1
|
García-García ÓD, Escalante-Quirós S, Llinares-Monllor C, Ávila-Fernández P, Sánchez-Porras D, Etayo-Escanilla M, Campos F, Chato-Astrain J, Carriel V. Novel genipin-crosslinked acellular biogenic conduits for tissue engineering applications. Biomed Pharmacother 2025; 187:118064. [PMID: 40262234 DOI: 10.1016/j.biopha.2025.118064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Collagen-based conduits have been generated in-vivo stimulating a fibrotic response through the implantation of a non-resorbable material in animal models, creating biogenic substitutes. However, they often exhibit clinical limitations due to prolonged generation times, exclusive autologous use and insufficient mechanical strength. Consequently, decellularization and cross-linking could solve the aforementioned drawbacks, providing a non-immunogenic and ready-to-use natural substitute with enhanced biomechanical properties. Nevertheless, these processes may alter microarchitecture and biocompatibility. Hence, this is the first study to characterize ex-vivo the biogenic conduits of 1-and 2-months maturation time which were subjected to decellularization and genipin (GP) cross-linking procedures performing histological, structural, biomechanical, biocompatibility, and immunological analyses to identify the most suitable option for peripheral nerve regeneration. RESULTS Histological examination indicated consistent uniformity of the biogenic conduits at both timepoints post-implantation, maintaining their overall structural integrity and collagen pattern following decellularization and GP crosslinking treatments. Furthermore, no evidence of nuclear debris was observed in the decellularized groups at either stage of maturation, confirming the decellularization protocol's efficiency. The substitutes with longer maturation time presented a generally higher preservation of ECM key components. In addition, the GP crosslinking significantly increased the resistance values of decellularized biogenic conduits, without drastically affecting the ex-vivo cell biocompatibility nor macrophage polarization rate phenotype. CONCLUSIONS These findings indicate the suitability of our decellularization protocol for biogenic conduits, and subsequent crosslinking with GP improves their biomechanical properties without altering their biocompatibility or immunological profile, suggesting their potential as a ready-to-use tubular substitute for nerve and other tissue engineering applications.
Collapse
Affiliation(s)
- Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain.
| | - Sandra Escalante-Quirós
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Claudia Llinares-Monllor
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Paula Ávila-Fernández
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | - David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | - Miguel Etayo-Escanilla
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain.
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| |
Collapse
|
2
|
Warrington JP, Collins HE, Davidge ST, do Carmo JM, Goulopoulou S, Intapad S, Loria AS, Sones JL, Wold LE, Zinkhan EK, Alexander BT. Guidelines for in vivo models of developmental programming of cardiovascular disease risk. Am J Physiol Heart Circ Physiol 2024; 327:H221-H241. [PMID: 38819382 PMCID: PMC11380980 DOI: 10.1152/ajpheart.00060.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Research using animals depends on the generation of offspring for use in experiments or for the maintenance of animal colonies. Although not considered by all, several different factors preceding and during pregnancy, as well as during lactation, can program various characteristics in the offspring. Here, we present the most common models of developmental programming of cardiovascular outcomes, important considerations for study design, and provide guidelines for producing and reporting rigorous and reproducible cardiovascular studies in offspring exposed to normal conditions or developmental insult. These guidelines provide considerations for the selection of the appropriate animal model and factors that should be reported to increase rigor and reproducibility while ensuring transparent reporting of methods and results.
Collapse
Grants
- 20YVNR35490079 American Heart Association (AHA)
- R01HL139348 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135158 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54GM115428 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG057046 HHS | NIH | National Institute on Aging (NIA)
- P20 GM104357 NIGMS NIH HHS
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P30 GM149404 NIGMS NIH HHS
- P20GM104357 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P20GM135002 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL163003 NHLBI NIH HHS
- R01HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01DK121411 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R01HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Excellence Faculty Support Grant Jewish Heritage Fund
- P30GM149404 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P30GM14940 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- 23SFRNPCS1067044 American Heart Association (AHA)
- R01 HL146562 NHLBI NIH HHS
- R56HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54 GM115428 NIGMS NIH HHS
- 1R01HL163076 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01HL51971 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- FS154313 CIHR
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Junie P Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Helen E Collins
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, Kentucky, United States
| | - Sandra T Davidge
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jussara M do Carmo
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Styliani Goulopoulou
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, Loma Linda, California, United States
- Department of Gynecology, and Obstetrics, Loma Linda University, Loma Linda, California, United States
| | - Suttira Intapad
- Department of Pharmacology, Tulane University, New Orleans, Louisiana, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jenny L Sones
- Equine Reproduction Laboratory, Department of Clinical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, United States
| | - Loren E Wold
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Erin K Zinkhan
- Department of Pediatrics, University of Utah and Intermountain Health, Salt Lake City, Utah, United States
- Intermountain Health, Salt Lake City, Utah, United States
| | - Barbara T Alexander
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
3
|
Sánchez-Porras D, Varas J, Godoy-Guzmán C, Bermejo-Casares F, San Martín S, Carriel V. Histochemical and Immunohistochemical Methods for the Identification of Proteoglycans. Methods Mol Biol 2023; 2566:85-98. [PMID: 36152244 DOI: 10.1007/978-1-0716-2675-7_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Proteoglycans (PGs) are non-fibrillar extracellular matrix (ECM) molecules composed by a protein core and glycosaminoglycan (GAG) chains. These molecules are present in all tissues playing essential structural, biomechanical, and biological roles. In addition, PGs can regulate cell behavior due to their versatility and ability to interact with other ECM molecules, growth factors, and cells. The distribution of PGs can be evaluated by histochemical and immunohistochemical methods. Histochemical methods aimed to provide a useful overview of the presence and distribution pattern of certain groups of PGs. In contrast, immunohistochemical procedures aimed the identification of highly specific target molecules. In this chapter we described Alcian Blue, Safranin O, and Toluidine Blue histochemical methods for the screening of PGs in tissue sections. Finally, we describe the immunohistochemical procedures for specific identification of PGs (decorin, biglycan, and versican) in formaldehyde-fixed and paraffin-embedded tissues.
Collapse
Affiliation(s)
- David Sánchez-Porras
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Juan Varas
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos Godoy-Guzmán
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Universidad de Santiago de Chile, (USACH), Santiago, Chile
| | - Fabiola Bermejo-Casares
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Sebastián San Martín
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Víctor Carriel
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain.
| |
Collapse
|
4
|
Melatonin Administration Prevents Placental and Fetal Changes Induced by Gestational Diabetes. Reprod Sci 2022; 29:1111-1123. [PMID: 35025098 DOI: 10.1007/s43032-022-00850-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
Abstract
Gestational diabetes mellitus (GDM) promotes changes in the placenta and fetuses, due to oxidative stress. Antioxidants can reduce oxidative stress in the placenta. We tested the hypothesis that melatonin (Mel) can prevent these effects in the placenta and fetuses, analyzing their histology, histochemistry, morphometry, and immunohistochemistry. Thirty albino rats were used, divided into groups: CG-pregnant non-diabetic rats; GD-pregnant diabetic rats; GD + Mel-pregnant diabetic rats treated with melatonin. Diabetes was induced by streptozotocin at a dosage of 50 mg/kg i.p. Melatonin was administered in daily injections of 0.8 mg/kg i.p. Melatonin prevented the placental weight and fetal weight and length from increasing, in addition to histomoformetric, histochemical, and immunohistochemical changes in the placentas, compared to the placentas of diabetic females (GD). Thus, we conclude that melatonin has a great potential to prevent placental changes due to GDM.
Collapse
|
5
|
Gao X, He J, Zhu A, Xie K, Yan K, Jiang X, Xu Y, Li Q, Xu A, Ye D, Guo J. Modelling gestational diabetes mellitus: large animals hold great promise. Rev Endocr Metab Disord 2021; 22:407-420. [PMID: 33245468 DOI: 10.1007/s11154-020-09617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Gestational diabetes mellitus (GDM) characterized by hyperglycemia during pregnancy is a risk factor for various maternal and fetal complications. The key pathophysiological mechanisms underlying its development have not been elucidated, largely due to the lack of a model that accurately simulates the major clinical and pathological features of human GDM. In this review, we discuss the refined criteria for an ideal animal model of GDM, focusing on the key clinical and pathophysiological characteristics of human GDM. We provide a comprehensive overview of different models and currently used species for GDM research. In general, insulin insufficiency consequent to pancreatic β-cell death represents the current leading strategy to mimic human GDM-like hyperglycemia in animals. Nonetheless, these models have a limited capacity to mimic the natural history of GDM, the marked alteration in circulating estrogen/ progestogen, obesity and its related metabolic complications. We discuss emerging evidence of the increased susceptibility to GDM in rodents and large animals with genetic modifications in pregnancy-related hormones. An appraisal of current GDM models suggests that a combination strategy involving dietary stress, pregnancy-related hormones, insulin resistance and metabolic disorders might enable the development of better GDM models and expedite the translation of basic research findings to GDM treatment.
Collapse
Affiliation(s)
- Xiang Gao
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Junsheng He
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Anming Zhu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Kang Xie
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Kaixuan Yan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xue Jiang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Ying Xu
- The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qin Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| |
Collapse
|
6
|
Wang H, Huang B, Hou A, Xue L, Wang B, Chen J, Li M, Zhang JV. High NOV/CCN3 expression during high-fat diet pregnancy in mice affects GLUT3 expression and the mTOR pathway. Am J Physiol Endocrinol Metab 2021; 320:E786-E796. [PMID: 33586490 DOI: 10.1152/ajpendo.00230.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the expression levels of nephroblastoma overexpressed [NOV or CCN3 (cellular communication network factor 3)] in the serum and placenta of pregnant women and of pregnant mice fed a high-fat diet (HFD), and its effect on placental glucose transporter 3 (GLUT3) expression, to examine its role in gestational diabetes mellitus (GDM). NOV/CCN3 expression was increased in the mouse serum during pregnancy. At gestational day 18, NOV/CCN3 protein expression was increased in the serum and placenta of the HFD mice compared with that of mice fed a normal diet. Compared with non-GDM patients, the patients with GDM had significantly increased serum NOV/CCN3 protein expression and placental NOV/CCN3 mRNA expression. Therefore, we hypothesized that NOV/CCN3 signaling may be involved in the pathogenesis of GDM. We administered NOV/CCN3 recombinant protein via intraperitoneal injections to pregnant mice fed HFD or normal diet. NOV/CCN3 overexpression led to glucose intolerance. Combined with the HFD, NOV/CCN3 exacerbated glucose intolerance and caused insulin resistance. NOV/CCN3 upregulates GLUT3 expression and affects the mammalian target of rapamycin (mTOR) pathway in the GDM environment in vivo and in vitro. In summary, our results demonstrate, for the first time, the molecular mechanism of NOV/CCN3 signaling in maternal metabolism to regulate glucose balance during pregnancy. NOV/CCN3 may be a potential target for detecting and treating GDM.NEW & NOTEWORTHY NOV/CCN3 regulates glucose homeostasis in mice during pregnancy. NOV/CCN3 upregulates GLUT3 expression and affects the mTOR pathway in the GDM environment in vivo and in vitro.
Collapse
Affiliation(s)
- Hefei Wang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Binbin Huang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Anli Hou
- Department of Gynaecology, University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, People's Republic of China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Li Xue
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Baobei Wang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Jie Chen
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Mengxia Li
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Department of Clinical Pharmacy and Translational Medicine, School of Pharmacy and Biomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
7
|
Block LN, Bowman BD, Schmidt JK, Keding LT, Stanic AK, Golos TG. The promise of placental extracellular vesicles: models and challenges for diagnosing placental dysfunction in utero†. Biol Reprod 2021; 104:27-57. [PMID: 32856695 PMCID: PMC7786267 DOI: 10.1093/biolre/ioaa152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Monitoring the health of a pregnancy is of utmost importance to both the fetus and the mother. The diagnosis of pregnancy complications typically occurs after the manifestation of symptoms, and limited preventative measures or effective treatments are available. Traditionally, pregnancy health is evaluated by analyzing maternal serum hormone levels, genetic testing, ultrasonographic imaging, and monitoring maternal symptoms. However, researchers have reported a difference in extracellular vesicle (EV) quantity and cargo between healthy and at-risk pregnancies. Thus, placental EVs (PEVs) may help to understand normal and aberrant placental development, monitor pregnancy health in terms of developing placental pathologies, and assess the impact of environmental influences, such as infection, on pregnancy. The diagnostic potential of PEVs could allow for earlier detection of pregnancy complications via noninvasive sampling and frequent monitoring. Understanding how PEVs serve as a means of communication with maternal cells and recognizing their potential utility as a readout of placental health have sparked a growing interest in basic and translational research. However, to date, PEV research with animal models lags behind human studies. The strength of animal pregnancy models is that they can be used to assess placental pathologies in conjunction with isolation of PEVs from fluid samples at different time points throughout gestation. Assessing PEV cargo in animals within normal and complicated pregnancies will accelerate the translation of PEV analysis into the clinic for potential use in prognostics. We propose that appropriate animal models of human pregnancy complications must be established in the PEV field.
Collapse
Affiliation(s)
- Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany D Bowman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Logan T Keding
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Aleksandar K Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Meriño M, Martín SS, Sandaña P, Herlitz K, Aguayo C, Godoy A, Torres-Vergara P, Gonzalez M, Troncoso F, Acurio J, Escudero C. Deletion of the adenosine A 2A receptor increases the survival rate in a mice model of polymicrobial sepsis. Purinergic Signal 2020; 16:427-437. [PMID: 32808144 DOI: 10.1007/s11302-020-09719-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
We aim to investigate the role of A2A receptor in peritonitis-related sepsis by injection of a fecal solution (FS) as a model of polymicrobial infection. C57/black J6 wild-type (WT) and A2A-deficient mice (A2AKO) were exposed to sepsis induced by intraperitoneal injection of a FS (FS-induced peritonitis) or instead was injected with saline buffer (Sham). Survival rate and sepsis score were measured up to 48 h. The presence of bacteria in tissue homogenates was analyzed. Telemetry and speckle laser Doppler were used for systemic blood pressure and peripheral blood perfusion analysis, respectively. Histological analysis and identification of active caspase 3 were performed in selected organs, including the liver. The survival rate of A2AKO mice exposed to FS-induced peritonitis was significantly higher, and the sepsis score was lower than their respective WT counterpart. Injection of FS increases (50 to 150 folds) the number of colonies forming units in the liver, kidney, blood, and lung in WT mice, while these effects were significantly attenuated in A2AKO mice exposed to FS-induced peritonitis. A significant reduction in both systolic and diastolic blood pressure, as well as in the peripheral perfusion was observed in WT and A2AKO mice exposed to FS-induced peritonitis. Although, these last effects were significantly attenuated in A2AKO mice. Histological analysis showed a large perivascular infiltration of polymorphonuclear in the liver of WT and A2AKO mice exposed to FS-induced peritonitis, but again, this effect was attenuated in A2AKO mice. Finally, high expression of active caspase 3 was found only in the liver of WT mice exposed to FS-induced peritonitis. The absence of the A2A receptor increases the survival rate in mice exposed to polymicrobial sepsis. This outcome was associated with both hemodynamic compensation and enhanced anti-bacterial response.
Collapse
Affiliation(s)
- Miguel Meriño
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, 3780000, Chillán, Chile
- Facultad de Ciencias de la Salud, Universidad Adventista de Chile, Chillan, Chile
| | - Sebastián San Martín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Valparaíso, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Pedro Sandaña
- Anatomo-pathology Service, Clinical Hospital Herminda Martín, Chillán, Chile
- Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Kurt Herlitz
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, 3780000, Chillán, Chile
| | - Claudio Aguayo
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Alejandro Godoy
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Pablo Torres-Vergara
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Marcelo Gonzalez
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Laboratorio de Investigación Materno-Fetal (LIMaf), Department of Obstetrics and Gynecology, Faculty of Medicine, University of Concepción, Concepción, Chile
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, 3780000, Chillán, Chile
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, 3780000, Chillán, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, 3780000, Chillán, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.
| |
Collapse
|
9
|
Protective Effect of Quercetin on Morphological and Histometrical Changes of Placenta in Streptozotocin-Induced Diabetic Rat. ACTA ACUST UNITED AC 2019. [DOI: 10.5812/zjrms.88636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Placental structure in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165535. [PMID: 31442531 DOI: 10.1016/j.bbadis.2019.165535] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/11/2019] [Accepted: 08/15/2019] [Indexed: 01/28/2023]
Abstract
The placenta is a transitory organ, located between the mother and the foetus, which supports intrauterine life. This organ has nutritional, endocrine and immunologic functions to support foetal development. Several factors are related to the correct functioning of the placenta including foetal and maternal blood flow, appropriate nutrients, expression and function of receptors and transporters, and the morphology of the placenta itself. Placental morphology is crucial for understanding the pathophysiology of the organ as represents the physical structure where nutrient exchange occurs. In pathologies of pregnancy such as diabetes mellitus in humans and animal models, several changes in the placental morphology occur, related mainly with placental size, hypervascularization, higher branching capillaries of the villi and increased glycogen deposits among others. Gestational diabetes mellitus is associated with modifications in the structure of the human placenta including changes in the surface area and volume, as well as histological changes including an increased volume of intervillous space and terminal villi, syncytiotrophoblast number, fibrinoid areas, and glycogen deposits. These modifications may result in functional changes in this organ thus limiting the wellbeing of the developing foetus. This review gives an overview of recurrent morphological changes at macroscopic and histological levels seen in the placenta from gestational diabetes in humans and animal models. This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.
Collapse
|
11
|
Barreto RSN, Romagnolli P, Fratini P, Mess AM, Miglino MA. Mouse placental scaffolds: a three-dimensional environment model for recellularization. J Tissue Eng 2019; 10:2041731419867962. [PMID: 31448074 PMCID: PMC6689918 DOI: 10.1177/2041731419867962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/13/2019] [Indexed: 01/09/2023] Open
Abstract
The rich extracellular matrix (ECM) and availability make placenta eligible as alternative biomaterial source. Herein we produced placental mouse scaffolds by decellularization, and structure, composition, and cytocompatibility were evaluated to be considered as a biomaterial. We obtained a cell-free scaffold containing 9.42 ± 5.2 ng dsDNA per mg of ECM, presenting well-preserved structure and composition. Proteoglycans were widespread throughout ECM without cell nuclei and cell remnants. Collagen I, weak in native placenta, clearly appears in the scaffold after recellularization, opposite distribution was observed for collagen III. Fibronectin was well-observed in placental scaffolds whereas laminin and collagen IV were strong expressed. Placental scaffolds recellularization potential was confirmed after mouse embryonic fibroblasts 3D dynamic culture, resulting in massive scaffold repopulation with cell–cell interactions, cell-matrix adhesion, and maintenance of natural morphology. Our small size scaffolds provide a useful tool for tissue engineering to produce grafts and organ fragments, as well as for cellular biology purposes for tridimensional culture substrate.
Collapse
Affiliation(s)
- Rodrigo SN Barreto
- School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Patricia Romagnolli
- School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Federal University of the Southern Frontier, Realeza-PR, Brazil
| | - Paula Fratini
- School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Andrea Maria Mess
- School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Angelica Miglino
- School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Maria Angelica Miglino, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, University City “Armando Salles de Oliveira,” Butantã, Sao Paulo 05508-270, Brazil.
| |
Collapse
|
12
|
Borghesi J, da Silva Ferreira H, Oliveira Favaron P, Mario LC, de Almeida da Anunciação AR, Oliveira FDD, Gonçalves Hayashi R, Caroprezo Morini A, Miglino MA. Characterization of the extracellular matrix in the chorioallantoic membrane of water buffalo (Bubalus bubalis) in early gestation. Reprod Domest Anim 2019; 54:1313-1321. [PMID: 31278783 DOI: 10.1111/rda.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/23/2019] [Indexed: 11/28/2022]
Abstract
Placenta is formed by a parenchyma rich in extracellular matrix (ECM), and this structure guarantees the proper development of the embryo and placental functioning. Recently, studies have focused on the characterization of ECM in the placenta and foetal membranes of different species. This work aimed to analyse the composition of the ECM and to quantify the types of collagens in its composition. For this, 33 chorioallantoic membranes were used at different gestational ages, which were grouped into five groups. Subsequently, haematoxylin-eosin staining, Masson trichrome and picrosirius were performed for histological analysis. Through the technique of polarized light, it was possible to quantify the total collagen present in the membranes and finally the immunohistochemical technique was performed to verify the presence of collagens and glycoproteins. It was possible to verify that the chorioallantoic membranes have, in all the gestational periods of the initial third of gestation, the same histological structures, being the most significant difference the membrane thickening that occurs gradually during the gestation. However, we notice the appearance of binucleate cells only from group II. In addition, it was verified that a gradual increase of collagen occurs until the group IV, yet from the group V begins to occur a decrease of this protein. In addition, collagen I, collagen III, fibronectin and laminin were present in all membranes. With this, we concluded that the buffalo chorioallantoic membrane presents ECM in constant remodelling at the beginning of gestation and can be used as biomaterial in works on regenerative biology.
Collapse
Affiliation(s)
- Jéssica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | | | - Phelipe Oliveira Favaron
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | - Lara Carolina Mario
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | | | - Franceliusa Delys de Oliveira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | - Rafael Gonçalves Hayashi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | | | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| |
Collapse
|
13
|
Godoy‐Guzmán C, Nuñez C, Orihuela P, Campos A, Carriel V. Distribution of extracellular matrix molecules in human uterine tubes during the menstrual cycle: a histological and immunohistochemical analysis. J Anat 2018; 233:73-85. [PMID: 29663371 PMCID: PMC5987832 DOI: 10.1111/joa.12814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 11/30/2022] Open
Abstract
The uterine tube (UT) is an important and complex organ of the women's reproductive system. In general, the anatomy and basic histology of this organ are well-known. However, the composition and function of the extracellular matrix (ECM) of the UT is still poorly understood. The ECM is a complex supramolecular material produced by cells which is commonly restricted to the basement membrane and interstitial spaces. ECM molecules play not only a structural role, they are also important for cell growth, survival and differentiation in all tissues. In this context, the aim of this study was to evaluate the deposition and distribution of type I and III collagens and proteoglycans (decorin, biglycan, fibromodulin and versican) in human UT during the follicular and luteal phases by using histochemical and immunohistochemical techniques. Our results showed a broad synthesis of collagens (I and III) in the stroma of the UT. The analysis by regions showed, in the mucosa, a specific distribution of versican and fibromodulin in the epithelial surface, whereas decorin and fibromodulin were observed in the lamina propria. Versican and decorin were found in the stroma of the muscular layer, whereas all studied proteoglycans were identified in the serosa. Curiously, biglycan was restricted to the wall of the blood vessels of the serosa and muscular layers. Furthermore, there was an immunoreaction for collagens, decorin, versican and fibromodulin in the UT peripheral nerves. The differential distribution of these ECM molecules in the different layers of the UT could be related to specific structural and/or biomechanical functions needed for the oviductal transport, successful fertilization and early embryogenesis. However, further molecular studies under physiological and pathological conditions are still needed to elucidate the specific role of each molecule in the human UT.
Collapse
Affiliation(s)
- Carlos Godoy‐Guzmán
- Department of HistologyTissue Engineering GroupFaculty of MedicineUniversity of GranadaSpain
- Doctoral Program in BiomedicineUniversity of GranadaGranadaSpain
- Centro de Investigaciones Biomédicas y AplicadasEscuela de MedicinaUniversidad de Santiago de Chile, (USACH)SantiagoChile
| | - Claudio Nuñez
- Servicio de Ginecología y ObstetriciaHospital San JoséSantiagoChile
| | - Pedro Orihuela
- Laboratorio de Inmunología de la ReproduccíonFacultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile
- Centro para el Desarrollo en Nanociencia y Nanotecnologıa‐CEDENNASantiagoChile
| | - Antonio Campos
- Department of HistologyTissue Engineering GroupFaculty of MedicineUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria Ibs.GRANADAEspaña
| | - Víctor Carriel
- Department of HistologyTissue Engineering GroupFaculty of MedicineUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria Ibs.GRANADAEspaña
| |
Collapse
|
14
|
Dela Justina V, Dos Passos Junior RR, Bressan AF, Tostes RC, Carneiro FS, Soares TS, Volpato GT, Lima VV, Martin SS, Giachini FR. O-linked N-acetyl-glucosamine deposition in placental proteins varies according to maternal glycemic levels. Life Sci 2018; 205:18-25. [PMID: 29746846 DOI: 10.1016/j.lfs.2018.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/25/2023]
Abstract
AIMS Hyperglycemia increases glycosylation with O-linked N-acetyl-glucosamine (O-GlcNAc) contributing to placental dysfunction and fetal growth impairment. Our aim was to determine how O-GlcNAc levels are affected by hyperglycemia and the O-GlcNAc distribution in different placental regions. MAIN METHODS Female Wistar rats were divided into the following groups: severe hyperglycemia (>300 mg/dL; n = 5); mild hyperglycemia (>140 mg/dL, at least than two time points during oral glucose tolerance test; n = 7) or normoglycemia (<120 mg/dL; n = 6). At 21 days of pregnancy, placental tissue was collected and processed for morphometry and immunohistochemistry analyses, or properly stored at -80 °C for protein quantification by western blot. KEY FINDINGS Placental index was increased only in severe hyperglycemic rats. Morphometric analysis showed increased junctional zone and decreased labyrinth region in placentas exclusively from the severe hyperglycemic group. Proteins targeted by O-GlcNAc were detected in all regions, with increased O-GlcNAc levels in the hyperglycemic group compared to control and mild hyperglycemic rats. Proteins in endothelial and trophoblast cells were the main target for O-GlcNAc. Whereas no changes in O-GlcNAc transferase (OGT) expression were detected, O-GlcNAcase (OGA) expression was reduced in placentas from the severe hyperglycemic group and augmented in placentas from the mild hyperglycemic group, compared with their respective control groups. SIGNIFICANCE Placental O-GlcNAc overexpression may contribute to placental dysfunction, as indicated by the placental index. Additionally, morphometric alterations, occurring simultaneously with increased O-GlcNAc accumulation in the placental tissue may contribute to placental dysfunction during hyperglycemia.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goias, Goiania, GO, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | | | - Alecsander F Bressan
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Thaigra S Soares
- Department of Gynecology and Obstetrics, School of Medicine of Botucatu, Sao Paulo, SP, Brazil
| | - Gustavo T Volpato
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Victor Vitorino Lima
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Sebastian San Martin
- Biomedical Research Center School of Medicine, Universidad de Valparaiso, Valparaiso, Chile
| | - Fernanda R Giachini
- Graduate Program in Biological Sciences, Federal University of Goias, Goiania, GO, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil.
| |
Collapse
|
15
|
García-Martínez L, Campos F, Godoy-Guzmán C, Del Carmen Sánchez-Quevedo M, Garzón I, Alaminos M, Campos A, Carriel V. Encapsulation of human elastic cartilage-derived chondrocytes in nanostructured fibrin-agarose hydrogels. Histochem Cell Biol 2016; 147:83-95. [PMID: 27586854 DOI: 10.1007/s00418-016-1485-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
The generation of elastic cartilage substitutes for clinical use is still a challenge. In this study, we investigated the possibility of encapsulating human elastic cartilage-derived chondrocytes (HECDC) in biodegradable nanostructured fibrin-agarose hydrogels (NFAH). Viable HECDC from passage 2 were encapsulated in NFAH and maintained in culture conditions. Constructs were harvested for histochemical and immunohistochemical analyses after 1, 2, 3, 4 and 5 weeks of development ex vivo. Histological results demonstrated that it is possible to encapsulate HECDC in NFAH, and that HECDC were able to proliferate and form cells clusters expressing S-100 and vimentin. Additionally, histochemical and immunohistochemical analyses of the extracellular matrix (ECM) showed that HECDC synthetized different ECM molecules (type I and II collagen, elastic fibers and proteoglycans) in the NFAH ex vivo. In conclusion, this study suggests that NFAH can be used to generate biodegradable and biologically active constructs for cartilage tissue engineering applications. However, further cell differentiation, biomechanical and in vivo studies are still needed.
Collapse
Affiliation(s)
- Laura García-Martínez
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain.,Doctoral Program in Biomedicine, University of Granada, Granada, Spain
| | - Fernando Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain
| | - Carlos Godoy-Guzmán
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain.,Unit of Histology (CIBAP), School of Medicine, Universidad de Santiago de Chile, (USACH), Santiago, Chile
| | - María Del Carmen Sánchez-Quevedo
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain
| | - Ingrid Garzón
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain
| | - Miguel Alaminos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain
| | - Antonio Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain
| | - Víctor Carriel
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain.
| |
Collapse
|
16
|
Artunc-Ulkumen B, Ulucay S, Pala HG, Cam S. Maternal serum ADAMTS-9 levels in gestational diabetes: a pilot study. J Matern Fetal Neonatal Med 2016; 30:1442-1445. [PMID: 27485821 DOI: 10.1080/14767058.2016.1219717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Gestational diabetes mellitus (GDM) is characterized with insulin resistance which is diagnosed during pregnancy. Although pregnancy is a diabetogenic state, not all women develop GDM. Genetic factors together with enviromental factors cause the maladaptation of maternal pancreas to this diabetogenic state and GDM develops. ADAMTS-9 is a recently recognized molecule whose genetic variants have risk of GDM. Decreased levels have already been shown in fetal membranes. Maternal serum levels of this protein have not been studied yet. We hypothesized that the alteration of ADAMTS-9 expression should cause changes in maternal serum levels which further could help to identify the disease and develop new treatment strategies. MATERIALS AND METHODS This prospective case-control study is consisted of 27 pregnancies with GDM and 30 healthy singleton pregnancies matched for matenal age, gestational week, and maternal weight. GDM diagnosis was made with 2-h 75 g oral glucose tolerance test. ADAMTS-9 levels were compared between groups. RESULTS ADAMTS levels were 3.62 ± 0.33 ng/dL (range: 3.04-4.23) in GDM group and 4.65 ± 1.70 ng/dL (range: 3.07-8.21) in control group (p < 0.001). ADAMTS levels were not affected by maternal age, gestational age, and maternal weight. CONCLUSION ADAMTS-9 levels were significantly lower in GDM pregnancies. This may help to understand the mechanism of GDM pathogenesis. In future, target treatments with ADAMTS proteins may help to improve the severity of diabetes pathogenesis.
Collapse
Affiliation(s)
- Burcu Artunc-Ulkumen
- a School of Medicine, Department of Obstetrics and Gynecology, Celal Bayar University , Manisa , Turkey and
| | - Safiye Ulucay
- b School of Medicine, Department of Medical Genetics, Celal Bayar University , Manisa , Turkey
| | - Halil Gursoy Pala
- a School of Medicine, Department of Obstetrics and Gynecology, Celal Bayar University , Manisa , Turkey and
| | - Sirri Cam
- b School of Medicine, Department of Medical Genetics, Celal Bayar University , Manisa , Turkey
| |
Collapse
|
17
|
Radenković M, Stojanović M, Prostran M. Experimental diabetes induced by alloxan and streptozotocin: The current state of the art. J Pharmacol Toxicol Methods 2015; 78:13-31. [PMID: 26596652 DOI: 10.1016/j.vascn.2015.11.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a chronic metabolic disorder with a high prevalence worldwide. Animal models of diabetes represent an important tool in diabetes investigation that helps us to avoid unnecessary and ethically challenging studies in human subjects, as well as to obtain a comprehensive scientific viewpoint of this disease. Although there are several methods through which diabetes can be induced, chemical methods of alloxan- and streptozotocin-induced diabetes represent the most important and highly preferable experimental models for this pathological condition. Therefore, the aim of this article was to review the current knowledge related to quoted models of diabetes, including to this point available information about mechanism of action, particular time- and dose-dependent protocols, frequent problems, as well as major limitations linked to laboratory application of alloxan and sterptozotocin in inducing diabetes. Given that diabetes is known to be closely associated with serious health consequences it is of fundamental importance that current animal models for induction of diabetes should be continuously upgraded in order to improve overall prevention, diagnosis and treatment of this pathological condition.
Collapse
Affiliation(s)
- Miroslav Radenković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, PO Box 38, 11129 Belgrade, Serbia.
| | - Marko Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, PO Box 38, 11129 Belgrade, Serbia.
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, PO Box 38, 11129 Belgrade, Serbia.
| |
Collapse
|
18
|
Aires MB, Santos ACVD. Effects of maternal diabetes on trophoblast cells. World J Diabetes 2015; 6:338-344. [PMID: 25789116 PMCID: PMC4360428 DOI: 10.4239/wjd.v6.i2.338] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/15/2014] [Accepted: 12/31/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus (DM) is a health condition characterized by hyperglycemia over a prolonged period. There are three main types of DM: DM type 1 (DM1), DM2 and gestational DM (GDM). Maternal diabetes, which includes the occurrence of DM1 and DM2 during pregnancy or GDM, increases the occurrence of gesttional complications and adverse fetal outcomes. The hyperglycemic intrauterine environment affects not only the fetus but also the placental development and function in humans and experimental rodents. The underlying mechanisms are still unclear, but some evidence indicates alterations in trophoblast proliferation, apoptosis and cell cycle control in diabetes. A proper coordination of trophoblast proliferation, differentiation and invasion is required for placental development. Initially, increased expression of proliferative markers in junctional and labyrinth zones of rat placentas and villous cytotrophoblast, syncytiotrophoblast, stromal cells and fetal endothelial cells in human placentas is reported among diabetics. Moreover, reduced apoptotic index and expression of some apoptotic genes are described in placentas of GDM women. In addition, cell cycle regulators including cyclins and cyclin-dependent kinase inhibitors seem to be affected by the hyperglycemic environment. More studies are necessary to check the balance between proliferation, apoptosis and differentiation in trophoblast cells during maternal diabetes.
Collapse
|
19
|
Ozler S, Demircan K. The investigation of the role of proteoglycans and ADAMTS levels in fetal membranes in physiopathological process of gestational diabetes. Med Hypotheses 2014; 104:182-184. [PMID: 25047995 DOI: 10.1016/j.mehy.2014.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/26/2014] [Indexed: 01/01/2023]
Abstract
About 2-5% of all pregnant women develop gestational diabetes mellitus (GDM) during pregnancy and its prevalence has increased markedly within the last decade. GDM is a metabolic syndrome produced by various degrees of carbohydrate intolerance during pregnancy. Various risk factors such as obesity, genetics, environmental factors, and hypertension have been described previously. Maternal and fetal complications occur in around 7% of pregnant women with GDM. In these patients, a relation between proteoglycans and ADAMTS proteases located in extracellular matrix in fetal membranes (placenta, cord, amnion) and complicated pregnancies has already been determined by various animal experiments. Changes in expression, structure and function of ADAMTS proteases and proteoglycans in fetal membranes lead to alteration in the structure of extracellular matrix. If we can establish a balance between these proteoglycans and ADMTS proteases or determine the changes in their structure and functions, it will be possible to predict the risk in high risk pregnancies at early weeks and to initiate treatment early or to follow the target population regularly. In addition, prevention or reduction of maternal and fetal complications may be possible. For this purpose, ADAMTS and proteoglycans the synthesis of which is too much or less, may be targeted and if we would be able to determine and prevent the changes in their levels in the early period of pregnancy, the development of GDM and its complications may be prevented or decreased. Thus, we may identify a marker for early diagnosis and treatment and reduce prematurity, which is the most common cause of fetal death. Fetal and maternal complications, and especially treatment and care costs of prematurity, may also be decreased.
Collapse
Affiliation(s)
- Sibel Ozler
- Zekai Tahir Burak Women's Health Education and Research Hospital, Talatpasa Street, 06230 Samanpazarı, Ankara, Turkey.
| | - Kadir Demircan
- Turgut Ozal University Faculty of Medicine, Medical Genetics Department, Anadolu Street 16/A, 06210 Yenimahalle, Ankara, Turkey
| |
Collapse
|
20
|
Farias PS, dos S Souza K, Fioretto ET, dos Santos MRV, Aires MB. Maternal diabetes affects rat placental morphology and pregnancy. Endocrine 2014; 45:497-501. [PMID: 24493027 DOI: 10.1007/s12020-014-0169-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/08/2014] [Indexed: 01/27/2023]
Affiliation(s)
- Priscilla S Farias
- Department of Morphology, Federal University of Sergipe, Sao Cristovao, SE, Brazil
| | | | | | | | | |
Collapse
|
21
|
Carriel V, Alaminos M, Garzón I, Campos A, Cornelissen M. Tissue engineering of the peripheral nervous system. Expert Rev Neurother 2014; 14:301-18. [DOI: 10.1586/14737175.2014.887444] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Pasek RC, Gannon M. Advancements and challenges in generating accurate animal models of gestational diabetes mellitus. Am J Physiol Endocrinol Metab 2013; 305:E1327-38. [PMID: 24085033 PMCID: PMC4073988 DOI: 10.1152/ajpendo.00425.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The maintenance of glucose homeostasis during pregnancy is critical to the health and well-being of both the mother and the developing fetus. Strikingly, approximately 7% of human pregnancies are characterized by insufficient insulin production or signaling, resulting in gestational diabetes mellitus (GDM). In addition to the acute health concerns of hyperglycemia, women diagnosed with GDM during pregnancy have an increased incidence of complications during pregnancy as well as an increased risk of developing type 2 diabetes (T2D) later in life. Furthermore, children born to mothers diagnosed with GDM have increased incidence of perinatal complications, including hypoglycemia, respiratory distress syndrome, and macrosomia, as well as an increased risk of being obese or developing T2D as adults. No single environmental or genetic factor is solely responsible for the disease; instead, a variety of risk factors, including weight, ethnicity, genetics, and family history, contribute to the likelihood of developing GDM, making the generation of animal models that fully recapitulate the disease difficult. Here, we discuss and critique the various animal models that have been generated to better understand the etiology of diabetes during pregnancy and its physiological impacts on both the mother and the fetus. Strategies utilized are diverse in nature and include the use of surgical manipulation, pharmacological treatment, nutritional manipulation, and genetic approaches in a variety of animal models. Continued development of animal models of GDM is essential for understanding the consequences of this disease as well as providing insights into potential treatments and preventative measures.
Collapse
Affiliation(s)
- Raymond C Pasek
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, Tennessee
| | | |
Collapse
|
23
|
Godoy-Guzmán C, San Martin S, Pereda J. Proteoglycan and collagen expression during human air conducting system development. Eur J Histochem 2012; 56:e29. [PMID: 23027345 PMCID: PMC3493975 DOI: 10.4081/ejh.2012.e29] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 05/04/2012] [Accepted: 01/12/2012] [Indexed: 11/22/2022] Open
Abstract
The lung is formed from a bud that grows and divides in a dichotomous way. A bud is a new growth center which is determined by epithelial-mesenchymal interactions where proteins of the extracellular matrix (ECM) might be involved. To understand this protein participation during human lung development, we examined the expression and distribution of proteoglycans in relation to the different types of collagens during the period in which the air conducting system is installed. Using light microscopy and immunohistochemistry we evaluate the expression of collagens (I, III and VI) and proteoglycans (decorin, biglycan and lumican) between 8 to 10 weeks post fertilization and 11 to 14 weeks of gestational age of human embryo and fetus lungs. We show that decorin, lumican and all the collagen types investigated were expressed at the epithelium-mesenchymal interface, forming a sleeve around the bronchiolar ducts. In addition, biglycan was expressed in both the endothelial cells and the smooth muscle of the blood vessels. Thus, the similar distribution pattern of collagen and proteoglycans in the early developmental stages of the human lung may be closely related to the process of dichotomous division of the bronchial tree. This study provides a new insight concerning the participation of collagens and proteoglycans in the epithelial-mesenchymal interface during the period in which the air conducting system is installed in the human fetal lung.
Collapse
Affiliation(s)
- C Godoy-Guzmán
- Department of Human Embryology, School of Medicine, Universidad de Santiago de Chile, Usach, Santiago.
| | | | | |
Collapse
|
24
|
Altered matrix metalloproteinases and tissue inhibitors of metalloproteinases in embryos from diabetic rats during early organogenesis. Reprod Toxicol 2011; 32:449-62. [DOI: 10.1016/j.reprotox.2011.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 08/11/2011] [Accepted: 09/17/2011] [Indexed: 12/31/2022]
|
25
|
Favaro RR, Salgado RM, Raspantini PR, Fortes ZB, Zorn TMT. Effects of long-term diabetes on the structure and cell proliferation of the myometrium in the early pregnancy of mice. Int J Exp Pathol 2010; 91:426-35. [PMID: 20586816 DOI: 10.1111/j.1365-2613.2010.00718.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It is known that the development of diabetic complications in human pregnancy is directly related to the severity and the duration of this pathology. In this study, we developed a model of long-term type 1 diabetes to investigate its effects on the cytoarchitecture, extracellular matrix and cell proliferation during the first adaptation phase of the myometrium for pregnancy. A single dose of alloxan was used to induce diabetes in mice prior to pregnancy. To identify the temporal effects of diabetes the mice were divided into two groups: Group D1 (females that became pregnant 90-100 days after alloxan); Group D2 (females that became pregnant 100-110 days after alloxan). Uterine samples were collected after 168 h of pregnancy and processed for light and electron microscopy. In both groups the histomorphometric evaluation showed that diabetes promoted narrowing of the myometrial muscle layers which was correlated with decreased cell proliferation demonstrated by PCNA immunodetection. In D1, diabetes increased the distance between muscle layers and promoted oedema. Contrarily, in D2 the distance between muscle layers decreased and, instead of oedema, there was a markedly deposition of collagen in the myometrium. Ultrastructural analysis showed that diabetes affects the organization of the smooth muscle cells and their myofilaments. Consistently, the immunoreaction for smooth muscle α-actin revealed clear disorganization of the contractile apparatus in both diabetic groups. In conclusion, the present model demonstrated that long-term diabetes promotes significant alterations in the myometrium in a time-sensitive manner. Together, these alterations indicate that diabetes impairs the first phenotypic adaptation phase of the pregnant myometrium.
Collapse
Affiliation(s)
- Rodolfo R Favaro
- Laboratory of Reproductive and Extracellular Matrix Biology, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
26
|
Abstract
The worldwide increase in the incidence of diabetes, the increase in type 2 diabetes in women at reproductive ages, and the cross-generation of the intrauterine programming of type 2 diabetes are the bases for the growing interest in the use of experimental diabetic models in order to gain insight into the mechanisms of induction of developmental alterations in maternal diabetes. In this scenario, experimental models that present the most common features of diabetes in pregnancy are highly required. Several important aspects of human diabetic pregnancies such as the increased rates of spontaneous abortions, malformations, fetoplacental impairments, and offspring diseases in later life can be approached by using the appropriate animal models. The purpose of this review is to give a practical and critical guide into the most frequently used experimental models in diabetes and pregnancy, discuss their advantages and limitations, and describe the aspects of diabetes and pregnancy for which these models are thought to be adequate. This review provides a comprehensive view and an extensive analysis of the different models and phenotypes addressed in diabetic animals throughout pregnancy. The review includes an analysis of the surgical, chemical-induced, and genetic experimental models of diabetes and an evaluation of their use to analyze early pregnancy defects, induction of congenital malformations, placental and fetal alterations, and the intrauterine programming of metabolic diseases in the offspring's later life.
Collapse
Affiliation(s)
- Alicia Jawerbaum
- Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas-School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
27
|
Pustovrh MC, Capobianco E, Martínez N, Higa R, White V, Jawerbaum A. MMP/ TIMP balance is modulated in vitro by 15dPGJ(2) in fetuses and placentas from diabetic rats. Eur J Clin Invest 2009; 39:1082-90. [PMID: 19811527 DOI: 10.1111/j.1365-2362.2009.02200.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Maternal diabetes is associated with morphological placental abnormalities and foeto-placental impairments. These alterations are linked with a dysregulation of the activity of matrix metalloproteinases (MMPs). We investigated the action of 15deoxyDelta(12,14) prostaglandin J(2) (15dPGJ(2)), a natural ligand of the peroxisome proliferator activated receptor (PPAR) gamma, on MMP-2 and MMP-9 activities and tissue inhibitors of matrix metalloproteinases (TIMP) levels in foetuses and placentas from diabetic rats. MATERIALS AND METHODS Diabetes was induced in rat neonates by a single streptozotocin administration (90 mg kg(-1) s.c.). At 13.5 days of gestation, foetal and placental homogenates were prepared for the determination of PPARgamma levels (western blot) and 15dPGJ(2) concentration (enzyme-immunoassay), whereas the in vitro effect of 15dPGJ(2) (2 microM) was evaluated on placental and foetal MMPs and TIMP activities (zymography and reverse zymography), nitrate/nitrite concentrations (Griess method) and thiobarbituric acid reactive substances (TBARS). RESULTS PPARgamma was increased while 15dPGJ(2) was decreased in placentas and foetuses from diabetic rats. 15dPGJ(2) additions were able to reduce the high activities of MMP-2 and MMP-9 present in diabetic placental tissues. 15dPGJ(2) additions reduced MMP-2 activity in control and diabetic foetuses. TIMP-3 levels were decreased in diabetic placentas and 15dPGJ(2) was able to enhance them to control values. Nitrates/nitrites and TBARS, metabolites of MMPs activators, were increased in the diabetic placenta and reduced by 15dPGJ(2). CONCLUSIONS This study demonstrates that 15dPGJ(2) is a potent modulator of the balance between MMP activities and TIMP levels, which is needed in the correct formation and function of the placenta and foetal organs.
Collapse
Affiliation(s)
- M C Pustovrh
- Laboratory of Reproduction and Metabolism, Center for Pharmacological and Botanical Studies, CEFyBO-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
28
|
Viau M, Lafond J, Vaillancourt C. Expression of placental serotonin transporter and 5-HT 2A receptor in normal and gestational diabetes mellitus pregnancies. Reprod Biomed Online 2009; 19:207-15. [PMID: 19712556 DOI: 10.1016/s1472-6483(10)60074-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recent studies reveal that serotonin (5-hydroxytryptamine, 5-HT) might play a role in the aetiology of gestational diabetes mellitus (GDM). The involvement of the serotonin transporter (SERT) and 5-HT(2A) receptor (5-HT(2A)R) in diabetes has also been suggested. However, placental SERT and 5-HT(2A)R have never been studied in GDM-complicated pregnancies. The aim of this study was to investigate the effect of GDM on the expression of both placental SERT and 5-HT(2A)R. First, immunohistochemical analysis demonstrated the presence of SERT and 5-HT(2A)R proteins in the villous trophoblast and the fetal capillary endothelium of normal term placental tissue. Protein and mRNA expression of SERT and 5-HT(2A)R in the villous cytotrophoblastic and syncytiotrophoblastic cells was further confirmed in primary culture. A significantly (P < 0.05) decreased expression of SERT mRNA (56.3%) and protein (79.7%), and 5-HT(2A)R mRNA (79.1%) and protein (29.1%) was observed in placental tissues from GDM compared with non-GDM pregnancies. These data suggest that SERT and 5-HT(2A)R might be implicated in the aetiology of GDM. Moreover, the presence of SERT and 5-HT(2A)R in villous trophoblastic cells argues in favour of an important role of serotonin in human placental function.
Collapse
Affiliation(s)
- Mélanie Viau
- INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | | | | |
Collapse
|
29
|
Ribeiro DL, Taboga SR, Góes RM. Diabetes induces stromal remodelling and increase in chondroitin sulphate proteoglycans of the rat ventral prostate. Int J Exp Pathol 2009; 90:400-11. [PMID: 19659898 DOI: 10.1111/j.1365-2613.2009.00657.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular matrix (ECM) remodelling is an important process involved in prostate cancer progression. Alterations in ECM caused by diabetes in different tissues such as kidney is well described; however, it is poorly investigated in prostate. The aim of this study was to evaluate changes in ECM of rat prostate showing gland atrophy caused by diabetes and their implications in development of malignant lesions. Diabetes was induced in Wistar rats using alloxan (45 mg/kg bw). After 90 days of diabetes onset, animals were killed and ventral prostate was removed and prepared for light microscopy following immunoreaction for fibronectin, chondroitin sulphate and Picrossirius staining for collagen fibres. Proteoglycans (PG) were identified at transmission electron microscopy after fixation with Cuprolinic Blue. Diabetes led to a thickening of 25% in the acinar basement membrane accompanied by increase and disorganization of its proteoglycans (P1). Three additional populations of prostatic stromal PGs were identified: collagen fibril linked (P2) and interstitial (P3) and (P4) PGs. Diabetes increased P3 and mainly P4 which had higher dimension and accumulated around the smooth muscle cells. In addition, an increase in chondrotin sulphate (33%, mainly in sites where P4 were noted) and collagen (44%) was noted in diabetic rats, whereas fibronectin did not change. Atrophic changes observed in rat ventral prostate after diabetes are accompanied by stromal remodelation related to increase in collagen and chondroitin sulphate proteoglycans. Thus, diabetes can promote a stromal microenvironment rich in elements that could favour cell migration, proliferation and pathological process.
Collapse
Affiliation(s)
- Daniele Lisboa Ribeiro
- Department of Cell Biology, Institute of Biology, State University of Campinas-Unicamp, Campinas, São Paulo, Brazil
| | | | | |
Collapse
|