1
|
|
2
|
Abstract
Type 1 diabetes mellitus (T1DM) is a multi-factorial autoimmune disease determined by the interaction of genetic, environmental and immunologic factors. One of the environmental risk factors identified by a series of independent studies is represented by viral infection, with strong evidence showing that viruses can indeed infect pancreatic beta cells with consequent effects ranging from functional damage to cell death. In this chapter we review the data obtained both in man and in experimental animal models in support of the potential participation of viral infections to Type 1 diabetes pathogenesis, with a particular emphasis on virus-triggered islet inflammation, beta-cell dysfunction and autoimmunity.
Collapse
|
3
|
Al-Hello H, Ylipaasto P, Smura T, Rieder E, Hovi T, Roivainen M. Amino acids of Coxsackie B5 virus are critical for infection of the murine insulinoma cell line, MIN-6. J Med Virol 2009; 81:296-304. [PMID: 19107967 DOI: 10.1002/jmv.21391] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It was shown recently that 15 successive passages of a laboratory strain of the Coxsackie B virus 5 in a mouse pancreas (CBV-5-MPP) resulted in apparent changes in the virus phenotype, which led to the capacity to induce a diabetes-like syndrome in mice. For further characterization of islet cell interactions with a passaged virus strain, a murine insulinoma cell line, MIN-6, was selected as an experimental model. The CBV-5-MPP virus strain was not able to replicate in MIN-6 cells in vitro but required adaptation over a few days for progeny production and the generation of cytopathic effects. In order to determine the genetic characteristics required for virus growth in MIN-6 cells, the whole genome of the MIN-6-adapted virus variant was sequenced, and critical amino acids were identified by comparing the sequence with that of a virus strain passaged repeatedly in the mouse pancreas. The results of site-directed mutagenesis demonstrated that only one residue, amino acid 94 of VP1, is a major determinant for virus adaptation to MIN-6 cells.
Collapse
Affiliation(s)
- Haider Al-Hello
- Enterovirus Laboratory, National Public Health Institute (KTL), Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
4
|
Al-Hello H, Davydova B, Smura T, Kaialainen S, Ylipaasto P, Saario E, Hovi T, Rieder E, Roivainen M. Phenotypic and genetic changes in coxsackievirus B5 following repeated passage in mouse pancreas in vivo. J Med Virol 2005; 75:566-74. [PMID: 15714484 DOI: 10.1002/jmv.20303] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Common enterovirus infections appear to initiate or facilitate the pathogenetic processes leading to type 1 diabetes, and also sometimes precipitate the clinical disease. In experimental infection of mice, coxsackieviruses have shown to have a strong affinity for the exocrine tissue, while even in lethal cases, the islets remain unaffected. The virus strain most intensively studied in this respect is the diabetogenic variant E2 of coxsackievirus B4. In addition, it is known that all six serotypes of coxsackie B viruses can be made diabetogenic by repeated passages in either mouse pancreas in vivo or in cultured mouse beta-cells in vitro. However, the genetic determinants of the phenomenon have not been determined. In the present study, a laboratory strain of coxsackievirus B5 was passaged repeatedly in mouse pancreas in vivo. After 15 passages, the virus phenotype was clearly changed and infection of the variant resulted in a diabetes-like syndrome in mice characterized by chronic pancreatic inflammation together with dysregulation in glucose metabolism, loss of pancreatic acinar tissue, and mild insulitis. In order to characterize the genetic determinants involved in mouse pancreas adaptation, the passaged virus variant together with the parental virus strain was cloned for molecular characterization. The whole genome sequencing of both virus strains revealed only limited differences. Altogether, eight nucleotides were changed resulting in five amino acid substitutions, of which three were located in the capsid proteins.
Collapse
Affiliation(s)
- Haider Al-Hello
- Enterovirus Laboratory, National Public Health Institute (KTL), Mannerheimintie 166, FIN-00300 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Flodström-Tullberg M, Hultcrantz M, Stotland A, Maday A, Tsai D, Fine C, Williams B, Silverman R, Sarvetnick N. RNase L and double-stranded RNA-dependent protein kinase exert complementary roles in islet cell defense during coxsackievirus infection. THE JOURNAL OF IMMUNOLOGY 2005; 174:1171-7. [PMID: 15661870 DOI: 10.4049/jimmunol.174.3.1171] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Coxsackievirus (CV) is an important human pathogen that has been linked to the development of autoimmunity. An intact pancreatic beta cell IFN response is critical for islet cell survival and protection from type 1 diabetes following CV infection. In this study, we show that IFNs trigger an antiviral state in beta cells by inducing the expression of proteins involved in intracellular antiviral defense. Specifically, we demonstrate that 2',5'-oligoadenylate synthetases (2-5AS), RNase L, and dsRNA-dependent protein kinase (PKR) are expressed by pancreatic islet cells and that IFNs (IFN-alpha and IFN-gamma) increase the expression of 2-5AS and PKR, but not RNase L. Moreover, our in vitro studies uncovered that these pathways play important roles in providing unique and complementary antiviral activities that critically regulate the outcome of CV infection. The 2-5AS/RNase L pathway was critical for IFN-alpha-mediated islet cell resistance from CV serotype B4 (CVB4) infection and replication, whereas an intact PKR pathway was required for efficient IFN-gamma-mediated repression of CVB4 infection and replication. Finally, we show that the 2-5AS/RNase L and the PKR pathways play important roles for host survival during a challenge with CVB4. In conclusion, this study has dissected the pathways used by distinct antiviral signals and linked their expression to defense against CVB4.
Collapse
|
6
|
Ylipaasto P, Klingel K, Lindberg AM, Otonkoski T, Kandolf R, Hovi T, Roivainen M. Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia 2004; 47:225-39. [PMID: 14727023 DOI: 10.1007/s00125-003-1297-z] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Revised: 10/06/2003] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS It is thought that enterovirus infections cause beta-cell damage and contribute to the development of Type 1 diabetes by replicating in the pancreatic islets. We sought evidence for this through autopsy studies and by investigating known enterovirus receptors in cultured human islets. METHODS Autopsy pancreases from 12 newborn infants who died of fulminant coxsackievirus infections and from 65 Type 1 diabetic patients were studied for presence of enteroviral ribonucleic acid by in situ hybridisation. Forty non-diabetic control pancreases were included in the study. The expression and role of receptor candidates in cultured human islets were investigated with receptor-specific antibodies using immunocytochemistry and functional assays. RESULTS Enterovirus-positive islet cells were found in some of both autopsy specimen collections, but not in control pancreases. No infected cells were seen in exocrine tissue. The cell surface molecules, poliovirus receptor and integrin alphavbeta3, which act as enterovirus receptors in established cell lines, were expressed in beta cells. Antibodies to poliovirus receptor, human coxsackievirus and adenovirus receptor and integrin alphavbeta3 protected islets and beta cells from adverse effects of poliovirus, coxsackie B viruses, and several of the arginine-glycine-aspartic acid motifs containing enteroviruses and human parechovirus 1 respectively. No evidence was found for expression of the decay-accelerating factor which acts as a receptor for several islet-cell-replicating echoviruses in established cell lines. CONCLUSIONS/INTERPRETATION The results show a definite islet-cell tropism of enteroviruses in the human pancreas. Some enteroviruses seem to use previously identified cell surface molecules as receptors in beta cells, whereas the identity of receptors used by other enteroviruses remains unknown.
Collapse
MESH Headings
- Adolescent
- Adult
- Antibodies, Monoclonal/pharmacology
- Autopsy
- Cell Survival/drug effects
- Cells, Cultured
- Coxsackie and Adenovirus Receptor-Like Membrane Protein
- Coxsackievirus Infections/pathology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/virology
- Echovirus 9/genetics
- Echovirus 9/growth & development
- Enterovirus/genetics
- Enterovirus/growth & development
- Enterovirus B, Human/genetics
- Enterovirus B, Human/growth & development
- Enterovirus Infections/pathology
- Humans
- In Situ Hybridization
- Infant
- Infant, Newborn
- Inflammation/pathology
- Inflammation/virology
- Insulin/analysis
- Insulin/immunology
- Insulin/metabolism
- Insulin Secretion
- Integrin alphaVbeta3/analysis
- Integrin alphaVbeta3/immunology
- Integrin alphaVbeta3/metabolism
- Islets of Langerhans/drug effects
- Islets of Langerhans/pathology
- Islets of Langerhans/virology
- Membrane Proteins/analysis
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Microscopy, Fluorescence
- Middle Aged
- Pancreas/chemistry
- Pancreas/pathology
- Pancreas/virology
- Parechovirus/genetics
- Parechovirus/growth & development
- Poliovirus/genetics
- Poliovirus/growth & development
- RNA, Viral/genetics
- Receptors, Virus/analysis
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
Collapse
Affiliation(s)
- P Ylipaasto
- Enterovirus Laboratory, National Public Health Institute, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
7
|
Flodström M, Tsai D, Fine C, Maday A, Sarvetnick N. Diabetogenic potential of human pathogens uncovered in experimentally permissive beta-cells. Diabetes 2003; 52:2025-34. [PMID: 12882919 DOI: 10.2337/diabetes.52.8.2025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic beta-cell antiviral defense plays a critical role in protection from coxsackievirus B4 (CVB4)-induced diabetes. In the present study, we tested the hypothesis that interferon (IFN)-induced antiviral defense determines beta-cell survival after infection by the human pathogen CVB3, cytomegalovirus (CMV), and lymphocytic choriomeningitis virus (LCMV). We demonstrated that mice harboring beta-cells that do not respond to IFN because of the expression of the suppressor of cytokine signaling-1 (SOCS-1) succumb to an acute form of type 1 diabetes after infection with CVB3. Interestingly, the tropism of the virus was altered in SOCS-1 transgenic (Tg) mice, and CVB3 was detected in islet cells of SOCS-1-Tg mice before beta-cell loss and the onset of diabetes. Furthermore, insulitis was increased in SOCS-1-Tg mice after infection with murine CMV, and a minority of the mice developed overt diabetes. However, infection with LCMV failed to cause beta-cell destruction in SOCS-1 Tg mice. These findings suggest that CVB3 can cause diabetes in a host lacking adequate beta-cell antiviral defense, and that incomplete target cell antiviral defense may enhance susceptibility to diabetes triggered by CMV. In conclusion, suppressed beta-cell antiviral defense reveals the diabetogenic potential of two pathogens previously linked to the onset of type 1 diabetes in humans.
Collapse
Affiliation(s)
- Malin Flodström
- Department of Immunology, the Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
8
|
Flodström M, Maday A, Balakrishna D, Cleary MM, Yoshimura A, Sarvetnick N. Target cell defense prevents the development of diabetes after viral infection. Nat Immunol 2002; 3:373-82. [PMID: 11919579 DOI: 10.1038/ni771] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanisms that regulate susceptibility to virus-induced autoimmunity remain undefined. We establish here a fundamental link between the responsiveness of target pancreatic beta cells to interferons (IFNs) and prevention of coxsackievirus B4 (CVB4)-induced diabetes. We found that an intact beta cell response to IFNs was critical in preventing disease in infected hosts. The antiviral defense, raised by beta cells in response to IFNs, resulted in a reduced permissiveness to infection and subsequent natural killer (NK) cell-dependent death. These results show that beta cell defenses are critical for beta cell survival during CVB4 infection and suggest an important role for IFNs in preserving NK cell tolerance to beta cells during viral infection. Thus, alterations in target cell defenses can critically influence susceptibility to disease.
Collapse
Affiliation(s)
- Malin Flodström
- Department of Immunology, IMM-23, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
9
|
Flodström M, Horwitz MS, Maday A, Balakrishna D, Rodriguez E, Sarvetnick N. A critical role for inducible nitric oxide synthase in host survival following coxsackievirus B4 infection. Virology 2001; 281:205-15. [PMID: 11277693 DOI: 10.1006/viro.2000.0801] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coxsackieviral infections have been linked etiologically to multiple diseases. The serotype CB4 is associated with acute pancreatitis and autoimmune type 1 diabetes. To delineate the mechanisms of host survival after an acute infection with CB4 (strain E2), we have investigated the role of nitric oxide (NO), generated by the inducible form of nitric oxide synthase (NOS2), in viral clearance and pancreatic beta-cell maintenance. Mice deficient in NOS2 (NOS2-/- mice) and their wild-type (wt) counterparts were injected with CB4, after which both groups developed severe pancreatitis, hepatitis, and hypoglycemia within 3 days. Within 4 to 7 days postinfection (p.i.), most of the NOS2-/- mice died and at a strikingly higher mortality rate than wt mice. Histological examination of pancreata from both infected NOS2-/- and infected wt mice revealed early and complete destruction of the pancreatic acinar tissue, but intact, insulin-stained islets. When examined up to 8 weeks p.i., neither surviving NOS2-/-mice nor surviving wt mice developed hyperglycemia. However, the clearance of infectious CB4 was different between the mice. The spleens of NOS2-/- survivors were cleared of infectious virus with kinetics similar to that of wt mice, but the livers, pancreata, kidneys, and hearts of the NOS2-/- groups cleared virus more slowly than those of the wt group. This delayed clearance was particularly prominent in the livers of infected NOS2-/- mice, which also showed prolonged histopathological features of viral hepatitis. Taken together, this outcome suggests that NOS2 (and NO) is not required for the prevention of pancreatic beta-cell depletion after CB4 infection. Instead the critical actions of NOS2 apparently occur early in the host immune response, allowing mice to survive and clear virus. Moreover, the data support the existence of an organ-specific dependency on NO for a rapid clearance of CB4.
Collapse
Affiliation(s)
- M Flodström
- Department of Immunology, The Scripps Research Institute, 10 550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
10
|
The Role of Coxsackie B Viruses in the Pathogenesis of Type I Diabetes. INFECTIOUS AGENTS AND PATHOGENESIS 1996. [DOI: 10.1007/978-1-4613-0347-3_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Affiliation(s)
- J W Yoon
- Julia McFarlane Diabetes Research Centre, University of Calgary, Alberta, Canada
| |
Collapse
|
12
|
Karges WJ, Ilonen J, Robinson BH, Dosch HM. Self and non-self antigen in diabetic autoimmunity: molecules and mechanisms. Mol Aspects Med 1995; 16:79-213. [PMID: 7658921 DOI: 10.1016/0098-2997(95)00001-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this article, we have summarized current facts, models and views of the autoimmunity that leads to destruction of insulin-producing beta-cells and consequent Type 1 (insulin-dependent) diabetes mellitus. The presence of strong susceptibility and resistance gene loci distinguishes this condition from other autoimmune disorders, but environmental disease factors must conspire to produce disease. The mapping of most of the genetic risk (or disease resistance) to specific alleles in the major histocompatibility locus (MHC class II) has direct functional implications for our understanding of autoimmunity in diabetes and directly implies that presentation of a likely narrow set of peptides is critical to the development of diabetic autoimmunity. While many core scientific questions remain to be answered, current insight into the disease process is beginning to have direct clinical impact with concerted efforts towards disease prevention or intervention by immunological means. In this process, identification of the critical antigenic epitopes recognized by diabetes-associated T cells has achieved highest priority.
Collapse
Affiliation(s)
- W J Karges
- Department of Pediatrics and Immunology, Hospital for Sick Children, University of Toronto, Canada
| | | | | | | |
Collapse
|
13
|
Frisk G, Grapengiesser E, Diderholm H. Impaired Ca2+ response to glucose in mouse beta-cells infected with coxsackie B or Echo virus. Virus Res 1994; 33:229-40. [PMID: 7985410 DOI: 10.1016/0168-1702(94)90105-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Five strains of Coxsackie B4 virus and one of Echo 11 virus were tested with regard to their ability to replicate in pancreatic mouse beta-cells and interfere with the alterations of the cytoplasmic Ca2+ concentration ([Ca2+]i) induced by glucose. All strains except one both multiplied and caused cytopathic effect. In a control group 68% of the beta-cells responded to 11 mM glucose with large amplitude oscillations of [Ca2+]i. After inoculation with the infectious strains these oscillations appeared in only 5% of the beta-cells, whereas the non-infectious strain did not modify the glucose effect on [Ca2+]i. Despite the virus interference with the glucose response, [Ca2+]i was increased after depolarization with excessive extracellular K+ and the oscillations were induced in most beta-cells when glucose was combined with the insulin-releasing sulfonylurea tolbutamide.
Collapse
Affiliation(s)
- G Frisk
- Department of Medical Virology, Uppsala University, Sweden
| | | | | |
Collapse
|
14
|
Szopa TM, Titchener PA, Portwood ND, Taylor KW. Diabetes mellitus due to viruses--some recent developments. Diabetologia 1993; 36:687-95. [PMID: 8405735 DOI: 10.1007/bf00401138] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Many different viruses belonging to several genera have the potential to damage beta cells. The mechanisms they employ are varied, and infection may result in either a direct destruction of islets and rapid insulin deficiency, or in a more gradual loss of functioning islets with the onset of diabetes many years later. Several case histories involving extensive cytolysis of beta cells can be directly linked to viral infection, whilst an example of diabetes occurring many years after viral infection is found in individuals who had a congenital infection with rubella virus. Here, the virus induces an autoimmune reaction against beta cells. Autoimmune phenomena have also been observed in islets following infections with viruses other than rubella, and thus activation of autoimmune mechanisms leading to beta-cell destruction may be a relatively frequent occurrence. Recent evidence shows that picornaviruses are not exclusively lytic, and can induce more subtle, long-term changes in beta cells, which may be important in the aetiology of diabetes. The exact mechanisms involved are not known, but it is clear that several viruses can directly inhibit insulin synthesis and induce the expression of other proteins such as interferons, and the HLA antigens. Strain differences in viruses are important since not all variants are tropic for the beta cells. Several laboratories are in the process of identifying the genetic determinants of tropism and diabetogenicity, especially amongst the Coxsackie B (CB) virus group. The sequence of one such diabetogenic CB4 strain virus has been determined.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T M Szopa
- Medical Unit, Royal London Hospital, UK
| | | | | | | |
Collapse
|
15
|
Ward T, Clemens MJ, Taylor KW. Effects of a diabetogenic strain of encephalomyocarditis (EMC) virus on protein synthesis in mouse islets of Langerhans. Biochem J 1990; 270:777-81. [PMID: 2173551 PMCID: PMC1131800 DOI: 10.1042/bj2700777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of a diabetogenic strain of encephalomyocarditis (EMC) virus on total protein and insulin biosynthesis in mouse islets of Langerhans have been studied in tissue culture. In dispersed mouse islets, the rates of protein biosynthesis were assessed by measuring the incorporation of [3H]leucine into proteins. In infected dispersed islets incubated in 20 mM-glucose, both insulin and total protein biosynthesis were decreased at 6 h; only insulin biosynthesis was significantly decreased at 3 h. In whole islets, EMC virus brought about a decrease in glucose-stimulated protein and insulin biosynthesis as early as 2 h after infection without concomitant effects on insulin release. This inhibition of protein biosynthesis was still apparent at 20 h post-infection, at which time insulin release was found to be markedly elevated, and the islet insulin content was moderately decreased. At 44 h post-infection, glucose-induced insulin biosynthesis was preferentially inhibited. Infected islets at this later time point also displayed elevated levels of insulin release, and a marked loss of islet insulin content. When insulin mRNA and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA levels were assessed by dot-blot hybridization using appropriate cDNA probes, levels of insulin mRNA were shown to decrease steadily during the first 20 h of infection, in contrast with the levels of GAPDH mRNA. At 44 h post-infection, both types of mRNA were markedly decreased. It is suggested that there is an initial early 'shut-off' of protein synthesis without other detectable changes in islet function. This is followed by a phase where both insulin mRNA levels and insulin synthesis are dramatically decreased.
Collapse
Affiliation(s)
- T Ward
- Department of Biochemistry, London Hospital Medical College, U.K
| | | | | |
Collapse
|
16
|
Szopa TM, Ward T, Dronfield DM, Portwood ND, Taylor KW. Coxsackie B4 viruses with the potential to damage beta cells of the islets are present in clinical isolates. Diabetologia 1990; 33:325-8. [PMID: 2165944 DOI: 10.1007/bf00404634] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Infections with Coxsackie viruses (especially Coxsackie B4) are thought to be involved in the pathogenesis of diabetes. Many interdependent variables determine the outcome of an infection with a Coxsackie virus, one of them being the tropism of the virus for a specific tissue. The extent to which Beta cell tropic variants of Coxsackie B4 virus occur naturally was assessed. Human isolates of this virus were tested in an in vitro system in which elevated insulin release from infected islets incubated at a non-stimulatory (2 mmol/l) glucose concentration appears to be related to viral attack. Using this technique, 8/24 isolates tested, impaired secretory function in mouse islets. Some strains of Coxsackie B4 virus, therefore, will directly infect mouse islets in vitro leading to changes in islet cell function. In conclusion, these findings confirm that variants of Coxsackie B4 virus with the potential to damage Beta cells occur quite frequently in the natural population. In certain circumstances the damage they inflict on Beta cells may cause destruction of these cells, or precipitate overt diabetes.
Collapse
Affiliation(s)
- T M Szopa
- Department of Biochemistry, London Hospital Medical College, UK
| | | | | | | | | |
Collapse
|