LBSC), Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP), Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, BrazilUniversity of São PauloRibeirão PretoBrazil
| | - Rafael Robles
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Campeche, Campus V. Predio s/n – Avenida Ing. Humberto Lanz Cárdenas y Fracc. Ecológico Ambiental Siglo XXIII, Colonia Ex Hacienda Kalá, San Francisco de Campeche, Camp., 24085, MexicoUniversidad Autónoma de CampecheCampecheMexico
| | - Jeniffer N. Teles
- Laboratory of Bioecology and Crustacean Systematics (LBSC), Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP), Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, BrazilUniversity of São PauloRibeirão PretoBrazil
| | - Felipe C. Balbino
- Laboratory of Bioecology and Crustacean Systematics (LBSC), Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP), Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, BrazilUniversity of São PauloRibeirão PretoBrazil
| |
Collapse
|
14
|
Segawa T, Yonezawa T, Matsuzaki R, Mori H, Akiyoshi A, Navarro F, Fujita K, Aizen VB, Li Z, Mano S, Takeuchi N. Evolution of snow algae, from cosmopolitans to endemics, revealed by DNA analysis of ancient ice. THE ISME JOURNAL 2023; 17:491-501. [PMID: 36650274 PMCID: PMC10030584 DOI: 10.1038/s41396-023-01359-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
Recent studies of microbial biogeography have revealed the global distribution of cosmopolitans and dispersal of regional endemics, but little is known about how these processes are affected by microbial evolution. Here, we compared DNA sequences from snow/glacier algae found in an 8000-year-old ice from a glacier in central Asia with those from modern snow samples collected at 34 snow samples from globally distributed sites at the poles and mid-latitudes, to determine the evolutionary relationship between cosmopolitan and endemic phylotypes of snow algae. We further applied a coalescent theory-based demographic model to the DNA sequences. We found that the genus Raphidonema (Trebouxiophyceae) was distributed over both poles and mid-latitude regions and was detected in different ice core layers, corresponding to distinct time periods. Our results indicate that the modern cosmopolitan phylotypes belonging to Raphidonema were persistently present long before the last glacial period. Furthermore, endemic phylotypes originated from ancestral cosmopolitan phylotypes, suggesting that modern regional diversity of snow algae in the cryosphere is a product of microevolution. These findings suggest that the cosmopolitans dispersed across the world and then derived new localized endemics, which thus improves our understanding of microbial community formation by microevolution in natural environments.
Collapse
Affiliation(s)
- Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan.
| | - Takahiro Yonezawa
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan.
| | - Ryo Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki, Japan
| | - Hiroshi Mori
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan
| | | | - Francisco Navarro
- Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Koji Fujita
- Graduate School of Environmental Studies, Nagoya University, Aichi, Japan
| | - Vladimir B Aizen
- Department of Earth and Space Science, University of Idaho, Moscow, Idaho, USA
| | - Zhongqin Li
- Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and National Resources/Tianshan Glaciological Station, Chinese Academy of Sciences, Gansu, China
| | - Shuhei Mano
- The Institute of Statistical Mathematics, Tokyo, Japan
| | - Nozomu Takeuchi
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
15
|
Xu WB, Blowes SA, Brambilla V, Chow CFY, Fontrodona-Eslava A, Martins IS, McGlinn D, Moyes F, Sagouis A, Shimadzu H, van Klink R, Magurran AE, Gotelli NJ, McGill BJ, Dornelas M, Chase JM. Regional occupancy increases for widespread species but decreases for narrowly distributed species in metacommunity time series. Nat Commun 2023; 14:1463. [PMID: 36927847 PMCID: PMC10020147 DOI: 10.1038/s41467-023-37127-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
While human activities are known to elicit rapid turnover in species composition through time, the properties of the species that increase or decrease their spatial occupancy underlying this turnover are less clear. Here, we used an extensive dataset of 238 metacommunity time series of multiple taxa spread across the globe to evaluate whether species that are more widespread (large-ranged species) differed in how they changed their site occupancy over the 10-90 years the metacommunities were monitored relative to species that are more narrowly distributed (small-ranged species). We found that on average, large-ranged species tended to increase in occupancy through time, whereas small-ranged species tended to decrease. These relationships were stronger in marine than in terrestrial and freshwater realms. However, in terrestrial regions, the directional changes in occupancy were less extreme in protected areas. Our findings provide evidence for systematic decreases in occupancy of small-ranged species, and that habitat protection could mitigate these losses in the face of environmental change.
Collapse
Affiliation(s)
- Wu-Bing Xu
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Viviana Brambilla
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Cher F Y Chow
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Ada Fontrodona-Eslava
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Inês S Martins
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
| | - Daniel McGlinn
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Alban Sagouis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hideyasu Shimadzu
- Department of Mathematical Sciences, Loughborough University, Leicestershire, UK
- Graduate School of Public Health, Teikyo University, Tokyo, Japan
| | - Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Anne E Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | | | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
- MARE, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Cascais, Portugal
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
16
|
Jarvis GC, White CR, Marshall DJ. Macroevolutionary patterns in marine hermaphroditism. Evolution 2022; 76:3014-3025. [PMID: 36199199 PMCID: PMC10091813 DOI: 10.1111/evo.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 01/22/2023]
Abstract
Most plants and many animals are hermaphroditic; whether the same forces are responsible for hermaphroditism in both groups is unclear. The well-established drivers of hermaphroditism in plants (e.g., seed dispersal potential, pollination mode) have analogues in animals (e.g., larval dispersal potential, fertilization mode), allowing us to test the generality of the proposed drivers of hermaphroditism across both groups. Here, we test these theories for 1153 species of marine invertebrates, from three phyla. Species with either internal fertilization, restricted offspring dispersal, or small body sizes are more likely to be hermaphroditic than species that are external fertilizers, planktonic developers, or larger. Plants and animals show different biogeographical patterns, however: animals are less likely to be hermaphroditic at higher latitudes-the opposite to the trend in plants. Overall, our results suggest that similar forces, namely, competition among offspring or gametes, shape the evolution of hermaphroditism across plants and three invertebrate phyla.
Collapse
Affiliation(s)
- George C. Jarvis
- School of Biological Sciences/Centre for Geometric BiologyMonash UniversityMelbourneVIC 3800Australia
| | - Craig R. White
- School of Biological Sciences/Centre for Geometric BiologyMonash UniversityMelbourneVIC 3800Australia
| | - Dustin J. Marshall
- School of Biological Sciences/Centre for Geometric BiologyMonash UniversityMelbourneVIC 3800Australia
| |
Collapse
|
17
|
Comparing distance-decay parameters: A novel test under pairwise dependence. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Liu Y, Francis RA, Wooster MJ, Grosvenor MJ, Yan S, Roberts G. Systematic Mapping and Review of Landscape Fire Smoke (LFS) Exposure Impacts on Insects. ENVIRONMENTAL ENTOMOLOGY 2022; 51:871-884. [PMID: 36130330 PMCID: PMC9585373 DOI: 10.1093/ee/nvac069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Landscape fire activity is changing in many regions because of climate change. Smoke emissions from landscape fires contain many harmful air pollutants, and beyond the potential hazard posed to human health, these also have ecological impacts. Insects play essential roles in most ecosystems worldwide, and some work suggests they may also be sensitive to smoke exposure. There is therefore a need for a comprehensive review of smoke impacts on insects. We systematically reviewed the scientific literature from 1930 to 2022 to synthesize the current state of knowledge of the impacts of smoke exposure from landscape fires on the development, behavior, and mortality of insects. We found: (1) 42 relevant studies that met our criteria, with 29% focused on the United States of America and 19% on Canada; (2) of these, 40 insect species were discussed, all of which were sensitive to smoke pollution; (3) most of the existing research focuses on how insect behavior responds to landscape fire smoke (LFS); (4) species react differently to smoke exposure, with for example some species being attracted to the smoke (e.g., some beetles) while others are repelled (e.g., some bees). This review consolidates the current state of knowledge on how smoke impacts insects and highlights areas that may need further investigation. This is particularly relevant since smoke impacts on insect communities will likely worsen in some areas due to increasing levels of biomass burning resulting from the joint pressures of climate change, land use change, and more intense land management involving fire.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Geography, King’s College London, Bush House, 40 Aldwych, London, WC2B 4BG, UK
- Leverhulme Centre for Wildfires, Environment and Society, King’s College London, London WC2R 2LS, UK
| | - Robert A Francis
- Department of Geography, King’s College London, Bush House, 40 Aldwych, London, WC2B 4BG, UK
| | - Martin J Wooster
- Department of Geography, King’s College London, Bush House, 40 Aldwych, London, WC2B 4BG, UK
- Leverhulme Centre for Wildfires, Environment and Society, King’s College London, London WC2R 2LS, UK
- NERC National Centre for Earth Observation, King’s College London, London WC2R 2LS, UK
| | - Mark J Grosvenor
- Department of Geography, King’s College London, Bush House, 40 Aldwych, London, WC2B 4BG, UK
- Leverhulme Centre for Wildfires, Environment and Society, King’s College London, London WC2R 2LS, UK
- NERC National Centre for Earth Observation, King’s College London, London WC2R 2LS, UK
| | - Su Yan
- Department of Electrical and Electronic Engineering, Imperial CollegeLondon, London SW7 2BX, UK
| | - Gareth Roberts
- Geography and Environmental Science, University of Southampton, Southampton, UK
| |
Collapse
|
19
|
Alzate A, Onstein RE. Understanding the relationship between dispersal and range size. Ecol Lett 2022; 25:2303-2323. [PMID: 36001639 DOI: 10.1111/ele.14089] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022]
Abstract
The drivers of variability in species range sizes remain an outstanding enigma in ecology. The theoretical expectation of a positive dispersal-range size relationship has received mixed empirical support, despite dispersal being one of the most prominent hypothesised predictors of range size. Here, we synthesised results from 86 studies examining the dispersal-range size relationship for plants and animals in marine, terrestrial and freshwater realms. Overall, our meta-analysis showed that dispersal positively affects range size, but its effect is dependent on the clade and dispersal proxy studied. Moreover, despite potential differences in habitat connectivity, we did not find an effect of realm on the dispersal-range size relationship. Finally, the strength of the dispersal-range size relationship was dependent on latitude, range size metric and the taxonomic breadth of the study clade. Our synthesis emphasizes the importance of developing a mechanistic understanding of the trait to dispersal to range size relationship, considering the complexity of dispersal departure, transfer and settlement, as well as evolutionary components such as time for range expansion, speciation and past geological-environmental dynamics. We, therefore, call for a more integrative view of the dispersal process and its causal relationship with range size.
Collapse
Affiliation(s)
- Adriana Alzate
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Leipzig University, Leipzig, Germany
| | - Renske E Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Leipzig University, Leipzig, Germany.,Naturalis Biodiversity Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Xu R, Chen J, Pan Y, Wang J, Chen L, Ruan H, Wu Y, Xu H, Wang G, Liu H. Genetic Diversity and Population Structure of Spirobolus bungii as Revealed by Mitochondrial DNA Sequences. INSECTS 2022; 13:729. [PMID: 36005354 PMCID: PMC9409931 DOI: 10.3390/insects13080729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Soil macrofauna, such as Spirobolus bungii, are an important component of ecosystems. However, systematic studies of the genetic diversity, population genetic structure, and the potential factors affecting the genetic differentiation of S. bungii are lacking. We performed a population genetic study of 166 individuals from the mountains to the south of the Yangtze River, north of the Yangtze River in Nanjing city, and near Tianjin city, in order to investigate the correlations between geographical distance and genetic diversity. A total of 1182 bp of COX2 and Cytb gene sequences of mitochondrial DNA, and 700 bp of the 18S rRNA gene sequence were analyzed. There were two haplotypes and one variable site in the 18S rRNA gene, and 28 haplotypes and 78 variable sites in the COX2 and Cytb genes. In this study, the 18S rRNA gene was used for species identification, and mtDNA (concatenated sequences with Cytb and COX2) was used for population genetic analysis. Structure cluster analysis indicated that the genetic structures of the different populations of S. bungii tended to be consistent at small geographical scales. Phylogenetic trees revealed that the haplotypes were clearly divided into three branches: the area south of the Yangtze River, the area to the north of the Yangtze River in Nanjing, and the area in Tianjin. Large geographical barriers and long geographical distance significantly blocked gene flow between populations of S. bungii. Our results provide a basic theoretical basis for subsequent studies of millipede taxonomy and population genetic evolution.
Collapse
Affiliation(s)
- Runfeng Xu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Chen
- Key Laboratory for Ecology and Pollution Control of Coastal Wetlands (Environmental Protection, Department of Jiangsu), School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224007, China
| | - Yu Pan
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jiachen Wang
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Chen
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Honghua Ruan
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yongbo Wu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hanmei Xu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Guobing Wang
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyi Liu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
21
|
Behroozian M, Peterson AT, Joharchi MR, Atauchi PJ, Memariani F, Arjmandi AA. Good news for a rare plant: Fine‐resolution distributional predictions and field testing for the critically endangered plant
Dianthus pseudocrinitus
. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Maryam Behroozian
- Department of Botany, Research Center for Plant Science Ferdowsi University of Mashhad Mashhad Iran
| | | | - Mohammad Reza Joharchi
- Department of Botany, Research Center for Plant Science Ferdowsi University of Mashhad Mashhad Iran
| | - P. Joser Atauchi
- Biodiversity Institute, University of Kansas Lawrence Kansas USA
- Instituto para la Conservación de Especies Amenazadas Cusco Peru
- Museo de Historia Natural Cusco (MHNC), Universidad Nacional de San Antonio Abad del Cusco Cusco Peru
| | - Farshid Memariani
- Department of Botany, Research Center for Plant Science Ferdowsi University of Mashhad Mashhad Iran
| | - Ali Asghar Arjmandi
- Quantitative Plant Ecology and Biodiversity Research Laboratory, Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
22
|
Arango A, Pinto-Ledezma J, Rojas-Soto O, Lindsay AM, Mendenhall CD, Villalobos F. Hand-Wing Index as a surrogate for dispersal ability: the case of the Emberizoidea (Aves: Passeriformes) radiation. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Measuring the dispersal ability of birds is particularly challenging and thus researchers have relied on the extended use of morphological proxies as surrogates for such ability. However, few studies have tested the relationship between morphological proxies and other dispersal-related traits. In this study, we test the relationship of the most commonly used morphological proxy for dispersal—the Hand-Wing Index (HWI)—with traits highly associated with dispersal abilities, such as geographic range size, migratory behaviour and migratory distances. We used the Emberizoidea superfamily to evaluate these relationships and measured the HWI of 2520 individuals from 431 species (almost half of all the species in the superfamily). We first estimated the phylogenetic signal of HWI and searched for the best evolutionary model to explain its variation. We then performed PGLS analyses to assess the relationships between HWI and dispersal abilities. Our results showed that HWI has a strong phylogenetic signal and is positively related to dispersal abilities. Our findings support the use of HWI as a viable morphological proxy for dispersal in birds.
Collapse
Affiliation(s)
- Axel Arango
- Red de Biología Evolutiva, Instituto de Ecología, A.C. - INECOL , Xalapa , Mexico
- Programa de Doctorado en Ciencias, Instituto de Ecología, A.C. - INECOL , Xalapa , Mexico
| | - Jesús Pinto-Ledezma
- Departament of Ecology, Evolution & Behavior, University of Minnesota, Minneapolis , MN 55455, USA
| | - Octavio Rojas-Soto
- Red de Biología Evolutiva, Instituto de Ecología, A.C. - INECOL , Xalapa , Mexico
| | - Andrea M Lindsay
- Powdermill Nature Reserve, Carnegie Museum of Natural History , Rector , PA 15677, USA
| | - Chase D Mendenhall
- Section of Birds, Carnegie Museum of Natural History , Pittsburgh , PA 15213, USA
| | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología, A.C. - INECOL , Xalapa , Mexico
| |
Collapse
|
23
|
Hay EM, McGee MD, Chown SL. Geographic range size and speciation in honeyeaters. BMC Ecol Evol 2022; 22:86. [PMID: 35768772 PMCID: PMC9245323 DOI: 10.1186/s12862-022-02041-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Darwin and others proposed that a species' geographic range size positively influences speciation likelihood, with the relationship potentially dependent on the mode of speciation and other contributing factors, including geographic setting and species traits. Several alternative proposals for the influence of range size on speciation rate have also been made (e.g. negative or a unimodal relationship with speciation). To examine Darwin's proposal, we use a range of phylogenetic comparative methods, focusing on a large Australasian bird clade, the honeyeaters (Aves: Meliphagidae). RESULTS We consider the influence of range size, shape, and position (latitudinal and longitudinal midpoints, island or continental species), and consider two traits known to influence range size: dispersal ability and body size. Applying several analytical approaches, including phylogenetic Bayesian path analysis, spatiophylogenetic models, and state-dependent speciation and extinction models, we find support for both the positive relationship between range size and speciation rate and the influence of mode of speciation. CONCLUSIONS Honeyeater speciation rate differs considerably between islands and the continental setting across the clade's distribution, with range size contributing positively in the continental setting, while dispersal ability influences speciation regardless of setting. These outcomes support Darwin's original proposal for a positive relationship between range size and speciation likelihood, while extending the evidence for the contribution of dispersal ability to speciation.
Collapse
Affiliation(s)
- Eleanor M Hay
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
| | - Matthew D McGee
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Steven L Chown
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| |
Collapse
|
24
|
Manzitto‐Tripp EA, Lendemer JC, McCain CM. Most lichens are rare, and degree of rarity is mediated by lichen traits and biotic partners. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Erin A. Manzitto‐Tripp
- Department of Ecology & Evolutionary Biology University of Colorado Boulder Colorado USA
- Museum of Natural History University of Colorado Boulder Colorado USA
| | - James C. Lendemer
- Institute of Systematic Botany The New York Botanical Garden Bronx New York USA
- Biology PhD Program, Graduate Center City University of New York New York New York USA
| | - Christy M. McCain
- Department of Ecology & Evolutionary Biology University of Colorado Boulder Colorado USA
- Museum of Natural History University of Colorado Boulder Colorado USA
| |
Collapse
|
25
|
Renner S, Périco E, Dalzochio MS, Sahlén G. The balance of common vs. rare: a study of dragonfly (Insecta: Odonata) assemblages in the Brazilian Pampa biome. NEOTROPICAL BIODIVERSITY 2022. [DOI: 10.1080/23766808.2022.2071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Samuel Renner
- Universidade do Vale do Taquari, Laboratório de Ecologia e Evolução, Univates, Brazil
| | - Eduardo Périco
- Universidade do Vale do Taquari, Laboratório de Ecologia e Evolução, Univates, Brazil
| | | | - Göran Sahlén
- Ecology and Environmental Science, RLAS, Halmstad University, Halmstad, Sweden
| |
Collapse
|
26
|
Saenz‐Agudelo P, Peluso L, Nespolo R, Broitman BR, Haye PA, Lardies MA. Population genomic analyses reveal hybridization and marked differences in genetic structure of
Scurria
limpet sister species with parapatric distributions across the South Eastern Pacific. Ecol Evol 2022; 12:e8888. [PMID: 35571762 PMCID: PMC9078047 DOI: 10.1002/ece3.8888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
- ANID‐ Millennium Science Initiative Nucleus (NUTME) Las Cruces Chile
| | - Lívia Peluso
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
- Doctorado en Ciencias Mención Ecología y Evolución Escuela de Graduados Facultad de Ciencias Universidad Austral de Chile Valdivia Chile
| | - Roberto Nespolo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
- ANID‐ Millennium Science Initiative Nucleus (LiLi) Valdivia Chile
- Center for Applied Ecology and Sustainability (CAPES) Santiago Chile
- Millennium Institute for Integrative Biology (iBio) Santiago Chile
| | - Bernardo R. Broitman
- Departamento de Ciencias Facultad de Artes Liberales Universidad Adolfo Ibañez Santiago Chile
- ANID‐ Millennium Science Initiative Nucleus UPWELL Santiago Chile
- Instituto Milenio en Socio‐Ecología Costera (SECOS) Santiago Chile
| | - Pilar A. Haye
- Instituto Milenio en Socio‐Ecología Costera (SECOS) Santiago Chile
- Departamento de Biología Marina Universidad Católica del Norte Coquimbo Chile
| | - Marco A. Lardies
- Departamento de Ciencias Facultad de Artes Liberales Universidad Adolfo Ibañez Santiago Chile
- Instituto Milenio en Socio‐Ecología Costera (SECOS) Santiago Chile
| |
Collapse
|
27
|
Tekwa EW, Watson JR, Pinsky ML. Body size and food-web interactions mediate species range shifts under warming. Proc Biol Sci 2022; 289:20212755. [PMID: 35414233 PMCID: PMC9006017 DOI: 10.1098/rspb.2021.2755] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Species ranges are shifting in response to climate change, but most predictions disregard food-web interactions and, in particular, if and how such interactions change through time. Predator-prey interactions could speed up species range shifts through enemy release or create lags through biotic resistance. Here, we developed a spatially explicit model of interacting species, each with a thermal niche and embedded in a size-structured food-web across a temperature gradient that was then exposed to warming. We also created counterfactual single species models to contrast and highlight the effect of trophic interactions on range shifts. We found that dynamic trophic interactions hampered species range shifts across 450 simulated food-webs with up to 200 species each over 200 years of warming. All species experiencing dynamic trophic interactions shifted more slowly than single-species models would predict. In addition, the trailing edges of larger bodied species ranges shifted especially slowly because of ecological subsidies from small shifting prey. Trophic interactions also reduced the numbers of locally novel species, novel interactions and productive species, thus maintaining historical community compositions for longer. Current forecasts ignoring dynamic food-web interactions and allometry may overestimate species' tendency to track climate change.
Collapse
Affiliation(s)
- E W Tekwa
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - James R Watson
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
28
|
What Drives Caterpillar Guilds on a Tree: Enemy Pressure, Leaf or Tree Growth, Genetic Traits, or Phylogenetic Neighbourhood? INSECTS 2022; 13:insects13040367. [PMID: 35447809 PMCID: PMC9029432 DOI: 10.3390/insects13040367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Communities of herbivorous insects on individual host trees may be driven by processes ranging from ongoing development via recent microevolution to ancient phylogeny, but the relative importance of these processes and whether they operate via trophic interactions or herbivore movement remains unknown. We determined the leaf phenology, trunk diameter, genotype, and neighbourhood of sessile oak trees (Quercus petraea), and sampled their caterpillar communities. We found that leaf development across a time period of days related to free-living caterpillars, which disappeared with leaf age. Tree growth across decades is related to increased parasitism rate and diversity of herbivores. The microevolution of oak trees across millennia is related to the abundance of leaf-mining casebearers, which is higher on more homozygous oaks. However, oak genome size was not important for any guild. In contrast to most previous studies, the phylogenetic distance of oaks from their neighbours measured in millions of years was associated with higher abundances of entire caterpillar guilds. Furthermore, on trees surrounded by only distantly related tree species, parasitism tended to be lower. Lower parasitism, in turn, was associated with higher abundances of codominant caterpillar species. Neighbourhoods and traits of trees were also related to community composition and diversity, but not to the average wingspans or specialization of species, consistent with the assembly of herbivore communities being driven by leaf traits and parasitism pressure on trees rather than by insect movement among trees. However, movement in rarer species may be responsible for concentration effects in more phylogenetically distant neighbourhoods. Overall, we suggest that the assembly of insects on a tree is mostly driven by trophic interactions controlled by a mosaic of processes playing out over very different time scales. Comparisons with the literature further suggest that, for oak trees, the consequences of growing amongst distantly related tree species may depend on factors such as geographic region and tree age.
Collapse
|
29
|
Lörz A, Oldeland J, Kaiser S. Niche breadth and biodiversity change derived from marine Amphipoda species off Iceland. Ecol Evol 2022; 12:e8802. [PMID: 35414894 PMCID: PMC8986549 DOI: 10.1002/ece3.8802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the ecological requirements and thresholds of individual species is crucial to better predict potential outcomes of climate change on species distribution. In particular, species optima and lower and upper limits along resource gradients require attention. Based on Huisman-Olff-Fresco (HOF) models, we determined species-specific responses along gradients of nine environmental parameters including depth in order to estimate niche attributes of 30 deep-sea benthic amphipods occurring around Iceland. We, furthermore, examined the relationships between niche breadth, occupancy, and geographic range assuming that species with a wider niche are spatially more widely dispersed and vice versa. Overall, our results reveal that species react very differently to environmental gradients, which is independent of the family affiliation of the respective species. We could infer a strong relationship between occupancy and geographic range and also relate this to differences in niche breadth; that is specialist species with a narrow niche had a more limited distribution and may thus be more threatened by changing environmental conditions than generalist species, which are more widespread. Given the preponderance of rare species in the deep sea, this implies that many species could be at risk. However, this must be carefully weighed against geographical data gaps in this area, given that many deep-sea areas are severely undersampled and the true distribution of most species is unknown. After all, our results underline that an accurate taxonomic classification is of crucial importance, without which ecological niche properties cannot be determined and which is hence fundamental for the assessment and understanding of changes in biodiversity in the face of increasing human perturbations.
Collapse
Affiliation(s)
- Anne‐Nina Lörz
- Institute for Marine Ecosystems and Fisheries ScienceCenter for Earth System Research and Sustainability (CEN)Universität HamburgHamburgGermany
| | | | - Stefanie Kaiser
- Department of Invertebrate Zoology and HydrobiologyFaculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
- INES Integrated Environmental Solutions UGWilhelmshavenGermany
| |
Collapse
|
30
|
Lin H, Dai C, Yu H, Tu J, Yu J, He J, Jiang H. Historical connectivity and environmental filtering jointly determine the freshwater fish assemblages on Taiwan and Hainan Islands of China. Curr Zool 2022; 69:12-20. [PMID: 36974143 PMCID: PMC10039183 DOI: 10.1093/cz/zoac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The biotas of Taiwan and Hainan Islands are of continental origin, but the manner with which historical and ecological factors shaped these insular species is still unclear. Here, we used freshwater fish as a model to fill this gap by quantifying the phylogenetic structure of the insular faunas and disentangling the relative contribution of potential drivers. Firstly, we used clustering and ordination analyses to identify regional species pools. To test whether the insular freshwater fish faunas were phylogenetically clustered or overdispersed, we calculated the net relatedness index (NRI) and the nearest taxon index (NTI). Finally, we implemented logistic regressions to disentangle the relative importance of species attributes (i.e. maximum body length, climatic niche dissimilarity, and diversification) and historical connectivity in explaining the insular faunas. Our results showed that the most possible species pools of Taiwan are Zhejiang and Fujian provinces, and those of Hainan are Guangdong and Guangxi provinces. These insular faunas showed random phylogenetic structures in terms of NRI values. According to the NTI values, however, the Taiwanese fauna displayed more phylogenetic clustering, while the Hainanese one was more overdispersed. Both the standard and phylogenetic logistic regressions identified historical connectivity and climatic niche dissimilarity as the two top explanatory variables for species assemblages on these islands. Our reconstruction of the paleo-connected drainage basins provides insight into how historical processes and ecological factors interact to shape the freshwater fish fauna of the East Asian islands.
Collapse
Affiliation(s)
- Haoxian Lin
- Spatial Ecology Laboraty, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chao Dai
- Spatial Ecology Laboraty, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hongyin Yu
- Spatial Ecology Laboraty, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiahao Tu
- Spatial Ecology Laboraty, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiehua Yu
- Spatial Ecology Laboraty, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiekun He
- Spatial Ecology Laboraty, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Haisheng Jiang
- Spatial Ecology Laboraty, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
31
|
Korábek O, Glaubrecht M, Hausdorf B, Neiber M. Phylogeny of the land snail
Levantina
reveals long‐distance dispersal in the Middle East. ZOOL SCR 2022. [DOI: 10.1111/zsc.12526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ondřej Korábek
- Department of Ecology Faculty of Science Charles University Praha 2 Czechia
- Leibniz Institute for the Analysis of Biodiversity Change (LIB) Zoological Museum Hamburg Germany
| | - Matthias Glaubrecht
- Leibniz Institute for the Analysis of Biodiversity Change (LIB) Zoological Museum Hamburg Germany
- Department Biodiversity of Animals Universität Hamburg Hamburg Germany
| | - Bernhard Hausdorf
- Leibniz Institute for the Analysis of Biodiversity Change (LIB) Zoological Museum Hamburg Germany
- Department Biodiversity of Animals Universität Hamburg Hamburg Germany
| | - Marco T. Neiber
- Leibniz Institute for the Analysis of Biodiversity Change (LIB) Zoological Museum Hamburg Germany
- Department Biodiversity of Animals Universität Hamburg Hamburg Germany
| |
Collapse
|
32
|
Nunes LA, Raxworthy CJ, Pearson RG. Evidence for ecological processes driving speciation among endemic lizards of Madagascar. Evolution 2021; 76:58-69. [PMID: 34862965 DOI: 10.1111/evo.14409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Although genetic patterns produced by population isolation during speciation are well documented, the biogeographic and ecological processes that trigger speciation remain poorly understood. Alternative hypotheses for the biogeography and ecology of speciation include geographic isolation combined with niche conservation (soft allopatry) or parapatric distribution on an environmental gradient with niche divergence (ecological speciation). Here, we use species' distributions, environmental data, and two null models (the Random Translation and Rotation and the Background Similarity Test) to test these alternative hypotheses among 28 sister pairs of microendemic lizards in Madagascar. Our results demonstrate strong bimodal peaks along a niche divergence-conservation spectrum, with at least 25 out of 28 sister pairs exhibiting either niche conservation or divergence, and the remaining pairs showing weak ecological signals. Yet despite these significant results, we do not find strong associations of niche conservation with allopatric distributions or niche divergence with parapatric distributions. Our findings thus provide strong evidence of a role for ecological processes driving speciation, rather than the classic expectation of speciation through geographic isolation, but demonstrate that the link between ecological speciation and parapatry is complex and requires further analysis of a broader taxonomic sample to fully resolve.
Collapse
Affiliation(s)
- Laura A Nunes
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom.,Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Christopher J Raxworthy
- Department of Herpetology, The American Museum of Natural History, New York, New York, 10024
| | - Richard G Pearson
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
33
|
Cheng BS, Blumenthal J, Chang AL, Barley J, Ferner MC, Nielsen KJ, Ruiz GM, Zabin CJ. Severe introduced predator impacts despite attempted functional eradication. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Thompson HL, Caven AJ, Hayes MA, Lacy AE. Natal dispersal of Whooping Cranes in the reintroduced Eastern Migratory Population. Ecol Evol 2021; 11:12630-12638. [PMID: 34594526 PMCID: PMC8462167 DOI: 10.1002/ece3.8007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/05/2022] Open
Abstract
Natal dispersal is a key demographic process for evaluating the population rate of change, especially for long-lived, highly mobile species. This process is largely unknown for reintroduced populations of endangered avian species. We evaluated natal dispersal distances (NDD) for male and female Whooping Cranes (Grus americana) introduced into two locations in central Wisconsin (Necedah National Wildlife Refuge, or NNWR, and the Eastern Rectangle, or ER) using a series of demographic, spatial, and life history-related covariates. Data were analyzed using gamma regression models with a log-link function and compared using Akaike information criterion corrected for small sample sizes (AICc). Whooping Cranes released in the ER dispersed 261% further than those released into NNWR, dispersal distance increased 4% for each additional nesting pair, decreased about 24% for males as compared to females, increased by 21% for inexperienced pairs, and decreased by 3% for each additional year of age. Natal philopatry, habitat availability or suitability, and competition for breeding territories may be influencing observed patterns of NDD. Whooping Cranes released in the ER may exhibit longer NDD due to fragmented habitat or conspecific attraction to established breeding pairs at NNWR. Additionally, sex-biased dispersal may be increasing in this population as there are more individuals from different natal sites forming breeding pairs. As the population grows and continues to disperse, the drivers of NDD patterns may change based on individual or population behavior.
Collapse
Affiliation(s)
| | - Andrew J. Caven
- Platte River Whooping Crane Maintenance TrustWood RiverNebraskaUSA
| | | | - Anne E. Lacy
- International Crane FoundationBarabooWisconsinUSA
| |
Collapse
|
35
|
Hooks AP, Burgess SC. Behavioral Variability of Hatchlings Modifies Dispersal Potential in Crown Conch ( Melongena corona): Why Do Larvae Crawl Away but Sometimes Swim? THE BIOLOGICAL BULLETIN 2021; 241:92-104. [PMID: 34436961 DOI: 10.1086/712873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractThe diversity and consequences of development in marine invertebrates have, for a long time, provided the opportunity to understand different evolutionary solutions to living in variable environments. However, discrete classifications of development can impede a full understanding of adaptation to variable environments when behavioral, morphological, or physiological flexibility and variation exist within traditionally defined modes of development. We report here novel behavioral variability in hatchlings of a marine gastropod, the Florida crown conch (Melongena corona), that has broad significance for understanding the correlated evolution of development, dispersal, and reproductive strategies in variable environments. All hatchlings crawl away from egg capsules after emergence as larval pediveligers. Some subsequently swim for a brief period (seconds to minutes) before crawling again. From detailed observations of 120 individuals over 30 days, we observed 28 (23.3%) hatchlings swimming at least once (8%-50% per maternal brood). The propensity to swim was unrelated to time spent encapsulated or size at hatching and lasted for 22 days. We manipulated hypothesized environmental cues and found that the proportion of hatchlings that swam was highest in the absence of cues related to habitat or juvenile food and lowest when only habitat cues were present. The relative growth rate of hatchlings was highest when habitats contained a putative juvenile food source. About 44% of hatchlings were competent to metamorphose at emergence but did not metamorphose at this time in the lab or the field. The rate of metamorphosis increased with age and depended on the presence of unknown cues in the field. Crawl-away larvae with prolonged swimming ability may be an adaptation to balance the unpredictable risks of exclusively benthic or pelagic development and to allow the option to disperse to higher-quality habitat.
Collapse
|
36
|
Grzywacz B, Skórka P. Genome size versus geographic range size in birds. PeerJ 2021; 9:e10868. [PMID: 33614292 PMCID: PMC7881720 DOI: 10.7717/peerj.10868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/10/2021] [Indexed: 11/20/2022] Open
Abstract
Why do some species occur in small, restricted areas, while others are distributed globally? Environmental heterogeneity increases with area and so does the number of species. Hence, diverse biotic and abiotic conditions across large ranges may lead to specific adaptations that are often linked to a species' genome size and chromosome number. Therefore, a positive association between genome size and geographic range is anticipated. Moreover, high cognitive ability in organisms would be favored by natural selection to cope with the dynamic conditions within large geographic ranges. Here, we tested these hypotheses in birds-the most mobile terrestrial vertebrates-and accounted for the effects of various confounding variables, such as body mass, relative brain mass, and geographic latitude. Using phylogenetic generalized least squares and phylogenetic confirmatory path analysis, we demonstrated that range size is positively associated with bird genome size but probably not with chromosome number. Moreover, relative brain mass had no effect on range size, whereas body mass had a possible weak and negative effect, and range size was larger at higher geographic latitudes. However, our models did not fully explain the overall variation in range size. Hence, natural selection may impose larger genomes in birds with larger geographic ranges, although there may be additional explanations for this phenomenon.
Collapse
Affiliation(s)
- Beata Grzywacz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Skórka
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
37
|
Hodel RGJ, Massatti R, Bishop SGD, Knowles LL. Testing which axes of species differentiation underlie covariance of phylogeographic similarity among montane sedge species. Evolution 2021; 75:349-364. [PMID: 33386752 DOI: 10.1111/evo.14159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/02/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022]
Abstract
Co-distributed species may exhibit similar phylogeographic patterns due to shared environmental factors or discordant patterns attributed to the influence of species-specific traits. Although either concordant or discordant patterns could occur due to chance, stark differences in key traits (e.g., dispersal ability) may readily explain differences between species. Multiple species' attributes may affect genetic patterns, and it is difficult to isolate the contribution of each. Here we compare the relative importance of two attributes, range size, and niche breadth, in shaping the spatial structure of genetic variation in four sedge species (genus Carex) from the Rocky Mountains. Within two pairs of co-distributed species, one species exhibits narrow niche breadth, while the other species has broad niche breadth. Furthermore, one pair of co-distributed species has a large geographical distribution, while the other has a small distribution. The four species represent a natural experiment to tease apart how these attributes (i.e., range size and niche breadth) affect phylogeographic patterns. Investigations of genetic variation and structure revealed that range size, but not niche breadth, is related to spatial genetic covariation across species of montane sedges. Our study highlights how isolating key attributes across multiple species can inform their impact on processes driving intraspecific differentiation.
Collapse
Affiliation(s)
- Richard G J Hodel
- Department of Ecology and Evolutionary Biology, Biological Sciences Building, University of Michigan, Ann Arbor, Michigan, 48109.,Present Address: Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC, 20013
| | - Rob Massatti
- U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, 86001
| | - Sasha G D Bishop
- Department of Ecology and Evolutionary Biology, Biological Sciences Building, University of Michigan, Ann Arbor, Michigan, 48109
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, Biological Sciences Building, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
38
|
Longo GC, Lam L, Basnett B, Samhouri J, Hamilton S, Andrews K, Williams G, Goetz G, McClure M, Nichols KM. Strong population differentiation in lingcod ( Ophiodon elongatus) is driven by a small portion of the genome. Evol Appl 2020; 13:2536-2554. [PMID: 33294007 PMCID: PMC7691466 DOI: 10.1111/eva.13037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Delimiting intraspecific genetic variation in harvested species is crucial to the assessment of population status for natural resource management and conservation purposes. Here, we evaluated genetic population structure in lingcod (Ophiodon elongatus), a commercially and recreationally important fishery species along the west coast of North America. We used 16,749 restriction site-associated DNA sequencing (RADseq) markers, in 611 individuals collected from across the bulk of the species range from Southeast Alaska to Baja California, Mexico. In contrast to previous population genetic work on this species, we found strong evidence for two distinct genetic clusters. These groups separated latitudinally with a break near Point Reyes off Northern California, and there was a high frequency of admixed individuals in close proximity to the break. F-statistics corroborate this genetic break between northern and southern sampling sites, although most loci are characterized by low FST values, suggesting high gene flow throughout most of the genome. Outlier analyses identified 182 loci putatively under divergent selection, most of which mapped to a single genomic region. When individuals were grouped by cluster assignment (northern, southern, and admixed), 71 loci were fixed between the northern and southern cluster, all of which were identified in the outlier scans. All individuals identified as admixed exhibited near 50:50 assignment to northern and southern clusters and were heterozygous for most fixed loci. Alignments of RADseq loci to a draft lingcod genome assembly and three other teleost genomes with chromosome-level assemblies suggest that outlier and fixed loci are concentrated on a single chromosome. Similar genomic patterns have been attributed to chromosomal inversions in diverse taxonomic groups. Regardless of the evolutionary mechanism, these results represent novel observations of genetic structure in lingcod and designate clear evolutionary units that could be used to inform fisheries management.
Collapse
Affiliation(s)
- Gary C. Longo
- NRC Research Associateship ProgramNorthwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| | - Laurel Lam
- Pacific States Marine Fisheries CommissionUnder contract to Northwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
- Moss Landing Marine LaboratoriesMoss LandingCAUSA
| | | | - Jameal Samhouri
- Conservation Biology DivisionNorthwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| | | | - Kelly Andrews
- Conservation Biology DivisionNorthwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| | - Greg Williams
- Pacific States Marine Fisheries CommissionUnder contract to Northwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| | - Giles Goetz
- UWJISAOUnder contract to Northwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| | - Michelle McClure
- Fisheries Resource Analysis and Monitoring DivisionNorthwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
- Pacific Marine Environmental LaboratoryNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| | - Krista M. Nichols
- Conservation Biology DivisionNorthwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| |
Collapse
|
39
|
Capurucho JMG, Ashley MV, Tsuru BR, Cooper JC, Bates JM. Dispersal ability correlates with range size in Amazonian habitat-restricted birds. Proc Biol Sci 2020; 287:20201450. [PMID: 33203330 DOI: 10.1098/rspb.2020.1450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding how species attain their geographical distributions and identifying traits correlated with range size are important objectives in biogeography, evolutionary biology and biodiversity conservation. Despite much effort, results have been varied and general trends have been slow to emerge. Studying species pools that occupy specific habitats, rather than clades or large groupings of species occupying diverse habitats, may better identify ranges size correlates and be more informative for conservation programmes in a rapidly changing world. We evaluated correlations between a set of organismal traits and range size in bird species from Amazonian white-sand ecosystems. We assessed if results are consistent when using different data sources for phylogenetic and range hypotheses. We found that dispersal ability, as measured by the hand-wing index, was correlated with range size in both white-sand birds and their non-white-sand sister taxa. White-sand birds had smaller ranges on average than their sister taxa. The results were similar and robust to the different data sources. Our results suggest that the patchiness of white-sand ecosystems limits species' ability to reach new habitat islands and establish new populations.
Collapse
Affiliation(s)
- João M G Capurucho
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607, USA.,Life Sciences Section, Negaunee Integrative Research Center, The Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
| | - Mary V Ashley
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607, USA
| | - Brian R Tsuru
- Life Sciences Section, Negaunee Integrative Research Center, The Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
| | - Jacob C Cooper
- Life Sciences Section, Negaunee Integrative Research Center, The Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA.,Committee on Evolutionary Biology, The University of Chicago, 1025 E 57th Street, Chicago, IL 60637, USA
| | - John M Bates
- Life Sciences Section, Negaunee Integrative Research Center, The Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
40
|
Darroch SAF, Casey MM, Antell GS, Sweeney A, Saupe EE. High Preservation Potential of Paleogeographic Range Size Distributions in Deep Time. Am Nat 2020; 196:454-471. [PMID: 32970459 DOI: 10.1086/710176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractReconstructing geographic range sizes from fossil data is a crucial tool in paleoecology, elucidating macroecological and macroevolutionary processes. Studies examining links between range size and extinction risk may also offer a predictive tool for identifying species most vulnerable in the "sixth mass extinction." However, the extent to which paleogeographic ranges can be recorded reliably in the fossil record is unknown. We perform simulation-based extinction experiments to examine (1) the fidelity of paleogeographic range size preservation in deep time, (2) the relative performance of different methods for reconstructing range size, and (3) the reliability of detecting patterns of extinction "selectivity" on range size. Our results suggest both that relative paleogeographic range size can be consistently reconstructed and that selectivity patterns on range size can be preserved under many extinction intensities, even when sedimentary rocks are scarce. By identifying patterns of selectivity across Earth's history, paleontologists can thus augment neontological work that aims to predict and prevent extinctions of living species. Last, we find that introducing "false extinctions" in the fossil record can produce spurious range-selectivity signals. Errors in the temporal ranges of species may pose a larger barrier to reconstructing range size-extinction risk signals than the spatial distribution of fossiliferous sediments.
Collapse
|
41
|
Behroozian M, Ejtehadi H, Memariani F, Pierce S, Mesdaghi M. Are endemic species necessarily ecological specialists? Functional variability and niche differentiation of two threatened Dianthus species in the montane steppes of northeastern Iran. Sci Rep 2020; 10:11774. [PMID: 32678159 PMCID: PMC7366929 DOI: 10.1038/s41598-020-68618-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/25/2020] [Indexed: 11/09/2022] Open
Abstract
Endemic species are believed to converge on narrow ranges of traits, with rarity reflecting adaptation to specific environmental regimes. We hypothesized that endemism is characterized by limited trait variability and environmental tolerances in two Dianthus species (Dianthus pseudocrinitus and Dianthus polylepis) endemic to the montane steppes of northeastern Iran. We measured leaf functional traits and calculated Grime's competitor/stress-tolerator/ruderal (CSR) adaptive strategies for these and co-occurring species in seventy-five 25-m2 quadrats at 15 sites, also measuring a range of edaphic, climatic, and topographic parameters. While plant communities converged on the stress-tolerator strategy, D. pseudocrinitus exhibited functional divergence from S- to R-selected (C:S:R = 12.0:7.2:80.8% to 6.8:82.3:10.9%). Canonical correspondence analysis, in concert with Pearson's correlation coefficients, suggested the strongest associations with elevation, annual temperature, precipitation seasonality, and soil fertility. Indeed, variance (s2) in R- and S-values for D. pseudocrinitus at two sites was exceptionally high, refuting the hypothesis of rarity via specialization. Rarity, in this case, is probably related to recent speciation by polyploidy (neoendemism) and dispersal limitation. Dianthus polylepis, in contrast, converged towards stress-tolerance. 'Endemism' is not synonymous with 'incapable', and polyploid neoendemics promise to be particularly responsive to conservation.
Collapse
Affiliation(s)
- Maryam Behroozian
- Quantitative Plant Ecology and Biodiversity Research Laboratory, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Ejtehadi
- Quantitative Plant Ecology and Biodiversity Research Laboratory, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshid Memariani
- Department of Botany, Research Center for Plant Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via G. Celoria 2, 20133 Milan, Italy
| | - Mansour Mesdaghi
- Department of Range and Watershed Management, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
42
|
Starting the stowaway pathway: the role of dispersal behavior in the invasion success of low-mobile marine species. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02285-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat Commun 2020; 11:2463. [PMID: 32424113 PMCID: PMC7235233 DOI: 10.1038/s41467-020-16313-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
An organism’s ability to disperse influences many fundamental processes, from speciation and geographical range expansion to community assembly. However, the patterns and underlying drivers of variation in dispersal across species remain unclear, partly because standardised estimates of dispersal ability are rarely available. Here we present a global dataset of avian hand-wing index (HWI), an estimate of wing shape widely adopted as a proxy for dispersal ability in birds. We show that HWI is correlated with geography and ecology across 10,338 (>99%) species, increasing at higher latitudes and with migration, and decreasing with territoriality. After controlling for these effects, the strongest predictor of HWI is temperature variability (seasonality), with secondary effects of diet and habitat type. Finally, we also show that HWI is a strong predictor of geographical range size. Our analyses reveal a prominent latitudinal gradient in HWI shaped by a combination of environmental and behavioural factors, and also provide a global index of avian dispersal ability for use in community ecology, macroecology, and macroevolution. In birds, the hand-wing index is a morphological trait that can be used as a proxy for flight efficiency. Here the authors examine variation of hand-wing index in over 10,000 bird species, finding that it is higher in migratory and non-territorial species, and lower in the tropics.
Collapse
|
44
|
Sheth SN, Morueta-Holme N, Angert AL. Determinants of geographic range size in plants. THE NEW PHYTOLOGIST 2020; 226:650-665. [PMID: 31901139 DOI: 10.1111/nph.16406] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Geographic range size has long fascinated ecologists and evolutionary biologists, yet our understanding of the factors that cause variation in range size among species and across space remains limited. Not only does geographic range size inform decisions about the conservation and management of rare and nonindigenous species due to its relationship with extinction risk, rarity, and invasiveness, but it also provides insights into fundamental processes such as dispersal and adaptation. There are several features unique to plants (e.g. polyploidy, mating system, sessile habit) that may lead to distinct mechanisms explaining variation in range size. Here, we highlight key studies testing intrinsic and extrinsic hypotheses about geographic range size under contrasting scenarios where species' ranges are static or change over time. We then present results from a meta-analysis of the relative importance of commonly hypothesized determinants of range size in plants. We show that our ability to infer the relative importance of these determinants is limited, particularly for dispersal ability, mating system, ploidy, and environmental heterogeneity. We highlight avenues for future research that merge approaches from macroecology and evolutionary ecology to better understand how adaptation and dispersal interact to facilitate niche evolution and range expansion.
Collapse
Affiliation(s)
- Seema Nayan Sheth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Naia Morueta-Holme
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Amy L Angert
- Departments of Botany and Zoology and Biodiversity Research Centre, University of British Columbia, 3520-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
45
|
Daru BH, Farooq H, Antonelli A, Faurby S. Endemism patterns are scale dependent. Nat Commun 2020; 11:2115. [PMID: 32355257 PMCID: PMC7192928 DOI: 10.1038/s41467-020-15921-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/03/2020] [Indexed: 11/17/2022] Open
Abstract
Areas of endemism are important in biogeography because they capture facets of biodiversity not represented elsewhere. However, the scales at which they are relevant to research and conservation are poorly analysed. Here, we calculate weighted endemism (WE) and phylogenetic endemism (PE) separately for all birds and amphibians across the globe. We show that scale dependence is widespread for both indices and manifests across grain sizes, spatial extents and taxonomic treatments. Variations in taxonomic opinions-whether species are treated by systematic 'lumping' or 'splitting'-can profoundly affect the allocation of WE hotspots. Global patterns of PE can provide insights into complex evolutionary processes but this congruence is lost at the continental to country extents. These findings are explained by environmental heterogeneity at coarser grains, and to a far lesser extent at finer resolutions. Regardless of scale, we find widespread deficits of protection for endemism hotspots. Our study presents a framework for assessing areas for conservation that are robust to assumptions on taxonomy, spatial grain and extent.
Collapse
Affiliation(s)
- Barnabas H Daru
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, 78412, TX, USA.
| | - Harith Farooq
- Department of Biological and Environmental Sciences, University of Gothenburg, SE 405 30, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE 40530, Gothenburg, Sweden
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
- Faculty of Natural Sciences at Lúrio University, Cabo Delgado, Mozambique
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, SE 405 30, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE 40530, Gothenburg, Sweden
- Royal Botanic Gardens, Kew, TW9 3AE, Richmond, Surrey, UK
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, SE 405 30, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE 40530, Gothenburg, Sweden
| |
Collapse
|
46
|
Peixoto MA, Guedes TB, Silva ETD, Feio RN, Romano PSR. Biogeographic tools help to assess the effectiveness of protected areas for the conservation of anurans in the Mantiqueira mountain range, Southeastern Brazil. J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2020.125799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Mismatches between demographic niches and geographic distributions are strongest in poorly dispersed and highly persistent plant species. Proc Natl Acad Sci U S A 2020; 117:3663-3669. [PMID: 32029599 PMCID: PMC7035498 DOI: 10.1073/pnas.1908684117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Forecasts of global change impacts on biodiversity often assume that the current geographical distributions of species match their ecological niches. Here we examine this assumption using an extensive dataset of large-scale variation in demographic rates that enables us to quantify demography-based ecological niches of 26 plant species. Contrasting these niches with the species’ geographic distributions reveals that niche–distribution mismatches can be large and depend on key life-history traits: poorly dispersed species are absent from suitable sites, and species with high persistence ability are present in sites that are currently unsuitable for them. Such niche–distribution mismatches need to be accounted for to improve forecasts of biodiversity dynamics under environmental change. The ecological niche of a species describes the variation in population growth rates along environmental gradients that drives geographic range dynamics. Niches are thus central for understanding and forecasting species’ geographic distributions. However, theory predicts that migration limitation, source–sink dynamics, and time-lagged local extinction can cause mismatches between niches and geographic distributions. It is still unclear how relevant these niche–distribution mismatches are for biodiversity dynamics and how they depend on species life-history traits. This is mainly due to a lack of the comprehensive, range-wide demographic data needed to directly infer ecological niches for multiple species. Here we quantify niches from extensive demographic measurements along environmental gradients across the geographic ranges of 26 plant species (Proteaceae; South Africa). We then test whether life history explains variation in species’ niches and niche–distribution mismatches. Niches are generally wider for species with high seed dispersal or persistence abilities. Life-history traits also explain the considerable interspecific variation in niche–distribution mismatches: poorer dispersers are absent from larger parts of their potential geographic ranges, whereas species with higher persistence ability more frequently occupy environments outside their ecological niche. Our study thus identifies major demographic and functional determinants of species’ niches and geographic distributions. It highlights that the inference of ecological niches from geographical distributions is most problematic for poorly dispersed and highly persistent species. We conclude that the direct quantification of ecological niches from demographic responses to environmental variation is a crucial step toward a better predictive understanding of biodiversity dynamics under environmental change.
Collapse
|
48
|
Mountains as Islands: Species Delimitation and Evolutionary History of the Ant-Loving Beetle Genus Panabachia (Coleoptera, Staphylinidae) from the Northern Andes. INSECTS 2020; 11:insects11010064. [PMID: 31968550 PMCID: PMC7023032 DOI: 10.3390/insects11010064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022]
Abstract
The ant-loving beetle genus Panabachia Park 1942 is a poorly studied beetle lineage from the new world tropics. We recently collected Panabachia from several previously unrecorded locations in the páramo biome of the high Ecuadorian Andes, with males exhibiting great morphological variation in the distribution of the foveae and depressions in the pronotum, as well as aspects of the male genitalia. Here, we employ phylogenetic and species delimitation methods with mitochondrial (COI) and nuclear protein-coding (wingless) gene sequences to examine the concordance of morphological characters and geography with hypothesized species boundaries. Three methods of species delimitation (bPTP, GMYC and Stacey) were used to estimate the number of species, and divergence times between putative species using molecular clock calibration. Phylogenetic analysis revealed two parallel radiations, and species delimitation analyses suggest there are between 17 and 22 putative species. Based on clade support and concordance across species delimitation methods we hypothesize 17 distinct clusters, with allopatric speciation consistent with most geographic patterns. Additionally, a widespread species appears to be present in northern páramo sites, and some sister species sympatry may indicate other diversification processes have operated on certain lineages of Panabachia. Divergence time estimates suggest that Panabachia originated in the Miocene, but most species analyzed diverged during the Pliocene and Pleistocene (5.3-0.11 Mya), contemporaneous with the evolution of páramo plant species.
Collapse
|
49
|
Manne LL, Veit RR. Temporal changes in abundance-occupancy relationships over 40 years. Ecol Evol 2020; 10:602-611. [PMID: 32015829 PMCID: PMC6988556 DOI: 10.1002/ece3.5505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/03/2019] [Indexed: 11/07/2022] Open
Abstract
Abundance-occupancy (A-O) relationships are widely documented for many organismal groups and regions, and have been used to gain an understanding of regional population and community trends. Monitoring changes in abundance and occupancy over time may be what is required to document changes in conservation status and needs for some species, communities, or areas.We hypothesize that if there is a higher proportion of declining species in one group of species compared with another (e.g., migratory species vs. permanent residents), then a consequence of that difference will be vastly different abundance-occupancy relationships. If this difference persists through time, then the resulting A-O relationships between the groups will continue to diverge.For neotropical migrants, short-distance migrants, and permanent resident birds of North America, we assess the numbers of declining species over 1969-2009. We further test for differences in the A-O relationship across these three groups, and in rates of change in abundance and occupancy separately.We find significant differences in numbers of declining species across the migratory groups, a significant decline in the A-O relationship for permanent residents, a significant increase for Neotropical migrants, and a nonsignificant decline for short-distance migrants over the 40 years. Further, abundances are not changing at different rates but occupancies are consistently greater over time for neotropical migrants versus permanent residents, likely driving the changes in A-O relationships observed.In these analyses, we documented changing A-O trends for different groups of species, over a relatively long time period for ecological studies, one of only a few studies to examine A-O relationships over time. Further, we have shown that a temporally unvarying abundance-occupancy relationship is not universal, and we posit that variability in A-O relationships is due to human impacts on habitats, coupled with variation in species' abilities to respond to human impacts.
Collapse
Affiliation(s)
- Lisa L. Manne
- Biology DepartmentCollege of Staten IslandCity University of New YorkStaten IslandNew York
- Biology Doctoral Program (EEB)CUNY Graduate CenterNew YorkNew York
| | - Richard R. Veit
- Biology DepartmentCollege of Staten IslandCity University of New YorkStaten IslandNew York
- Biology Doctoral Program (EEB)CUNY Graduate CenterNew YorkNew York
| |
Collapse
|
50
|
Peters JC, Waters JM, Dutoit L, Fraser CI. SNP analyses reveal a diverse pool of potential colonists to earthquake-uplifted coastlines. Mol Ecol 2020; 29:149-159. [PMID: 31711270 DOI: 10.1111/mec.15303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 11/28/2022]
Abstract
In species that form dense populations, major disturbance events are expected to increase the chance of establishment for immigrant lineages. Real-time tests of the impact of disturbance on patterns of genetic structure are, however, scarce. Central to testing these concepts is determining the pool of potential immigrants dispersing into a disturbed area. In 2016, a 7.8 magnitude earthquake occurred on the South Island of New Zealand. Affecting approximately 100 km of coastline, this quake caused extensive uplift (several metres high), extirpating many intertidal populations, including keystone intertidal kelp species. Following the uplift, we set out to determine the geographic origins of detached kelp specimens which rafted into the disturbed zone. Specifically, we used genotyping-by-sequencing (GBS) approaches to compare beach-cast southern bull-kelp (Durvillaea antarctica and Durvillaea poha) samples to established populations throughout the species' ranges, and thus infer the geographic origins of potential colonists reaching the disturbed coast. Our findings revealed an ongoing supply of diverse lineages dispersing to the newly uplifted coastline, suggesting potential for establishment of "exotic" lineages following disturbance. Furthermore, we found that some drifting individuals of each species came from far-distant regions, some >1,200 km away. These results show that diverse lineages - in many cases from very distant sources - can compete for new space in the wake of an exceptional disturbance event, illustrating the potential of long-distance dispersal as a key mechanism for reassembly of coastal ecosystems. Furthermore, our findings demonstrate that high-resolution genomic baselines can be used to robustly assign the provenance of dispersing individuals.
Collapse
Affiliation(s)
- Johnette C Peters
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| | | | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Ceridwen I Fraser
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|