1
|
Zhang Y, Yang J, Wang S, Chen Y, Zhang G. TMT-Based Proteomic Analysis Reveals the Molecular Mechanisms of Sodium Pheophorbide A against Black Spot Needle Blight Caused by Pestalotiopsis neglecta in Pinus sylvestris var. mongolica. J Fungi (Basel) 2024; 10:102. [PMID: 38392774 PMCID: PMC10889695 DOI: 10.3390/jof10020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Black spot needle blight is a minor disease in Mongolian Scots pine (Pinus sylvestris var. mongolica) caused by Pestalotiopsis neglecta, but it can cause economic losses in severe cases. Sodium pheophorbide a (SPA), an intermediate product of the chlorophyll metabolism pathway, is a compound with photoactivated antifungal activity, which has been previously shown to inhibit the growth of P. neglecta. In this study, SPA significantly reduced the incidence and disease index and enhanced the chlorophyll content and antioxidant enzyme activities of P. sylvestris var. mongolica. To further study the molecular mechanism of the inhibition, we conducted a comparative proteomic analysis of P. neglecta mycelia with and without SPA treatment. The cellular proteins were obtained from P. neglecta mycelial samples and subjected to a tandem mass tag (TMT)-labelling LC-MS/MS analysis. Based on the results of de novo transcriptome assembly, 613 differentially expressed proteins (DEPs) (p < 0.05) were identified, of which 360 were upregulated and 253 downregulated. The 527 annotated DEPs were classified into 50 functional groups according to Gene Ontology and linked to 256 different pathways using the Kyoto Encyclopedia of Genes and Genomes database as a reference. A joint analysis of the transcriptome and proteomics results showed that the top three pathways were Amino acid metabolism, Carbohydrate metabolism, and Lipid metabolism. These results provide new viewpoints into the molecular mechanism of the inhibition of P. neglecta by SPA at the protein level and a theoretical basis for evaluating SPA as an antifungal agent to protect forests.
Collapse
Affiliation(s)
- Yundi Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China
| | - Jing Yang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Shuren Wang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China
| | - Yunze Chen
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Guocai Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
2
|
Fortunato S, Nigro D, Lasorella C, Marcotuli I, Gadaleta A, de Pinto MC. The Role of Glutamine Synthetase (GS) and Glutamate Synthase (GOGAT) in the Improvement of Nitrogen Use Efficiency in Cereals. Biomolecules 2023; 13:1771. [PMID: 38136642 PMCID: PMC10742212 DOI: 10.3390/biom13121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Cereals are the most broadly produced crops and represent the primary source of food worldwide. Nitrogen (N) is a critical mineral nutrient for plant growth and high yield, and the quality of cereal crops greatly depends on a suitable N supply. In the last decades, a massive use of N fertilizers has been achieved in the desire to have high yields of cereal crops, leading to damaging effects for the environment, ecosystems, and human health. To ensure agricultural sustainability and the required food source, many attempts have been made towards developing cereal crops with a more effective nitrogen use efficiency (NUE). NUE depends on N uptake, utilization, and lastly, combining the capability to assimilate N into carbon skeletons and remobilize the N assimilated. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a crucial metabolic step of N assimilation, regulating crop yield. In this review, the physiological and genetic studies on GS and GOGAT of the main cereal crops will be examined, giving emphasis on their implications in NUE.
Collapse
Affiliation(s)
- Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Domenica Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Cecilia Lasorella
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| |
Collapse
|
3
|
Yang F, Zhang Y, Zhang H, Hu J, Zhu W, Liu L, Liu H, Fahad S, Gao Q. Comparative physiological and transcriptome analysis of leaf nitrogen fluxes in stay-green maize during the vegetative stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108147. [PMID: 37922646 DOI: 10.1016/j.plaphy.2023.108147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
In maize, nitrogen (N) stored in leaves is an important internal source for supporting subsequent growth and development. However, the regulation of N fluxes and photosynthesis and the molecular and genotypic regulations that modify them are less clear in source leaves during the vegetative stage. This knowledge is crucial for improving N use efficiency (NUE). By using 15N labeling and transcriptome methods, an analysis of the physiological and molecular basis of leaf N import and export processes and photosynthetic N use efficiency (PNUE) was conducted in two maize hybrids (XY335 and XY696) with different stay-green characteristics during the vegetative stage. Leaf N import and export in XY696 were 45% and 33% greater than those in XY335. However, the PNUE in XY335 was 17% greater than that in XY696 due to the higher net photosynthetic rate (A) and lower SLN. Correspondingly, the chlorophyll content and photosynthesis-related enzyme (PEPc, PEPck, PPDK) activities increased by 18∼30% in XY335. Transcriptome analysis indicated that the expression levels of several N and carbon metabolism-related genes encoding Rubisco, PEPc, Nir, GS and AS were significantly increased or decreased in XY696 in parallel with enzyme activities. Moreover, there was a large difference in the expression abundance of genes encoding nitrate/nitrite transporters and transmembrane proteins. Our results suggest that two hybrids modulate leaf N fluxes and photosynthesis differently by altering gene expression and enzyme activities. Our study contributes to understanding leaf N fluxes and PNUE regulation and serves as a crucial reference for NUE improvement in maize breeding research.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yudie Zhang
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyi Zhang
- College of Agriculture, Guangxi University, Nanning, 53002, China
| | - Jingwen Hu
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Wenjing Zhu
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Liu
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Qiang Gao
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
4
|
Tercé-Laforgue T, Lothier J, Limami AM, Rouster J, Lea PJ, Hirel B. The Key Role of Glutamate Dehydrogenase 2 (GDH2) in the Control of Kernel Production in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2612. [PMID: 37514227 PMCID: PMC10385319 DOI: 10.3390/plants12142612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
The agronomic potential of glutamate dehydrogenase 2 (GDH2) in maize kernel production was investigated by examining the impact of a mutation on the corresponding gene. Mu-insertion homozygous and heterozygous mutant lines lacking GDH2 activity were isolated and characterized at the biochemical, physiological and agronomic levels. In comparison to the wild type and to the homozygous ghd2 mutants, the heterozygous gdh2 mutant plants were characterized by a decrease in the root amino acid content, whereas in the leaves an increase of a number of phenolic compounds was observed. On average, a 30 to 40% increase in kernel yield was obtained only in the heterozygous gdh2 mutant lines when plants were grown in the field over two years. The importance of GDH2 in the control of plant productivity is discussed in relation to the physiological impact of the mutation on amino acid content, with primary carbon metabolism mostly occurring in the roots and secondary metabolism occurring in the leaves.
Collapse
Affiliation(s)
- Thérèse Tercé-Laforgue
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique et de L'Environnement (INRAE), CEDEX, 78026 Versailles, France
| | - Jérémy Lothier
- Univ Angers, Institut National de Recherche Pour L'Agriculture et L'Environnement (INRAE), Institut de Recherche en Horticulture et Semence (IRHS), 49007 Angers, France
| | - Anis M Limami
- Univ Angers, Institut National de Recherche Pour L'Agriculture et L'Environnement (INRAE), Institut de Recherche en Horticulture et Semence (IRHS), 49007 Angers, France
| | - Jacques Rouster
- BIOGEMMA-LIMAGRAIN, Site de la Garenne, Route d'Ennezat, CS 90126, 63720 Chappes, France
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique et de L'Environnement (INRAE), CEDEX, 78026 Versailles, France
| |
Collapse
|
5
|
Žilić S, Nikolić V, Mogol BA, Hamzalıoğlu A, Taş NG, Kocadağlı T, Simić M, Gökmen V. Acrylamide in Corn-Based Thermally Processed Foods: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4165-4181. [PMID: 35357820 PMCID: PMC9011392 DOI: 10.1021/acs.jafc.1c07249] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Widely consumed thermally processed corn-based foods can have a great contribution to acrylamide dietary intake, thus bearing a high public health risk and requiring attention and application of strategies for its reduction. This paper reviews the literature on the acrylamide content of corn-based food products present in the market around the world. The potential of corn for acrylamide formation due to its content of free asparagine and reducing sugars is described. Human exposure to acrylamide from corn-based foods is also discussed. The content of acrylamide in corn/tortilla chips, popcorn, and corn flakes, as widely consumed products all over the world, is reported in the literature to be between 5 and 6360 μg/kg, between <LOD and 2220 μg/kg and between <LOD and 1186 μg/kg, respectively. Although these products are important acrylamide sources in the common diet of all age populations, higher intake values occurred among younger generations.
Collapse
Affiliation(s)
- Slađana Žilić
- Maize
Research Institute, Group of Food Technology
and Biochemistry, Slobodana
Bajića 1, 11185 Belgrad- Zemun, Serbia
| | - Valentina Nikolić
- Maize
Research Institute, Group of Food Technology
and Biochemistry, Slobodana
Bajića 1, 11185 Belgrad- Zemun, Serbia
| | - Burçe Ataç Mogol
- Food
Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Aytül Hamzalıoğlu
- Food
Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Neslihan Göncüoğlu Taş
- Food
Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Tolgahan Kocadağlı
- Food
Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Marijana Simić
- Maize
Research Institute, Group of Food Technology
and Biochemistry, Slobodana
Bajića 1, 11185 Belgrad- Zemun, Serbia
| | - Vural Gökmen
- Food
Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| |
Collapse
|
6
|
Nitrogen assimilation in plants: current status and future prospects. J Genet Genomics 2021; 49:394-404. [PMID: 34973427 DOI: 10.1016/j.jgg.2021.12.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
Nitrogen (N) is the driving force for crop yields, however, excessive N application in agriculture not only increases production cost, but also causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N use efficiency (NUE) and breeding crops with higher NUE is essential to tackle these problems. NUE of crops is determined by N uptake, transport, assimilation, and remobilization. In the process of N assimilation, nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamine-2-oxoglutarate aminotransferase (GOGAT, also known as glutamate synthase) are the major enzymes. NR and NiR mediate the initiation of inorganic N utilization, and GS/GOGAT cycle converts inorganic N to organic N, playing a vital role in N assimilation and the final NUE of crops. Besides, asparagine synthetase (ASN), glutamate dehydrogenase (GDH), and carbamoylphosphate synthetase (CPSase) are also involved. In this review, we summarize the function and regulation of these enzymes reported in three major crops, rice, maize, wheat, also in the model plant Arabidopsis, and we highlight their application in improving NUE of crops via manipulating N assimilation. Anticipated challenges and prospects toward fully understanding the function of N assimilation and further exploring the potential for NUE improvement are discussed.
Collapse
|
7
|
Wang R, Zhong Y, Liu X, Zhao C, Zhao J, Li M, Ul Hassan M, Yang B, Li D, Liu R, Li X. Cis-regulation of the amino acid transporter genes ZmAAP2 and ZmLHT1 by ZmPHR1 transcription factors in maize ear under phosphate limitation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3846-3863. [PMID: 33765129 DOI: 10.1093/jxb/erab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus and nitrogen nutrition have profound and complicated innate connections; however, underlying molecular mechanisms are mostly elusive. PHR1 is a master phosphate signaling component, and whether it directly functions in phosphorus-nitrogen crosstalk remains a particularly interesting question. In maize, nitrogen limitation caused tip kernel abortion and ear shortening. By contrast, moderately low phosphate in the field reduced kernels across the ear, maintained ear elongation and significantly lowered concentrations of total free amino acids and soluble proteins 2 weeks after silking. Transcriptome profiling revealed significant enrichment and overall down-regulation of transport genes in ears under low phosphate. Importantly, 313 out of 847 differentially expressed genes harbored PHR1 binding sequences (P1BS) including those controlling amino acid/polyamine transport and metabolism. Specifically, both ZmAAP2 and ZmLHT1 are plasma membrane-localized broad-spectrum amino acid transporters, and ZmPHR1.1 and ZmPHR1.2 were able to bind to P1BS-containing ZmAAP2 and ZmLHT1 and down-regulate their expression in planta. Taken together, the results suggest that prevalence of P1BS elements enables ZmPHR1s to regulate a large number of low phosphate responsive genes. Further, consistent with reduced accumulation of free amino acids, ZmPHR1s down-regulate ZmAAP2 and ZmLHT1 expression as direct linkers of phosphorus and nitrogen nutrition independent of NIGT1 in maize ear under low phosphate.
Collapse
Affiliation(s)
- Ruifeng Wang
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Yanting Zhong
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xiaoting Liu
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Cheng Zhao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, ShanghaiChina
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, BeijingChina
| | - Mengfei Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Mahmood Ul Hassan
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Bo Yang
- State Key Laboratory of Plant physiology and Biochemistry and National Centre of Maize Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, BeijingChina
| | - Dongdong Li
- Department of Crop Genomics and Bioinformatics, National Centre of Maize Genetic Improvement, China Agricultural University, BeijingChina
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agricultural and Forestry University, FuzhouChina
| | - Xuexian Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Karunarathne SD, Han Y, Zhang XQ, Zhou G, Hill CB, Chen K, Angessa T, Li C. Genome-Wide Association Study and Identification of Candidate Genes for Nitrogen Use Efficiency in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2020; 11:571912. [PMID: 33013994 PMCID: PMC7500209 DOI: 10.3389/fpls.2020.571912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/18/2020] [Indexed: 05/05/2023]
Abstract
Nitrogen (N) fertilizer is largely responsible for barley grain yield potential and quality, yet excessive application leads to environmental pollution and high production costs. Therefore, efficient use of N is fundamental for sustainable agriculture. In the present study, we investigated the performance of 282 barley accessions through hydroponic screening using optimal and low NH4NO3 treatments. Low-N treatment led to an average shoot dry weight reduction of 50%, but there were significant genotypic differences among the accessions. Approximately 20% of the genotypes showed high (>75%) relative shoot dry weight under low-N treatment and were classified as low-N tolerant, whereas 20% were low-N sensitive (≤55%). Low-N tolerant accessions exhibited well-developed root systems with an average increase of 60% in relative root dry weight to facilitate more N absorption. A genome-wide association study (GWAS) identified 66 significant marker trait associations (MTAs) conferring high nitrogen use efficiency, four of which were stable across experiments. These four MTAs were located on chromosomes 1H(1), 3H(1), and 7H(2) and were associated with relative shoot length, relative shoot and root dry weight. Genes corresponding to the significant MTAs were retrieved as candidate genes, including members of the asparagine synthetase gene family, several transcription factor families, protein kinases, and nitrate transporters. Most importantly, the high-affinity nitrate transporter 2.7 (HvNRT2.7) was identified as a promising candidate on 7H for root and shoot dry weight. The identified candidate genes provide new insights into our understanding of the molecular mechanisms driving nitrogen use efficiency in barley and represent potential targets for genetic improvement.
Collapse
Affiliation(s)
- Sakura D Karunarathne
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, WA, Australia
| | - Camilla B Hill
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Kefei Chen
- SAGI West, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Tefera Angessa
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
Gao Y, de Bang TC, Schjoerring JK. Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO 2. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1209-1221. [PMID: 30525274 PMCID: PMC6576097 DOI: 10.1111/pbi.13046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/23/2018] [Accepted: 11/09/2018] [Indexed: 05/23/2023]
Abstract
Cytosolic glutamine synthetase (GS1) plays a central role in nitrogen (N) metabolism. The importance of GS1 in N remobilization during reproductive growth has been reported in cereal species but attempts to improve N utilization efficiency (NUE) by overexpressing GS1 have yielded inconsistent results. Here, we demonstrate that transformation of barley (Hordeum vulgare L.) plants using a cisgenic strategy to express an extra copy of native HvGS1-1 lead to increased HvGS1.1 expression and GS1 enzyme activity. GS1 overexpressing lines exhibited higher grain yields and NUE than wild-type plants when grown under three different N supplies and two levels of atmospheric CO2 . In contrast with the wild-type, the grain protein concentration in the GS1 overexpressing lines did not decline when plants were exposed to elevated (800-900 μL/L) atmospheric CO2 . We conclude that an increase in GS1 activity obtained through cisgenic overexpression of HvGS1-1 can improve grain yield and NUE in barley. The extra capacity for N assimilation obtained by GS1 overexpression may also provide a means to prevent declining grain protein levels under elevated atmospheric CO2 .
Collapse
Affiliation(s)
- Yajie Gao
- Department of Plant and Environmental SciencesFaculty of ScienceCopenhagen UniversityFrederiksbergDenmark
| | - Thomas C. de Bang
- Department of Plant and Environmental SciencesFaculty of ScienceCopenhagen UniversityFrederiksbergDenmark
| | - Jan K. Schjoerring
- Department of Plant and Environmental SciencesFaculty of ScienceCopenhagen UniversityFrederiksbergDenmark
| |
Collapse
|
10
|
Sheflin AM, Chiniquy D, Yuan C, Goren E, Kumar I, Braud M, Brutnell T, Eveland AL, Tringe S, Liu P, Kresovich S, Marsh EL, Schachtman DP, Prenni JE. Metabolomics of sorghum roots during nitrogen stress reveals compromised metabolic capacity for salicylic acid biosynthesis. PLANT DIRECT 2019; 3:e00122. [PMID: 31245765 PMCID: PMC6508800 DOI: 10.1002/pld3.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/31/2019] [Accepted: 02/10/2019] [Indexed: 05/13/2023]
Abstract
Sorghum (Sorghum bicolor [L.] Moench) is the fifth most productive cereal crop worldwide with some hybrids having high biomass yield traits making it promising for sustainable, economical biofuel production. To maximize biofuel feedstock yields, a more complete understanding of metabolic responses to low nitrogen (N) will be useful for incorporation in crop improvement efforts. In this study, 10 diverse sorghum entries (including inbreds and hybrids) were field-grown under low and full N conditions and roots were sampled at two time points for metabolomics and 16S amplicon sequencing. Roots of plants grown under low N showed altered metabolic profiles at both sampling dates including metabolites important in N storage and synthesis of aromatic amino acids. Complementary investigation of the rhizosphere microbiome revealed dominance by a single operational taxonomic unit (OTU) in an early sampling that was taxonomically assigned to the genus Pseudomonas. Abundance of this Pseudomonas OTU was significantly greater under low N in July and was decreased dramatically in September. Correlation of Pseudomonas abundance with root metabolites revealed a strong negative association with the defense hormone salicylic acid (SA) under full N but not under low N, suggesting reduced defense response. Roots from plants with N stress also contained reduced phenylalanine, a precursor for SA, providing further evidence for compromised metabolic capacity for defense response under low N conditions. Our findings suggest that interactions between biotic and abiotic stresses may affect metabolic capacity for plant defense and need to be concurrently prioritized as breeding programs become established for biofuels production on marginal soils.
Collapse
Affiliation(s)
- Amy M. Sheflin
- Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsColorado
| | - Dawn Chiniquy
- Joint Genome InstituteDepartment of EnergyWalnut CreekCalifornia
| | - Chaohui Yuan
- Bioinformatics & Computational BiologyIowa State UniversityAmesIowa
| | - Emily Goren
- Bioinformatics & Computational BiologyIowa State UniversityAmesIowa
| | | | - Max Braud
- Donald Danforth Plant Science CenterSt. LouisMissouri
| | | | | | - Susannah Tringe
- Joint Genome InstituteDepartment of EnergyWalnut CreekCalifornia
| | - Peng Liu
- Bioinformatics & Computational BiologyIowa State UniversityAmesIowa
| | - Stephen Kresovich
- Plant and Environmental Genetics and Biochemistry DepartmentsClemson UniversityClemsonSouth Carolina
| | - Ellen L. Marsh
- Center for BiotechnologyUniversity of Nebraska‐LincolnLincolnNebraska
| | | | - Jessica E. Prenni
- Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsColorado
| |
Collapse
|
11
|
Yang M, Geng M, Shen P, Chen X, Li Y, Wen X. Effect of post-silking drought stress on the expression profiles of genes involved in carbon and nitrogen metabolism during leaf senescence in maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:304-309. [PMID: 30599307 DOI: 10.1016/j.plaphy.2018.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/02/2018] [Accepted: 12/24/2018] [Indexed: 05/23/2023]
Abstract
Drought stress during reproductive growth stages greatly affects the growth and productivity of maize plants. To better understand the metabolic regulation during post-silking drought (PD) stress, an RNA sequencing (RNA-Seq) analysis was performed at the late stage of leaf senescence in maize. Physiological measurements showed that PD stress reduced both leaf carbon and nitrogen levels. A total of 4013 differentially expressed genes (DEGs) were found based on RNA-Seq analysis, 115 of which were identified to be involved in photosynthesis and in the metabolism of sucrose, starch, and amino acids. Among these DEGs, 14 genes involved in photosynthesis were down-regulated. The genes coding for sucrose and pectin synthesis were up-regulated under PD stress. The two genes of asparagine synthetase (ZmAS3 and ZmAS4), which are responsible for nitrogen remobilization in leaves, were also significantly induced by the drought treatment. The expression profiles of these genes involved in carbon and nitrogen metabolism suggests their regulatory roles during drought-induced leaf senescence.
Collapse
Affiliation(s)
- Miao Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengyao Geng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengfei Shen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaohong Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajun Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaoxia Wen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
12
|
Li Y, Yang M, Liu L, Zhang R, Cui Y, Dang P, Ge X, Chen X. Effects of 1-butyl-3-methylimidazolium chloride on the photosynthetic system and metabolism of maize (Zea mays L.) seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:648-654. [PMID: 29933134 DOI: 10.1016/j.ecoenv.2018.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/03/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Ionic liquids (ILs) are widely used in various chemical processes. However, a growing number of studies have found that ILs are potentially toxic to different types of living organisms, including crops. The present study analysed the effects of 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) on the photosynthetic system and metabolism of maize seedlings. Results showed that [C4mim]Cl could significantly reduce maize leaf chlorophyll level and cause extensive leaf bleaching. The activity of photosystem II (PSII) was significantly inhibited when seedlings exposed to higher concentration of [C4mim]Cl. The maximum quantum yield of PSII and the potential efficiency of PSII were reduced by 63% and 88% under 800 mg/L [C4mim]Cl treatment in comparison with the control treatment. The RNA sequencing analysis performed to examine gene expression profiles of maize leaves under [C4mim]Cl treatment revealed 639 differentially expressed genes (DEGs), 115 of which were categorized into different metabolic pathways. Among these DEGs, the seven genes involved in the photosynthetic Calvin cycle were down-regulated by [C4mim]Cl exposure. For carbohydrates and amino acids metabolism, the genes for starch synthesis were down-regulated, while the genes for amino acids and protein degradation were up-regulated. The changes observed in these major metabolic pathways might be an important reason for [C4mim]Cl toxicity.
Collapse
Affiliation(s)
- Yajun Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Miao Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Le Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruoyu Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuhui Cui
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Dang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuemei Ge
- Nanjing Forestry University, Nanjing 210037, China
| | - Xiaohong Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Moison M, Marmagne A, Dinant S, Soulay F, Azzopardi M, Lothier J, Citerne S, Morin H, Legay N, Chardon F, Avice JC, Reisdorf-Cren M, Masclaux-Daubresse C. Three cytosolic glutamine synthetase isoforms localized in different-order veins act together for N remobilization and seed filling in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4379-4393. [PMID: 29873769 PMCID: PMC6093384 DOI: 10.1093/jxb/ery217] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/30/2018] [Indexed: 05/22/2023]
Abstract
Glutamine synthetase (GS) is central for ammonium assimilation and consists of cytosolic (GS1) and chloroplastic (GS2) isoenzymes. During plant ageing, GS2 protein decreases due to chloroplast degradation, and GS1 activity increases to support glutamine biosynthesis and N remobilization from senescing leaves. The role of the different Arabidopsis GS1 isoforms in nitrogen remobilization was examined using 15N tracing experiments. Only the gln1;1-gln1;2-gln1;3 triple-mutation affecting the three GLN1;1, GLN1;2, and GLN1;3 genes significantly reduced N remobilization, total seed yield, individual seed weight, harvest index, and vegetative biomass. The triple-mutant accumulated a large amount of ammonium that could not be assimilated by GS1. Alternative ammonium assimilation through asparagine biosynthesis was increased and was related to higher ASN2 asparagine synthetase transcript levels. The GS2 transcript, protein, and activity levels were also increased to compensate for the lack of GS1-related glutamine biosynthesis. Localization of the different GLN1 genes showed that they were all expressed in the phloem companion cells but in veins of different order. Our results demonstrate that glutamine biosynthesis for N-remobilization occurs in veins of all orders (major and minor) in leaves, it is mainly catalysed by the three major GS1 isoforms (GLN1;1, GLN1;2, and GLN1;3), and it is alternatively supported by AS2 in the veins and GS2 in the mesophyll cells.
Collapse
Affiliation(s)
- Michael Moison
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Anne Marmagne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Fabienne Soulay
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marianne Azzopardi
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jérémy Lothier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Université de Versailles Saint Quentin en Yvelines, Université Paris Saclay, Versailles, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Halima Morin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Nicolas Legay
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Université de Versailles Saint Quentin en Yvelines, Université Paris Saclay, Versailles, France
| | - Fabien Chardon
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jean-Christophe Avice
- UCBN, INRA, UMR INRA-UBCN Ecophysiologie Végétale, Agronomie and Nutrition N.C.S., Université de Caen Normandie, Caen, France
| | - Michèle Reisdorf-Cren
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Université de Versailles Saint Quentin en Yvelines, Université Paris Saclay, Versailles, France
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Correspondence:
| |
Collapse
|
14
|
James D, Borphukan B, Fartyal D, Ram B, Singh J, Manna M, Sheri V, Panditi V, Yadav R, Achary VMM, Reddy MK. Concurrent Overexpression of OsGS1;1 and OsGS2 Genes in Transgenic Rice ( Oryza sativa L.): Impact on Tolerance to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2018; 9:786. [PMID: 29977247 PMCID: PMC6021690 DOI: 10.3389/fpls.2018.00786] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/23/2018] [Indexed: 05/18/2023]
Abstract
Glutamine synthetase (GS) is a key enzyme involved in the nitrogen metabolism of higher plants. Abiotic stresses have adverse effects on crop production and pose a serious threat to global food security. GS activity and expression is known to be significantly modulated by various abiotic stresses. However, very few transgenic overexpression studies of GS have studied its impact on abiotic stress tolerance. GS is also the target enzyme of the broad spectrum herbicide Glufosinate (active ingredient: phosphinothricin). In this study, we investigated the effect of concurrent overexpression of the rice cytosolic GS1 (OsGS1;1) and chloroplastic GS2 (OsGS2) genes in transgenic rice on its tolerance to abiotic stresses and the herbicide Glufosinate. Our results demonstrate that the co-overexpression of OsGS1;1 and OsGS2 isoforms in transgenic rice plants enhanced its tolerance to osmotic and salinity stress at the seedling stage. The transgenic lines maintained significantly higher fresh weight, chlorophyll content, and relative water content than wild type (wt) and null segregant (ns) controls, under both osmotic and salinity stress. The OsGS1;1/OsGS2 co-overexpressing transgenic plants accumulated higher levels of proline but showed lower electrolyte leakage and had lower malondialdehyde (MDA) content under the stress treatments. The transgenic lines showed considerably enhanced photosynthetic and agronomic performance under drought and salinity stress imposed during the reproductive stage, as compared to wt and ns control plants. The grain filling rates of the transgenic rice plants under reproductive stage drought stress (64.6 ± 4.7%) and salinity stress (58.2 ± 4.5%) were significantly higher than control plants, thereby leading to higher yields under these abiotic stress conditions. Preliminary analysis also revealed that the transgenic lines had improved tolerance to methyl viologen induced photo-oxidative stress. Taken together, our results demonstrate that the concurrent overexpression of OsGS1;1 and OsGS2 isoforms in rice enhanced physiological tolerance and agronomic performance under adverse abiotic stress conditions, apparently acting through multiple mechanistic routes. The transgenic rice plants also showed limited tolerance to the herbicide Glufosinate. The advantages and limitations of glutamine synthetase overexpression in crop plants, along with future strategies to overcome these limitations for utilization in crop improvement have also been discussed briefly.
Collapse
Affiliation(s)
- Donald James
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bhabesh Borphukan
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dhirendra Fartyal
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Uttarakhand Technical University, Dehradun, India
| | - Babu Ram
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Uttarakhand Technical University, Dehradun, India
| | - Jitender Singh
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- National Institute of Plant Genome Research, New Delhi, India
| | - Mrinalini Manna
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vijay Sheri
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Varakumar Panditi
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Renu Yadav
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - V. Mohan M. Achary
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mallireddy K. Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
15
|
Abstract
Nitrogen (N) fertilizer has a major influence on the yield and quality. Understanding and optimising the response of crop plants to nitrogen fertilizer usage is of central importance in enhancing food security and agricultural sustainability. In this study, the analysis of gene regulatory networks reveals multiple genes and biological processes in response to N. Two microarray studies have been used to infer components of the nitrogen-response network. Since they used different array technologies, a map linking the two probe sets to the maize B73 reference genome has been generated to allow comparison. Putative Arabidopsis homologues of maize genes were used to query the Biological General Repository for Interaction Datasets (BioGRID) network, which yielded the potential involvement of three transcription factors (TFs) (GLK5, MADS64 and bZIP108) and a Calcium-dependent protein kinase. An Artificial Neural Network was used to identify influential genes and retrieved bZIP108 and WRKY36 as significant TFs in both microarray studies, along with genes for Asparagine Synthetase, a dual-specific protein kinase and a protein phosphatase. The output from one study also suggested roles for microRNA (miRNA) 399b and Nin-like Protein 15 (NLP15). Co-expression-network analysis of TFs with closely related profiles to known Nitrate-responsive genes identified GLK5, GLK8 and NLP15 as candidate regulators of genes repressed under low Nitrogen conditions, while bZIP108 might play a role in gene activation.
Collapse
|
16
|
Dechorgnat J, Francis KL, Dhugga KS, Rafalski JA, Tyerman SD, Kaiser BN. Root Ideotype Influences Nitrogen Transport and Assimilation in Maize. FRONTIERS IN PLANT SCIENCE 2018; 9:531. [PMID: 29740466 PMCID: PMC5928562 DOI: 10.3389/fpls.2018.00531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/05/2018] [Indexed: 05/02/2023]
Abstract
Maize (Zea mays, L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program.
Collapse
Affiliation(s)
- Julie Dechorgnat
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camden, NSW, Australia
| | - Karen L. Francis
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | | | - J. A. Rafalski
- Genetic Discovery Group, DuPont Crop Genetics Research, DuPont Experimental Station, Wilmington, DE, United States
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Brent N. Kaiser
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camden, NSW, Australia
- *Correspondence: Brent N. Kaiser,
| |
Collapse
|
17
|
Tegeder M, Masclaux-Daubresse C. Source and sink mechanisms of nitrogen transport and use. THE NEW PHYTOLOGIST 2018; 217:35-53. [PMID: 29120059 DOI: 10.1111/nph.14876] [Citation(s) in RCA: 343] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/09/2017] [Indexed: 05/03/2023]
Abstract
Contents Summary 35 I. Introduction 35 II. Nitrogen acquisition and assimilation 36 III. Root-to-shoot transport of nitrogen 38 IV. Nitrogen storage pools in vegetative tissues 39 V. Nitrogen transport from source leaf to sink 40 VI. Nitrogen import into sinks 42 VII. Relationship between source and sink nitrogen transport processes and metabolism 43 VIII. Regulation of nitrogen transport 43 IX. Strategies for crop improvement 44 X. Conclusions 46 Acknowledgements 47 References 47 SUMMARY: Nitrogen is an essential nutrient for plant growth. World-wide, large quantities of nitrogenous fertilizer are applied to ensure maximum crop productivity. However, nitrogen fertilizer application is expensive and negatively affects the environment, and subsequently human health. A strategy to address this problem is the development of crops that are efficient in acquiring and using nitrogen and that can achieve high seed yields with reduced nitrogen input. This review integrates the current knowledge regarding inorganic and organic nitrogen management at the whole-plant level, spanning from nitrogen uptake to remobilization and utilization in source and sink organs. Plant partitioning and transient storage of inorganic and organic nitrogen forms are evaluated, as is how they affect nitrogen availability, metabolism and mobilization. Essential functions of nitrogen transporters in source and sink organs and their importance in regulating nitrogen movement in support of metabolism, and vegetative and reproductive growth are assessed. Finally, we discuss recent advances in plant engineering, demonstrating that nitrogen transporters are effective targets to improve crop productivity and nitrogen use efficiency. While inorganic and organic nitrogen transporters were examined separately in these studies, they provide valuable clues about how to successfully combine approaches for future crop engineering.
Collapse
Affiliation(s)
- Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Céline Masclaux-Daubresse
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| |
Collapse
|
18
|
Hu X, Wang H, Li K, Wu Y, Liu Z, Huang C. Genome-wide proteomic profiling reveals the role of dominance protein expression in heterosis in immature maize ears. Sci Rep 2017; 7:16130. [PMID: 29170427 PMCID: PMC5700959 DOI: 10.1038/s41598-017-15985-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023] Open
Abstract
Heterosis refers to the phenomenon in which hybrid progeny show superior performance relative to their parents. Early maize ear development shows strong heterosis in ear architecture traits and greatly affects grain yield. To explore the underlying molecular mechanisms, genome-wide proteomics of immature ears of maize hybrid ZD909 and its parents were analyzed using tandem mass tag (TMT) technology. A total of 9,713 proteins were identified in all three genotypes. Among them, 3,752 (38.6%) proteins were differentially expressed between ZD909 and its parents. Multiple modes of protein action were discovered in the hybrid, while dominance expression patterns accounted for 63.6% of the total differentially expressed proteins (DEPs). Protein pathway enrichment analysis revealed that high parent dominance proteins mainly participated in carbon metabolism and nitrogen assimilation processes. Our results suggested that the dominant expression of favorable alleles related to C/N metabolism in the hybrid may be essential for ZD909 ear growth and heterosis formation. Integrated analysis of proteomic and quantitative trait locus (QTL) data further support our DEP identification and provide useful information for the discovery of genes associated with ear development. Our study provides comprehensive insight into the molecular mechanisms underlying heterosis in immature maize ears from a proteomic perspective.
Collapse
Affiliation(s)
- Xiaojiao Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China
| | - Hongwu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China
| | - Kun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China
| | - Yujin Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China
| | - Zhifang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China.
| | - Changling Huang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China.
| |
Collapse
|
19
|
Konishi N, Ishiyama K, Beier MP, Inoue E, Kanno K, Yamaya T, Takahashi H, Kojima S. Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:613-625. [PMID: 28007952 PMCID: PMC5441914 DOI: 10.1093/jxb/erw454] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Glutamine synthetase (GS) catalyzes a reaction that incorporates ammonium into glutamate and yields glutamine in the cytosol and chloroplasts. Although the enzymatic characteristics of the GS1 isozymes are well known, their physiological functions in ammonium assimilation and regulation in roots remain unclear. In this study we show evidence that two cytosolic GS1 isozymes (GLN1;2 and GLN1;3) contribute to ammonium assimilation in Arabidopsis roots. Arabidopsis T-DNA insertion lines for GLN1;2 and GLN1;3 (i.e. gln1;2 and gln1;3 single-mutants), the gln1;2:gln1;3 double-mutant, and the wild-type accession (Col-0) were grown in hydroponic culture with variable concentrations of ammonium to compare their growth, and their content of nitrogen, carbon, ammonium, and amino acids. GLN1;2 and GLN1;3 promoter-dependent green fluorescent protein was observed under conditions with or without ammonium supply. Loss of GLN1;2 caused significant suppression of plant growth and glutamine biosynthesis under ammonium-replete conditions. In contrast, loss of GLN1;3 caused slight defects in growth and Gln biosynthesis that were only visible based on a comparison of the gln1;2 single- and gln1;2:gln1;3 double-mutants. GLN1;2, being the most abundantly expressed GS1 isozyme, markedly increased following ammonium supply and its promoter activity was localized at the cortex and epidermis, while GLN1;3 showed only low expression at the pericycle, suggesting their different physiological contributions to ammonium assimilation in roots. The GLN1;2 promoter-deletion analysis identified regulatory sequences required for controlling ammonium-responsive gene expression of GLN1;2 in Arabidopsis roots. These results shed light on GLN1 isozyme-specific regulatory mechanisms in Arabidopsis that allow adaptation to an ammonium-replete environment.
Collapse
Affiliation(s)
- Noriyuki Konishi
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan
| | - Keiki Ishiyama
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan
- RIKEN Plant Science Center, Yokohama, Japan
| | - Marcel Pascal Beier
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan
| | - Eri Inoue
- RIKEN Plant Science Center, Yokohama, Japan
| | - Keiichi Kanno
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan
| | - Tomoyuki Yamaya
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan
- RIKEN Plant Science Center, Yokohama, Japan
| | - Hideki Takahashi
- RIKEN Plant Science Center, Yokohama, Japan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Soichi Kojima
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan
- RIKEN Plant Science Center, Yokohama, Japan
| |
Collapse
|
20
|
Yesbergenova-Cuny Z, Dinant S, Martin-Magniette ML, Quilleré I, Armengaud P, Monfalet P, Lea PJ, Hirel B. Genetic variability of the phloem sap metabolite content of maize (Zea mays L.) during the kernel-filling period. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:347-357. [PMID: 27717471 DOI: 10.1016/j.plantsci.2016.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
Using a metabolomic approach, we have quantified the metabolite composition of the phloem sap exudate of seventeen European and American lines of maize that had been previously classified into five main groups on the basis of molecular marker polymorphisms. In addition to sucrose, glutamate and aspartate, which are abundant in the phloem sap of many plant species, large quantities of aconitate and alanine were also found in the phloem sap exudates of maize. Genetic variability of the phloem sap composition was observed in the different maize lines, although there was no obvious relationship between the phloem sap composition and the five previously classified groups. However, following hierarchical clustering analysis there was a clear relationship between two of the subclusters of lines defined on the basis of the composition of the phloem sap exudate and the earliness of silking date. A comparison between the metabolite contents of the ear leaves and the phloem sap exudates of each genotype, revealed that the relative content of most of the carbon- and nitrogen-containing metabolites was similar. Correlation studies performed between the metabolite content of the phloem sap exudates and yield-related traits also revealed that for some carbohydrates such as arabitol and sucrose there was a negative or positive correlation with kernel yield and kernel weight respectively. A posititive correlation was also found between kernel number and soluble histidine.
Collapse
Affiliation(s)
- Zhazira Yesbergenova-Cuny
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France; UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| | - Isabelle Quilleré
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France
| | - Patrick Armengaud
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France
| | - Priscilla Monfalet
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France; UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France.
| |
Collapse
|
21
|
Massel K, Campbell BC, Mace ES, Tai S, Tao Y, Worland BG, Jordan DR, Botella JR, Godwin ID. Whole Genome Sequencing Reveals Potential New Targets for Improving Nitrogen Uptake and Utilization in Sorghum bicolor. FRONTIERS IN PLANT SCIENCE 2016; 7:1544. [PMID: 27826302 PMCID: PMC5078838 DOI: 10.3389/fpls.2016.01544] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/03/2016] [Indexed: 05/19/2023]
Abstract
Nitrogen (N) fertilizers are a major agricultural input where more than 100 million tons are supplied annually. Cereals are particularly inefficient at soil N uptake, where the unrecovered nitrogen causes serious environmental damage. Sorghum bicolor (sorghum) is an important cereal crop, particularly in resource-poor semi-arid regions, and is known to have a high NUE in comparison to other major cereals under limited N conditions. This study provides the first assessment of genetic diversity and signatures of selection across 230 fully sequenced genes putatively involved in the uptake and utilization of N from a diverse panel of sorghum lines. This comprehensive analysis reveals an overall reduction in diversity as a result of domestication and a total of 128 genes displaying signatures of purifying selection, thereby revealing possible gene targets to improve NUE in sorghum and cereals alike. A number of key genes appear to have been involved in selective sweeps, reducing their sequence diversity. The ammonium transporter (AMT) genes generally had low allelic diversity, whereas a substantial number of nitrate/peptide transporter 1 (NRT1/PTR) genes had higher nucleotide diversity in domesticated germplasm. Interestingly, members of the distinct race Guinea margaritiferum contained a number of unique alleles, and along with the wild sorghum species, represent a rich resource of new variation for plant improvement of NUE in sorghum.
Collapse
Affiliation(s)
- Karen Massel
- School of Agriculture and Food Sciences, The University of QueenslandBrisbane, QLD, Australia
| | - Bradley C. Campbell
- School of Agriculture and Food Sciences, The University of QueenslandBrisbane, QLD, Australia
| | - Emma S. Mace
- Department of Agriculture and FisheriesWarwick, QLD, Australia
| | | | - Yongfu Tao
- Queensland Alliance for Agriculture and Food Innovation, The University of QueenslandWarwick, QLD, Australia
| | - Belinda G. Worland
- School of Agriculture and Food Sciences, The University of QueenslandBrisbane, QLD, Australia
| | - David R. Jordan
- Queensland Alliance for Agriculture and Food Innovation, The University of QueenslandWarwick, QLD, Australia
| | - Jose R. Botella
- School of Agriculture and Food Sciences, The University of QueenslandBrisbane, QLD, Australia
| | - Ian D. Godwin
- School of Agriculture and Food Sciences, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
22
|
Yu J, Han J, Wang R, Li X. Down-regulation of nitrogen/carbon metabolism coupled with coordinative hormone modulation contributes to developmental inhibition of the maize ear under nitrogen limitation. PLANTA 2016; 244:111-24. [PMID: 26979324 DOI: 10.1007/s00425-016-2499-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/29/2016] [Indexed: 05/13/2023]
Abstract
Developmental inhibition of the maize ear by nitrogen limitation is due to overall down-regulation of nitrogen/carbon metabolism, coordinative hormonal modulation, and probable early senescence. The kernel number is primarily determined from 2 weeks pre-silking to 3 weeks post-silking, largely depending on dynamic nitrogen (N) and carbohydrate metabolism and accumulation in the maize ear. Underlying physiological and molecular mechanisms of kernel abortion caused by N limitation needs to be further investigated. Using a widely grown maize hybrid ZD958, we found that the N deficient ear was shorter, with less biomass accumulation, lower N concentrations, and overall lower concentrations of N assimilates and soluble sugars at 1- or 2-week after silking. Such negative alterations were probably due to significant decreases in activities of nitrate reductase, glutamine synthetase, sucrose phosphate synthetase, and sucrose synthetase in the N deficient maize ear especially after silking. Compensatory up-regulation of corresponding gene expression, together with co-downregulation of gene expression and enzyme activities in certain circumstances, suggested regulatory complexity and mechanistic differentiation from gene expression to functioning at physiological and molecular levels in quickly developing maize ear in counteracting N deficiency. Importantly, auxin, gibberellin, cytokinin, and abscisic acid may act in a coordinative manner to negatively modulate ear development under N limitation, as indicated by their concentration variations and substantial up-regulation of IAA14, GA2-ox1, and CKX12. Lastly, early senescence may occur in the low-N ear driven by interplay of hormone functioning and senescence-related gene regulation.
Collapse
Affiliation(s)
- Jiaojiao Yu
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
- The Key Laboratory of Plant-Soil Interactions, MOE, Beijing, China
| | - Jienan Han
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
- The Key Laboratory of Plant-Soil Interactions, MOE, Beijing, China
| | - Ruifeng Wang
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
- The Key Laboratory of Plant-Soil Interactions, MOE, Beijing, China
| | - Xuexian Li
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China.
- The Key Laboratory of Plant-Soil Interactions, MOE, Beijing, China.
| |
Collapse
|
23
|
Li Y, Wang M, Zhang F, Xu Y, Chen X, Qin X, Wen X. Effect of post-silking drought on nitrogen partitioning and gene expression patterns of glutamine synthetase and asparagine synthetase in two maize (Zea mays L.) varieties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:62-9. [PMID: 26913793 DOI: 10.1016/j.plaphy.2016.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 05/08/2023]
Abstract
Glutamine synthetase (GS) and asparagine synthetase (AS) are proposed to have important function in plant nitrogen (N) remobilization, but their roles under drought stress are not well defined. In this study, the expression dynamics of GS and AS genes were analyzed in two maize varieties (ZD958 and NH101) in relation to post-silking drought stress induced nitrogen partitioning. ZD958 was a 'stay-green' variety with 5% nitrogen harvest index (NHI) lower than NH101. From silking to maturity, the amount of nitrogen remobilized from ear-leaves in ZD958 was evidently lower than NH101, and post-silking drought stress increased the nitrogen remobilization for both varieties. In ear-leaves, the expression of ZmGln1-3 was enhanced under drought stress. Three AS genes (ZmAS1, ZmAS2 and ZmAS3) were differentially regulated by post-silking drought treatment, of which the expression of ZmAS3 was stimulated at late stage of leaf senescence. In NH101, the expression level of ZmAS3 was markedly higher than that in ZD958. In developing grains, there were no significant differences in expression patterns of GS and AS genes between well water and drought treated plants. Drought stress altered maize N partitioning at the whole-plant level, and the up-regulation of GS and AS genes may contribute to the higher leaf nitrogen remobilization when exposed to drought treatments.
Collapse
Affiliation(s)
- Yajun Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Meiling Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengxia Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yadong Xu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaohong Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoliang Qin
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxia Wen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
24
|
Guan M, Møller IS, Schjoerring JK. Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:203-12. [PMID: 25316065 PMCID: PMC4265158 DOI: 10.1093/jxb/eru411] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) remobilization from reserves to sinks is essential for seedling establishment and seed production. Cytosolic glutamine synthetase (GS1) is up-regulated during both seed germination and seed filling in plants. However, the specific roles of the individual GS1 isogenes with respect to N remobilization, early seedling vigour, and final seed productivity are not known. In this study, impairment of seed germination and seedling establishment is demonstrated in the single knockout mutant gln1;2, and the double knockout mutant gln1;1:gln1;2. The negative effect of Gln1;2 deficiency was associated with reduced N remobilization from the cotyledons and could be fully alleviated by exogenous N supply. Following reproductive growth, both the single and double Gln1;2-knockout mutants showed decreased seed yield due to fewer siliques, less seeds per silique, and lower dry weight per seed. The gln1;1 single mutant had normal seed yield structure but primary root development during seed germination was reduced in the presence of external N. Gln1;2 promoter-green fluorescent protein constructs showed that Gln1;2 localizes to the vascular cells of roots, petals, and stamens. It is concluded that Gln1;2 plays an important role in N remobilization for both seedling establishment and seed production in Arabidopsis.
Collapse
Affiliation(s)
- M Guan
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - I S Møller
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - J K Schjoerring
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
25
|
Amiour N, Imbaud S, Clément G, Agier N, Zivy M, Valot B, Balliau T, Quilleré I, Tercé-Laforgue T, Dargel-Graffin C, Hirel B. An integrated "omics" approach to the characterization of maize (Zea mays L.) mutants deficient in the expression of two genes encoding cytosolic glutamine synthetase. BMC Genomics 2014; 15:1005. [PMID: 25410248 PMCID: PMC4247748 DOI: 10.1186/1471-2164-15-1005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/04/2014] [Indexed: 11/21/2022] Open
Abstract
Background To identify the key elements controlling grain production in maize, it is essential to have an integrated view of the responses to alterations in the main steps of nitrogen assimilation by modification of gene expression. Two maize mutant lines (gln1.3 and gln1.4), deficient in two genes encoding cytosolic glutamine synthetase, a key enzyme involved in nitrogen assimilation, were previously characterized by a reduction of kernel size in the gln1.4 mutant and by a reduction of kernel number in the gln1.3 mutant. In this work, the differences in leaf gene transcripts, proteins and metabolite accumulation in gln1.3 and gln1.4 mutants were studied at two key stages of plant development, in order to identify putative candidate genes, proteins and metabolic pathways contributing on one hand to the control of plant development and on the other to grain production. Results The most interesting finding in this study is that a number of key plant processes were altered in the gln1.3 and gln1.4 mutants, including a number of major biological processes such as carbon metabolism and transport, cell wall metabolism, and several metabolic pathways and stress responsive and regulatory elements. We also found that the two mutants share common or specific characteristics across at least two or even three of the “omics” considered at the vegetative stage of plant development, or during the grain filling period. Conclusions This is the first comprehensive molecular and physiological characterization of two cytosolic glutamine synthetase maize mutants using a combined transcriptomic, proteomic and metabolomic approach. We find that the integration of the three “omics” procedures is not straight forward, since developmental and mutant-specific levels of regulation seem to occur from gene expression to metabolite accumulation. However, their potential use is discussed with a view to improving our understanding of nitrogen assimilation and partitioning and its impact on grain production. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1005) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 3559, RD10, F-78026 Versailles, Cedex, France.
| |
Collapse
|
26
|
Simons M, Saha R, Amiour N, Kumar A, Guillard L, Clément G, Miquel M, Li Z, Mouille G, Lea PJ, Hirel B, Maranas CD. Assessing the metabolic impact of nitrogen availability using a compartmentalized maize leaf genome-scale model. PLANT PHYSIOLOGY 2014; 166:1659-74. [PMID: 25248718 PMCID: PMC4226342 DOI: 10.1104/pp.114.245787] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Maize (Zea mays) is an important C4 plant due to its widespread use as a cereal and energy crop. A second-generation genome-scale metabolic model for the maize leaf was created to capture C4 carbon fixation and investigate nitrogen (N) assimilation by modeling the interactions between the bundle sheath and mesophyll cells. The model contains gene-protein-reaction relationships, elemental and charge-balanced reactions, and incorporates experimental evidence pertaining to the biomass composition, compartmentalization, and flux constraints. Condition-specific biomass descriptions were introduced that account for amino acids, fatty acids, soluble sugars, proteins, chlorophyll, lignocellulose, and nucleic acids as experimentally measured biomass constituents. Compartmentalization of the model is based on proteomic/transcriptomic data and literature evidence. With the incorporation of information from the MetaCrop and MaizeCyc databases, this updated model spans 5,824 genes, 8,525 reactions, and 9,153 metabolites, an increase of approximately 4 times the size of the earlier iRS1563 model. Transcriptomic and proteomic data have also been used to introduce regulatory constraints in the model to simulate an N-limited condition and mutants deficient in glutamine synthetase, gln1-3 and gln1-4. Model-predicted results achieved 90% accuracy when comparing the wild type grown under an N-complete condition with the wild type grown under an N-deficient condition.
Collapse
Affiliation(s)
- Margaret Simons
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Rajib Saha
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Nardjis Amiour
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Akhil Kumar
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Lenaïg Guillard
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Gilles Clément
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Martine Miquel
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Zhenni Li
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Gregory Mouille
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Peter J Lea
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Bertrand Hirel
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Costas D Maranas
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| |
Collapse
|
27
|
Thomsen HC, Eriksson D, Møller IS, Schjoerring JK. Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? TRENDS IN PLANT SCIENCE 2014; 19:656-63. [PMID: 25017701 DOI: 10.1016/j.tplants.2014.06.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 05/19/2023]
Abstract
Overexpression of the cytosolic enzyme glutamine synthetase 1 (GS1) has been investigated in numerous cases with the goal of improving crop nitrogen use efficiency. However, the outcome has generally been inconsistent. Here, we review possible reasons underlying the lack of success and conclude that GS1 activity may be downregulated via a chain of processes elicited by metabolic imbalances and environmental constraints. We suggest that a pivotal role of GS1 may be related to the maintenance of essential nitrogen (N) flows and internal N sensing during critical stages of plant development. A number of more refined overexpression strategies exploiting gene stacking combined with tissue and cell specific targeting to overcome metabolic bottlenecks are considered along with their potential in relation to new N management strategies.
Collapse
Affiliation(s)
- Hanne C Thomsen
- Department of Plant and Environmental Sciences, Plant and Soil Science Section, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Dennis Eriksson
- Department of Plant and Environmental Sciences, Plant and Soil Science Section, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Inge S Møller
- Department of Plant and Environmental Sciences, Plant and Soil Science Section, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jan K Schjoerring
- Department of Plant and Environmental Sciences, Plant and Soil Science Section, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
28
|
Bao A, Zhao Z, Ding G, Shi L, Xu F, Cai H. Accumulated expression level of cytosolic glutamine synthetase 1 gene (OsGS1;1 or OsGS1;2) alter plant development and the carbon-nitrogen metabolic status in rice. PLoS One 2014; 9:e95581. [PMID: 24743556 PMCID: PMC3990726 DOI: 10.1371/journal.pone.0095581] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/28/2014] [Indexed: 11/19/2022] Open
Abstract
Maintaining an appropriate balance of carbon to nitrogen metabolism is essential for rice growth and yield. Glutamine synthetase is a key enzyme for ammonium assimilation. In this study, we systematically analyzed the growth phenotype, carbon-nitrogen metabolic status and gene expression profiles in GS1;1-, GS1;2-overexpressing rice and wildtype plants. Our results revealed that the GS1;1-, GS1;2-overexpressing plants exhibited a poor plant growth phenotype and yield and decreased carbon/nitrogen ratio in the stem caused by the accumulation of nitrogen in the stem. In addition, the leaf SPAD value and photosynthetic parameters, soluble proteins and carbohydrates varied greatly in the GS1;1-, GS1;2-overexpressing plants. Furthermore, metabolite profile and gene expression analysis demonstrated significant changes in individual sugars, organic acids and free amino acids, and gene expression patterns in GS1;1-, GS1;2-overexpressing plants, which also indicated the distinct roles that these two GS1 genes played in rice nitrogen metabolism, particularly when sufficient nitrogen was applied in the environment. Thus, the unbalanced carbon-nitrogen metabolic status and poor ability of nitrogen transportation from stem to leaf in GS1;1-, GS1;2-overexpressing plants may explain the poor growth and yield.
Collapse
Affiliation(s)
- Aili Bao
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zhuqing Zhao
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
29
|
Peng Y, Li C, Fritschi FB. Apoplastic infusion of sucrose into stem internodes during female flowering does not increase grain yield in maize plants grown under nitrogen-limiting conditions. PHYSIOLOGIA PLANTARUM 2013; 148:470-480. [PMID: 23061679 DOI: 10.1111/j.1399-3054.2012.01711.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 05/27/2023]
Abstract
Nitrogen (N) limitation reduces leaf growth and photosynthetic rates of maize (Zea mays), and constrains photosynthate translocation to developing ears. Additionally, the period from about 1 week before to 2 weeks after silking is critical for establishing the reproductive sink capacity necessary to attain maximum yield. To investigate the influence of carbohydrate availability in plants of differing N status, a greenhouse study was performed in which exogenous sucrose (Suc) was infused around the time of silking into maize stems grown under different N regimes. N deficiency significantly reduced leaf area, leaf longevity, leaf chlorophyll content and photosynthetic rate. High N-delayed leaf senescence, particularly of the six uppermost leaves, compared to the other two N treatments. While N application increased ear leaf soluble protein concentration, it did not influence glucose and suc concentrations. Interestingly, ear leaf starch concentration decreased with increasing N application. Infusion of exogenous suc tended to increase non-structural carbohydrate concentrations in the developing ears of all N treatments at silking and 6 days after silking. However, leaf photosynthetic rates were not affected by suc infusion, and suc infusion failed to increase grain yield in any N treatment. The lack of an effect of suc infusion on ear growth and the high ear leaf starch concentration of N-deficient maize, suggest that yield reduction under N deficiency may not be due to insufficient photosynthate availability to the developing ear during silking, and that yield reduction under N deficiency may be determined at an earlier growth stage.
Collapse
Affiliation(s)
- Yunfeng Peng
- The Key Laboratory of Plant-Soil Interactions, Ministry of Education, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, 100193, China
| | | | | |
Collapse
|
30
|
McAllister CH, Beatty PH, Good AG. Engineering nitrogen use efficient crop plants: the current status. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1011-25. [PMID: 22607381 DOI: 10.1111/j.1467-7652.2012.00700.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the last 40 years the amount of synthetic nitrogen (N) applied to crops has risen drastically, resulting in significant increases in yield but with considerable impacts on the environment. A requirement for crops that require decreased N fertilizer levels has been recognized in the call for a 'Second Green Revolution' and research in the field of nitrogen use efficiency (NUE) has continued to grow. This has prompted a search to identify genes that improve the NUE of crop plants, with candidate NUE genes existing in pathways relating to N uptake, assimilation, amino acid biosynthesis, C/N storage and metabolism, signalling and regulation of N metabolism and translocation, remobilization and senescence. Herein is a review of the approaches taken to determine possible NUE candidate genes, an overview of experimental study of these genes as effectors of NUE in both cereal and non-cereal plants and the processes of commercialization of enhanced NUE crop plants. Patents issued regarding increased NUE in plants as well as gene pyramiding studies are also discussed as well as future directions of NUE research.
Collapse
|
31
|
Wu XY, Kuai BK, Jia JZ, Jing HC. Regulation of leaf senescence and crop genetic improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:936-52. [PMID: 23131150 DOI: 10.1111/jipb.12005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leaf senescence can impact crop production by either changing photosynthesis duration, or by modifying the nutrient remobilization efficiency and harvest index. The doubling of the grain yield in major cereals in the last 50 years was primarily achieved through the extension of photosynthesis duration and the increase in crop biomass partitioning, two things that are intrinsically coupled with leaf senescence. In this review, we consider the functionality of a leaf as a function of leaf age, and divide a leaf's life into three phases: the functionality increasing phase at the early growth stage, the full functionality phase, and the senescence and functionality decreasing phase. A genetic framework is proposed to describe gene actions at various checkpoints to regulate leaf development and senescence. Four categories of genes contribute to crop production: those which regulate (I) the speed and transition of early leaf growth, (II) photosynthesis rate, (III) the onset and (IV) the progression of leaf senescence. Current advances in isolating and characterizing senescence regulatory genes are discussed in the leaf aging and crop production context. We argue that the breeding of crops with leaf senescence ideotypes should be an essential part of further crop genetic improvement.
Collapse
Affiliation(s)
- Xiao-Yuan Wu
- The Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
32
|
Credali A, García-Calderón M, Dam S, Perry J, Díaz-Quintana A, Parniske M, Wang TL, Stougaard J, Vega JM, Márquez AJ. The K+-Dependent Asparaginase, NSE1, is Crucial for Plant Growth and Seed Production in Lotus japonicus. ACTA ACUST UNITED AC 2012; 54:107-18. [DOI: 10.1093/pcp/pcs156] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Chawla R, Shakya R, Rommens CM. Tuber-specific silencing of asparagine synthetase-1 reduces the acrylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:913-24. [PMID: 22726556 DOI: 10.1111/j.1467-7652.2012.00720.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Simultaneous silencing of asparagine synthetase (Ast)-1 and -2 limits asparagine (ASN) formation and, consequently, reduces the acrylamide-forming potential of tubers. The phenotype of silenced lines appears normal in the greenhouse, but field-grown tubers are small and cracked. Assessing the effects of silencing StAst1 and StAst2 individually, we found that yield drag was mainly linked to down-regulation of StAst2. Interestingly, tubers from untransformed scions grafted onto intragenic StAst1/2-silenced rootstock contained almost the same low ASN levels as those in the original silenced lines, indicating that ASN is mainly formed in tubers rather than being transported from leaves. This conclusion was further supported by the finding that overexpression of StAst2 caused ASN to accumulate in leaves but not tubers. Thus, ASN does not appear to be the main form of organic nitrogen transported from leaves to tubers. Because reduced ASN levels coincided with increased levels of glutamine, it appears likely that this alternative amide amino acid is mobilized to tubers, where it is converted into ASN by StAst1. Indeed, tuber-specific silencing of StAst1, but not of StAst2, was sufficient to substantially lower ASN formation in tubers. Extensive field studies demonstrated that the reduced acrylamide-forming potential achieved by tuber-specific StAst1 silencing did not affect the yield or quality of field-harvested tubers.
Collapse
Affiliation(s)
- Rekha Chawla
- Simplot Plant Sciences, J. R. Simplot Company, Boise, ID, USA
| | | | | |
Collapse
|
34
|
Cañas RA, Quilleré I, Gallais A, Hirel B. Can genetic variability for nitrogen metabolism in the developing ear of maize be exploited to improve yield? THE NEW PHYTOLOGIST 2012; 194:440-452. [PMID: 22329725 DOI: 10.1111/j.1469-8137.2012.04067.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Quantitative trait loci (QTLs) for the main steps of nitrogen (N) metabolism in the developing ear of maize (Zea mays L.) and their co-localization with QTLs for kernel yield and putative candidate genes were searched in order to identify chromosomal regions putatively involved in the determination of yield. During the grain-filling period, the changes in physiological traits were monitored in the cob and in the developing kernels, representative of carbon and N metabolism in the developing ear. The correlations between these physiological traits and traits related to yield were examined and localized with the corresponding QTLs on a genetic map. Glycine and serine metabolism in developing kernels and the cognate genes appeared to be of major importance for kernel production. The importance of kernel glutamine synthesis in the determination of yield was also confirmed. The genetic and physiological bases of N metabolism in the developing ear can be studied in an integrated manner by means of a quantitative genetic approach using molecular markers and genomics, and combining agronomic, physiological and correlation studies. Such an approach leads to the identification of possible new regulatory metabolic and developmental networks specific to the ear that may be of major importance for maize productivity.
Collapse
Affiliation(s)
- Rafael A Cañas
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, F-78026 Versailles, France
| | - Isabelle Quilleré
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, F-78026 Versailles, France
| | - André Gallais
- Station de Génétique Végétale du Moulon, Institut National de la Recherche Agronomique, Université de Paris Sud, Institut National Agronomique Paris Grignon, Ferme du Moulon, F-91190 Gif/Yvette, France
| | - Bertrand Hirel
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, F-78026 Versailles, France
| |
Collapse
|
35
|
Virlouvet L, Jacquemot MP, Gerentes D, Corti H, Bouton S, Gilard F, Valot B, Trouverie J, Tcherkez G, Falque M, Damerval C, Rogowsky P, Perez P, Noctor G, Zivy M, Coursol S. The ZmASR1 protein influences branched-chain amino acid biosynthesis and maintains kernel yield in maize under water-limited conditions. PLANT PHYSIOLOGY 2011; 157:917-36. [PMID: 21852416 PMCID: PMC3192578 DOI: 10.1104/pp.111.176818] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/04/2011] [Indexed: 05/02/2023]
Abstract
Abscisic acid-, stress-, and ripening-induced (ASR) proteins were first described about 15 years ago as accumulating to high levels during plant developmental processes and in response to diverse stresses. Currently, the effects of ASRs on water deficit tolerance and the ways in which their physiological and biochemical functions lead to this stress tolerance remain poorly understood. Here, we characterized the ASR gene family from maize (Zea mays), which contains nine paralogous genes, and showed that maize ASR1 (ZmASR1) was encoded by one of the most highly expressed paralogs. Ectopic expression of ZmASR1 had a large overall impact on maize yield that was maintained under water-limited stress conditions in the field. Comparative transcriptomic and proteomic analyses of wild-type and ZmASR1-overexpressing leaves led to the identification of three transcripts and 16 proteins up- or down-regulated by ZmASR1. The majority of them were involved in primary and/or cellular metabolic processes, including branched-chain amino acid (BCAA) biosynthesis. Metabolomic and transcript analyses further indicated that ZmASR1-overexpressing plants showed a decrease in BCAA compounds and changes in BCAA-related gene expression in comparison with wild-type plants. Interestingly, within-group correlation matrix analysis revealed a close link between 13 decreased metabolites in ZmASR1-overexpressing leaves, including two BCAAs. Among these 13 metabolites, six were previously shown to be negatively correlated to biomass, suggesting that ZmASR1-dependent regulation of these 13 metabolites might contribute to regulate leaf growth, resulting in improvement in kernel yield.
Collapse
Affiliation(s)
- Laetitia Virlouvet
- Université Paris-Sud, UMR 320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cañas RA, Amiour N, Quilleré I, Hirel B. An integrated statistical analysis of the genetic variability of nitrogen metabolism in the ear of three maize inbred lines (Zea mays L.). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2309-2318. [PMID: 21112957 DOI: 10.1093/jxb/erq373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
During the grain-filling period of maize, the changes in metabolite content, enzyme activities, and transcript abundance of marker genes of amino acid synthesis and interconversion and carbon metabolism in three lines F2, Io, and B73 have been monitored in the cob and in the kernels. An integrative statistical approach using principal component analysis (PCA) and hierarchical clustering of physiological and transcript abundance data in the three maize lines was performed to determine if it was possible to link the expression of a physiological trait and a molecular biomarker to grain yield and its components. In this study, it was confirmed that, in maize, there was a genetic and organ-specific control of the main steps of nitrogen (N) and carbon metabolism in reproductive sink organs during the grain-filling period. PCA analysis allowed the identification of groups of physiological and molecular markers linked to either a genotype, an organ or to both biological parameters. A hierarchical clustering analysis was then performed to identify correlative relationships existing between these markers and agronomic traits related to yield. Such a clustering approach provided new information on putative marker traits that could be used to improve yield in a given genetic background. This can be achieved using either genetic manipulation or breeding to increase transcript abundance for the genes encoding the enzymes glutamine synthetase (GS), alanine amino transferase (AlaAT), aspartate amino transferase (AspAT), and Δ1-pyrroline-5-carboxylate synthetase (P5CS).
Collapse
Affiliation(s)
- Rafael A Cañas
- Adaptation des Plantes à leur Environnement, Unité de Recherche 511, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Route de Saint-Cyr, F-78026 Versailles Cedex, France
| | | | | | | |
Collapse
|