1
|
Capelli E, Dondena C, Lorusso ML, Mascheretti S, Pozzoli R, Salandi A, Molteni M, Riva V, Cantiani C. Predictive Measures in Child Language Development: The Role of Familial History and Early Expressive Vocabulary. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:3714-3732. [PMID: 39292917 DOI: 10.1044/2024_jslhr-23-00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
PURPOSE Prediction of developmental language disorder in children under 3 years of age is challenging. Among early risk factors, research has focused on having a positive familial history (FH+) for language or literacy problems and on late language emergence, that is, late-talker (LT) status. The interaction between these two risk factors and their cumulative effect is still debated. Here, we (a) investigate the effect of FH+ on 24-month language development, (b) test for cumulative effects of FH+ status and early language delay on 36-month language outcomes, and (c) disentangle the direct and indirect effects of familial history (FH) on the language outcome. METHOD One hundred eighty-five Italian children were followed up longitudinally between 24 and 36 months of age (64 FH+ and 121 FH-) through parental questionnaires and direct child assessment. RESULTS At the age of 24 months, the FH+ group showed worse expressive vocabulary and higher prevalence of LT. At the age of 36 months, main effects of LT and FH were identified on lexical and phonological performances, respectively. Interestingly, significant interaction effects were identified on expressive vocabulary and phonological processing. Path analysis highlights that FH had a direct effect on later measures of phonology, whereas its effect on 36-month lexical abilities was indirect, via measures of expressive vocabulary at 24 months. CONCLUSIONS The study suggests specific predictive roles of FH and LT status on language development. Interestingly, FH+ seems to represent an additive risk for LT children. The use of cumulative risk measures is confirmed as a powerful approach to identify those children with the highest probability of developing persistent language difficulties. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.26790580.
Collapse
Affiliation(s)
- Elena Capelli
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Chiara Dondena
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Maria Luisa Lorusso
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Raffaella Pozzoli
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Antonio Salandi
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Chiara Cantiani
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| |
Collapse
|
2
|
Pickering HE, Peters JL, Crewther SG. A Role for Visual Memory in Vocabulary Development: A Systematic Review and Meta-Analysis. Neuropsychol Rev 2023; 33:803-833. [PMID: 36136174 PMCID: PMC10770228 DOI: 10.1007/s11065-022-09561-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 07/24/2022] [Indexed: 10/14/2022]
Abstract
Although attention and early associative learning in preverbal children is predominantly driven by rapid eye-movements in response to moving visual stimuli and sounds/words (e.g., associating the word "bottle" with the object), the literature examining the role of visual attention and memory in ongoing vocabulary development across childhood is limited. Thus, this systematic review and meta-analysis examined the association between visual memory and vocabulary development, including moderators such as age and task selection, in neurotypical children aged 2-to-12 years, from the brain-based perspective of cognitive neuroscience. Visual memory tasks were classified according to the visual characteristics of the stimuli and the neural networks known to preferentially process such information, including consideration of the distinction between the ventral visual stream (processing more static visuo-perceptual details, such as form or colour) and the more dynamic dorsal visual stream (processing spatial temporal action-driven information). Final classifications included spatio-temporal span tasks, visuo-perceptual or spatial concurrent array tasks, and executive judgment tasks. Visuo-perceptual concurrent array tasks, reliant on ventral stream processing, were moderately associated with vocabulary, while tasks measuring spatio-temporal spans, associated with dorsal stream processing, and executive judgment tasks (central executive), showed only weak correlations with vocabulary. These findings have important implications for health professionals and researchers interested in language, as they advocate for the development of more targeted language learning interventions that include specific and relevant aspects of visual processing and memory, such as ventral stream visuo-perceptual details (i.e., shape or colour).
Collapse
Affiliation(s)
- Hayley E Pickering
- Department of Psychology, Counselling, and Therapy, La Trobe University, Kingsbury Drive, Melbourne, VIC, 3086, Australia.
| | - Jessica L Peters
- Department of Psychology, Counselling, and Therapy, La Trobe University, Kingsbury Drive, Melbourne, VIC, 3086, Australia
| | - Sheila G Crewther
- Department of Psychology, Counselling, and Therapy, La Trobe University, Kingsbury Drive, Melbourne, VIC, 3086, Australia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
3
|
Lamminmäki S, Cormier K, Davidson H, Grigsby J, Sharma A. Auditory Cortex Maturation and Language Development in Children with Hearing Loss and Additional Disabilities. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1813. [PMID: 38002904 PMCID: PMC10670362 DOI: 10.3390/children10111813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
A significant portion of hearing-impaired children have additional disabilities, but data about the maturation of their auditory cortex are scarce. In these children, behavioral tests are often unreliable, and objective tests are needed for diagnostics and follow-up. This study aimed to explore auditory cortical maturation and language development, and the usability of an objective electroencephalogram-based biomarker in children with multiple disabilities. In 65 hearing aid and cochlear implant users (36 females; 36 with multiple disabilities; 44.3 ± 18.5 months of age, mean ± SD), auditory processing was examined using the P1 cortical auditory evoked response biomarker, and language development with the Preschool Language Scales 5th edition (PLS-5). During the study, all of the children received intensive extra language therapy for six months. No significant differences were found between the groups in P1 latency development, the proportion of abnormal P1 latencies, or the number of children whose P1 latencies changed from abnormal to normal during the study. The PLS-5 total language scores, auditory comprehension scores, or expressive communication scores did not differ between groups either. The P1 latencies showed meaningful negative correlations with the language scores. The results suggest that auditory cortex development is similar in hearing-impaired children with/without additional disabilities, and the P1 biomarker is a feasible tool to evaluate central auditory maturation in children with multiple disabilities.
Collapse
Affiliation(s)
- Satu Lamminmäki
- Department of Speech Language and Hearing Sciences, University of Colorado Boulder, 2501 Kittredge Loop Dr. UCB 409, Boulder, CO 80309, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 263, 00029 HUS, Helsinki, Finland
| | - Kayla Cormier
- Department of Speech Language and Hearing Sciences, University of Colorado Boulder, 2501 Kittredge Loop Dr. UCB 409, Boulder, CO 80309, USA
| | - Hanna Davidson
- Department of Speech Language and Hearing Sciences, University of Colorado Boulder, 2501 Kittredge Loop Dr. UCB 409, Boulder, CO 80309, USA
| | - Jim Grigsby
- Department of Psychology, University of Colorado Denver, Denver, CO 80217, USA
| | - Anu Sharma
- Department of Speech Language and Hearing Sciences, University of Colorado Boulder, 2501 Kittredge Loop Dr. UCB 409, Boulder, CO 80309, USA
| |
Collapse
|
4
|
Therapeutic Interventions in Rat Models of Preterm Hypoxic Ischemic Injury: Effects of Hypothermia, Caffeine, and the Influence of Sex. Life (Basel) 2022; 12:life12101514. [PMID: 36294948 PMCID: PMC9605553 DOI: 10.3390/life12101514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Infants born prematurely have an increased risk of experiencing brain injury, specifically injury caused by Hypoxia Ischemia (HI). There is no approved treatment for preterm infants, in contrast to term infants that experience Hypoxic Ischemic Encephalopathy (HIE) and can be treated with hypothermia. Given this increased risk and lack of approved treatment, it is imperative to explore and model potential treatments in animal models of preterm injury. Hypothermia is one potential treatment, though cooling to current clinical standards has been found to be detrimental for preterm infants. However, mild hypothermia may prove useful. Caffeine is another treatment that is already used in preterm infants to treat apnea of prematurity, and has shown neuroprotective effects. Both of these treatments show sex differences in behavioral outcomes and neuroprotective effects, which are critical to explore when working to translate from animal to human. The effects and research history of hypothermia, caffeine and how sex affects these treatment outcomes will be explored further in this review article.
Collapse
|
5
|
Visual Implicit Learning Abilities in Infants at Familial Risk for Language and Learning Impairments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031877. [PMID: 35162899 PMCID: PMC8835124 DOI: 10.3390/ijerph19031877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023]
Abstract
The ability of infants to track transitional probabilities (Statistical Learning—SL) and to extract and generalize high-order rules (Rule Learning—RL) from sequences of items have been proposed as being pivotal for the acquisition of language and reading skills. Although there is ample evidence of specific associations between SL and RL abilities and, respectively, vocabulary and grammar skills, research exploring SL and RL as early markers of language and learning (dis)abilities is still scarce. Here we investigated the efficiency of visual SL and RL skills in typically developing (TD) seven-month-old infants and in seven-month-old infants at high risk (HR) for language learning impairment. Infants were tested in two visual-habituation tasks aimed to measure their ability to extract transitional probabilities (SL task) or high-order, repetition-based rules (RL task) from sequences of visual shapes. Post-habituation looking time preferences revealed that both TD and HR infants succeeded in learning the statistical structure (SL task), while only TD infants, but not HR infants, were able to learn and generalize the high-order rule (RL task). These findings suggest that SL and RL may contribute differently to the emergence of language learning impairment and support the hypothesis that a mechanism linked to the extraction of grammar structures may contribute to the disorder.
Collapse
|
6
|
Impact of Early Rhythmic Training on Language Acquisition and Electrophysiological Functioning Underlying Auditory Processing: Feasibility and Preliminary Findings in Typically Developing Infants. Brain Sci 2021; 11:brainsci11111546. [PMID: 34827544 PMCID: PMC8615969 DOI: 10.3390/brainsci11111546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Previous evidence has shown that early auditory processing impacts later linguistic development, and targeted training implemented at early ages can enhance auditory processing skills, with better expected language development outcomes. This study focuses on typically developing infants and aims to test the feasibility and preliminary efficacy of music training based on active synchronization with complex musical rhythms on the linguistic outcomes and electrophysiological functioning underlying auditory processing. Fifteen infants participated in the training (RTr+) and were compared with two groups of infants not attending any structured activities during the same time frame (RTr−, N = 14). At pre- and post-training, expressive and receptive language skills were assessed using standardized tests, and auditory processing skills were characterized through an electrophysiological non-speech multi-feature paradigm. Results reveal that RTr+ infants showed significantly broader improvement in both expressive and receptive pre-language skills. Moreover, at post-training, they presented an electrophysiological pattern characterized by shorter latency of two peaks (N2* and P2), reflecting a neural change detection process: these shifts in latency go beyond those seen due to maturation alone. These results provide preliminary evidence on the efficacy of our training in improving early linguistic competences, and in modifying the neural underpinnings of auditory processing in infants.
Collapse
|
7
|
Uhler K, Hunter S, Gilley PM. Mismatched response predicts behavioral speech discrimination outcomes in infants with hearing loss and normal hearing. INFANCY 2021; 26:327-348. [PMID: 33481354 DOI: 10.1111/infa.12386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/20/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023]
Abstract
Children with hearing loss (HL) remain at risk for poorer language abilities than normal hearing (NH) children despite targeted interventions; reasons for these differences remain unclear. In NH children, research suggests speech discrimination is related to language outcomes, yet we know little about it in children with HL under the age of 2 years. We utilized a vowel contrast, /a-i/, and a consonant-vowel contrast, /ba-da/, to examine speech discrimination in 47 NH infants and 40 infants with HL. At Mean age =3 months, EEG recorded from 11 scalp electrodes was used to compute the time-frequency mismatched response (TF-MMRSE ) to the contrasts; at Mean age =9 months, behavioral discrimination was assessed using a head turn task. A machine learning (ML) classifier was used to predict behavioral discrimination when given an arbitrary TF-MMRSE as input, achieving accuracies of 73% for exact classification and 92% for classification within a distance of one class. Linear fits revealed a robust relationship regardless of hearing status or speech contrast. TF-MMRSE responses in the delta (1-3.5 Hz), theta (3.5-8 Hz), and alpha (8-12 Hz) bands explained the most variance in behavioral task performance. Our findings demonstrate the feasibility of using TF-MMRSE to predict later behavioral speech discrimination.
Collapse
Affiliation(s)
- Kristin Uhler
- Children's Hospital Colorado, University of Colorado, Anschutz School of Medicine, Aurora, CO, USA
| | - Sharon Hunter
- University of Colorado, Anschutz School of Medicine, Aurora, CO, USA
| | - Phillip M Gilley
- Institute of Cognitive Science, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
8
|
Wang Y, Seidl A, Cristia A. Infant speech perception and cognitive skills as predictors of later vocabulary. Infant Behav Dev 2020; 62:101524. [PMID: 33373908 DOI: 10.1016/j.infbeh.2020.101524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
Research has identified bivariate correlations between speech perception and cognitive measures gathered during infancy as well as correlations between these individual measures and later language outcomes. However, these correlations have not all been explored together in prospective longitudinal studies. The goal of the current research was to compare how early speech perception and cognitive skills predict later language outcomes using a within-participant design. To achieve this goal, we tested 97 5- to 7-month-olds on two speech perception tasks (stress pattern preference, native vowel discrimination) and two cognitive tasks (visual recognition memory, A-not-B) and later assessed their vocabulary outcomes at 18 and 24 months. Frequentist statistical analyses showed that only native vowel discrimination significantly predicted vocabulary. However, Bayesian analyses suggested that evidence was ambiguous between null and alternative hypotheses for all infant predictors. These results highlight the importance of recognizing and addressing challenges related to infant data collection, interpretation, and replication in the developmental field, a roadblock in our route to understanding the contribution of domain-specific and domain-general skills for language acquisition. Future methodological development and research along similar lines is encouraged to assess individual differences in infant speech perception and cognitive skills and their predictability for language development.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Otolaryngology-Head & Neck Surgery, The Ohio State University, United States.
| | - Amanda Seidl
- Department of Speech, Language, and Hearing Sciences, Purdue University, United States
| | - Alejandrina Cristia
- Laboratoire de Sciences Cognitives et Psycholinguistique, CNRS, IEC-ENS, EHESS, France
| |
Collapse
|
9
|
Ladányi E, Persici V, Fiveash A, Tillmann B, Gordon RL. Is atypical rhythm a risk factor for developmental speech and language disorders? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2020; 11:e1528. [PMID: 32244259 PMCID: PMC7415602 DOI: 10.1002/wcs.1528] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Abstract
Although a growing literature points to substantial variation in speech/language abilities related to individual differences in musical abilities, mainstream models of communication sciences and disorders have not yet incorporated these individual differences into childhood speech/language development. This article reviews three sources of evidence in a comprehensive body of research aligning with three main themes: (a) associations between musical rhythm and speech/language processing, (b) musical rhythm in children with developmental speech/language disorders and common comorbid attentional and motor disorders, and (c) individual differences in mechanisms underlying rhythm processing in infants and their relationship with later speech/language development. In light of converging evidence on associations between musical rhythm and speech/language processing, we propose the Atypical Rhythm Risk Hypothesis, which posits that individuals with atypical rhythm are at higher risk for developmental speech/language disorders. The hypothesis is framed within the larger epidemiological literature in which recent methodological advances allow for large-scale testing of shared underlying biology across clinically distinct disorders. A series of predictions for future work testing the Atypical Rhythm Risk Hypothesis are outlined. We suggest that if a significant body of evidence is found to support this hypothesis, we can envision new risk factor models that incorporate atypical rhythm to predict the risk of developing speech/language disorders. Given the high prevalence of speech/language disorders in the population and the negative long-term social and economic consequences of gaps in identifying children at-risk, these new lines of research could potentially positively impact access to early identification and treatment. This article is categorized under: Linguistics > Language in Mind and Brain Neuroscience > Development Linguistics > Language Acquisition.
Collapse
Affiliation(s)
- Enikő Ladányi
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Valentina Persici
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Psychology, Università degli Studi di Milano - Bicocca, Milan, Italy.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Anna Fiveash
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, CRNL, INSERM, University of Lyon 1, U1028, CNRS, UMR5292, Lyon, France
| | - Barbara Tillmann
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, CRNL, INSERM, University of Lyon 1, U1028, CNRS, UMR5292, Lyon, France
| | - Reyna L Gordon
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Jannesari M, Saeedi A, Zare M, Ortiz-Mantilla S, Plenz D, Benasich AA. Stability of neuronal avalanches and long-range temporal correlations during the first year of life in human infants. Brain Struct Funct 2020; 225:1169-1183. [PMID: 32095901 PMCID: PMC7166209 DOI: 10.1007/s00429-019-02014-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/26/2019] [Indexed: 11/27/2022]
Abstract
During infancy, the human brain rapidly expands in size and complexity as neural networks mature and new information is incorporated at an accelerating pace. Recently, it was shown that single-electrode EEG in preterms at birth exhibits scale-invariant intermittent bursts. Yet, it is currently not known whether the normal infant brain, in particular, the cortex, maintains a distinct dynamical state during development that is characterized by scale-invariant spatial as well as temporal aspects. Here we employ dense-array EEG recordings acquired from the same infants at 6 and 12 months of age to characterize brain activity during an auditory odd-ball task. We show that suprathreshold events organize as spatiotemporal clusters whose size and duration are power-law distributed, the hallmark of neuronal avalanches. Time series of local suprathreshold EEG events display significant long-range temporal correlations (LRTCs). No differences were found between 6 and 12 months, demonstrating stability of avalanche dynamics and LRTCs during the first year after birth. These findings demonstrate that the infant brain is characterized by distinct spatiotemporal dynamical aspects that are in line with expectations of a critical cortical state. We suggest that critical state dynamics, which theory and experiments have shown to be beneficial for numerous aspects of information processing, are maintained by the infant brain to process an increasingly complex environment during development.
Collapse
Affiliation(s)
- Mostafa Jannesari
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), 70 Lavasani Avenue, Tehran, 19395, Iran
| | - Alireza Saeedi
- Department of Physiology of Cognitive Processes, Max-Planck-Institute for Biological Cybernetics, 72076, Tübingen, Germany
| | - Marzieh Zare
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), 70 Lavasani Avenue, Tehran, 19395, Iran.
| | - Silvia Ortiz-Mantilla
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ, 07102, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, Laboratory of Systems Neuroscience, National Institute of Mental Health, Porter Neuroscience Research Center, MSC 3735, Bethesda, MD, 20892, USA
| | - April A Benasich
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ, 07102, USA
| |
Collapse
|
11
|
Jannesari M, Saeedi A, Zare M, Ortiz-Mantilla S, Plenz D, Benasich AA. Stability of neuronal avalanches and long-range temporal correlations during the first year of life in human infant. Brain Struct Funct 2019; 224:2453-2465. [PMID: 31267171 PMCID: PMC6698269 DOI: 10.1007/s00429-019-01918-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/26/2019] [Indexed: 11/29/2022]
Abstract
During infancy, the human brain rapidly expands in size and complexity as neural networks mature and new information is incorporated at an accelerating pace. Recently, it was shown that single electrode EEG in preterms at birth exhibits scale-invariant intermittent bursts. Yet, it is currently not known whether the normal infant brain, in particular, the cortex maintains a distinct dynamical state during development that is characterized by scale-invariant spatial as well as temporal aspects. Here we employ dense-array EEG recordings acquired from the same infants at 6 and 12 months of age to characterize brain activity during an auditory oddball task. We show that suprathreshold events organize as spatiotemporal clusters whose size and duration are power-law distributed, the hallmark of neuronal avalanches. Time series of local suprathreshold EEG events display significant long-range temporal correlations (LRTCs). No differences were found between 6 and 12 months, demonstrating stability of avalanche dynamics and LRTCs during the first year after birth. These findings demonstrate that the infant brain is characterized by distinct spatiotemporal dynamical aspects that are in line with expectations of a critical cortical state. We suggest that critical state dynamics, which theory and experiments have shown to be beneficial for numerous aspects of information processing, are maintained by the infant brain to process an increasingly complex environment during development.
Collapse
Affiliation(s)
- Mostafa Jannesari
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), 70 Lavasani Avenue, Tehran, 19395, Iran
| | - Alireza Saeedi
- Department of Physiology of Cognitive Processes, Max-Planck-Institute for Biological Cybernetics, Tübingen, 72076, Germany
| | - Marzieh Zare
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), 70 Lavasani Avenue, Tehran, 19395, Iran.
| | - Silvia Ortiz-Mantilla
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ, 07102, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, Laboratory of Systems Neuroscience, National Institute of Mental Health, Porter Neuroscience Research Center, MSC 3735, Bethesda, MD, 20892, USA
| | - April A Benasich
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ, 07102, USA
| |
Collapse
|
12
|
Cantiani C, Ortiz-Mantilla S, Riva V, Piazza C, Bettoni R, Musacchia G, Molteni M, Marino C, Benasich AA. Reduced left-lateralized pattern of event-related EEG oscillations in infants at familial risk for language and learning impairment. NEUROIMAGE-CLINICAL 2019; 22:101778. [PMID: 30901712 PMCID: PMC6428938 DOI: 10.1016/j.nicl.2019.101778] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 02/02/2023]
Abstract
The ability to rapidly discriminate successive auditory stimuli within tens-of-milliseconds is crucial for speech and language development, particularly in the first year of life. This skill, called Rapid Auditory Processing (RAP), is altered in infants at familial risk for language and learning impairment (LLI) and is a robust predictor of later language outcomes. In the present study, we investigate the neural substrates of RAP, i.e., the underlying neural oscillatory patterns, in a group of Italian 6-month-old infants at risk for LLI (FH+, n = 24), compared to control infants with no known family history of LLI (FH−, n = 32). Brain responses to rapid changes in fundamental frequency and duration were recorded via high-density electroencephalogram during a non-speech double oddball paradigm. Sources of event-related potential generators were localized to right and left auditory regions in both FH+ and FH− groups. Time-frequency analyses showed variations in both theta (Ɵ) and gamma (ɣ) ranges across groups. Our results showed that overall RAP stimuli elicited a more left-lateralized pattern of oscillations in FH− infants, whereas FH+ infants demonstrated a more right-lateralized pattern, in both the theta and gamma frequency bands. Interestingly, FH+ infants showed reduced early left gamma power (starting at 50 ms after stimulus onset) during deviant discrimination. Perturbed oscillatory dynamics may well constitute a candidate neural mechanism to explain group differences in RAP. Additional group differences in source location suggest that anatomical variations may underlie differences in oscillatory activity. Regarding the predictive value of early oscillatory measures, we found that the amplitude of the source response and the magnitude of oscillatory power and phase synchrony were predictive of expressive vocabulary at 20 months of age. These results further our understanding of the interplay among neural mechanisms that support typical and atypical rapid auditory processing in infancy. Neural sources of RAP in infancy were identified at right/left auditory regions. FH− infants demonstrated a mature left-lateralized pattern of neural oscillations. FH+ infants demonstrated a more right-lateralized pattern of neural oscillations. FH+ infants showed reduced left gamma power during rapid auditory discrimination. Source and oscillatory measures are both associated with later language skills.
Collapse
Affiliation(s)
- Chiara Cantiani
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy.
| | | | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Caterina Piazza
- Bioengineering Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Roberta Bettoni
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy; Department of Psychology, University of Milano-Bicocca, Milano, Italy
| | - Gabriella Musacchia
- Department of Audiology, University of the Pacific, USA; Department of Otolaryngology - Head and Neck Surgery, Stanford University, USA
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Cecilia Marino
- Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Canada
| | - April A Benasich
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, USA
| |
Collapse
|
13
|
Distinct ERP profiles for auditory processing in infants at-risk for autism and language impairment. Sci Rep 2018; 8:715. [PMID: 29335488 PMCID: PMC5768787 DOI: 10.1038/s41598-017-19009-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/17/2017] [Indexed: 11/09/2022] Open
Abstract
Early identification of autism spectrum disorder (ASD) is crucial for the formulation of effective intervention programs. Language deficits may be a hallmark feature of ASD and language delay observed in ASD shows striking similarities to that observed in children with language impairment (LI). Auditory processing deficits are seen in both LI and ASD, however, they have not previously been compared directly using Event-Related Potentials (ERPs) in the two at-risk populations. This study aims to characterize infants at-risk for ASD (HR-ASD) at the electrophysiological level and to compare them with infants at-risk for LI (HR-LI) and controls, to find specific markers with predictive value. At 12-month-old, auditory processing in HR-ASD, HR-LI and controls was characterized via ERP oddball paradigm. All infants were then evaluated at 20 months, to investigate the associations between auditory processing and language/ASD-related outcomes. In both HR-ASD and HR-LI, mismatch response latency was delayed compared to controls, whereas only HR-ASD showed overall larger P3 amplitude compared to controls. Interestingly, these ERP measures correlated with later expressive vocabulary and M-CHAT critical items in the whole sample. These results may support the use of objective measurement of auditory processing to delineate pathophysiological mechanisms in ASD, as compared to LI.
Collapse
|
14
|
Guidi LG, Mattley J, Martinez-Garay I, Monaco AP, Linden JF, Velayos-Baeza A, Molnár Z. Knockout Mice for Dyslexia Susceptibility Gene Homologs KIAA0319 and KIAA0319L have Unaffected Neuronal Migration but Display Abnormal Auditory Processing. Cereb Cortex 2017; 27:5831-5845. [PMID: 29045729 PMCID: PMC5939205 DOI: 10.1093/cercor/bhx269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developmental dyslexia is a neurodevelopmental disorder that affects reading ability caused by genetic and non-genetic factors. Amongst the susceptibility genes identified to date, KIAA0319 is a prime candidate. RNA-interference experiments in rats suggested its involvement in cortical migration but we could not confirm these findings in Kiaa0319-mutant mice. Given its homologous gene Kiaa0319L (AU040320) has also been proposed to play a role in neuronal migration, we interrogated whether absence of AU040320 alone or together with KIAA0319 affects migration in the developing brain. Analyses of AU040320 and double Kiaa0319;AU040320 knockouts (dKO) revealed no evidence for impaired cortical lamination, neuronal migration, neurogenesis or other anatomical abnormalities. However, dKO mice displayed an auditory deficit in a behavioral gap-in-noise detection task. In addition, recordings of click-evoked auditory brainstem responses revealed suprathreshold deficits in wave III amplitude in AU040320-KO mice, and more general deficits in dKOs. These findings suggest that absence of AU040320 disrupts firing and/or synchrony of activity in the auditory brainstem, while loss of both proteins might affect both peripheral and central auditory function. Overall, these results stand against the proposed role of KIAA0319 and AU040320 in neuronal migration and outline their relationship with deficits in the auditory system.
Collapse
Affiliation(s)
- Luiz G Guidi
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jane Mattley
- Ear Institute, University College London, London WC1X 8EE, UK
| | - Isabel Martinez-Garay
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Current address: Office of the President, Ballou Hall, Tufts University, Medford, MA 02155, USA
| | - Jennifer F Linden
- Ear Institute, University College London, London WC1X 8EE, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | | | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
15
|
Active auditory experience in infancy promotes brain plasticity in Theta and Gamma oscillations. Dev Cogn Neurosci 2017; 26:9-19. [PMID: 28436834 PMCID: PMC6987829 DOI: 10.1016/j.dcn.2017.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 11/22/2022] Open
Abstract
Active acoustic experience (AEx) in infancy impacts cortical oscillations. AEx infants show left Theta- and Gamma-band activity to complex tone pairs. Passive and naïve infants yield less distinct, more bilateral responses.
Language acquisition in infants is driven by on-going neural plasticity that is acutely sensitive to environmental acoustic cues. Recent studies showed that attention-based experience with non-linguistic, temporally-modulated auditory stimuli sharpens cortical responses. A previous ERP study from this laboratory showed that interactive auditory experience via behavior-based feedback (AEx), over a 6-week period from 4- to 7-months-of-age, confers a processing advantage, compared to passive auditory exposure (PEx) or maturation alone (Naïve Control, NC). Here, we provide a follow-up investigation of the underlying neural oscillatory patterns in these three groups. In AEx infants, Standard stimuli with invariant frequency (STD) elicited greater Theta-band (4–6 Hz) activity in Right Auditory Cortex (RAC), as compared to NC infants, and Deviant stimuli with rapid frequency change (DEV) elicited larger responses in Left Auditory Cortex (LAC). PEx and NC counterparts showed less-mature bilateral patterns. AEx infants also displayed stronger Gamma (33–37 Hz) activity in the LAC during DEV discrimination, compared to NCs, while NC and PEx groups demonstrated bilateral activity in this band, if at all. This suggests that interactive acoustic experience with non-linguistic stimuli can promote a distinct, robust and precise cortical pattern during rapid auditory processing, perhaps reflecting mechanisms that support fine-tuning of early acoustic mapping.
Collapse
|
16
|
Zare M, Rezvani Z, Benasich AA. Automatic classification of 6-month-old infants at familial risk for language-based learning disorder using a support vector machine. Clin Neurophysiol 2016; 127:2695-703. [DOI: 10.1016/j.clinph.2016.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 10/21/2022]
|
17
|
Ozernov-Palchik O, Gaab N. Tackling the 'dyslexia paradox': reading brain and behavior for early markers of developmental dyslexia. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 7:156-76. [PMID: 26836227 DOI: 10.1002/wcs.1383] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/15/2015] [Accepted: 12/23/2015] [Indexed: 01/18/2023]
Abstract
Developmental dyslexia is an unexplained inability to acquire accurate or fluent reading that affects approximately 5-17% of children. Dyslexia is associated with structural and functional alterations in various brain regions that support reading. Neuroimaging studies in infants and pre-reading children suggest that these alterations predate reading instruction and reading failure, supporting the hypothesis that variant function in dyslexia susceptibility genes lead to atypical neural migration and/or axonal growth during early, most likely in utero, brain development. Yet, dyslexia is typically not diagnosed until a child has failed to learn to read as expected (usually in second grade or later). There is emerging evidence that neuroimaging measures, when combined with key behavioral measures, can enhance the accuracy of identification of dyslexia risk in pre-reading children but its sensitivity, specificity, and cost-efficiency is still unclear. Early identification of dyslexia risk carries important implications for dyslexia remediation and the amelioration of the psychosocial consequences commonly associated with reading failure.
Collapse
Affiliation(s)
- Ola Ozernov-Palchik
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA.,Eliot-Pearson Department of Child Study and Human Development, Tufts University, Medford, MA, USA
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA.,Harvard Graduate School of Education, Cambridge, MA, USA
| |
Collapse
|
18
|
Tager-Flusberg H. Risk Factors Associated With Language in Autism Spectrum Disorder: Clues to Underlying Mechanisms. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2016; 59:143-54. [PMID: 26502110 PMCID: PMC4867927 DOI: 10.1044/2015_jslhr-l-15-0146] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 05/13/2023]
Abstract
PURPOSE Identifying risk factors associated with neurodevelopmental disorders is an important line of research, as it will lead to earlier identification of children who could benefit from interventions that support optimal developmental outcomes. The primary goal of this review was to summarize research on risk factors associated with autism spectrum disorder (ASD). METHOD The review focused on studies of infants who have older siblings with ASD, with particular emphasis on risk factors associated with language impairment that affects the majority of children with ASD. Findings from this body of work were compared to the literature on specific language impairment. RESULTS A wide range of risk factors has been found for ASD, including demographic (e.g., male, family history), behavioral (e.g., gesture, motor) and neural risk markers (e.g., atypical lateralization for speech and reduced functional connectivity). Environmental factors, such as caregiver interaction, have not been found to predict language outcomes. Many of the risk markers for ASD are also found in studies of risk for specific language impairment, including demographic, behavioral, and neural factors. CONCLUSIONS There are significant gaps in the literature and limitations in the current research that preclude direct cross-syndrome comparisons. Future research directions are outlined that could address these limitations.
Collapse
|
19
|
Albouy P, Cousineau M, Caclin A, Tillmann B, Peretz I. Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia. Sci Rep 2016; 6:18861. [PMID: 26732511 PMCID: PMC4702148 DOI: 10.1038/srep18861] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/27/2015] [Indexed: 11/17/2022] Open
Abstract
Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants' performance in discrimination and short-term memory. Our results show that amusics' performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics' pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders.
Collapse
Affiliation(s)
- Philippe Albouy
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team & Brain Dynamics and Cognition Team, CRNL, CNRS UMR5292, INSERM U1028, Lyon, F-69000, France
- Université Lyon 1, Lyon, F-69000, France
- International Laboratory for Brain, Music and Sound Research (BRAMS), Université de Montréal, Montreal, QC, Canada H3C 3J7
- Montreal Neurological Institute, McGill University, Montreal, QC Canada H3A 2B4
| | - Marion Cousineau
- International Laboratory for Brain, Music and Sound Research (BRAMS), Université de Montréal, Montreal, QC, Canada H3C 3J7
| | - Anne Caclin
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team & Brain Dynamics and Cognition Team, CRNL, CNRS UMR5292, INSERM U1028, Lyon, F-69000, France
- Université Lyon 1, Lyon, F-69000, France
| | - Barbara Tillmann
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team & Brain Dynamics and Cognition Team, CRNL, CNRS UMR5292, INSERM U1028, Lyon, F-69000, France
- Université Lyon 1, Lyon, F-69000, France
| | - Isabelle Peretz
- International Laboratory for Brain, Music and Sound Research (BRAMS), Université de Montréal, Montreal, QC, Canada H3C 3J7
| |
Collapse
|
20
|
Sex differences in behavioral outcomes following temperature modulation during induced neonatal hypoxic ischemic injury in rats. Brain Sci 2015; 5:220-40. [PMID: 26010486 PMCID: PMC4493466 DOI: 10.3390/brainsci5020220] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/24/2015] [Accepted: 05/12/2015] [Indexed: 12/30/2022] Open
Abstract
Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain) can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P) 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen.
Collapse
|
21
|
Sussman E, Steinschneider M, Lee W, Lawson K. Auditory scene analysis in school-aged children with developmental language disorders. Int J Psychophysiol 2015; 95:113-24. [PMID: 24548430 PMCID: PMC4134435 DOI: 10.1016/j.ijpsycho.2014.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 02/05/2014] [Accepted: 02/08/2014] [Indexed: 11/26/2022]
Abstract
Natural sound environments are dynamic, with overlapping acoustic input originating from simultaneously active sources. A key function of the auditory system is to integrate sensory inputs that belong together and segregate those that come from different sources. We hypothesized that this skill is impaired in individuals with phonological processing difficulties. There is considerable disagreement about whether phonological impairments observed in children with developmental language disorders can be attributed to specific linguistic deficits or to more general acoustic processing deficits. However, most tests of general auditory abilities have been conducted with a single set of sounds. We assessed the ability of school-aged children (7-15 years) to parse complex auditory non-speech input, and determined whether the presence of phonological processing impairments was associated with stream perception performance. A key finding was that children with language impairments did not show the same developmental trajectory for stream perception as typically developing children. In addition, children with language impairments required larger frequency separations between sounds to hear distinct streams compared to age-matched peers. Furthermore, phonological processing ability was a significant predictor of stream perception measures, but only in the older age groups. No such association was found in the youngest children. These results indicate that children with language impairments have difficulty parsing speech streams, or identifying individual sound events when there are competing sound sources. We conclude that language group differences may in part reflect fundamental maturational disparities in the analysis of complex auditory scenes.
Collapse
Affiliation(s)
- E Sussman
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Otorhinolaryngology-HNS, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - M Steinschneider
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - W Lee
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - K Lawson
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
22
|
Truong DT, Rendall AR, Rosen GD, Fitch RH. Morphometric changes in subcortical structures of the central auditory pathway in mice with bilateral nodular heterotopia. Behav Brain Res 2014; 282:61-9. [PMID: 25549859 DOI: 10.1016/j.bbr.2014.12.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/17/2014] [Accepted: 12/21/2014] [Indexed: 02/09/2023]
Abstract
Malformations of cortical development (MCD) have been observed in human reading and language impaired populations. Injury-induced MCD in rodent models of reading disability show morphological changes in the auditory thalamic nucleus (medial geniculate nucleus; MGN) and auditory processing impairments, thus suggesting a link between MCD, MGN, and auditory processing behavior. Previous neuroanatomical examination of a BXD29 recombinant inbred strain (BXD29-Tlr4(lps-2J)/J) revealed MCD consisting of bilateral subcortical nodular heterotopia with partial callosal agenesis. Subsequent behavioral characterization showed a severe impairment in auditory processing-a deficient behavioral phenotype seen across both male and female BXD29-Tlr4(lps-2J)/J mice. In the present study we expanded upon the neuroanatomical findings in the BXD29-Tlr4(lps-2J)/J mutant mouse by investigating whether subcortical changes in cellular morphology are present in neural structures critical to central auditory processing (MGN, and the ventral and dorsal subdivisions of the cochlear nucleus; VCN and DCN, respectively). Stereological assessment of brain tissue of male and female BXD29-Tlr4(lps-2J)/J mice previously tested on an auditory processing battery revealed overall smaller neurons in the MGN of BXD29-Tlr4(lps-2J)/J mutant mice in comparison to BXD29/Ty coisogenic controls, regardless of sex. Interestingly, examination of the VCN and DCN revealed sexually dimorphic changes in neuronal size, with a distribution shift toward larger neurons in female BXD29-Tlr4(lps-2J)/J brains. These effects were not seen in males. Together, the combined data set supports and further expands the observed co-occurrence of MCD, auditory processing impairments, and changes in subcortical anatomy of the central auditory pathway. The current stereological findings also highlight sex differences in neuroanatomical presentation in the presence of a common auditory behavioral phenotype.
Collapse
Affiliation(s)
- Dongnhu T Truong
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, USA
| | - Amanda R Rendall
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, USA
| | - Glenn D Rosen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - R Holly Fitch
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, USA.
| |
Collapse
|
23
|
Truong DT, Che A, Rendall AR, Szalkowski CE, LoTurco JJ, Galaburda AM, Holly Fitch R. Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability. GENES BRAIN AND BEHAVIOR 2014; 13:802-11. [PMID: 25130614 DOI: 10.1111/gbb.12170] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/14/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
Dyslexia is a complex neurodevelopmental disorder characterized by impaired reading ability despite normal intellect, and is associated with specific difficulties in phonological and rapid auditory processing (RAP), visual attention and working memory. Genetic variants in Doublecortin domain-containing protein 2 (DCDC2) have been associated with dyslexia, impairments in phonological processing and in short-term/working memory. The purpose of this study was to determine whether sensory and behavioral impairments can result directly from mutation of the Dcdc2 gene in mice. Several behavioral tasks, including a modified pre-pulse inhibition paradigm (to examine auditory processing), a 4/8 radial arm maze (to assess/dissociate working vs. reference memory) and rotarod (to examine sensorimotor ability and motor learning), were used to assess the effects of Dcdc2 mutation. Behavioral results revealed deficits in RAP, working memory and reference memory in Dcdc2(del2/del2) mice when compared with matched wild types. Current findings parallel clinical research linking genetic variants of DCDC2 with specific impairments of phonological processing and memory ability.
Collapse
Affiliation(s)
- D T Truong
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, Storrs, CT
| | | | | | | | | | | | | |
Collapse
|
24
|
Guzzetta F. Behavioral assessment of language brain processing in the first year of life. Eur J Paediatr Neurol 2014; 18:551-7. [PMID: 25022340 DOI: 10.1016/j.ejpn.2014.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/16/2014] [Accepted: 04/27/2014] [Indexed: 10/25/2022]
Abstract
An up-to-date review of the behavioral assessments of language development in the first year of life is reported. After recalling the anatomical bases of the early development of the auditory system, the different stages of language development during the first year of life are considered: discrimination, transition and perception. The different kinds of behavioral assessment during the course of the first year are then described by stressing their indications and limitations.
Collapse
Affiliation(s)
- Francesco Guzzetta
- Unit of Child Neurology and Psychiatry, Catholic University, Rome, Italy.
| |
Collapse
|
25
|
Alexander M, Garbus H, Smith AL, Fitch RH. Cell size anomalies in the auditory thalamus of rats with hypoxic-ischemic injury on postnatal day 3 or 7. Int J Dev Neurosci 2014; 33:1-7. [PMID: 24184287 PMCID: PMC3945053 DOI: 10.1016/j.ijdevneu.2013.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 11/28/2022] Open
Abstract
Children born prematurely (<37 weeks gestational age) or at very low birth weight (VLBW; <1500g) are at increased risk for hypoxic ischemic (HI) brain injuries. Term infants can also suffer HI from birth complications. In both groups, blood/oxygen delivery to the brain is compromised, often resulting in brain damage and later cognitive delays (e.g., language deficits). Literature suggests that language delays in a variety of developmentally impaired populations (including specific language impairment (SLI), dyslexia, and early HI-injury) may be associated with underlying deficits in rapid auditory processing (RAP; the ability to process and discriminate brief acoustic cues). Data supporting a relationship between RAP deficits and poor language outcomes is consistent with the "magnocellular theory," which purports that damage to or loss of large (magnocellular) cells in thalamic nuclei could underlie disruptions in temporal processing of sensory input, possibly including auditory (medial geniculate nucleus; MGN) information This theory could be applied to neonatal HI populations that show subsequent RAP deficits. In animal models of neonatal HI, persistent RAP deficits are seen in postnatal (P)7 HI injured rats (who exhibit neuropathology comparable to term birth injury), but not in P1-3 HI injured rodents (who exhibit neuropathology comparable to human pre-term injury). The current study sought to investigate the mean cell size, cell number, and cumulative probability of cell size in the MGN of P3 HI and P7 HI injured male rats that had previously demonstrated behavioral RAP deficits. Pilot data from our lab (Alexander, 2011) previously revealed cell size abnormalities (a shift toward smaller cells) in P7 but not P1 HI injured animals when compared to shams. Our current finding support this result, with evidence of a significant shift to smaller cells in the experimental MGN of P7 HI but not P3 HI subjects. P7 HI animals also showed significantly fewer cells in the affected (right) MGN as compared P3 HI and shams animals. Moreover, cell number in the right hemisphere was found to correlate with gap detection (fewer cells=worse performance) in P7 HI injured subjects. These findings could be applied to clinical populations, providing an anatomic marker that may index potential long-term language disabilities in HI injured infants and possibly other at-risk populations.
Collapse
Affiliation(s)
- Michelle Alexander
- University of Connecticut, Department of Psychology, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States.
| | - Haley Garbus
- University of Connecticut, Department of Psychology, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States
| | - Amanda L Smith
- University of Connecticut, Department of Psychology, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States
| | - R Holly Fitch
- University of Connecticut, Department of Psychology, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States
| |
Collapse
|
26
|
Sex differences in behavioral outcome following neonatal hypoxia ischemia: insights from a clinical meta-analysis and a rodent model of induced hypoxic ischemic brain injury. Exp Neurol 2014; 254:54-67. [PMID: 24434477 DOI: 10.1016/j.expneurol.2014.01.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/01/2014] [Accepted: 01/02/2014] [Indexed: 01/10/2023]
Abstract
Hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain) is one of the most common injuries among preterm infants and term infants with birth complications. Both populations show cognitive/behavioral deficits, including impairments in sensory, learning/memory, and attention domains. Clinical data suggests a sex difference in HI outcomes, with males exhibiting more severe cognitive/behavioral deficits relative to matched females. Our laboratory has also reported more severe behavioral deficits among male rats with induced HI relative to females with comparable injury (Hill et al., 2011a,b). The current study initially examined published clinical studies from the past 20years where long-term IQ outcome scores for matched groups of male and female premature infants were reported separately (IQ being the most common outcome measure). A meta-analysis revealed a female "advantage," as indicated by significantly better scores on performance and full scale IQ (but not verbal IQ) for premature females. We then utilized a rodent model of neonatal HI injury to assess sham and postnatal day 7 (P7) HI male and female rats on a battery of behavioral tasks. Results showed expected deficits in HI male rats, but also showed task-dependent sex differences, with HI males having significantly larger deficits than HI females on some tasks but equivalent deficits on other tasks. In contrast to behavioral results, post mortem neuropathology associated with HI was comparable across sex. These findings suggest: 1) neonatal female "protection" in some behavioral domains, as indexed by superior outcome following early injury relative to males; and 2) female protection may entail sex-specific plasticity or compensation, rather than a reduction in gross neuropathology. Further exploration of the mechanisms underlying this sex effect could aid in neuroprotection efforts for at-risk neonates in general, and males in particular. Moreover, our current report of comparable anatomical damage coupled with differences in cognitive outcomes (by sex) provides a framework for future studies to examine neural mechanisms underlying sex differences in cognition and behavior in general.
Collapse
|
27
|
Steinbrink C, Zimmer K, Lachmann T, Dirichs M, Kammer T. Development of Rapid Temporal Processing and Its Impact on Literacy Skills in Primary School Children. Child Dev 2013; 85:1711-26. [PMID: 24359600 DOI: 10.1111/cdev.12208] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Karin Zimmer
- German Institute for International Educational Research, Frankfurt/Main
| | | | | | | |
Collapse
|
28
|
Cristia A, Seidl A, Junge C, Soderstrom M, Hagoort P. Predicting Individual Variation in Language From Infant Speech Perception Measures. Child Dev 2013; 85:1330-45. [DOI: 10.1111/cdev.12193] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alejandrina Cristia
- Laboratoire de Sciences Cognitives et Psycholinguistique
- Max Planck Institute for Psycholinguistics
| | | | | | | | - Peter Hagoort
- Max Planck Institute for Psycholinguistics
- Radboud University Nijmegen
| |
Collapse
|
29
|
Musacchia G, Choudhury NA, Ortiz-Mantilla S, Realpe-Bonilla T, Roesler CP, Benasich AA. Oscillatory support for rapid frequency change processing in infants. Neuropsychologia 2013; 51:2812-24. [DOI: 10.1016/j.neuropsychologia.2013.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/22/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
|
30
|
Behavioral and histological outcomes following neonatal HI injury in a preterm (P3) and term (P7) rodent model. Behav Brain Res 2013; 259:85-96. [PMID: 24185032 DOI: 10.1016/j.bbr.2013.10.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 11/22/2022]
Abstract
Hypoxia-ischemia (HI) occurs when blood and/or oxygen delivery to the brain is compromised. HI injuries can occur in infants born prematurely (<37 weeks gestational age) or at very low birth weight (<1500 g), as well as in term infants with birth complications. In both preterm and term HI populations, brain injury is associated with subsequent behavioral deficits. Neonatal HI injury can be modeled in rodents (e.g., the Rice-Vannucci method, via cautery of right carotid followed by hypoxia). When this injury is induced early in life (between postnatal day (P)1-5), neuropathologies typical of human preterm HI are modeled. When injury is induced later (P7-12), neuropathologies typical of those seen in HI term infants are modeled. The current study sought to characterize the similarities/differences between outcomes following early (P3) and late (P7) HI injury in rats. Male rats with HI injury on P3 or P7, as well as sham controls, were tested on a variety of behavioral tasks in both juvenile and adult periods. Results showed that P7 HI rats displayed deficits on motor learning, rapid auditory processing (RAP), and other learning/memory tasks, as well as a reduction in volume in various neuroanatomical structures. P3 HI animals showed only transient deficits on RAP tasks in the juvenile period (but not in adulthood), yet robust deficits on a visual attention task in adulthood. P3 HI animals did not show any significant reductions in brain volume that we could detect. These data suggest that: (1) behavioral deficits following neonatal HI are task-specific depending on timing of injury; (2) P3 HI rats showed transient deficits on RAP tasks; (3) the more pervasive behavioral deficits seen following P7 HI injury were associated with substantial global tissue loss; and (4) persistent deficits in attention in P3 HI subjects might be linked to neural connectivity disturbances rather than a global loss of brain volume, given that no such pathology was found. These combined findings can be applied to our understanding of differing long-term outcomes following neonatal HI injury in premature versus term infants.
Collapse
|
31
|
Fitch RH, Alexander ML, Threlkeld SW. Early neural disruption and auditory processing outcomes in rodent models: implications for developmental language disability. Front Syst Neurosci 2013; 7:58. [PMID: 24155699 PMCID: PMC3800847 DOI: 10.3389/fnsys.2013.00058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/11/2013] [Indexed: 02/03/2023] Open
Abstract
Most researchers in the field of neural plasticity are familiar with the "Kennard Principle," which purports a positive relationship between age at brain injury and severity of subsequent deficits (plateauing in adulthood). As an example, a child with left hemispherectomy can recover seemingly normal language, while an adult with focal injury to sub-regions of left temporal and/or frontal cortex can suffer dramatic and permanent language loss. Here we present data regarding the impact of early brain injury in rat models as a function of type and timing, measuring long-term behavioral outcomes via auditory discrimination tasks varying in temporal demand. These tasks were created to model (in rodents) aspects of human sensory processing that may correlate-both developmentally and functionally-with typical and atypical language. We found that bilateral focal lesions to the cortical plate in rats during active neuronal migration led to worse auditory outcomes than comparable lesions induced after cortical migration was complete. Conversely, unilateral hypoxic-ischemic (HI) injuries (similar to those seen in premature infants and term infants with birth complications) led to permanent auditory processing deficits when induced at a neurodevelopmental point comparable to human "term," but only transient deficits (undetectable in adulthood) when induced in a "preterm" window. Convergent evidence suggests that regardless of when or how disruption of early neural development occurs, the consequences may be particularly deleterious to rapid auditory processing (RAP) outcomes when they trigger developmental alterations that extend into subcortical structures (i.e., lower sensory processing stations). Collective findings hold implications for the study of behavioral outcomes following early brain injury as well as genetic/environmental disruption, and are relevant to our understanding of the neurologic risk factors underlying developmental language disability in human populations.
Collapse
Affiliation(s)
- R Holy Fitch
- 1Department of Psychology/Behavioral Neuroscience, University of Connecticut Storrs, CT, USA
| | | | | |
Collapse
|
32
|
Raschle NM, Stering PL, Meissner SN, Gaab N. Altered neuronal response during rapid auditory processing and its relation to phonological processing in prereading children at familial risk for dyslexia. ACTA ACUST UNITED AC 2013; 24:2489-501. [PMID: 23599167 DOI: 10.1093/cercor/bht104] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Developmental dyslexia (DD) is a learning disability affecting 5-17% of children. Although researchers agree that DD is characterized by deficient phonological processing (PP), its cause is debated. It has been suggested that altered rapid auditory processing (RAP) may lead to deficient PP in DD and studies have shown deficient RAP in individuals with DD. Functional neuroimaging (fMRI) studies have implicated hypoactivations in left prefrontal brain regions during RAP in individuals with DD. When and how these neuronal alterations evolve remains unknown. In this article, we investigate functional networks during RAP in 28 children with (n = 14) and without (n = 14) a familial risk for DD before reading onset (mean: 5.6 years). Results reveal functional alterations in left-hemispheric prefrontal regions during RAP in prereading children at risk for DD, similar to findings in individuals with DD. Furthermore, activation during RAP in left prefrontal regions positively correlates with prereading measures of PP and with neuronal activation during PP in posterior dorsal and ventral brain areas. Our results suggest that neuronal differences during RAP predate reading instruction and thus are not due to experience-dependent brain changes resulting from DD itself and that there is a functional relationship between neuronal networks for RAP and PP within the prereading brain.
Collapse
Affiliation(s)
- Nora M Raschle
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA and
| | - Patrice L Stering
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sarah N Meissner
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA and Harvard Graduate School of Education, Cambridge, MA 02138, USA
| |
Collapse
|
33
|
Luyster RJ, Seery A, Talbott MR, Tager-Flusberg H. Identifying Early-Risk Markers and Developmental Trajectories for Language Impairment in Neurodevelopmental Disorders. ACTA ACUST UNITED AC 2013; 17:151-9. [PMID: 23362034 DOI: 10.1002/ddrr.1109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/05/2012] [Indexed: 01/14/2023]
Affiliation(s)
| | - Anne Seery
- Department of Psychology; Boston University; Boston; Massachusetts
| | | | | |
Collapse
|
34
|
Alexander ML, Hill CA, Rosenkrantz TS, Fitch RH. Evaluation of the therapeutic benefit of delayed administration of erythropoietin following early hypoxic-ischemic injury in rodents. Dev Neurosci 2013; 34:515-24. [PMID: 23328535 DOI: 10.1159/000345645] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022] Open
Abstract
Hypoxia-ischemia (HI) and associated brain injuries are seen in premature as well as term infants with birth complications. The resulting impairments involve deficits in many cognitive domains, including language development. Poor rapid auditory processing is hypothesized to be one possible underlying factor leading to subsequent language delays. Mild hypothermia treatment for HI injuries in term infants is widely used as an intervention but can be costly and time consuming. Data suggest that the effectiveness of hypothermia treatment following HI injury declines beyond 6 h following injury. Consequently, the availability of a therapeutic alternative without these limitations could allow doctors to treat HI-injured infants more effectively and thus reduce deleterious cognitive and language outcomes. Evidence from both human studies and animal models of neonatal HI suggests that erythropoietin (Epo), an endogenous cytokine hormone, may be a therapeutic agent that can ameliorate HI brain injury and preserve subsequent cognitive development and function. The current study sought to investigate the therapeutic effectiveness of Epo when administered immediately after HI injury, or delayed at intervals following the injury, in neonatal rodents. Rat pups received an induced HI injury on postnatal day 7, followed by an intraperitoneal injection of Epo (1,000 U/kg) immediately, 60 min, or 180 min following induction of injury. Subjects were tested on rapid auditory processing tasks in juvenile (P38-42) and adult periods (P80-85). Ventricular and cortical size was also measured from post mortem tissue. Results from the current study show a therapeutic benefit of Epo when given immediately following induction of HI injury, with diminished benefit from a 60-min-delayed injection of Epo and no protection following a 180-min-delayed injection. The current data thus show that the effectiveness of a single dose of Epo in ameliorating auditory processing deficits following HI injury decreases precipitously as treatment is delayed following injury. These data may have important implications for experimental human neonatal intervention with Epo.
Collapse
Affiliation(s)
- M L Alexander
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA.
| | | | | | | |
Collapse
|
35
|
|
36
|
Chonchaiya W, Tardif T, Mai X, Xu L, Li M, Kaciroti N, Kileny PR, Shao J, Lozoff B. Developmental trends in auditory processing can provide early predictions of language acquisition in young infants. Dev Sci 2012; 16:159-172. [PMID: 23432827 DOI: 10.1111/desc.12012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/25/2012] [Indexed: 11/28/2022]
Abstract
Auditory processing capabilities at the subcortical level have been hypothesized to impact an individual's development of both language and reading abilities. The present study examined whether auditory processing capabilities relate to language development in healthy 9-month-old infants. Participants were 71 infants (31 boys and 40 girls) with both Auditory Brainstem Response (ABR) and language assessments. At 6 weeks and/or 9 months of age, the infants underwent ABR testing using both a standard hearing screening protocol with 30 dB clicks and a second protocol using click pairs separated by 8, 16, and 64-ms intervals presented at 80 dB. We evaluated the effects of interval duration on ABR latency and amplitude elicited by the second click. At 9 months, language development was assessed via parent report on the Chinese Communicative Development Inventory - Putonghua version (CCDI-P). Wave V latency z-scores of the 64-ms condition at 6 weeks showed strong direct relationships with Wave V latency in the same condition at 9 months. More importantly, shorter Wave V latencies at 9 months showed strong relationships with the CCDI-P composite consisting of phrases understood, gestures, and words produced. Likewise, infants who had greater decreases in Wave V latencies from 6 weeks to 9 months had higher CCDI-P composite scores. Females had higher language development scores and shorter Wave V latencies at both ages than males. Interestingly, when the ABR Wave V latencies at both ages were taken into account, the direct effects of gender on language disappeared. In conclusion, these results support the importance of low-level auditory processing capabilities for early language acquisition in a population of typically developing young infants. Moreover, the auditory brainstem response in this paradigm shows promise as an electrophysiological marker to predict individual differences in language development in young children.
Collapse
Affiliation(s)
- Weerasak Chonchaiya
- Center for Human Growth and Development, University of Michigan, USA.,Division of Growth and Development, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Thailand
| | - Twila Tardif
- Center for Human Growth and Development, University of Michigan, USA.,Department of Psychology, University of Michigan, USA
| | - Xiaoqin Mai
- Center for Human Growth and Development, University of Michigan, USA.,Department of Psychology, Renmin University, China
| | - Lin Xu
- Children's Hospital Zhejiang University School of Medicine, China
| | - Mingyan Li
- Children's Hospital Zhejiang University School of Medicine, China
| | - Niko Kaciroti
- Center for Human Growth and Development, University of Michigan, USA
| | - Paul R Kileny
- Center for Human Growth and Development, University of Michigan, USA.,Department of Otorhinolaryngology, University of Michigan, USA
| | - Jie Shao
- Children's Hospital Zhejiang University School of Medicine, China
| | - Betsy Lozoff
- Center for Human Growth and Development, University of Michigan, USA.,Department of Pediatrics and Communicable Diseases, University of Michigan, USA
| |
Collapse
|
37
|
Deficits in auditory, cognitive, and motor processing following reversible middle cerebral artery occlusion in mice. Exp Neurol 2012; 238:114-21. [DOI: 10.1016/j.expneurol.2012.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/11/2012] [Indexed: 12/12/2022]
|
38
|
Malenfant N, Grondin S, Boivin M, Forget-Dubois N, Robaey P, Dionne G. Contribution of temporal processing skills to reading comprehension in 8-year-olds: evidence for a mediation effect of phonological awareness. Child Dev 2012; 83:1332-46. [PMID: 22591182 DOI: 10.1111/j.1467-8624.2012.01777.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study tested whether the association between temporal processing (TP) and reading is mediated by phonological awareness (PA) in a normative sample of 615 eight-year-olds. TP was measured with auditory and bimodal (visual-auditory) temporal order judgment tasks and PA with a phoneme deletion task. PA partially mediated the association between both auditory and bimodal TP and reading, above nonverbal abilities, vocabulary, and processing speed. PA explained a larger proportion of the association between auditory TP and reading (56% vs. 39% for bimodal TP), and most of the association between bimodal TP and reading was direct. This finding is consistent with a dual-phonological and visual-pathway model of the association between TP and reading in normative reading skills.
Collapse
Affiliation(s)
- Nathalie Malenfant
- Groupe de recherche sur l’inadaptationpsychosociale chez l’enfant, Université Laval, Québec, QC, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Miller CA. Auditory processing theories of language disorders: past, present, and future. Lang Speech Hear Serv Sch 2012; 42:309-19. [PMID: 21757567 DOI: 10.1044/0161-1461(2011/10-0040)] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The purpose of this article is to provide information that will assist readers in understanding and interpreting research literature on the role of auditory processing in communication disorders. METHOD A narrative review was used to summarize and synthesize the literature on auditory processing deficits in children with auditory processing disorder (APD), specific language impairment (SLI), and dyslexia. The history of auditory processing theories of these 3 disorders is described, points of convergence and controversy within and among the different branches of research literature are considered, and the influence of research on practice is discussed. The theoretical and clinical contributions of neurophysiological methods are also reviewed, and suggested approaches for critical reading of the research literature are provided. CONCLUSION Research on the role of auditory processing in communication disorders springs from a variety of theoretical perspectives and assumptions, and this variety, combined with controversies over the interpretation of research results, makes it difficult to draw clinical implications from the literature. Neurophysiological research methods are a promising route to better understanding of auditory processing. Progress in theory development and its clinical application is most likely to be made when researchers from different disciplines and theoretical perspectives communicate clearly and combine the strengths of their approaches.
Collapse
Affiliation(s)
- Carol A Miller
- The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
40
|
Hill CA, Alexander ML, McCullough LD, Fitch RH. Inhibition of X-linked inhibitor of apoptosis with embelin differentially affects male versus female behavioral outcome following neonatal hypoxia-ischemia in rats. Dev Neurosci 2011; 33:494-504. [PMID: 22041713 DOI: 10.1159/000331651] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 08/10/2011] [Indexed: 11/19/2022] Open
Abstract
Hypoxia-ischemia (HI; concurrent oxygen/blood deficiency) and associated encephalopathy represent a common cause of neurological injury in premature/low-birth-weight infants and term infants with birth complications. Resulting behavioral impairments include cognitive and/or sensory processing deficits, as well as language disabilities, and clinical evidence shows that male infants with HI exhibit more severe cognitive deficits compared to females with equivalent injury. Evidence also demonstrates activation of sex-dependent apoptotic pathways following HI events, with males preferentially activating a caspase-independent cascade of cell death and females preferentially activating a caspase-dependent cascade following neonatal hypoxic and/or ischemic insults. Based on these combined data, the 'female protection' following HI injury may reflect the endogenous X-linked inhibitor of apoptosis (XIAP), which effectively binds effector caspases and halts downstream cleavage of effector caspases (thus reducing cell death). To test this theory, the current study utilized neonatal injections of vehicle or embelin (a small molecule inhibitor of XIAP) in male and female rats with or without induced HI injury on postnatal day 7 (P7). Subsequent behavioral testing using a clinically relevant task revealed that the inhibition of XIAP exacerbated HI-induced persistent behavioral deficits in females, with no effect on HI males. These results support sex differences in mechanisms of cell death following early HI injuries, and suggest a potential clinical benefit from the development of sex-specific neuroprotectants for the treatment of HI.
Collapse
Affiliation(s)
- C A Hill
- University of Connecticut, Storrs, Conn., USA
| | | | | | | |
Collapse
|
41
|
Hill CA, Threlkeld SW, Fitch RH. Reprint of "Early testosterone modulated sex differences in behavioral outcome following neonatal hypoxia ischemia in rats". Int J Dev Neurosci 2011; 29:621-8. [PMID: 21802505 PMCID: PMC3960833 DOI: 10.1016/j.ijdevneu.2011.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypoxia ischemia (HI; reduced blood oxygenation and/or flow to the brain) represents one of the most common injuries for both term and preterm/very low birth weight (VLBW) infants. These children experience elevated incidence of cognitive and/or sensory processing disabilities, including language based learning disabilities. Clinical data also indicate more substantial long-term deficits for HI injured male babies as compared to HI injured females. Previously, we reported significant deficits in rapid auditory processing and spatial learning in male rats with postnatal day 1 (P1), P7, or P10 HI injury. We also showed sex differences in HI injured animals, with more severe deficits in males as compared to females. Given these findings, combined with extant clinical data, the current study sought to assess a putative role for perinatal testosterone in modulating behavioral outcome following early hypoxic-ischemic injury in rats. Male, female, and testosterone-propionate (TP) treated females were subjected to P7 HI or sham surgery, and subsequently (P30+) underwent a battery of auditory testing and water maze assessment. Results confirm previous reports of sex differences following HI, and add new findings of significantly worse performance in TP-treated HI females compared to vehicle treated HI females. Post mortem anatomic analyses showed consistent effects, with significant brain weight decreases seen in HI male and TP-treated HI females but not female HI or sham groups. Further neuromorphometric analysis of brain structures showed that HI male animals exhibited increased pathology relative to HI females as reflected in ventricular enlargement. Findings suggest that neonatal testosterone may act to enhance the deleterious consequences of early HI brain injury, as measured by both neuropathology and behavior.
Collapse
Affiliation(s)
- C A Hill
- University of Connecticut, Department of Psychology, Behavioral Neuroscience, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States
| | | | | |
Collapse
|
42
|
Infant brain responses associated with reading-related skills before school and at school age. Neurophysiol Clin 2011; 42:35-41. [PMID: 22200340 DOI: 10.1016/j.neucli.2011.08.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/24/2011] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION In Jyväskylä Longitudinal Study of Dyslexia, we have investigated neurocognitive processes related to phonology and other risk factors of later reading problems. Here we review studies in which we have investigated whether dyslexic children with familial risk background would show atypical auditory/speech processing at birth, at six months and later before school and at school age as measured by brain event-related potentials (ERPs), and how infant ERPs are related to later pre-reading cognitive skills and literacy outcome. PATIENTS AND METHODS One half of the children came from families with at least one dyslexic parent (the at-risk group), while the other half belonged to the control group without any familial background of dyslexia. RESULTS Early ERPs were correlated to kindergarten age phonological processing and letter-naming skills as well as phoneme duration perception, reading and writing skills at school age. The correlations were, in general, more consistent among at-risk children. Those at-risk children who became poor readers also differed from typical readers in the infant ERP measures at the group level. ERPs measured before school and at the 3rd grade also differed between dyslexic and typical readers. Further, speech perception at behavioural level differed between dyslexic and typical readers, but not in all dyslexic readers. CONCLUSIONS These findings suggest persisting developmental differences in the organization of the neural networks sub-serving auditory and speech perception, with cascading effects on later reading related skills, in children with familial background for dyslexia. However, atypical auditory/speech processing is not likely a sufficient reason by itself for dyslexia but rather one endophenotype or risk factor.
Collapse
|
43
|
Heim S, Friedman JT, Keil A, Benasich AA. Reduced Sensory Oscillatory Activity during Rapid Auditory Processing as a Correlate of Language-Learning Impairment. JOURNAL OF NEUROLINGUISTICS 2011; 24:539-555. [PMID: 21822356 PMCID: PMC3150564 DOI: 10.1016/j.jneuroling.2010.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Successful language acquisition has been hypothesized to involve the ability to integrate rapidly presented, brief acoustic cues in sensory cortex. A body of work has suggested that this ability is compromised in language-learning impairment (LLI). The present research aimed to examine sensory integration during rapid auditory processing by means of electrophysiological measures of oscillatory brain activity using data from a larger longitudinal study. Twenty-nine children with LLI and control participants with typical language development (n=18) listened to tone doublets presented at a temporal interval that is essential for accurate speech processing (70-ms interstimulus interval). The children performed a deviant (pitch change of second tone) detection task, or listened passively. The electroencephalogram was recorded from 64 electrodes. Data were source-projected to the auditory cortices and submitted to wavelet analysis, resulting in time-frequency representations of electrocortical activity. Results show significantly reduced amplitude and phase-locking of early (45-75 ms) oscillations in the gamma-band range (29-52 Hz), specifically in the LLI group, for the second stimulus of the tone doublet. This suggests altered temporal organization of sensory oscillatory activity in LLI when processing rapid sequences.
Collapse
Affiliation(s)
- Sabine Heim
- Center for Research on Individual Development and Adaptive Education, German Institute for International Educational Research (DIPF), Frankfurt/M., Germany
| | - Jennifer Thomas Friedman
- Infancy Studies Laboratory, Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Andreas Keil
- National Institute of Mental Health Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, USA
| | - April A. Benasich
- Infancy Studies Laboratory, Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| |
Collapse
|
44
|
Gou Z, Choudhury N, Benasich AA. Resting frontal gamma power at 16, 24 and 36 months predicts individual differences in language and cognition at 4 and 5 years. Behav Brain Res 2011; 220:263-70. [PMID: 21295619 PMCID: PMC3107993 DOI: 10.1016/j.bbr.2011.01.048] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/25/2011] [Accepted: 01/27/2011] [Indexed: 11/24/2022]
Abstract
Gamma activity has been linked to a variety of different cognitive processes and exists in both transient and persistent forms. Across studies, different brain regions have been suggested to contribute to gamma activity. Multiple studies have shown that the function of gamma oscillations may be related to temporal binding of early sensory information to relevant top-down processes. Given this hypothesis, we expected gamma oscillations to subserve general brain mechanisms that contribute to the development of cognitive and linguistic systems. The present study aims to examine the predictive relations between resting-state cortical gamma power density at a critical point in language and cognitive acquisition (i.e. 16, 24 and 36 months), and cognitive and language output at ages 4 and 5 years. Our findings show that both 24- and 36-month gamma power are significantly correlated with later language scores, notably Non-Word Repetition. Further, 16-, 24- and 36-month gamma were all significantly correlated with 4-year PLS-3 and CELF-P sentence structure scores. Although associations reported here do not reflect a direct cause and effect of early resting gamma power on later language outcomes, capacity to generate higher power in the gamma range at crucial developmental periods may index better modulation of attention and allow easier access to working memory, thus providing an advantage for overall development, particularly in the linguistic domain. Moreover, measuring abilities at times when these abilities are still emergent may allow better prediction of later outcomes.
Collapse
Affiliation(s)
- Zhenkun Gou
- Center for Molecular & Behavioral Neuroscience, Rutgers University, Newark, NJ, USA.
| | | | | |
Collapse
|
45
|
Hill C, Threlkeld S, Fitch R. Early testosterone modulated sex differences in behavioral outcome following neonatal hypoxia ischemia in rats. Int J Dev Neurosci 2011; 29:381-8. [PMID: 21473905 PMCID: PMC3135418 DOI: 10.1016/j.ijdevneu.2011.03.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/10/2011] [Accepted: 03/16/2011] [Indexed: 11/30/2022] Open
Abstract
Hypoxia ischemia (HI; reduced blood oxygenation and/or flow to the brain) represents one of the most common injuries for both term and preterm/very low birth weight (VLBW) infants. These children experience elevated incidence of cognitive and/or sensory processing disabilities, including language based learning disabilities. Clinical data also indicate more substantial long-term deficits for HI injured male babies as compared to HI injured females. Previously, we reported significant deficits in rapid auditory processing and spatial learning in male rats with postnatal day 1 (P1), P7, or P10 HI injury. We also showed sex differences in HI injured animals, with more severe deficits in males as compared to females. Given these findings, combined with extant clinical data, the current study sought to assess a putative role for perinatal testosterone in modulating behavioral outcome following early hypoxic-ischemic injury in rats. Male, female, and testosterone-propionate (TP) treated females were subjected to P7 HI or sham surgery, and subsequently (P30+) underwent a battery of auditory testing and water maze assessment. Results confirm previous reports of sex differences following HI, and add new findings of significantly worse performance in TP-treated HI females compared to vehicle treated HI females. Post mortem anatomic analyses showed consistent effects, with significant brain weight decreases seen in HI male and TP-treated HI females but not female HI or sham groups. Further neuromorphometric analysis of brain structures showed that HI male animals exhibited increased pathology relative to HI females as reflected in ventricular enlargement. Findings suggest that neonatal testosterone may act to enhance the deleterious consequences of early HI brain injury, as measured by both neuropathology and behavior.
Collapse
Affiliation(s)
- C.A. Hill
- University of Connecticut, Department of Psychology, Behavioral Neuroscience, 406 Babbidge Road, Unit 1020, Storrs, CT 06269
| | - S.W. Threlkeld
- Rhode Island College, Department of Psychology, 600 Mount Pleasant Ave, Providence RI, 02908
| | - R.H. Fitch
- University of Connecticut, Department of Psychology, Behavioral Neuroscience, 406 Babbidge Road, Unit 1020, Storrs, CT 06269
| |
Collapse
|
46
|
Telkemeyer S, Rossi S, Nierhaus T, Steinbrink J, Obrig H, Wartenburger I. Acoustic processing of temporally modulated sounds in infants: evidence from a combined near-infrared spectroscopy and EEG study. Front Psychol 2011; 1:62. [PMID: 21716574 PMCID: PMC3110620 DOI: 10.3389/fpsyg.2011.00062] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/25/2011] [Indexed: 11/15/2022] Open
Abstract
Speech perception requires rapid extraction of the linguistic content from the acoustic signal. The ability to efficiently process rapid changes in auditory information is important for decoding speech and thereby crucial during language acquisition. Investigating functional networks of speech perception in infancy might elucidate neuronal ensembles supporting perceptual abilities that gate language acquisition. Interhemispheric specializations for language have been demonstrated in infants. How these asymmetries are shaped by basic temporal acoustic properties is under debate. We recently provided evidence that newborns process non-linguistic sounds sharing temporal features with language in a differential and lateralized fashion. The present study used the same material while measuring brain responses of 6 and 3 month old infants using simultaneous recordings of electroencephalography (EEG) and near-infrared spectroscopy (NIRS). NIRS reveals that the lateralization observed in newborns remains constant over the first months of life. While fast acoustic modulations elicit bilateral neuronal activations, slow modulations lead to right-lateralized responses. Additionally, auditory-evoked potentials and oscillatory EEG responses show differential responses for fast and slow modulations indicating a sensitivity for temporal acoustic variations. Oscillatory responses reveal an effect of development, that is, 6 but not 3 month old infants show stronger theta-band desynchronization for slowly modulated sounds. Whether this developmental effect is due to increasing fine-grained perception for spectrotemporal sounds in general remains speculative. Our findings support the notion that a more general specialization for acoustic properties can be considered the basis for lateralization of speech perception. The results show that concurrent assessment of vascular based imaging and electrophysiological responses have great potential in the research on language acquisition.
Collapse
Affiliation(s)
- Silke Telkemeyer
- Languages of Emotion Cluster of Excellence, Freie Universität BerlinBerlin, Germany
- Department of Cognitive Psychology, Humboldt-Universität BerlinBerlin, Germany
- Berlin NeuroImaging Center, Department of Neurology, Charité University MedicineBerlin, Germany
- Department of Linguistics, University of PotsdamPotsdam, Germany
| | - Sonja Rossi
- Berlin NeuroImaging Center, Department of Neurology, Charité University MedicineBerlin, Germany
- Department of Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, University HospitalLeipzig, Germany
| | - Till Nierhaus
- Berlin NeuroImaging Center, Department of Neurology, Charité University MedicineBerlin, Germany
- Department of Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, University HospitalLeipzig, Germany
| | - Jens Steinbrink
- Berlin NeuroImaging Center, Department of Neurology, Charité University MedicineBerlin, Germany
| | - Hellmuth Obrig
- Berlin NeuroImaging Center, Department of Neurology, Charité University MedicineBerlin, Germany
| | - Isabell Wartenburger
- Languages of Emotion Cluster of Excellence, Freie Universität BerlinBerlin, Germany
- Berlin NeuroImaging Center, Department of Neurology, Charité University MedicineBerlin, Germany
- Department of Linguistics, University of PotsdamPotsdam, Germany
| |
Collapse
|
47
|
Szalkowski CE, Hinman JR, Threlkeld SW, Wang Y, LePack A, Rosen GD, Chrobak JJ, LoTurco JJ, Fitch RH. Persistent spatial working memory deficits in rats following in utero RNAi of Dyx1c1. GENES, BRAIN, AND BEHAVIOR 2011; 10:244-52. [PMID: 20977651 PMCID: PMC3041839 DOI: 10.1111/j.1601-183x.2010.00662.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Disruptions in the development of the neocortex are associated with cognitive deficits in humans and other mammals. Several genes contribute to neocortical development, and research into the behavioral phenotype associated with specific gene manipulations is advancing rapidly. Findings include evidence that variants in the human gene DYX1C1 may be associated with an increased risk of developmental dyslexia. Concurrent research has shown that the rat homolog for this gene modulates critical parameters of early cortical development, including neuronal migration. Moreover, recent studies have shown auditory processing and spatial learning deficits in rats following in utero transfection of an RNA interference (RNAi) vector of the rat homolog Dyx1c1 gene. The current study examined the effects of in utero RNAi of Dyx1c1 on working memory performance in Sprague-Dawley rats. This task was chosen based on the evidence of short-term memory deficits in dyslexic populations, as well as more recent evidence of an association between memory deficits and DYX1C1 anomalies in humans. Working memory performance was assessed using a novel match-to-place radial water maze task that allows the evaluation of memory for a single brief (∼4-10 seconds) swim to a new goal location each day. A 10-min retention interval was used, followed by a test trial. Histology revealed migrational abnormalities and laminar disruption in Dyx1c1 RNAi-treated rats. Dyx1c1 RNAi-treated rats exhibited a subtle, but significant and persistent impairment in working memory as compared to Shams. These results provide further support for the role of Dyx1c1 in neuronal migration and working memory.
Collapse
Affiliation(s)
- C E Szalkowski
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Choudhury N, Benasich AA. Maturation of auditory evoked potentials from 6 to 48 months: prediction to 3 and 4 year language and cognitive abilities. Clin Neurophysiol 2011; 122:320-38. [PMID: 20685161 DOI: 10.1016/j.clinph.2010.05.035] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate the maturation of long-latency auditory evoked potentials (LLAEP) from 6 to 48 months in infants with a family history of language impairment (FH+) and control infants (FH-). METHODS LLAEPs of seventeen FH+ infants were compared to 28 FH- infants at 6, 9, 12, 16, 24, 36 and 48 months. Participants received a passive oddball paradigm using fast- and slow-rate non-linguistic auditory stimuli and at 36 and 48 months completed a battery of standardized language and cognitive tests. RESULTS Overall, the morphology of LLAEP responses differed for fast- versus slow-rate stimuli. Significant age-related changes in latency and amplitude were observed. Group differences, favoring FH- infants, in the rate of maturation of LLAEPs were found. Responses to fast-rate stimuli predicted language abilities at 36 and 48 months of age. CONCLUSIONS The development of LLAEP in FH+ children is modulated by differences in the rate of maturation as well as variations in temporal processing abilities. SIGNIFICANCE These findings provide evidence for the role of non-linguistic auditory processes in early language development and illustrate the utility of using a perceptual-processing skills model to further our understanding of the precursors of language development and impairment.
Collapse
Affiliation(s)
- Naseem Choudhury
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Ave., Newark, NJ 07102, USA.
| | | |
Collapse
|
49
|
Leppänen PHT, Hämäläinen JA, Salminen HK, Eklund KM, Guttorm TK, Lohvansuu K, Puolakanaho A, Lyytinen H. Newborn brain event-related potentials revealing atypical processing of sound frequency and the subsequent association with later literacy skills in children with familial dyslexia. Cortex 2010; 46:1362-76. [PMID: 20656284 DOI: 10.1016/j.cortex.2010.06.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 07/16/2009] [Accepted: 09/25/2009] [Indexed: 11/30/2022]
|
50
|
Hämäläinen JA, Ortiz-Mantilla S, Benasich AA. Source localization of event-related potentials to pitch change mapped onto age-appropriate MRIs at 6 months of age. Neuroimage 2010; 54:1910-8. [PMID: 20951812 DOI: 10.1016/j.neuroimage.2010.10.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/10/2010] [Accepted: 10/06/2010] [Indexed: 11/26/2022] Open
Abstract
Auditory event-related potentials (ERPs) have been used to understand how the brain processes auditory input, and to track developmental change in sensory systems. Localizing ERP generators can provide invaluable insights into how and where auditory information is processed. However, age-appropriate infant brain templates have not been available to aid such developmental mapping. In this study, auditory change detection responses of brain ERPs were examined in 6-month-old infants using discrete and distributed source localization methods mapped onto age-appropriate magnetic resonance images. Infants received a passive oddball paradigm using fast-rate non-linguistic auditory stimuli (tone doublets) with the deviant incorporating a pitch change for the second tone. Data was processed using two different high-pass filters. When a 0.5 Hz filter was used, the response to the pitch change was a large frontocentral positive component. When a 3 Hz filter was applied, two temporally consecutive components associated with change detection were seen: one with negative voltage, and another with positive voltage over frontocentral areas. Both components were localized close to the auditory cortex with an additional source near to the anterior cingulate cortex. The sources for the negative response had a more tangential orientation relative to the supratemporal plane compared to the positive response, which showed a more lateral, oblique orientation. The results described here suggest that at 6 months of age infants generate similar response patterns and use analogous cortical areas to that of adults to detect changes in the auditory environment. Moreover, the source locations and orientations, together with waveform topography and morphology provide evidence in infants for feature-specific change detection followed by involuntary switching of attention.
Collapse
Affiliation(s)
- Jarmo A Hämäläinen
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA.
| | | | | |
Collapse
|