1
|
Varshith MR, Ghosh Dastidar R, Shrilaxmi MS, Bhattacharya R, Jha S, Choudhary S, Varny E, Carvalho RA, John L, Sundaramoorthy V, Smith CM, Damerla RR, Herai RH, Biswas SR, Lal PB, Mukhopadhyay C, Ghosh Dastidar S. Virulome and phylogenomic profiling of a novel Burkholderia pseudomallei strain from an Indian clinical isolate. Mol Genet Genomics 2024; 299:98. [PMID: 39441253 DOI: 10.1007/s00438-024-02188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Highly pathogenic Burkholderia pseudomallei is the causative agent of melioidosis, a neglected tropical disease endemic in Southeast Asian tropical region. This bacterium encompasses diverse virulence factors which further undergo dynamic gene-expression flux as it transits through distinct environmental niches within the host which may lead to manifestation of differential clinical symptoms. B. pseudomallei, is classified as a Tier 1 select agent in the United States and regarded as a risk group 3 organism in India with the potential to be used as bioweapon. Considering these facts, it is vital to uncover both physiological and genetic heterogeneity of B. pseudomallei, particularly to identify any novel virulence factors that may contribute to pathogenicity. B. pseudomallei strain CM000113 was isolated from a clinical case in India, characterized it for its physiological, biochemical, and prominently genetic traits through WGS. It has a type 2 morphotype with faster doubling time and high biofilm producing capacity as compared to Pseudomonas aeruginosa. The genome size is 7.3 Mbp and it is phylogenetically close to B. pseudomallei strain Mahidol 1106a and Burkholderia mallei Turkey 2. We observed genetic heterogeneity, as key virulence factors that were identified shows sequence dissimilarity with reference strains. Additionally, presence of genomic islands, harbouring two virulence factors, GmhA and GmhB2, associated with pathogenesis indicates possibility of horizontal gene transfer. These results emphasize the need for an extensive study focusing the genome of B. pseudomallei and its associated heterogeneity, to identify molecular biomarkers aiding to develop point-of-care diagnostic kits for early diagnosis of melioidosis.
Collapse
Affiliation(s)
- M R Varshith
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ranita Ghosh Dastidar
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - M S Shrilaxmi
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rajarshi Bhattacharya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Department of Botany, Visva Bharati University, Santiniketan, India
| | - S Jha
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - S Choudhary
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - E Varny
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - R A Carvalho
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná, Brazil
| | - L John
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geeelong, Australia
| | - V Sundaramoorthy
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geeelong, Australia
| | - C M Smith
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geeelong, Australia
| | - R R Damerla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - R H Herai
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná, Brazil
| | - S R Biswas
- Department of Botany, Visva Bharati University, Santiniketan, India
| | - P B Lal
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Abstract
The soil saprophyte, Burkholderia pseudomallei, is the causative agent of melioidosis, a disease endemic in South East Asia and northern Australia. Exposure to B. pseudomallei by either inhalation or inoculation can lead to severe disease. B. pseudomallei rapidly shifts from an environmental organism to an aggressive intracellular pathogen capable of rapidly spreading around the body. The expression of multiple virulence factors at every stage of intracellular infection allows for rapid progression of infection. Following invasion or phagocytosis, B. pseudomallei resists host-cell killing mechanisms in the phagosome, followed by escape using the type III secretion system. Several secreted virulence factors manipulate the host cell, while bacterial cells undergo a shift in energy metabolism allowing for overwhelming intracellular replication. Polymerisation of host cell actin into “actin tails” propels B. pseudomallei to the membranes of host cells where the type VI secretion system fuses host cells into multinucleated giant cells (MNGCs) to facilitate cell-to-cell dissemination. This review describes the various mechanisms used by B. pseudomallei to survive within cells.
Collapse
Affiliation(s)
- Nicole M Bzdyl
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Clare L Moran
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Justine Bendo
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Mitali Sarkar-Tyson
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
3
|
Elgawidi A, Mohsin MI, Ali F, Watts A, Monk PN, Thomas MS, Partridge LJ. A role for tetraspanin proteins in regulating fusion induced by Burkholderia thailandensis. Med Microbiol Immunol 2020; 209:473-487. [PMID: 32253503 PMCID: PMC7395031 DOI: 10.1007/s00430-020-00670-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022]
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high morbidity that is endemic in South East Asia and northern Australia. An unusual feature of the bacterium is its ability to induce multinucleated giant cell formation (MNGC), which appears to be related to bacterial pathogenicity. The mechanism of MNGC formation is not fully understood, but host cell factors as well as known bacterial virulence determinants are likely to contribute. Since members of the tetraspanin family of membrane proteins are involved in various types of cell:cell fusion, their role in MNGC formation induced by Burkholderia thailandensis, a mildly pathogenic species closely related to B. pseudomallei, was investigated. The effect of antibodies to tetraspanins CD9, CD81, and CD63 in MNGC formation induced by B. thailandensis in infected mouse J774.2 and RAW macrophage cell lines was assessed along with that of recombinant proteins corresponding to the large extracellular domain (EC2) of the tetraspanins. B. thailandensis-induced fusion was also examined in macrophages derived from CD9 null and corresponding WT mice, and in J774.2 macrophages over-expressing CD9. Antibodies to CD9 and CD81 promoted MNGC formation induced by B. thailandensis, whereas EC2 proteins of CD9, CD81, and CD63 inhibited MNGC formation. Enhanced MNGC formation was observed in CD9 null macrophages, whereas a decrease in MNGC formation was associated with overexpression of CD9. Overall our findings show that tetraspanins are involved in MNGC formation induced by B. thailandensis and by implication, B. pseudomallei, with CD9 and CD81 acting as negative regulators of this process.
Collapse
Affiliation(s)
- Atiga Elgawidi
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Muslim Idan Mohsin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Pathological Analyses, University of Kufa, Kufa, Iraq
| | - Fawwaz Ali
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Mosul Technical Institute, Northern Technical University, Mosul, Iraq
| | - Amyleigh Watts
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Peter N Monk
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2RX, UK
| | - Mark S Thomas
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2RX, UK
| | - Lynda J Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
4
|
Abstract
The causative agent of melioidosis, Burkholderia pseudomallei, a tier 1 select agent, is endemic in Southeast Asia and northern Australia, with increased incidence associated with high levels of rainfall. Increasing reports of this condition have occurred worldwide, with estimates of up to 165,000 cases and 89,000 deaths per year. The ecological niche of the organism has yet to be clearly defined, although the organism is associated with soil and water. The culture of appropriate clinical material remains the mainstay of laboratory diagnosis. Identification is best done by phenotypic methods, although mass spectrometric methods have been described. Serology has a limited diagnostic role. Direct molecular and antigen detection methods have limited availability and sensitivity. Clinical presentations of melioidosis range from acute bacteremic pneumonia to disseminated visceral abscesses and localized infections. Transmission is by direct inoculation, inhalation, or ingestion. Risk factors for melioidosis include male sex, diabetes mellitus, alcohol abuse, and immunosuppression. The organism is well adapted to intracellular survival, with numerous virulence mechanisms. Immunity likely requires innate and adaptive responses. The principles of management of this condition are drainage and debridement of infected material and appropriate antimicrobial therapy. Global mortality rates vary between 9% and 70%. Research into vaccine development is ongoing.
Collapse
Affiliation(s)
- I Gassiep
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - M Armstrong
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
| | - R Norton
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Walkden H, Delbaz A, Nazareth L, Batzloff M, Shelper T, Beacham IR, Chacko A, Shah M, Beagley KW, Tello Velasquez J, St John JA, Ekberg JAK. Burkholderia pseudomallei invades the olfactory nerve and bulb after epithelial injury in mice and causes the formation of multinucleated giant glial cells in vitro. PLoS Negl Trop Dis 2020; 14:e0008017. [PMID: 31978058 PMCID: PMC7002012 DOI: 10.1371/journal.pntd.0008017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/05/2020] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
The infectious disease melioidosis is caused by the bacterium Burkholderia pseudomallei. Melioidosis is characterised by high mortality and morbidity and can involve the central nervous system (CNS). We have previously discovered that B. pseudomallei can infect the CNS via the olfactory and trigeminal nerves in mice. We have shown that the nerve path is dependent on mouse strain, with outbred mice showing resistance to olfactory nerve infection. Damage to the nasal epithelium by environmental factors is common, and we hypothesised that injury to the olfactory epithelium may increase the vulnerability of the olfactory nerve to microbial insult. We therefore investigated this, using outbred mice that were intranasally inoculated with B. pseudomallei, with or without methimazole-induced injury to the olfactory neuroepithelium. Methimazole-mediated injury resulted in increased B. pseudomallei invasion of the olfactory epithelium, and only in pre-injured animals were bacteria found in the olfactory nerve and bulb. In vitro assays demonstrated that B. pseudomallei readily infected glial cells isolated from the olfactory and trigeminal nerves (olfactory ensheathing cells and trigeminal Schwann cells, respectively). Bacteria were degraded by some cells but persisted in other cells, which led to the formation of multinucleated giant cells (MNGCs), with olfactory ensheathing cells less likely to form MNGCs than Schwann cells. Double Cap mutant bacteria, lacking the protein BimA, did not form MNGCs. These data suggest that injuries to the olfactory epithelium expose the primary olfactory nervous system to bacterial invasion, which can then result in CNS infection with potential pathogenic consequences for the glial cells.
Collapse
Affiliation(s)
- Heidi Walkden
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Ali Delbaz
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Lynn Nazareth
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Todd Shelper
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Ifor R. Beacham
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Anu Chacko
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Kenneth W. Beagley
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | | | - James A. St John
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Jenny A. K. Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| |
Collapse
|
6
|
Srinon V, Chaiwattanarungruengpaisan S, Korbsrisate S, Stevens JM. Burkholderia pseudomallei BimC Is Required for Actin-Based Motility, Intracellular Survival, and Virulence. Front Cell Infect Microbiol 2019; 9:63. [PMID: 30968000 PMCID: PMC6439308 DOI: 10.3389/fcimb.2019.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
The intracellular pathogen Burkholderia pseudomallei, the etiological agent of melioidosis in humans and various animals, is capable of survival and movement within the cytoplasm of host cells by a process known as actin-based motility. The bacterial factor BimA is required for actin-based motility through its direct interaction with actin, and by mediating actin polymerization at a single pole of the bacterium to promote movement both within and between cells. However, little is known about the other bacterial proteins required for this process. Here, we have investigated the role of the bimC gene (bpss1491) which lies immediately upstream of the bimA gene (bpss1492) on the B. pseudomallei chromosome 2. Conserved amongst all B. pseudomallei, B. mallei and B. thailandensis strains sequenced to date, this gene encodes an iron-binding protein with homology to a group of proteins known as the bacterial autotransporter heptosyltransferase (BAHT) family. We have constructed a B. pseudomallei bimC deletion mutant and demonstrate that it is defective in intracellular survival in HeLa cells, but not in J774.1 macrophage-like cells. The bimC mutant is defective in cell to cell spread as demonstrated by ablation of plaque formation in HeLa cells, and by the inability to form multi-nucleated giant cells in J774.1 cells. These phenotypes in intracellular survival and cell to cell spread are not due to the loss of expression and polar localization of the BimA protein on the surface of intracellular bacteria, however they do correlate with an inability of the bacteria to recruit and polymerize actin. Furthermore, we also establish a role for bimC in virulence of B. pseudomallei using a Galleria mellonella larvae model of infection. Taken together, our findings indicate that B. pseudomallei BimC plays an important role in intracellular behavior and virulence of this emerging pathogen.
Collapse
Affiliation(s)
- Varintip Srinon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Microbiology Laboratory, Faculty of Veterinary Science, Veterinary Diagnostic Center, Mahidol University, Nakhon Pathom, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
7
|
Nazareth L, Chen M, Shelper T, Shah M, Tello Velasquez J, Walkden H, Beacham I, Batzloff M, Rayfield A, Todorovic M, Beagley KW, St John JA, Ekberg JAK. Novel insights into the glia limitans of the olfactory nervous system. J Comp Neurol 2019; 527:1228-1244. [PMID: 30592044 DOI: 10.1002/cne.24618] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 02/04/2023]
Abstract
Olfactory ensheathing cells (OECs) are often described as being present in both the peripheral and the central nervous systems (PNS and CNS). Furthermore, the olfactory nervous system glia limitans (the glial layer defining the PNS-CNS border) is considered unique as it consists of intermingling OECs and astrocytes. In contrast, the glia limitans of the rest of the nervous system consists solely of astrocytes which create a distinct barrier to Schwann cells (peripheral glia). The ability of OECs to interact with astrocytes is one reason why OECs are believed to be superior to Schwann cells for transplantation therapies to treat CNS injuries. We have used transgenic reporter mice in which glial cells express DsRed fluorescent protein to study the cellular constituents of the glia limitans. We found that the glia limitans layer of the olfactory nervous system is morphologically similar to elsewhere in the nervous system, with a similar low degree of intermingling between peripheral glia and astrocytes. We found that the astrocytic layer of the olfactory bulb is a distinct barrier to bacterial infection, suggesting that this layer constitutes the PNS-CNS immunological barrier. We also found that OECs interact with astrocytes in a similar fashion as Schwann cells in vitro. When cultured in three dimensions, however, there were subtle differences between OECs and Schwann cells in their interactions with astrocytes. We therefore suggest that glial fibrillary acidic protein-reactive astrocyte layer of the olfactory bulb constitutes the glia limitans of the olfactory nervous system and that OECs are primarily "PNS glia."
Collapse
Affiliation(s)
- Lynn Nazareth
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Mo Chen
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Todd Shelper
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Megha Shah
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Johana Tello Velasquez
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Heidi Walkden
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Ifor Beacham
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Andrew Rayfield
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Michael Todorovic
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia.,School of Nursing and Midwifery, Griffith University, Nathan, Queensland, Australia
| | - Kenneth W Beagley
- Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
8
|
Lennings J, West TE, Schwarz S. The Burkholderia Type VI Secretion System 5: Composition, Regulation and Role in Virulence. Front Microbiol 2019; 9:3339. [PMID: 30687298 PMCID: PMC6335564 DOI: 10.3389/fmicb.2018.03339] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022] Open
Abstract
The soil saprophyte and Tier I select agent Burkholderia pseudomallei can cause rapidly fatal infections in humans and animals. The capability of switching to an intracellular life cycle during infection appears to be a decisive trait of B. pseudomallei for causing disease. B. pseudomallei harbors multiple type VI secretion systems (T6SSs) orthologs of which are present in the surrogate organism Burkholderia thailandensis. Upon host cell entry and vacuolar escape into the cytoplasm, B. pseudomallei and B. thailandensis manipulate host cells by utilizing the T6SS-5 (also termed T6SS1) to form multinucleated giant cells for intercellular spread. Disruption of the T6SS-5 in B. thailandensis causes a drastic attenuation of virulence in wildtype but not in mice lacking the central innate immune adapter protein MyD88. This result suggests that the T6SS-5 is deployed by the bacteria to overcome innate immune responses. However, important questions in this field remain unsolved including the mechanism underlying T6SS-5 activity and its physiological role during infection. In this review, we summarize the current knowledge on the components and regulation of the T6SS-5 as well as its role in virulence in mammalian hosts.
Collapse
Affiliation(s)
- Jan Lennings
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - T Eoin West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Sandra Schwarz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Quorum Sensing in Burkholderia pseudomallei and Other Burkholderia species. CURRENT TROPICAL MEDICINE REPORTS 2017. [DOI: 10.1007/s40475-017-0127-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Entry, Intracellular Survival, and Multinucleated-Giant-Cell-Forming Activity of Burkholderia pseudomallei in Human Primary Phagocytic and Nonphagocytic Cells. Infect Immun 2017; 85:IAI.00468-17. [PMID: 28760929 DOI: 10.1128/iai.00468-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
The human pathogen Burkholderia pseudomallei and the related species Burkholderia thailandensis are facultative intracellular bacteria characterized by the ability to escape into the cytosol of the host cell and to stimulate the formation of multinucleated giant cells (MNGCs). MNGC formation is induced via an unknown mechanism by bacterial type VI secretion system 5 (T6SS-5), which is an essential virulence factor in both species. Despite the vital role of the intracellular life cycle in the pathogenesis of the bacteria, the range of host cell types permissive for initiation and completion of the intracellular cycle is poorly defined. In the present study, we used several different types of human primary cells to evaluate bacterial entry, intracellular survival, and MNGC formation. We report the capacity of B. pseudomallei to enter, efficiently replicate in, and mediate MNGC formation of vein endothelial and bronchial epithelial cells, indicating that the T6SS-5 is important in the host-pathogen interaction in these cells. Furthermore, we show that B. pseudomallei invades fibroblasts and keratinocytes and survives inside these cells as well as in monocyte-derived macrophages and neutrophils for at least 17 h postinfection; however, MNGC formation is not induced in these cells. In contrast, infection of mixed neutrophils and RAW264.7 macrophages with B. thailandensis stimulated the formation of heterotypic MNGCs in a T6SS-5-dependent manner. In summary, the ability of the bacteria to enter and survive as well as induce MNGC formation in certain host cells may contribute to the pathogenesis observed in B. pseudomallei infection.
Collapse
|
11
|
pH Alkalinization by Chloroquine Suppresses Pathogenic Burkholderia Type 6 Secretion System 1 and Multinucleated Giant Cells. Infect Immun 2016; 85:IAI.00586-16. [PMID: 27799332 DOI: 10.1128/iai.00586-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/23/2016] [Indexed: 01/14/2023] Open
Abstract
Burkholderia mallei and B. pseudomallei cause glanders and melioidosis, respectively, in humans and animals. A hallmark of pathogenesis is the formation of granulomas containing multinucleated giant cells (MNGCs) and cell death. These processes depend on type 6 secretion system 1 (T6SS-1), which is required for virulence in animals. We examined the cell biology of MNGC formation and cell death. We found that chloroquine diphosphate (CLQ), an antimalarial drug, inhibits Burkholderia growth, phagosomal escape, and subsequent MNGC formation. This depends on CLQ's ability to neutralize the acid pH because other alkalinizing compounds similarly inhibit escape and MNGC formation. CLQ inhibits bacterial virulence protein expression because T6SS-1 and some effectors of type 3 secretion system 3 (T3SS-3), which is also required for virulence, are expressed at acid pH. We show that acid pH upregulates the expression of Hcp1 of T6SS-1 and TssM, a protein coregulated with T6SS-1. Finally, we demonstrate that CLQ treatment of Burkholderia-infected Madagascar hissing cockroaches (HCs) increases their survival. This study highlights the multiple mechanisms by which CLQ inhibits growth and virulence and suggests that CLQ be further tested and considered, in conjunction with antibiotic use, for the treatment of diseases caused by Burkholderia.
Collapse
|
12
|
Gutierrez MG, Warawa JM. Attenuation of a select agent-excluded Burkholderia pseudomallei capsule mutant in hamsters. Acta Trop 2016; 157:68-72. [PMID: 26836271 DOI: 10.1016/j.actatropica.2015.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/03/2015] [Accepted: 12/17/2015] [Indexed: 01/04/2023]
Abstract
Burkholderia pseudomallei is a Tier 1 select agent and potential bioweapon. Given it is potential to cause a lethal respiratory disease, research with fully virulent B. pseudomallei is conducted in Biosafety Level 3 (BSL-3) laboratory spaces. The logistical, financial, and administrative burden of Tier 1 select agent BSL-3 research has created an interest in mitigating such burdens through the use of either attenuated B. pseudomallei strains at BSL-2, or research with surrogate species, such as Burkholderia thailandensis. Previously, attenuated B. pseudomallei auxotroph mutants (asd and purM) have been approved for exclusion from select agent requirements, allowing for in vitro studies to be conducted at BSL-2. Acapsular B. pseudomallei mutants are known to be strongly attenuated in a variety of animal models, and yet acapsular B. pseudomallei mutants do not require nutritional supplementation, and can be studied within cultured macrophages, performing phenotypically similarly to parent strains. We demonstrate that the loss of a 30.8 kb region of the wcb capsule operon allows for a dramatic >4.46 log attenuation in a hamster intraperitoneal infection model, and report that this strain, JW270, has met criteria for exclusion from select agent requirements.
Collapse
|
13
|
Sarovich DS, Garin B, De Smet B, Kaestli M, Mayo M, Vandamme P, Jacobs J, Lompo P, Tahita MC, Tinto H, Djaomalaza I, Currie BJ, Price EP. Phylogenomic Analysis Reveals an Asian Origin for African Burkholderia pseudomallei and Further Supports Melioidosis Endemicity in Africa. mSphere 2016; 1:e00089-15. [PMID: 27303718 PMCID: PMC4863585 DOI: 10.1128/msphere.00089-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/05/2016] [Indexed: 12/22/2022] Open
Abstract
Burkholderia pseudomallei, an environmental bacterium that causes the deadly disease melioidosis, is endemic in northern Australia and Southeast Asia. An increasing number of melioidosis cases are being reported in other tropical regions, including Africa and the Indian Ocean islands. B. pseudomallei first emerged in Australia, with subsequent rare dissemination event(s) to Southeast Asia; however, its dispersal to other regions is not yet well understood. We used large-scale comparative genomics to investigate the origins of three B. pseudomallei isolates from Madagascar and two from Burkina Faso. Phylogenomic reconstruction demonstrates that these African B. pseudomallei isolates group into a single novel clade that resides within the more ancestral Asian clade. Intriguingly, South American strains reside within the African clade, suggesting more recent dissemination from West Africa to the Americas. Anthropogenic factors likely assisted in B. pseudomallei dissemination to Africa, possibly during migration of the Austronesian peoples from Indonesian Borneo to Madagascar ~2,000 years ago, with subsequent genetic diversity driven by mutation and recombination. Our study provides new insights into global patterns of B. pseudomallei dissemination and adds to the growing body of evidence of melioidosis endemicity in Africa. Our findings have important implications for melioidosis diagnosis and management in Africa. IMPORTANCE Sporadic melioidosis cases have been reported in the African mainland and Indian Ocean islands, but until recently, these regions were not considered areas where B. pseudomallei is endemic. Given the high mortality rate of melioidosis, it is crucial that this disease be recognized and suspected in all regions of endemicity. Previous work has shown that B. pseudomallei originated in Australia, with subsequent introduction into Asia; however, the precise origin of B. pseudomallei in other tropical regions remains poorly understood. Using whole-genome sequencing, we characterized B. pseudomallei isolates from Madagascar and Burkina Faso. Next, we compared these strains to a global collection of B. pseudomallei isolates to identify their evolutionary origins. We found that African B. pseudomallei strains likely originated from Asia and were closely related to South American strains, reflecting a relatively recent shared evolutionary history. We also identified substantial genetic diversity among African strains, suggesting long-term B. pseudomallei endemicity in this region.
Collapse
Affiliation(s)
- Derek S. Sarovich
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Benoit Garin
- Bacteriological Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Birgit De Smet
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Faculty of Sciences, Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Mirjam Kaestli
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Peter Vandamme
- Faculty of Sciences, Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | | | - Marc C. Tahita
- Clinical Research Unit of Nanoro (IRSS-CRUN), Nanoro, Burkina Faso
| | - Halidou Tinto
- Clinical Research Unit of Nanoro (IRSS-CRUN), Nanoro, Burkina Faso
| | | | - Bart J. Currie
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Erin P. Price
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| |
Collapse
|
14
|
Stone JK, DeShazer D, Brett PJ, Burtnick MN. Melioidosis: molecular aspects of pathogenesis. Expert Rev Anti Infect Ther 2014; 12:1487-99. [PMID: 25312349 DOI: 10.1586/14787210.2014.970634] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Burkholderia pseudomallei is a gram-negative bacterium that causes melioidosis, a multifaceted disease that is highly endemic in southeast Asia and northern Australia. This facultative intracellular pathogen possesses a large genome that encodes a wide array of virulence factors that promote survival in vivo by manipulating host cell processes and disarming elements of the host immune system. Antigens and systems that play key roles in B. pseudomallei virulence include capsular polysaccharide, lipopolysaccharide, adhesins, specialized secretion systems, actin-based motility and various secreted factors. This review provides an overview of the current and steadily expanding knowledge regarding the molecular mechanisms used by this organism to survive within a host and their contribution to the pathogenesis of melioidosis.
Collapse
Affiliation(s)
- Joshua K Stone
- Department of Microbiology and Immunology, University of South Alabama, 610 Clinic Drive, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
15
|
Pegoraro G, Eaton BP, Ulrich RL, Lane DJ, Ojeda JF, Bavari S, DeShazer D, Panchal RG. A high-content imaging assay for the quantification of the Burkholderia pseudomallei induced multinucleated giant cell (MNGC) phenotype in murine macrophages. BMC Microbiol 2014; 14:98. [PMID: 24750902 PMCID: PMC4077104 DOI: 10.1186/1471-2180-14-98] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/11/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Burkholderia pseudomallei (Bp), a Gram-negative, motile, facultative intracellular bacterium is the causative agent of melioidosis in humans and animals. The Bp genome encodes a repertoire of virulence factors, including the cluster 3 type III secretion system (T3SS-3), the cluster 1 type VI secretion system (T6SS-1), and the intracellular motility protein BimA, that enable the pathogen to invade both phagocytic and non-phagocytic cells. A unique hallmark of Bp infection both in vitro and in vivo is its ability to induce cell-to-cell fusion of macrophages to form multinucleated giant cells (MNGCs), which to date are semi-quantitatively reported following visual inspection. RESULTS In this study we report the development of an automated high-content image acquisition and analysis assay to quantitate the Bp induced MNGC phenotype. Validation of the assay was performed using T6SS-1 (∆hcp1) and T3SS-3 (∆bsaZ) mutants of Bp that have been previously reported to exhibit defects in their ability to induce MNGCs. Finally, screening of a focused small molecule library identified several Histone Deacetylase (HDAC) inhibitors that inhibited Bp-induced MNGC formation of macrophages. CONCLUSIONS We have successfully developed an automated HCI assay to quantitate MNGCs induced by Bp in macrophages. This assay was then used to characterize the phenotype of the Bp mutants for their ability to induce MNGC formation and identify small molecules that interfere with this process. Successful application of chemical genetics and functional reverse genetics siRNA approaches in the MNGC assay will help gain a better understanding of the molecular targets and cellular mechanisms responsible for the MNGC phenotype induced by Bp, by other bacteria such as Mycobacterium tuberculosis, or by exogenously added cytokines.
Collapse
Affiliation(s)
- Gianluca Pegoraro
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
- Perkin Elmer, Waltham, MA 02451, USA
- Present Address: Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA
| | - Brett P Eaton
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| | - Ricky L Ulrich
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| | - Douglas J Lane
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| | - Jenifer F Ojeda
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| | - Sina Bavari
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| | - David DeShazer
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| | - Rekha G Panchal
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| |
Collapse
|
16
|
Burkholderia pseudomallei penetrates the brain via destruction of the olfactory and trigeminal nerves: implications for the pathogenesis of neurological melioidosis. mBio 2014; 5:e00025. [PMID: 24736221 PMCID: PMC3993850 DOI: 10.1128/mbio.00025-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Melioidosis is a potentially fatal disease that is endemic to tropical northern Australia and Southeast Asia, with a mortality rate of 14 to 50%. The bacterium Burkholderia pseudomallei is the causative agent which infects numerous parts of the human body, including the brain, which results in the neurological manifestation of melioidosis. The olfactory nerve constitutes a direct conduit from the nasal cavity into the brain, and we have previously reported that B. pseudomallei can colonize this nerve in mice. We have now investigated in detail the mechanism by which the bacteria penetrate the olfactory and trigeminal nerves within the nasal cavity and infect the brain. We found that the olfactory epithelium responded to intranasal B. pseudomallei infection by widespread crenellation followed by disintegration of the neuronal layer to expose the underlying basal layer, which the bacteria then colonized. With the loss of the neuronal cell bodies, olfactory axons also degenerated, and the bacteria then migrated through the now-open conduit of the olfactory nerves. Using immunohistochemistry, we demonstrated that B. pseudomallei migrated through the cribriform plate via the olfactory nerves to enter the outer layer of the olfactory bulb in the brain within 24 h. We also found that the bacteria colonized the thin respiratory epithelium in the nasal cavity and then rapidly migrated along the underlying trigeminal nerve to penetrate the cranial cavity. These results demonstrate that B. pseudomallei invasion of the nerves of the nasal cavity leads to direct infection of the brain and bypasses the blood-brain barrier. Melioidosis is a potentially fatal tropical disease that is endemic to northern Australia and Southeast Asia. It is caused by the bacterium Burkholderia pseudomallei, which can infect many organs of the body, including the brain, and results in neurological symptoms. The pathway by which the bacteria can penetrate the brain is unknown, and we have investigated the ability of the bacteria to migrate along nerves that innervate the nasal cavity and enter the frontal region of the brain by using a mouse model of infection. By generating a mutant strain of B. pseudomallei which is unable to survive in the blood, we show that the bacteria rapidly penetrate the cranial cavity using the olfactory (smell) nerve and the trigeminal (sensory) nerve that line the nasal cavity.
Collapse
|
17
|
Horton RE, Grant GD, Matthews B, Batzloff M, Owen SJ, Kyan S, Flegg CP, Clark AM, Ulett GC, Morrison N, Peak IR, Beacham IR. Quorum sensing negatively regulates multinucleate cell formation during intracellular growth of Burkholderia pseudomallei in macrophage-like cells. PLoS One 2013; 8:e63394. [PMID: 23704903 PMCID: PMC3660431 DOI: 10.1371/journal.pone.0063394] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/01/2013] [Indexed: 01/29/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative environmental bacterium and the causative agent of melioidosis, a potentially fatal, acute or chronic disease endemic in the tropics. Acyl homoserine lactone (AHL)-mediated quorum sensing and signalling have been associated with virulence and biofilm formation in numerous bacterial pathogens. In the canonical acyl-homoserine lactone signalling paradigm, AHLs are detected by a response regulator. B. pseudomallei encodes three AHL synthases, encoded by bpsI1, bpsI2 and bpsI3, and five regulator genes. In this study, we mutated the B. pseudomallei AHL synthases individually and in double and triple combination. Five AHLs were detected and quantified by tandem liquid chromatography-mass spectroscopy. The major AHLs produced were N-octanoylhomoserine lactone and N-(3-hydroxy-decanoyl)homoserine lactone, the expression of which depended on bpsI1 and bpsI2, respectively. B. pseudomallei infection of macrophage cells causes cell fusion, leading to multinucleated cells (3 or more nuclei per cell). A triple mutant defective in production of all three AHL synthases was associated with a striking phenotype of massively enhanced host cellular fusion in macrophages. However, neither abrogation of host cell fusion, achieved by mutation of bimA or hcp1, nor enhancement of fusion altered intracellular replication of B. pseudomallei. Furthermore, when tested in murine models of acute melioidosis the AHL synthase mutants were not attenuated for virulence. Collectively, this study identifies important new aspects of the genetic basis of AHL synthesis in B. pseudomallei and the roles of these AHLs in systemic infection and in cell fusion in macrophages for this important human pathogen.
Collapse
Affiliation(s)
- Rachel E. Horton
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Gary D. Grant
- School of Pharmacy, Griffith University, Gold Coast, Queensland, Australia
| | - Ben Matthews
- Smart Water Research Centre, Griffith University, Gold Coast, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Suzzanne J. Owen
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Stephanie Kyan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Cameron P. Flegg
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Amanda M. Clark
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Glen C. Ulett
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Nigel Morrison
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Ian R. Peak
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Ifor R. Beacham
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
18
|
Choh LC, Ong GH, Vellasamy KM, Kalaiselvam K, Kang WT, Al-Maleki AR, Mariappan V, Vadivelu J. Burkholderia vaccines: are we moving forward? Front Cell Infect Microbiol 2013; 3:5. [PMID: 23386999 PMCID: PMC3564208 DOI: 10.3389/fcimb.2013.00005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/20/2013] [Indexed: 11/29/2022] Open
Abstract
The genus Burkholderia consists of diverse species which includes both "friends" and "foes." Some of the "friendly" Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei, and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis (CF) patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei, and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| |
Collapse
|
19
|
Heiss C, Burtnick MN, Black I, Azadi P, Brett PJ. Detailed structural analysis of the O-polysaccharide expressed by Burkholderia thailandensis E264. Carbohydr Res 2012; 363:23-8. [PMID: 23103510 DOI: 10.1016/j.carres.2012.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 10/27/2022]
Abstract
O-polysaccharide (OPS) was isolated from purified Burkholderia thailandensis E264 lipopolysaccharide by mild-acid hydrolysis and gel-permeation chromatography. Glycosyl composition and methylation analyses along with 1D and 2D (1)H and (13)C NMR spectroscopy experiments revealed that the OPS antigen was an unbranched heteropolymer with the following structure: [structure: see text] Collectively, these results suggest that B. thailandensis OPS is structurally more complex than B. pseudomallei OPS and provide evidence of the signal used by B. thailandensis to terminate chain elongation.
Collapse
Affiliation(s)
- Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- W Joost Wiersinga
- Department of Medicine, Division of Infectious Diseases, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
21
|
Horton RE, Morrison NA, Beacham IR, Peak IR. Interaction of Burkholderia pseudomallei and Burkholderia thailandensis with human monocyte-derived dendritic cells. J Med Microbiol 2012; 61:607-614. [PMID: 22301613 DOI: 10.1099/jmm.0.038588-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic in areas of South-East Asia and northern Australia, and is classed as a category B select agent by the Centers for Disease Control and Prevention (CDC). Factors that determine whether host infection is achieved or if disease is chronic or acute are unknown but the type of host immune response that is mounted is important. B. pseudomallei can replicate within macrophages, causing them to multinucleate. In light of the common lineage of macrophages with dendritic cells (DCs), and the role played by DCs in orchestration of the immune response, we investigated the interactions of a variety of B. pseudomallei and B. thailandensis strains with DCs. This study demonstrates that, in the majority of cases, infection of human monocyte-derived dendritic cells is dramatically decreased or cleared by 12 h post-infection, showing a lack of ability to replicate and survive within DCs. Additionally we have shown that B. pseudomallei activates DCs, as measured by cytokine secretion, and live bacteria are not required for activation.
Collapse
Affiliation(s)
- Rachel E Horton
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Nigel A Morrison
- School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Ifor R Beacham
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Ian R Peak
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
22
|
Burkholderia pseudomallei-induced cell fusion in U937 macrophages can be inhibited by monoclonal antibodies against host cell surface molecules. Microbes Infect 2011; 13:1006-11. [DOI: 10.1016/j.micinf.2011.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/06/2011] [Accepted: 06/10/2011] [Indexed: 11/18/2022]
|
23
|
Allwood EM, Devenish RJ, Prescott M, Adler B, Boyce JD. Strategies for Intracellular Survival of Burkholderia pseudomallei. Front Microbiol 2011; 2:170. [PMID: 22007185 PMCID: PMC3159172 DOI: 10.3389/fmicb.2011.00170] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/26/2011] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive, and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterized mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defense mechanisms such as the induction of inducible nitric oxide synthase, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed.
Collapse
|
24
|
Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade. Proc Natl Acad Sci U S A 2011; 108:12095-100. [PMID: 21730143 DOI: 10.1073/pnas.1107183108] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Burkholderia pseudomallei and Burkholderia thailandensis are related pathogens that invade a variety of cell types, replicate in the cytoplasm, and spread to nearby cells. We have investigated temporal and spatial requirements for virulence determinants in the intracellular life cycle, using genetic dissection and photothermal nanoblade delivery, which allows efficient placement of bacterium-sized cargo into the cytoplasm of mammalian cells. The conserved Bsa type III secretion system (T3SS(Bsa)) is dispensable for invasion, but is essential for escape from primary endosomes. By nanoblade delivery of B. thailandensis we demonstrate that all subsequent events in intercellular spread occur independently of T3SS(Bsa) activity. Although intracellular movement was essential for cell-cell spread by B. pseudomallei and B. thailandensis, neither BimA-mediated actin polymerization nor the formation of membrane protrusions containing bacteria was required for B. thailandensis. Surprisingly, the cryptic (fla2) flagellar system encoded on chromosome 2 of B. thailandensis supported rapid intracellular motility and efficient cell-cell spread. Plaque formation by both pathogens was dependent on the activity of a type VI secretion system (T6SS-1) that functions downstream from T3SS(Bsa)-mediated endosome escape. A remarkable feature of Burkholderia is their ability to induce the formation of multinucleate giant cells (MNGCs) in multiple cell types. By infection and nanoblade delivery, we observed complete correspondence between mutant phenotypes in assays for cell fusion and plaque formation, and time-course studies showed that plaque formation represents MNGC death. Our data suggest that the primary means for intercellular spread involves cell fusion, as opposed to pseudopod engulfment and bacterial escape from double-membrane vacuoles.
Collapse
|
25
|
Burtnick MN, Brett PJ, Harding SV, Ngugi SA, Ribot WJ, Chantratita N, Scorpio A, Milne TS, Dean RE, Fritz DL, Peacock SJ, Prior JL, Atkins TP, DeShazer D. The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun 2011; 79:1512-25. [PMID: 21300775 PMCID: PMC3067527 DOI: 10.1128/iai.01218-10] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/11/2010] [Accepted: 01/27/2011] [Indexed: 11/20/2022] Open
Abstract
The Burkholderia pseudomallei K96243 genome encodes six type VI secretion systems (T6SSs), but little is known about the role of these systems in the biology of B. pseudomallei. In this study, we purified recombinant Hcp proteins from each T6SS and tested them as vaccine candidates in the BALB/c mouse model of melioidosis. Recombinant Hcp2 protected 80% of mice against a lethal challenge with K96243, while recombinant Hcp1, Hcp3, and Hcp6 protected 50% of mice against challenge. Hcp6 was the only Hcp constitutively produced by B. pseudomallei in vitro; however, it was not exported to the extracellular milieu. Hcp1, on the other hand, was produced and exported in vitro when the VirAG two-component regulatory system was overexpressed in trans. We also constructed six hcp deletion mutants (Δhcp1 through Δhcp6) and tested them for virulence in the Syrian hamster model of infection. The 50% lethal doses (LD(50)s) for the Δhcp2 through Δhcp6 mutants were indistinguishable from K96243 (<10 bacteria), but the LD(50) for the Δhcp1 mutant was >10(3) bacteria. The hcp1 deletion mutant also exhibited a growth defect in RAW 264.7 macrophages and was unable to form multinucleated giant cells in this cell line. Unlike K96243, the Δhcp1 mutant was only weakly cytotoxic to RAW 264.7 macrophages 18 h after infection. The results suggest that the cluster 1 T6SS is essential for virulence and plays an important role in the intracellular lifestyle of B. pseudomallei.
Collapse
Affiliation(s)
- Mary N. Burtnick
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, Department of Microbiology and Immunology and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, National Biodefense Analysis and Countermeasures Center, Frederick, Maryland 21702, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, Department of Microbiology and Immunology and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, National Biodefense Analysis and Countermeasures Center, Frederick, Maryland 21702, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Sarah V. Harding
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, Department of Microbiology and Immunology and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, National Biodefense Analysis and Countermeasures Center, Frederick, Maryland 21702, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Sarah A. Ngugi
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, Department of Microbiology and Immunology and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, National Biodefense Analysis and Countermeasures Center, Frederick, Maryland 21702, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Wilson J. Ribot
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, Department of Microbiology and Immunology and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, National Biodefense Analysis and Countermeasures Center, Frederick, Maryland 21702, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Narisara Chantratita
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, Department of Microbiology and Immunology and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, National Biodefense Analysis and Countermeasures Center, Frederick, Maryland 21702, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Angelo Scorpio
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, Department of Microbiology and Immunology and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, National Biodefense Analysis and Countermeasures Center, Frederick, Maryland 21702, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Timothy S. Milne
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, Department of Microbiology and Immunology and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, National Biodefense Analysis and Countermeasures Center, Frederick, Maryland 21702, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Rachel E. Dean
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, Department of Microbiology and Immunology and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, National Biodefense Analysis and Countermeasures Center, Frederick, Maryland 21702, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - David L. Fritz
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, Department of Microbiology and Immunology and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, National Biodefense Analysis and Countermeasures Center, Frederick, Maryland 21702, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Sharon J. Peacock
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, Department of Microbiology and Immunology and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, National Biodefense Analysis and Countermeasures Center, Frederick, Maryland 21702, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Joanne L. Prior
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, Department of Microbiology and Immunology and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, National Biodefense Analysis and Countermeasures Center, Frederick, Maryland 21702, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Timothy P. Atkins
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, Department of Microbiology and Immunology and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, National Biodefense Analysis and Countermeasures Center, Frederick, Maryland 21702, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - David DeShazer
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, Department of Microbiology and Immunology and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, National Biodefense Analysis and Countermeasures Center, Frederick, Maryland 21702, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
26
|
Galyov EE, Brett PJ, DeShazer D. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis. Annu Rev Microbiol 2010; 64:495-517. [PMID: 20528691 DOI: 10.1146/annurev.micro.112408.134030] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Burkholderia pseudomallei and Burkholderia mallei are closely related gram-negative bacteria that can cause serious diseases in humans and animals. This review summarizes the current and rapidly expanding knowledge on the specific virulence factors employed by these pathogens and their roles in the pathogenesis of melioidosis and glanders. In particular, the contributions of recently identified virulence factors are described in the context of the intracellular lifestyle of these pathogens. Throughout this review, unique and shared virulence features of B. pseudomallei and B. mallei are discussed.
Collapse
Affiliation(s)
- Edouard E Galyov
- Department of Infection, Immunity and Inflammation, MSB, University of Leicester, Leicester LE1 9HN, United Kingdom.
| | | | | |
Collapse
|
27
|
Burtnick MN, DeShazer D, Nair V, Gherardini FC, Brett PJ. Burkholderia mallei cluster 1 type VI secretion mutants exhibit growth and actin polymerization defects in RAW 264.7 murine macrophages. Infect Immun 2010; 78:88-99. [PMID: 19884331 PMCID: PMC2798217 DOI: 10.1128/iai.00985-09] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 10/06/2009] [Accepted: 10/26/2009] [Indexed: 01/09/2023] Open
Abstract
Burkholderia mallei is a facultative intracellular pathogen that causes severe disease in animals and humans. Recent studies have shown that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for survival in a hamster model of glanders. To better understand the role of T6SS-1 in the pathogenesis of disease, studies were initiated to examine the interactions of B. mallei tssE mutants with RAW 264.7 murine macrophages. Results obtained by utilizing modified gentamicin protection assays indicated that although the tssE mutants were able to survive within RAW 264.7 cells, significant growth defects were observed in comparison to controls. In addition, analysis of infected monolayers by differential interference contrast and fluorescence microscopy demonstrated that the tssE mutants lacked the ability to induce multinucleated giant cell formation. Via the use of fluorescence microscopy, tssE mutants were shown to undergo escape from lysosome-associated membrane protein 1-positive vacuoles. Curiously, however, following entry into the cytosol, the mutants exhibited actin polymerization defects resulting in inefficient intra- and intercellular spread characteristics. Importantly, all mutant phenotypes observed in this study could be restored by complementation. Based upon these findings, it appears that T6SS-1 plays a critical role in growth and actin-based motility following uptake of B. mallei by RAW 264.7 cells.
Collapse
Affiliation(s)
- Mary N. Burtnick
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, Research Technologies Section, RTB, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840
| | - David DeShazer
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, Research Technologies Section, RTB, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840
| | - Vinod Nair
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, Research Technologies Section, RTB, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840
| | - Frank C. Gherardini
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, Research Technologies Section, RTB, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, Research Technologies Section, RTB, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840
| |
Collapse
|
28
|
Lazar Adler NR, Govan B, Cullinane M, Harper M, Adler B, Boyce JD. The molecular and cellular basis of pathogenesis in melioidosis: how does Burkholderia pseudomallei cause disease? FEMS Microbiol Rev 2009; 33:1079-99. [PMID: 19732156 DOI: 10.1111/j.1574-6976.2009.00189.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Melioidosis, a febrile illness with disease states ranging from acute pneumonia or septicaemia to chronic abscesses, was first documented by Whitmore & Krishnaswami (1912). The causative agent, Burkholderia pseudomallei, was subsequently identified as a motile, gram-negative bacillus, which is principally an environmental saprophyte. Melioidosis has become an increasingly important disease in endemic areas such as northern Thailand and Australia (Currie et al., 2000). This health burden, plus the classification of B. pseudomallei as a category B biological agent (Rotz et al., 2002), has resulted in an escalation of research interest. This review focuses on the molecular and cellular basis of pathogenesis in melioidosis, with a comprehensive overview of the current knowledge on how B. pseudomallei can cause disease. The process of B. pseudomallei movement from the environmental reservoir to attachment and invasion of epithelial and macrophage cells and the subsequent intracellular survival and spread is outlined. Furthermore, the diverse assortment of virulence factors that allow B. pseudomallei to become an effective opportunistic pathogen, as well as to avoid or subvert the host immune response, is discussed. With the recent increase in genomic and molecular studies, the current understanding of the infection process of melioidosis has increased substantially, yet, much still remains to be elucidated.
Collapse
|
29
|
|
30
|
Wiersinga WJ, Dessing MC, van der Poll T. Gene-expression profiles in murine melioidosis. Microbes Infect 2008; 10:868-77. [PMID: 18653369 DOI: 10.1016/j.micinf.2008.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 04/07/2008] [Accepted: 04/28/2008] [Indexed: 01/10/2023]
Abstract
Melioidosis, caused by the bacterium Burkholderia pseudomallei, is a septicemic illness, often associated with pneumonia and bacterial dissemination to distant sites. Recently we reported the inflammatory mRNA profile in blood leukocytes during human melioidosis. Knowledge of the inflammatory gene expression profile in the pulmonary compartment after infection with B. pseudomallei, however, is highly limited. We therefore aimed to characterize the inflammatory mRNA profile in the pulmonary and systemic compartment during murine melioidosis. By using a newly developed mouse specific Multiplex-Ligation-dependent-Probe-Amplification (MLPA) assay we determined the expression profile of 33 genes encoding inflammatory proteins in lung tissue, leukocytes in bronchoalveolar-lavage-fluid (BALF) and blood leukocytes in mice before and at several time points after intranasal infection with B. pseudomallei. Relative to naïve mice, mice intranasally infected with B. pseudomallei showed increased transcription of a whole array of genes involved in inflammation, Toll-like receptor-signaling, coagulation, fibrinolysis, cell adhesion, tissue repair and homeostasis in the lung, BALF and blood compartment. Notably, many inflammatory genes were shown to be differentially expressed during the course of infection. These data provide new information on compartmentalized inflammatory gene-expression profiles after infection with B. pseudomallei, increasing our insights into the extent of inflammation activation in the pulmonary and systemic compartment during melioidosis.
Collapse
Affiliation(s)
- W Joost Wiersinga
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
31
|
Burkholderia pseudomallei type III secretion system mutants exhibit delayed vacuolar escape phenotypes in RAW 264.7 murine macrophages. Infect Immun 2008; 76:2991-3000. [PMID: 18443088 DOI: 10.1128/iai.00263-08] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is a facultative intracellular pathogen capable of surviving and replicating within eukaryotic cells. Recent studies have shown that B. pseudomallei Bsa type III secretion system 3 (T3SS-3) mutants exhibit vacuolar escape and replication defects in J774.2 murine macrophages. In the present study, we characterized the interactions of a B. pseudomallei bsaZ mutant with RAW 264.7 murine macrophages. Following uptake, the mutant was found to survive and replicate within infected RAW 264.7 cells over an 18-h period. In addition, high levels of tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF), and RANTES, but not IL-1alpha and IL-1beta, were detected in culture supernatants harvested from infected monolayers. The subcellular location of B. pseudomallei within infected RAW 264.7 cells was determined, and as expected, the bsaZ mutant demonstrated early-vacuolar-escape defects. Interestingly, however, experiments also indicated that this mutant was capable of delayed vacuolar escape. Consistent with this finding, evidence of actin-based motility and multinucleated giant cell formation were observed between 12 and 18 h postinfection. Further studies demonstrated that a triple mutant defective in all three B. pseudomallei T3SSs exhibited the same phenotype as the bsaZ mutant, indicating that functional T3SS-1 and T3SS-2 did not appear to be responsible for the delayed escape phenotype in RAW 264.7 cells. Based upon these findings, it appears that B. pseudomallei may not require T3SS-1, -2, and -3 to facilitate survival, delayed vacuolar escape, and actin-based motility in activated RAW 264.7 macrophages.
Collapse
|