1
|
Guo WY, Fu YX, Smith S, Smith A, Noble C, Viner R, Li M, Zheng XX, Peng XJ, Shi XX, Li ZW, Wang DW, Yin J, Gu YC, Ye Y, Yang GF. Complementary Fluorescent Probe Pair Targeting Histidinol Dehydrogenase Provides a Useful Tool for Target Validation. Anal Chem 2025. [PMID: 40378005 DOI: 10.1021/acs.analchem.5c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Recent advances in target-based pesticide design have identified numerous novel candidate targets, although their agrochemical potential requires rigorous validation. Fluorescent probes serve as critical tools for tracing molecular interactions and elucidating the target functionality. Herein, we developed a complementary fluorescent probe pair (HDP1 and HDP2) to systematically reveal the challenge of targeting histidinol dehydrogenase (HDH) as an agrochemical target. HDP1 exhibits an outstanding detection limit (0.17 μg/mL), while HDP2 demonstrates excellent imaging capabilities in vivo. HDP1 was used to probe the interactions between inhibitors and substrates with HDH, confirming that HOL, the natural substrate of HDH, exhibits a strong and competitive affinity for HDH similar to that of HDH inhibitors (HDHIs). HDP2 was employed to image HDH in Arabidopsis thaliana, Escherichia coli, and Saccharomyces cerevisiae during treatment with HDHIs or under other stresses to show the change of the flux through the histidine biosynthesis pathway. The results indicate that HDHIs, non-HDH-targeting pesticides, and abiotic stresses can all affect His biosynthesis in plants, bacteria, and fungi. The results also show that various stresses can influence the histidine biosynthesis pathway through the regulation of the pentose phosphate pathway and inhibition of the expression of ATP-phosphoribosyltransferase. It can be concluded that the development of competitive inhibitors for HDH that can compete with HOL and show activity in vivo is a significant challenge. The sensitivity of the His biosynthesis pathway to other stresses complicates the picture and, under different conditions, may provide a positive or negative factor for HDH inhibition by synthetic ligands.
Collapse
Affiliation(s)
- Wu-Yingzheng Guo
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
| | - Yi-Xuan Fu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
| | - Stephen Smith
- Jealott's Hill International Research Centre, Syngenta, Berkshire, Bracknell RG42 6EY, U.K
| | - Alex Smith
- Jealott's Hill International Research Centre, Syngenta, Berkshire, Bracknell RG42 6EY, U.K
| | - Christian Noble
- Jealott's Hill International Research Centre, Syngenta, Berkshire, Bracknell RG42 6EY, U.K
| | - Russell Viner
- Jealott's Hill International Research Centre, Syngenta, Berkshire, Bracknell RG42 6EY, U.K
| | - Min Li
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Xia Zheng
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
| | - Xuan-Jian Peng
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
| | - Xing-Xing Shi
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Wen Li
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
| | - Da-Wei Wang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
| | - Jun Yin
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
| | - Yu-Cheng Gu
- Jealott's Hill International Research Centre, Syngenta, Berkshire, Bracknell RG42 6EY, U.K
| | - Ying Ye
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
2
|
Liu Y, Wu P, Li B, Wang W, Zhu B. Phosphoribosyltransferases and Their Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2023; 24:11828. [PMID: 37511586 PMCID: PMC10380321 DOI: 10.3390/ijms241411828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation is a widespread glycosyl modification that regulates gene expression and metabolite bioactivity in all life processes of plants. Phosphoribosylation is a special glycosyl modification catalyzed by phosphoribosyltransferase (PRTase), which functions as a key step in the biosynthesis pathway of purine and pyrimidine nucleotides, histidine, tryptophan, and coenzyme NAD(P)+ to control the production of these essential metabolites. Studies in the past decades have reported that PRTases are indispensable for plant survival and thriving, whereas the complicated physiological role of PRTases in plant life and their crosstalk is not well understood. Here, we comprehensively overview and critically discuss the recent findings on PRTases, including their classification, as well as the function and crosstalk in regulating plant development, abiotic stress response, and the balance of growth and stress responses. This review aims to increase the understanding of the role of plant PRTase and also contribute to future research on the trade-off between plant growth and stress response.
Collapse
Affiliation(s)
- Ye Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peiwen Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bowen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weihao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Salaria S, Boatwright JL, Thavarajah P, Kumar S, Thavarajah D. Protein Biofortification in Lentils ( Lens culinaris Medik.) Toward Human Health. FRONTIERS IN PLANT SCIENCE 2022; 13:869713. [PMID: 35449893 PMCID: PMC9016278 DOI: 10.3389/fpls.2022.869713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/14/2022] [Indexed: 05/11/2023]
Abstract
Lentil (Lens culinaris Medik.) is a nutritionally dense crop with significant quantities of protein, low-digestible carbohydrates, minerals, and vitamins. The amino acid composition of lentil protein can impact human health by maintaining amino acid balance for physiological functions and preventing protein-energy malnutrition and non-communicable diseases (NCDs). Thus, enhancing lentil protein quality through genetic biofortification, i.e., conventional plant breeding and molecular technologies, is vital for the nutritional improvement of lentil crops across the globe. This review highlights variation in protein concentration and quality across Lens species, genetic mechanisms controlling amino acid synthesis in plants, functions of amino acids, and the effect of antinutrients on the absorption of amino acids into the human body. Successful breeding strategies in lentils and other pulses are reviewed to demonstrate robust breeding approaches for protein biofortification. Future lentil breeding approaches will include rapid germplasm selection, phenotypic evaluation, genome-wide association studies, genetic engineering, and genome editing to select sequences that improve protein concentration and quality.
Collapse
Affiliation(s)
- Sonia Salaria
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Jon Lucas Boatwright
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | | | - Shiv Kumar
- Biodiversity and Crop Improvement Program, International Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat-Institute, Rabat, Morocco
| | - Dil Thavarajah
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
- *Correspondence: Dil Thavarajah,
| |
Collapse
|
4
|
Seregin IV, Kozhevnikova AD. Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation. PHOTOSYNTHESIS RESEARCH 2021; 150:51-96. [PMID: 32653983 DOI: 10.1007/s11120-020-00768-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Mineral nutrition is one of the key factors determining plant productivity. In plants, metal homeostasis is achieved through the functioning of a complex system governing metal uptake, translocation, distribution, and sequestration, leading to the maintenance of a regulated delivery of micronutrients to metal-requiring processes as well as detoxification of excess or non-essential metals. Low-molecular-weight ligands, such as nicotianamine, histidine, phytochelatins, phytosiderophores, and organic acids, play an important role in metal transport and detoxification in plants. Nicotianamine and histidine are also involved in metal hyperaccumulation, which determines the ability of some plant species to accumulate a large amount of metals in their shoots. In this review we extensively summarize and discuss the current knowledge of the main pathways for the biosynthesis of these ligands, their involvement in metal uptake, radial and long-distance transport, as well as metal influx, isolation and sequestration in plant tissues and cell compartments. It is analyzed how diverse endogenous ligand levels in plants can determine their different tolerance to metal toxic effects. This review focuses on recent advances in understanding the physiological role of these compounds in metal homeostasis, which is an essential task of modern ionomics and plant physiology. It is of key importance in studying the influence of metal deficiency or excess on various physiological processes, which is a prerequisite to the improvement of micronutrient uptake efficiency and crop productivity and to the development of a variety of applications in phytoremediation, phytomining, biofortification, and nutritional crop safety.
Collapse
Affiliation(s)
- I V Seregin
- K.A. Timiryazev Institute of Plant Physiology RAS, IPPRAS, Botanicheskaya st., 35, Moscow, Russian Federation, 127276.
| | - A D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology RAS, IPPRAS, Botanicheskaya st., 35, Moscow, Russian Federation, 127276
| |
Collapse
|
5
|
Fell DA. Metabolic Control Analysis. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Hasan MM, Rima R. Genetic engineering to improve essential and conditionally essential amino acids in maize: transporter engineering as a reference. Transgenic Res 2021; 30:207-220. [PMID: 33583006 DOI: 10.1007/s11248-021-00235-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/21/2021] [Indexed: 11/27/2022]
Abstract
Ruminants and humans are unable to synthesize essential amino acids (EAAs) and conditionally essential amino acids (CEAAs) under normal conditions and need to acquire them from plant sources. Maize plays, as a major crop, a central role in global food security. However, maize is deficient in several EAAs and CEAAs. Genetic engineering has been successfully used to enrich the EAA content of maize to some extent, including the content of Lys, Trp, and Met. However, research on other EAAs is lacking. Genetic engineering provides several viable approaches for increasing the EAA content in maize, including transformation of a single gene, transformation of multiple genes in a single cassette, overexpression of putative amino acid transporters, engineering the amino acid biosynthesis pathway including silencing of feedback inhibition enzymes, and overexpression of major enzymes in this pathway. These challenging processes require a deep understanding of the biosynthetic and metabolic pathways of individual amino acids, and the interaction of individual amino acids with other metabolic pathways.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- The Key Laboratory of Plant-Soil Interactions, Ministry of Education, Center for Resources, Environment and Food Security, Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China.
| | - Rima Rima
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
7
|
Zhang H, Huo Y, Xu Z, Guo K, Wang Y, Zhang X, Xu N, Sun G. Physiological and proteomics responses of nitrogen assimilation and glutamine/glutamine family of amino acids metabolism in mulberry ( Morus alba L.) leaves to NaCl and NaHCO 3 stress. PLANT SIGNALING & BEHAVIOR 2020; 15:1798108. [PMID: 32729371 PMCID: PMC8550533 DOI: 10.1080/15592324.2020.1798108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 05/04/2023]
Abstract
In order to find out the response mechanism of nitrogen assimilation and glutamine/glutamine family of amino acids metabolism in mulberry (Morus alba L.) leaves under NaCl and NaHCO3 stress, and to reveal its role in salt alkali adaptation. The effects of the nitrogen metabolism of mulberry leaves were studied under 100 mmol L-1 NaCl and NaHCO3 stress.The results showed that the activity of NR and the content of TN and SP did not change significantly, the expression of NiR, Fd-NiR, Fd-NiR gene and theactivity of NiR increased significantly under NaCl stress, but nitrogen assimilation was inhibited under NaHCO3 stress. NaCl stress had no significant effect on the expression and activity of GS and GOGAT in mulberry leaves. Under NaHCO3 stress, the expression of Fd-GOGAT, Fd-GOGAT2, Fd-GOGAT gene, and the activity of GS and GOGAT were significantly decreased. NaCl stress can promote the accumulation of Pro, Put and Spd in mulberry leaves. The accumulation of Pro under NaHCO3 stress is greater than that under NaCl stress. NaCl stress also induced the up-regulation of GAD, GAD1 and GAD1 gene expression, so promoting the synthesis of GABA may be an adaptive mechanism for mulberry to cope with NaCl stress, but the expression of GAD did not change significantly and GAD gene expression lower than CK under NaHCO3 stress. Although both NaCl and NaHCO3 stress could promote the synthesis of GSH by up-regulation of GCLM expression, GSH under NaHCO3 stress was significantly higher than that under NaCl stress, the content of H2O2 was still significantly higher than that of NaCl stress, that means GSH may not play a key role in alleviating the oxidative damage in mulberry leaves caused by salt and alkali.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Resources and Environment, NortheastAgriculturalUniversity, Harbin, Heilongjiang, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yuze Huo
- College of Resources and Environment, NortheastAgriculturalUniversity, Harbin, Heilongjiang, China
| | - Zisong Xu
- College of Resources and Environment, NortheastAgriculturalUniversity, Harbin, Heilongjiang, China
| | - Kaiwen Guo
- College of Resources and Environment, NortheastAgriculturalUniversity, Harbin, Heilongjiang, China
| | - Yue Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xiaosong Zhang
- Department of Research and Education, Dalian Academy of Agricultural Sciences, Dalian, Liaoning, China
| | - Nan Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang, China
- Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, Harbin University, Harbin, Heilongjiang, China
- Natural Resources and Ecology Institute, Heilongjiang Sciences Academy, Harbin, Heilongjiang, China
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Grabsztunowicz M, Rokka A, Farooq I, Aro EM, Mulo P. Gel-based proteomic map of Arabidopsis thaliana root plastids and mitochondria. BMC PLANT BIOLOGY 2020; 20:413. [PMID: 32887556 PMCID: PMC7650296 DOI: 10.1186/s12870-020-02635-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Non-photosynthetic plastids of plants are known to be involved in a range of metabolic and biosynthetic reactions, even if they have been difficult to study due to their small size and lack of color. The morphology of root plastids is heterogeneous and also the plastid size, density and subcellular distribution varies depending on the cell type and developmental stage, and therefore the functional features have remained obscure. Although the root plastid proteome is likely to reveal specific functional features, Arabidopsis thaliana root plastid proteome has not been studied to date. RESULTS In the present study, we separated Arabidopsis root protein fraction enriched with plastids and mitochondria by 2D-PAGE and identified 84 plastid-targeted and 77 mitochondrion-targeted proteins using LC-MS/MS. The most prevalent root plastid protein categories represented amino acid biosynthesis, carbohydrate metabolism and lipid biosynthesis pathways, while the enzymes involved in starch and sucrose metabolism were not detected. Mitochondrion-targeted proteins were classified mainly into the energetics category. CONCLUSIONS This is the first study presenting gel-based map of Arabidopsis thaliana root plastid and mitochondrial proteome. Our findings suggest that Arabidopsis root plastids have broad biosynthetic capacity, and that they do not play a major role in a long-term storage of carbohydrates. The proteomic map provides a tool for further studies to compare changes in the proteome, e.g. in response to environmental cues, and emphasizes the role of root plastids in nitrogen and sulfur metabolism as well as in amino acid and fatty acid biosynthesis. The results enable taking a first step towards an integrated view of root plastid/mitochondrial proteome and metabolic functions in Arabidopsis thaliana roots.
Collapse
Affiliation(s)
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Irum Farooq
- Molecular Plant Biology, University of Turku, 20520, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, University of Turku, 20520, Turku, Finland
| | - Paula Mulo
- Molecular Plant Biology, University of Turku, 20520, Turku, Finland.
| |
Collapse
|
9
|
van der Pas L, Ingle RA. Towards an Understanding of the Molecular Basis of Nickel Hyperaccumulation in Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E11. [PMID: 30621231 PMCID: PMC6359332 DOI: 10.3390/plants8010011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/19/2022]
Abstract
Metal hyperaccumulation is a rare and fascinating phenomenon, whereby plants actively accumulate high concentrations of metal ions in their above-ground tissues. Enhanced uptake and root-to-shoot translocation of specific metal ions coupled with an increased capacity for detoxification and sequestration of these ions are thought to constitute the physiological basis of the hyperaccumulation phenotype. Nickel hyperaccumulators were the first to be discovered and are the most numerous, accounting for some seventy-five percent of all known hyperaccumulators. However, our understanding of the molecular basis of the physiological processes underpinning Ni hyperaccumulation has lagged behind that of Zn and Cd hyperaccumulation, in large part due to a lack of genomic resources for Ni hyperaccumulators. The advent of RNA-Seq technology, which allows both transcriptome assembly and profiling of global gene expression without the need for a reference genome, has offered a new route for the analysis of Ni hyperaccumulators, and several such studies have recently been reported. Here we review the current state of our understanding of the molecular basis of Ni hyperaccumulation in plants, with an emphasis on insights gained from recent RNA-Seq experiments, highlight commonalities and differences between Ni hyperaccumulators, and suggest potential future avenues of research in this field.
Collapse
Affiliation(s)
- Llewelyn van der Pas
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| | - Robert A Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
10
|
Meier SK, Adams N, Wolf M, Balkwill K, Muasya AM, Gehring CA, Bishop JM, Ingle RA. Comparative RNA-seq analysis of nickel hyperaccumulating and non-accumulating populations of Senecio coronatus (Asteraceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1023-1038. [PMID: 29952120 DOI: 10.1111/tpj.14008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Most metal hyperaccumulating plants accumulate nickel, yet the molecular basis of Ni hyperaccumulation is not well understood. We chose Senecio coronatus to investigate this phenomenon as this species displays marked variation in shoot Ni content across ultramafic outcrops in the Barberton Greenstone Belt (South Africa), thus allowing an intraspecific comparative approach to be employed. No correlation between soil and shoot Ni contents was observed, suggesting that this variation has a genetic rather than environmental basis. This was confirmed by our observation that the accumulation phenotype of plants from two hyperaccumulator and two non-accumulator populations was maintained when the plants were grown on a soil mix from these four sites for 12 months. We analysed the genetic variation among 12 serpentine populations of S. coronatus, and used RNA-seq for de novo transcriptome assembly and analysis of gene expression in hyperaccumulator versus non-accumulator populations. Genetic analysis revealed the presence of hyperaccumulators in two well supported evolutionary lineages, indicating that Ni hyperaccumulation may have evolved more than once in this species. RNA-Seq analysis indicated that putative homologues of transporters associated with root iron uptake in plants are expressed at elevated levels in roots and shoots of hyperaccumulating populations of S. coronatus from both evolutionary lineages. We hypothesise that Ni hyperaccumulation in S. coronatus may have evolved through recruitment of these transporters, which play a role in the iron-deficiency response in other plant species.
Collapse
Affiliation(s)
- Stuart K Meier
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Nicolette Adams
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
| | - Michael Wolf
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
| | - Kevin Balkwill
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Abraham Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7700, South Africa
| | - Christoph A Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jacqueline M Bishop
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7700, South Africa
| | - Robert A Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
| |
Collapse
|
11
|
Pretali L, Bernardo L, Butterfield TS, Trevisan M, Lucini L. Botanical and biological pesticides elicit a similar Induced Systemic Response in tomato (Solanum lycopersicum) secondary metabolism. PHYTOCHEMISTRY 2016; 130:56-63. [PMID: 27251587 DOI: 10.1016/j.phytochem.2016.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/07/2016] [Accepted: 04/11/2016] [Indexed: 05/18/2023]
Abstract
Natural pesticides have attracted substantial interest due to the increase in organic agriculture and enhanced attention to environmental pollution. Plant Growth Promoting Bacteria (PGPB) are applied for both disease control and growth enhancement; PGPBs are known to elicit Induced Systemic Response (ISR) in plants. However, less is known about the effect of botanical pesticides, such as the azadirachtin-containing neem extracts, on plant metabolism. This study aimed to investigate the effects of foliar application of the above-mentioned natural pesticides on the metabolic profiling of tomato. Leaf application of Bacillus subtilis fostered Induced Systemic Resistance (ISR) in treated plants via the Jasmonic acid pathway, and enhanced production of secondary metabolites such as flavonoids, phytoalexins and auxins. Changes in sterols and terpenes, as well as an increase in glucosinolates were also observed. Interestingly, azadirachtin-treated tomatoes also showed an increase in ISR and our results revealed that most of the enriched metabolites are shared with a B. subtilis treatment, suggesting conserved biochemical responses. These (un)expected findings indicate that plants are not insensitive to application of natural pesticide and while Azadirachtin is applied as a direct pesticide, it also stimulates a defense response in tomatoes very similar to B. subtilis induced ISR.
Collapse
Affiliation(s)
- Luca Pretali
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy.
| | - Letizia Bernardo
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy.
| | | | - Marco Trevisan
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy.
| | - Luigi Lucini
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy.
| |
Collapse
|
12
|
Galili G, Amir R, Fernie AR. The Regulation of Essential Amino Acid Synthesis and Accumulation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:153-78. [PMID: 26735064 DOI: 10.1146/annurev-arplant-043015-112213] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although amino acids are critical for all forms of life, only proteogenic amino acids that humans and animals cannot synthesize de novo and therefore must acquire in their diets are classified as essential. Nine amino acids-lysine, methionine, threonine, phenylalanine, tryptophan, valine, isoleucine, leucine, and histidine-fit this definition. Despite their nutritional importance, several of these amino acids are present in limiting quantities in many of the world's major crops. In recent years, a combination of reverse genetic and biochemical approaches has been used to define the genes encoding the enzymes responsible for synthesizing, degrading, and regulating these amino acids. In this review, we describe recent advances in our understanding of the metabolism of the essential amino acids, discuss approaches for enhancing their levels in plants, and appraise efforts toward their biofortification in crop plants.
Collapse
Affiliation(s)
- Gad Galili
- Department of Plant Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Rachel Amir
- Laboratory of Plant Science, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel;
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
13
|
Ruszkowski M, Dauter Z. Structural Studies of Medicago truncatula Histidinol Phosphate Phosphatase from Inositol Monophosphatase Superfamily Reveal Details of Penultimate Step of Histidine Biosynthesis in Plants. J Biol Chem 2016; 291:9960-73. [PMID: 26994138 DOI: 10.1074/jbc.m115.708727] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Indexed: 11/06/2022] Open
Abstract
The penultimate enzyme in the histidine biosynthetic pathway catalyzes dephosphorylation of l-histidinol 1-phosphate (HOLP) into l-histidinol. The recently discovered in Arabidopsis thaliana plant-type histidinol phosphate phosphatase (HPP) shares no homology with the two other HPP superfamilies known previously in prokaryotes and resembles myo-inositol monophosphatases (IMPases). In this work, identification of an HPP enzyme from a model legume, Medicago truncatula (MtHPP) was based on the highest sequence identity to A. thaliana enzyme. Biochemical assays confirmed that MtHPP was able to cleave inorganic phosphate from HOLP but not from d-myo-inositol-1-phosphate, the main substrate of IMPases. Dimers of MtHPP, determined by size exclusion chromatography, in the presence of CO2 or formaldehyde form mutual, methylene-bridged cross-links between Lys(158) and Cys(245) residues. Four high resolution crystal structures, namely complexes with HOLP (substrate), l-histidinol (product), and PO4 (3-) (by-product) as well as the structure showing the cross-linking between two MtHPP molecules, provide detailed structural information on the enzyme. Based on the crystal structures, the enzymatic reaction mechanism of IMPases is accustomed to fit the data for MtHPP. The enzymatic reaction, which requires Mg(2+) cations, is catalyzed mainly by amino acid residues from the N-terminal domain. The C-terminal domain, sharing little identity with IMPases, is responsible for the substrate specificity (i.e. allows the enzyme to distinguish between HOLP and d-myo-inositol-1-phosphate). Structural features, mainly the presence of a conserved Asp(246), allow MtHPP to bind HOLP specifically.
Collapse
Affiliation(s)
- Milosz Ruszkowski
- From the Synchrotron Radiation Research Section of MCL, NCI, National Institutes of Health, Argonne, Illinois 60439
| | - Zbigniew Dauter
- From the Synchrotron Radiation Research Section of MCL, NCI, National Institutes of Health, Argonne, Illinois 60439
| |
Collapse
|
14
|
Majumdar R, Barchi B, Turlapati SA, Gagne M, Minocha R, Long S, Minocha SC. Glutamate, Ornithine, Arginine, Proline, and Polyamine Metabolic Interactions: The Pathway Is Regulated at the Post-Transcriptional Level. FRONTIERS IN PLANT SCIENCE 2016. [PMID: 26909083 DOI: 10.3389/fpls.2016.00078.e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The metabolism of glutamate into ornithine, arginine, proline, and polyamines is a major network of nitrogen-metabolizing pathways in plants, which also produces intermediates like nitric oxide, and γ-aminobutyric acid (GABA) that play critical roles in plant development and stress. While the accumulations of intermediates and the products of this network depend primarily on nitrogen assimilation, the overall regulation of the interacting sub-pathways is not well understood. We tested the hypothesis that diversion of ornithine into polyamine biosynthesis (by transgenic approach) not only plays a role in regulating its own biosynthesis from glutamate but also affects arginine and proline biosynthesis. Using two high putrescine producing lines of Arabidopsis thaliana (containing a transgenic mouse ornithine decarboxylase gene), we studied the: (1) effects of exogenous supply of carbon and nitrogen on polyamines and pools of soluble amino acids; and, (2) expression of genes encoding key enzymes in the interactive pathways of arginine, proline and GABA biosynthesis as well as the catabolism of polyamines. Our findings suggest that: (1) the overall conversion of glutamate to arginine and polyamines is enhanced by increased utilization of ornithine for polyamine biosynthesis by the transgene product; (2) proline and arginine biosynthesis are regulated independently of polyamines and GABA biosynthesis; (3) the expression of most genes (28 that were studied) that encode enzymes of the interacting sub-pathways of arginine and GABA biosynthesis does not change even though overall biosynthesis of Orn from glutamate is increased several fold; and (4) increased polyamine biosynthesis results in increased assimilation of both nitrogen and carbon by the cells.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Department of Biological Sciences, University of New Hampshire Durham, NH, USA
| | - Boubker Barchi
- Department of Biological Sciences, University of New Hampshire Durham, NH, USA
| | - Swathi A Turlapati
- Department of Biological Sciences, University of New HampshireDurham, NH, USA; United States Department of Agriculture Forest Service, Northern Research StationDurham, NH, USA
| | - Maegan Gagne
- Department of Biological Sciences, University of New Hampshire Durham, NH, USA
| | - Rakesh Minocha
- United States Department of Agriculture Forest Service, Northern Research Station Durham, NH, USA
| | - Stephanie Long
- United States Department of Agriculture Forest Service, Northern Research Station Durham, NH, USA
| | - Subhash C Minocha
- Department of Biological Sciences, University of New Hampshire Durham, NH, USA
| |
Collapse
|
15
|
Majumdar R, Barchi B, Turlapati SA, Gagne M, Minocha R, Long S, Minocha SC. Glutamate, Ornithine, Arginine, Proline, and Polyamine Metabolic Interactions: The Pathway Is Regulated at the Post-Transcriptional Level. FRONTIERS IN PLANT SCIENCE 2016; 7:78. [PMID: 26909083 PMCID: PMC4754450 DOI: 10.3389/fpls.2016.00078] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/16/2016] [Indexed: 05/19/2023]
Abstract
The metabolism of glutamate into ornithine, arginine, proline, and polyamines is a major network of nitrogen-metabolizing pathways in plants, which also produces intermediates like nitric oxide, and γ-aminobutyric acid (GABA) that play critical roles in plant development and stress. While the accumulations of intermediates and the products of this network depend primarily on nitrogen assimilation, the overall regulation of the interacting sub-pathways is not well understood. We tested the hypothesis that diversion of ornithine into polyamine biosynthesis (by transgenic approach) not only plays a role in regulating its own biosynthesis from glutamate but also affects arginine and proline biosynthesis. Using two high putrescine producing lines of Arabidopsis thaliana (containing a transgenic mouse ornithine decarboxylase gene), we studied the: (1) effects of exogenous supply of carbon and nitrogen on polyamines and pools of soluble amino acids; and, (2) expression of genes encoding key enzymes in the interactive pathways of arginine, proline and GABA biosynthesis as well as the catabolism of polyamines. Our findings suggest that: (1) the overall conversion of glutamate to arginine and polyamines is enhanced by increased utilization of ornithine for polyamine biosynthesis by the transgene product; (2) proline and arginine biosynthesis are regulated independently of polyamines and GABA biosynthesis; (3) the expression of most genes (28 that were studied) that encode enzymes of the interacting sub-pathways of arginine and GABA biosynthesis does not change even though overall biosynthesis of Orn from glutamate is increased several fold; and (4) increased polyamine biosynthesis results in increased assimilation of both nitrogen and carbon by the cells.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Department of Biological Sciences, University of New HampshireDurham, NH, USA
| | - Boubker Barchi
- Department of Biological Sciences, University of New HampshireDurham, NH, USA
| | - Swathi A. Turlapati
- Department of Biological Sciences, University of New HampshireDurham, NH, USA
- United States Department of Agriculture Forest Service, Northern Research StationDurham, NH, USA
| | - Maegan Gagne
- Department of Biological Sciences, University of New HampshireDurham, NH, USA
| | - Rakesh Minocha
- United States Department of Agriculture Forest Service, Northern Research StationDurham, NH, USA
| | - Stephanie Long
- United States Department of Agriculture Forest Service, Northern Research StationDurham, NH, USA
| | - Subhash C. Minocha
- Department of Biological Sciences, University of New HampshireDurham, NH, USA
- *Correspondence: Subhash C. Minocha
| |
Collapse
|
16
|
Zheng Q, Cheng ZZ, Yang ZM. HISN3 mediates adaptive response of Chlamydomonas reinhardtii to excess nickel. PLANT & CELL PHYSIOLOGY 2013; 54:1951-62. [PMID: 24078767 DOI: 10.1093/pcp/pct130] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Investigation of genes for heavy metal [e.g. nickel (Ni) and zinc (Zn)] absorption and detoxification in green algae is of great importance because some of the metals have become one of the major contaminants in the aquatic ecosystem. In plants, overload of heavy metals modifies many aspects of biological processes. However, the mechanisms by which heavy metals exert detrimental effects are not fully understood. The present study identified a biological role for HISN3 (the gene coding for phosphoribosylformimino-5-aminoimidazole carboxamide ribonucleotide isomerase) in regulating the response of Chlamydomonas reinhardtii, a unicellular green alga, to Ni toxicity. In higher plants, HISN3 encodes an enzyme catalyzing the fourth step in the histidine biosynthesis pathway, but its functional importance is yet to be identified. Transgenic algae overexpressing HISN3 in C. reinhardtii showed high tolerance to excess Ni, with a 48.3-57.4% increase in cell population and moderate histidine accumulation compared with the wild type. HISN3 overexpression improved accumulation of Chl and photosynthesis efficiency, but suppressed Ni-induced generation of reactive oxygen species and lipid peroxides. Interestingly, more Ni and other metals [Zn, iron (Fe), copper (Cu), manganese (Mn) and magnesium (Mg)] were accumulated in HISN3-overexpressing cells than in the wild type. In contrast, RNA interference of HISN3 depressed Ni accumulation but caused cellular sensitivity to Ni. The elevated metal absorption in the HISN3-overexpressing algae implies that the metals can be removed from water media. Thus, our work presents an example for algae genetically designed to improve tolerance to metal toxicity and environmental restoration of metal-contaminated aquatic ecosystems.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | | | | |
Collapse
|
17
|
Hara M, Kondo M, Kato T. A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical-reducing activities. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1615-24. [PMID: 23382551 PMCID: PMC3617826 DOI: 10.1093/jxb/ert016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Dehydrin is a plant disordered protein whose functions are not yet totally understood. Here it is reported that a KS-type dehydrin can reduce the formation of reactive oxygen species (ROS) from Cu. AtHIRD11, which is the Arabidopsis KS-type dehydrin, inhibited generation of hydrogen peroxide and hydroxyl radicals in the Cu-ascorbate system. The radical-reducing activity of AtHIRD11 was stronger than those of radical-silencing peptides such as glutathione and serum albumin. The addition of Cu(2+) reduced the disordered state, decreased the trypsin susceptibility, and promoted the self-association of AtHIRD11. Domain analyses indicated that the five domains containing histidine showed ROS-reducing activities. Histidine/alanine substitutions indicated that histidine is a crucial residue for reducing ROS generation. Using the 27 peptides which are related to the KnS-type dehydrins of 14 plant species, it was found that the strengths of ROS-reducing activities can be determined by two factors, namely the histidine contents and the length of the peptides. The degree of ROS-reducing activities of a dehydrin can be predicted using these indices.
Collapse
Affiliation(s)
- Masakazu Hara
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan.
| | | | | |
Collapse
|
18
|
Abstract
Histidine (His) is one of the standard amino acids in proteins, and plays a critical role in plant growth and development. The chemical properties of the imidazole side group allow His to participate in acid-base catalysis, and in the co-ordination of metal ions. Despite the biological importance of this molecule, His biosynthesis has been somewhat neglected in plants, in stark contrast to micro-organisms where the study of this pathway was fundamental in the discovery of operon structure and regulation by attenuation. With the recent isolation of histidinol-phosphate phosphatase, all the enzymes of His biosynthesis have now been identified in Arabidopsis, and several lines of evidence have implicated ATP-phosphoribosyl transferase (which catalyses the first committed step of the pathway) as playing an important role in the regulation of this pathway. However, little is known about the transcriptional regulation of the His biosynthetic genes, nor how demand for this amino acid is balanced with other metabolic requirements in plants. Similarly, the pathway of His catabolism has yet to be determined.
Collapse
Affiliation(s)
- Robert A. Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
- Address correspondence to
| |
Collapse
|
19
|
Petersen LN, Marineo S, Mandalà S, Davids F, Sewell BT, Ingle RA. The missing link in plant histidine biosynthesis: Arabidopsis myoinositol monophosphatase-like2 encodes a functional histidinol-phosphate phosphatase. PLANT PHYSIOLOGY 2010; 152:1186-96. [PMID: 20023146 PMCID: PMC2832243 DOI: 10.1104/pp.109.150805] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/15/2009] [Indexed: 05/19/2023]
Abstract
Histidine (His) plays a critical role in plant growth and development, both as one of the standard amino acids in proteins, and as a metal-binding ligand. While genes encoding seven of the eight enzymes in the pathway of His biosynthesis have been characterized from a number of plant species, the identity of the enzyme catalyzing the dephosphorylation of histidinol-phosphate to histidinol has remained elusive. Recently, members of a novel family of histidinol-phosphate phosphatase proteins, displaying significant sequence similarity to known myoinositol monophosphatases (IMPs) have been identified from several Actinobacteria. Here we demonstrate that a member of the IMP family from Arabidopsis (Arabidopsis thaliana), myoinositol monophosphatase-like2 (IMPL2; encoded by At4g39120), has histidinol-phosphate phosphatase activity. Heterologous expression of IMPL2, but not the related IMPL1 protein, was sufficient to rescue the His auxotrophy of a Streptomyces coelicolor hisN mutant. Homozygous null impl2 Arabidopsis mutants displayed embryonic lethality, which could be rescued by supplying plants heterozygous for null impl2 alleles with His. In common with the previously characterized HISN genes from Arabidopsis, IMPL2 was expressed in all plant tissues and throughout development, and an IMPL2:green fluorescent protein fusion protein was targeted to the plastid, where His biosynthesis occurs in plants. Our data demonstrate that IMPL2 is the HISN7 gene product, and suggest a lack of genetic redundancy at this metabolic step in Arabidopsis, which is characteristic of the His biosynthetic pathway.
Collapse
|