1
|
King CA, Chappell J, Robbins MM, Crompton RH, Sellers WI, Thorpe SKS. The locomotor ecology of wild western lowland gorillas: How does the largest ape exploit complex arboreal environments? J Anat 2025. [PMID: 40346012 DOI: 10.1111/joa.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
Western lowland gorillas are the largest and most sexually dimorphic ape that habitually exploits arboreal environments. Their size, robust musculature and specialised adaptations in the hands and feet, which are suited for terrestrial quadrupedal locomotion, make them interesting models for understanding how great apes are able to exploit complex arboreal habitats. We present a comprehensive analysis of the arboreal locomotor ecology of western lowland gorillas by studying their behaviour and ecology in the context of their morphology. A group of fully habituated wild western lowland gorillas was followed for 12 months in Loango National Park, Gabon. Statistical analysis applying regression modelling and Akaike's Information Criterion was used to identify the relationships between locomotor behaviours, height, contextual behaviour, support use, hand posture and body size. Our findings suggest that the gorillas were not restricted in their ability to access and move around in tree canopies because of their size or postcranial morphology. Instead, they exhibited considerable behavioural flexibility and engaged in locomotor behaviours that contradicted classic body size predictions for primates. To offset the risks of moving on small supports, the gorillas used hand-assisted bipedal locomotion on multiple small supports, rather than relying on suspensory locomotion. We suggest that this is linked to their hand dimensions, which have been selected to facilitate efficient quadrupedal walking on the ground. The silverback gorilla engaged in less horizontal locomotion in the canopy, spent less time at heights above 20 m, and used large supports more often than the adult females, blackback and adolescents, but the type and number of supports used did not vary between body size groups. We also found that the reproductive status of the females (presence or absence of small infants) may have shaped how they responded to risks when solving the problem of gap-crossing in the trees. Overall, our results highlight that the gorillas likely prioritised risk minimisation in the supports that they used in arboreal environments at the cost of increased energy expenditure.
Collapse
Affiliation(s)
| | - Jackie Chappell
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Martha M Robbins
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Robin H Crompton
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool, UK
| | - William I Sellers
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
2
|
Huang S, Gao D, Li Z, He H, Yu X, You X, Wu D, Du Z, Zeng J, Shi X, Hu Q, Nie Y, Zhang Z, Luo Z, Wang D, Zhao Z, Li L, Wang G, Wang L, Zhou Z, Chen D, Yang F. Neuronal guidance factor Sema3A inhibits neurite ingrowth and prevents chondrocyte hypertrophy in the degeneration of knee cartilage in mice, monkeys and humans. Bone Res 2025; 13:4. [PMID: 39746903 PMCID: PMC11695747 DOI: 10.1038/s41413-024-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 01/04/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease accompanied with the loss of cartilage and consequent nociceptive symptoms. Normal articular cartilage maintains at aneural state. Neuron guidance factor Semaphorin 3A (Sema3A) is a membrane-associated secreted protein with chemorepulsive properties for axons. However, the role of Sema3A in articular cartilage is still not clear. In the present studies, we investigated the functions of Sema3A in OA development in mice, non-human primates, and patients with OA. Sema3A has a protective effect on cartilage degradation, validated by the organoid culture in vitro and confirmed in chondrocyte-specific Sema3A conditional knockout mice. We demonstrated that Sema3A is a key molecule in maintaining cartilage homeostasis from chondrocyte hypertrophy via activating the PI3K pathway. The potential usage of Sema3A for OA treatment was validated in mouse and Rhesus macaque OA models through intra-articular injection of Sema3A, and also in patients by administering Sema3A containing platelet-rich plasma into the knee joints. Our studies demonstrated that Sema3A exerts a critical role in inhibiting neurite ingrowth and preventing chondrocyte hypertrophy in cartilage, and could be potentially used for OA treatment.
Collapse
Grants
- T2394532, 82072489 National Natural Science Foundation of China (National Science Foundation of China)
- 81874027 National Natural Science Foundation of China (National Science Foundation of China)
- the National Key R&D Program of China (2023YFA1801200, 2023YFA1801202),Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDB-SSW-SMC056),The Foundation of Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (NYKFKT2019007).Shenzhen Medical Research Fund (B2302011).
- 2021HXFH036, 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYGD18026); 2021YFSY0003, 2022YFS0051,Sichuan Science Project; The Foundation of Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (NYKFKT2019007).
- The China Postdoctoral Science Foundational, 2023M743679.The Sanming Project of Medicine in Shenzhen (SZZYSM202311013)
Collapse
Affiliation(s)
- Shishu Huang
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Dashuang Gao
- The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- The seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Bao'an District TCM Hospital, Shenzhen, Guangdong, China
| | - Zhenxia Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Hongchen He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanhe You
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Diwei Wu
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ze Du
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiancheng Zeng
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojun Shi
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qinshen Hu
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Nie
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhong Zhang
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Luo
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Duan Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingli Li
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Guanglin Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liping Wang
- The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zongke Zhou
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Fan Yang
- The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Goto R, Larson S, Shitara T, Hashiguchi Y, Nakano Y. Muscle synergy in several locomotor modes in chimpanzees and Japanese macaques, and its implications for the evolutionary origin of bipedalism through shared muscle synergies. Sci Rep 2024; 14:31134. [PMID: 39732749 DOI: 10.1038/s41598-024-82479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 12/04/2024] [Indexed: 12/30/2024] Open
Abstract
Recent evidence indicates that human ancestors utilized a combination of quadrupedal walking, climbing, and bipedal walking. Therefore, the origin of bipedalism may be linked to underlying mechanisms supporting diverse locomotor modes. This study aimed to elucidate foundations of varied locomotor modes from the perspective of motor control by identifying muscle synergies and demonstrating similarities in synergy compositions across different locomotor modes in chimpanzees and Japanese macaques. Four muscle synergies were extracted for bipedal and quadrupedal walking in both the chimpanzees and macaques, as well as for vertical climbing in the chimpanzees. Bipedal walking synergies were generally analogous to those observed in quadrupedal walking and vertical climbing. Specifically, the bipedal walking synergies during the stance and swing phase in the chimpanzees were substitutable with those of vertical climbing and quadrupedal walking, respectively. For the macaque, not all bipedal walking synergies exhibited similarities to quadrupedal walking synergies, likely due to instability during the single support phase of bipedalism. These findings suggest that synergies from vertical climbing and quadrupedal walking might be transferred to bipedal walking, as seen in the chimpanzees, and that this sharing of synergies might form a foundation for a diverse range of locomotor capacities including bipedal walking.
Collapse
Affiliation(s)
- Ryosuke Goto
- Faculty of Rehabilitation, Gunma Paz University, 1-7-1 Tonyamachi, Takasaki, Gunma, 370-0006, Japan.
| | - Susan Larson
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, New York, 11794-8081, US
| | - Tetsuya Shitara
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yu Hashiguchi
- Faculty of Rehabilitation, Gunma Paz University, 1-7-1 Tonyamachi, Takasaki, Gunma, 370-0006, Japan
| | - Yoshihiko Nakano
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Ciurana N, Casado A, Rodríguez P, García M, Pastor F, Potau JM. Quantitative Analysis of the Brachialis and Triceps Brachii Insertion Sites on the Proximal Epiphysis of the Ulna in Modern Hominid Primates and Fossil Hominins. Am J Primatol 2024; 86:e23690. [PMID: 39488847 DOI: 10.1002/ajp.23690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
In several species of hominid primates with different types of locomotor behavior, we quantitatively studied the insertion sites of the brachialis and triceps brachii on the proximal epiphysis of the ulna. Our main objective was to evaluate the possibility of using the anatomical features of these insertion sites to infer the locomotor behavior of different species of fossil hominins. We measured the area of these muscle insertion sites using 3D bone meshes and obtained the value of each insertion site relative to the total size of the two insertion sites for each of the species studied. We also compared these relative values of the osteological samples with the relative mass of the brachialis and triceps brachii, which we obtained by dissecting these muscles in the same primate species. The relative values for the brachialis insertion were highest in orangutans, followed by bonobos, chimpanzees, gorillas, and humans. Fossil Australopithecus and Paranthropus had values similar to those of bonobos, while fossil Homo had values similar to those of Homo sapiens. The observed similarity in ulnar attachment sites between Australopithecus and Paranthropus and extant bonobos suggest that these hominins used arboreal locomotion to complement their bipedalism. These adaptations to arboreal locomotion were not observed in Homo.
Collapse
Affiliation(s)
- Neus Ciurana
- Department of Physical Therapy, Escola Universitària Gimbernat, Sant Cugat del Vallès, Spain
| | - Aroa Casado
- Institut d'Arqueologia de la Universitat de Barcelona (IAUB), Faculty of Geography and History, University of Barcelona, Barcelona, Spain
- Unit of Human Anatomy and Embryology, University of Barcelona, Barcelona, Spain
| | - Patrícia Rodríguez
- Unit of Human Anatomy and Embryology, University of Barcelona, Barcelona, Spain
| | - Marcel García
- Unit of Human Anatomy and Embryology, University of Barcelona, Barcelona, Spain
| | - Francisco Pastor
- Department of Anatomy and Radiology, University of Valladolid, Valladolid, Spain
| | - Josep M Potau
- Institut d'Arqueologia de la Universitat de Barcelona (IAUB), Faculty of Geography and History, University of Barcelona, Barcelona, Spain
- Unit of Human Anatomy and Embryology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Ren W, Wang Y, Yan Z, Chu Z, Yang F, Jan YK, Yao J, Pu F. Adaptive Changes in Longitudinal Arch During Long-distance Running. Int J Sports Med 2024; 45:1091-1098. [PMID: 39084326 DOI: 10.1055/a-2362-1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
This study investigates the biomechanical adaptations of the longitudinal arch (LA) in long-distance runners, focusing on changes in stiffness, angle, and moment during a 60-minute run. Twenty runners participated in this experiment, and were asked to run at a speed of 2.7 m·s-1 for 60 minutes. The kinematic and kinetic data collected at five-minute intervals during running were calculated, including the stiffness of LA in the loading phase (k load ) and the stiffness of LA in the unloading phase (k unload ), the maximum LA moment (M max ), the range of LA angle change (∆θ range ), and the maximum LA angle change (∆θ max ). Foot morphology was also scanned before and after running. Variations of kinematic and kinetic data were analyzed throughout the running activity, as well as variations of foot morphology pre- and post-run. Results showed that there was a significant decrease in k load (p<0.001), coupled with increases in ∆θ range (p=0.002) and ∆θ max (p<0.001), during the first 15 minutes of running, which was followed by a period of mechanical stability. No differences were found in k unload and M max throughout the running process and the foot morphology remained unchanged after running. These results highlight a critical adaptation phase that may be pivotal for improving running economy and performance.
Collapse
Affiliation(s)
- Weiyan Ren
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Yan Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhaoqi Yan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhaowei Chu
- Li Ning Sports Science Research Center, Li Ning Co Ltd, Beijing, China
| | - Fan Yang
- Li Ning Sports Science Research Center, Li Ning Co Ltd, Beijing, China
| | - Yih-Kuen Jan
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Jie Yao
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Fang Pu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
6
|
Deane AS, Muchlinski MN, Organ JM, Vereecke E, Bistrekova V, Hays L, Butterfield T. The comparative and functional anatomy of the forelimb muscle architecture of Humboldt's woolly monkey (Lagothrix lagotricha). Anat Rec (Hoboken) 2024; 307:3850-3869. [PMID: 38938152 DOI: 10.1002/ar.25514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/29/2024]
Abstract
Humboldt's woolly monkey (Lagothrix lagortricha) is a ceboid primate that more frequently engages in plantigrade quadrupedalism (~89%) but is, like most other members of the subfamily Atelinae, capable of suspensory postures and "tail assisted" brachiation. That taxon's decreased reliance on suspension is reflected in the skeletal anatomy of the upper limb which is less derived relative to more frequently suspensory atelines (Ateles, Brachyteles) but is in many ways (i.e., phalangeal curvature, enlarged joint surfaces, elongated diaphyses) intermediate between highly suspensory and quadrupedal anthropoids. Although it has been suggested that muscle may have morphogenetic primacy with respect to bone this has not been explicitly tested. The present study employs analyses of Lagothrix upper limb muscle fiber length, relative physiological cross-sectional area and relative muscle mass to test whether muscular adaptations for suspensory postures and locomotion in Lagothrix precede adaptive refinements in the skeletal tissues or appear more gradually in conjunction with related skeletal adaptations. Results demonstrate that Lagothrix upper limb musculature is most like committed quadrupeds but that limited aspects of the relative distribution of segmental muscle mass may approach suspensory hylobatids consistent with only a limited adaptive response in musculature prior to bone. Results specific to the shoulder were inconclusive owing to under-representation of quadrupedal shoulder musculature and future work should be focused more specifically on the adaptive and functional morphology of the muscular anatomy and microstructure of the scapulothoracic joint complex.
Collapse
Affiliation(s)
- Andrew S Deane
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anthropology, Indiana University Indianapolis, Indianapolis, Indiana, USA
- Centre for the Exploration of the Deep Human Journey, University of Witwatersrand, Johannesburg, South Africa
| | | | - Jason M Organ
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anthropology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Evie Vereecke
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Vanya Bistrekova
- ICTA, Department of Environmental Science and Technology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lindsey Hays
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Timothy Butterfield
- Department of Rehabilitation Science, University of Kentucky College of Health Sciences, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Cross SRR, Marmol-Guijarro AC, Bates KT, Marrin JC, Tickle PG, Rose KA, Codd JR. Testing the form-function paradigm: body shape correlates with kinematics but not energetics in selectively-bred birds. Commun Biol 2024; 7:900. [PMID: 39048787 PMCID: PMC11269648 DOI: 10.1038/s42003-024-06592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
A central concept of evolutionary biology, supported by broad scale allometric analyses, asserts that changing morphology should induce downstream changes in locomotor kinematics and energetics, and by inference selective fitness. However, if these mechanistic relationships exist at local intraspecific scales, where they could provide substrate for fundamental microevolutionary processes, is unknown. Here, analyses of selectively-bred duck breeds demonstrate that distinct body shapes incur kinematic shifts during walking, but these do not translate into differences in energetics. A combination of modular relationships between anatomical regions, and a trade-off between limb flexion and trunk pitching, are shown to homogenise potential functional differences between the breeds, accounting for this discrepancy between form and function. This complex interplay between morphology, motion and physiology indicates that understanding evolutionary links between the avian body plan and locomotor diversity requires studying locomotion as an integrated whole and not key anatomical innovations in isolation.
Collapse
Affiliation(s)
- Samuel R R Cross
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Andres C Marmol-Guijarro
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- 3Diversity, Quito, Ecuador
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - John C Marrin
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Peter G Tickle
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Kayleigh A Rose
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, UK
| | - Jonathan R Codd
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Lukova A, Dunmore CJ, Bachmann S, Synek A, Pahr DH, Kivell TL, Skinner MM. Trabecular architecture of the distal femur in extant hominids. J Anat 2024; 245:156-180. [PMID: 38381116 PMCID: PMC11161831 DOI: 10.1111/joa.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Extant great apes are characterized by a wide range of locomotor, postural and manipulative behaviours that each require the limbs to be used in different ways. In addition to external bone morphology, comparative investigation of trabecular bone, which (re-)models to reflect loads incurred during life, can provide novel insights into bone functional adaptation. Here, we use canonical holistic morphometric analysis (cHMA) to analyse the trabecular morphology in the distal femoral epiphysis of Homo sapiens (n = 26), Gorilla gorilla (n = 14), Pan troglodytes (n = 15) and Pongo sp. (n = 9). We test two predictions: (1) that differing locomotor behaviours will be reflected in differing trabecular architecture of the distal femur across Homo, Pan, Gorilla and Pongo; (2) that trabecular architecture will significantly differ between male and female Gorilla due to their different levels of arboreality but not between male and female Pan or Homo based on previous studies of locomotor behaviours. Results indicate that trabecular architecture differs among extant great apes based on their locomotor repertoires. The relative bone volume and degree of anisotropy patterns found reflect habitual use of extended knee postures during bipedalism in Homo, and habitual use of flexed knee posture during terrestrial and arboreal locomotion in Pan and Gorilla. Trabecular architecture in Pongo is consistent with a highly mobile knee joint that may vary in posture from extension to full flexion. Within Gorilla, trabecular architecture suggests a different loading of knee in extension/flexion between females and males, but no sex differences were found in Pan or Homo, supporting our predictions. Inter- and intra-specific variation in trabecular architecture of distal femur provides a comparative context to interpret knee postures and, in turn, locomotor behaviours in fossil hominins.
Collapse
Affiliation(s)
- Andrea Lukova
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Christopher J. Dunmore
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Sebastian Bachmann
- Institute of Lightweight Design and Structural BiomechanicsTU WienWienAustria
| | - Alexander Synek
- Institute of Lightweight Design and Structural BiomechanicsTU WienWienAustria
| | - Dieter H. Pahr
- Institute of Lightweight Design and Structural BiomechanicsTU WienWienAustria
- Department of Anatomy and Biomechanics, Division BiomechanicsKarl Landsteiner University of Health SciencesKremsAustria
| | - Tracy L. Kivell
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Matthew M. Skinner
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
9
|
Prang TC. The relative size of the calcaneal tuber reflects heel strike plantigrady in African apes and humans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24865. [PMID: 38058279 DOI: 10.1002/ajpa.24865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVES The positional repertoire of the human-chimpanzee last common ancestor is critical for reconstructing the evolution of bipedalism. African apes and humans share a heel strike plantigrade foot posture associated with terrestriality. Previous research has established that modern humans have a relatively large and intrinsically robust calcaneal tuber equipped to withstand heel strike forces associated with bipedal walking and running. However, it is unclear whether African apes have a relatively larger calcaneal tuber than non-heel-striking primates, and how this trait might have evolved among anthropoids. Here, I test the hypothesis that heel-striking primates have a relatively larger calcaneal tuber than non-heel-striking primates. METHODS The comparative sample includes 331 individuals and 53 taxa representing hominoids, cercopithecoids, and platyrrhines. Evolutionary modeling was used to test for the effect of foot posture on the relative size of the calcaneal tuber in a phylogenetic framework that accounts for adaptation and inertia. Bayesian evolutionary modeling was used to identify selective regime shifts in the relative size of the calcaneal tuber among anthropoids. RESULTS The best fitting evolutionary model was a Brownian motion model with regime-dependent trends characterized by relatively large calcaneal tubers among African apes and humans. Evolutionary modeling provided support for an evolutionary shift toward a larger calcaneal tuber at the base of the African ape and human clade. CONCLUSIONS The results of this study support the view that African apes and humans share derived traits related to heel strike plantigrady, which implies that humans evolved from a semi-terrestrial quadrupedal ancestor.
Collapse
Affiliation(s)
- Thomas C Prang
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Macionis V. Fetal head-down posture may explain the rapid brain evolution in humans and other primates: An interpretative review. Brain Res 2023; 1820:148558. [PMID: 37634686 DOI: 10.1016/j.brainres.2023.148558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Evolutionary cerebrovascular consequences of upside-down postural verticality of the anthropoid fetus have been largely overlooked in the literature. This working hypothesis-based report provides a literature interpretation from an aspect that the rapid evolution of the human brain has been promoted by fetal head-down position due to maternal upright and semi-upright posture. Habitual vertical torso posture is a feature not only of humans, but also of monkeys and non-human apes that spend considerable time in a sitting position. Consequently, the head-down position of the fetus may have caused physiological craniovascular hypertension that stimulated expansion of the intracranial vessels and acted as an epigenetic physiological stress, which enhanced neurogenesis and eventually, along with other selective pressures, led to the progressive growth of the anthropoid brain and its organization. This article collaterally opens a new insight into the conundrum of high cephalopelvic proportions (i.e., the tight fit between the pelvic birth canal and fetal head) in phylogenetically distant lineages of monkeys, lesser apes, and humans. Low cephalopelvic proportions in non-human great apes could be accounted for by their energetically efficient horizontal nest-sleeping and consequently by their larger body mass compared to monkeys and lesser apes that sleep upright. One can further hypothesize that brain size varies in anthropoids according to the degree of exposure of the fetus to postural verticality. The supporting evidence for this postulation includes a finding that in fossil hominins cerebral blood flow rate increased faster than brain volume. This testable hypothesis opens a perspective for research on fetal postural cerebral hemodynamics.
Collapse
|
11
|
Crompton RH, Sellers W, Davids K, McClymont J. Biomechanics and the origins of human bipedal walking: The last 50 years. J Biomech 2023; 157:111701. [PMID: 37451208 DOI: 10.1016/j.jbiomech.2023.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Motion analysis, as applied to evolutionary biomechanics, has experienced its own evolution over the last 50 years. Here we review how an ever-increasing fossil record, together with continuing advancements in biomechanics techniques, have shaped our understanding of the origin of upright bipedal walking. The original, and long-established hypothesis held by Lamarck (1809), Darwin (1859) and Keith (1934), amongst others, maintained that bipedality originated in an arboreal context. However, the first field studies of gorilla and chimpanzees from the 1960's, highlighted their so-called 'knucklewalking' quadrupedalism, leading scientists to assume, semi-automatically, that knucklewalking must have been the precursor to bipedality. It would not be until the discovery of skeletons of early human relatives Australopithecus afarensis and Australopithecus prometheus, and the inclusion of methods of analysis from computer science, biomechanics, sports science and medicine, that the knucklewalking hypothesis would be most robustly challenged. Their short, but human-like lower limbs and human-like hand indicated that knucklewalking was not part of our ancestral locomotor repertoire. Rather, most current research in evolutionary biomechanics agrees it was a combination of climbing and bipedalism, both in an arboreal context, which facilitated upright, terrestrial, bipedal walking over short distances.
Collapse
Affiliation(s)
- Robin Huw Crompton
- Musculoskeletal and Ageing Science, The University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK.
| | - William Sellers
- Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Keith Davids
- Sport and Physical Activity Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Juliet McClymont
- Musculoskeletal and Ageing Science, The University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
12
|
Jastifer JR. Intrinsic muscles of the foot: Anatomy, function, rehabilitation. Phys Ther Sport 2023; 61:27-36. [PMID: 36857996 DOI: 10.1016/j.ptsp.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
The intrinsic muscles of the foot are underappreciated structures in evaluating and treating lower extremity dysfunction. These muscles play a crucial role in the proper function of the foot during sport activities. The functions of these muscles are not generally well understood. Intrinsic dysfunction can lead to a variety of problems. Therefore, it is important for clinicians to have a good understanding of the anatomy and function of the intrinsic foot muscles in order to properly diagnose and treat foot injuries in patients. Published research on the rehabilitation of the intrinsic muscles provides insight into the function as well as benefits of treatment. The purpose of this review is to summarize the published research on the anatomy, function, contribution to pathology, as well as rehabilitation options for the intrinsic muscles of the foot.
Collapse
Affiliation(s)
- James R Jastifer
- Department of Orthopaedic Surgery, Western Michigan University Homer Stryker MD School of Medicine, USA; Department of Mechanical and Aeronautical Engineering, Western Michigan University, USA; Ascension Borgess Orthopedics, 2490 S 11th St, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
13
|
Postcranial evidence of late Miocene hominin bipedalism in Chad. Nature 2022; 609:94-100. [PMID: 36002567 DOI: 10.1038/s41586-022-04901-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Bipedal locomotion is one of the key adaptations that define the hominin clade. Evidence of bipedalism is known from postcranial remains of late Miocene hominins as early as 6 million years ago (Ma) in eastern Africa1-4. Bipedality of Sahelanthropus tchadensis was hitherto inferred about 7 Ma in central Africa (Chad) based on cranial evidence5-7. Here we present postcranial evidence of the locomotor behaviour of S. tchadensis, with new insights into bipedalism at the early stage of hominin evolutionary history. The original material was discovered at locality TM 266 of the Toros-Ménalla fossiliferous area and consists of one left femur and two, right and left, ulnae. The morphology of the femur is most parsimonious with habitual bipedality, and the ulnae preserve evidence of substantial arboreal behaviour. Taken together, these findings suggest that hominins were already bipeds at around 7 Ma but also suggest that arboreal clambering was probably a significant part of their locomotor repertoire.
Collapse
|
14
|
Jastifer JR. Contemporary Review: The Foot and Ankle in Long-Distance Running. FOOT & ANKLE ORTHOPAEDICS 2022; 7:24730114221125455. [PMID: 36185350 PMCID: PMC9520164 DOI: 10.1177/24730114221125455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Distance runners represent a unique patient population. The cyclic activity associated with distance running leads to a high incidence of injury. Gait patterns, the extrinsic and intrinsic muscles of the foot and ankle, foot strike pattern, shoe wear considerations, alignment, and orthotics are also all important considerations that must be considered by the treating provider. The purpose of this work is to review relevant functional anatomy, recent studies on gait patterns in running, orthotics, and theory on how the body moves through space during running in order to better equip the clinician to treat long distance runners.
Collapse
Affiliation(s)
- James R. Jastifer
- Department Orthopaedic Surgery, Ascension Borgess Orthopedics, Kalamazoo, MI, USA
- Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
- Department of Mechanical and Aerospace Engineering, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
15
|
Marchi D, Rimoldi A, García‐Martínez D, Bastir M. Morphological correlates of distal fibular morphology with locomotion in great apes, humans, and Australopithecus afarensis. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178:286-300. [PMID: 36790753 PMCID: PMC9314891 DOI: 10.1002/ajpa.24507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/15/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Recent studies highlighted the importance of the fibula to further our understanding of locomotor adaptations in fossil hominins. In this study, we present a three-dimensional geometric morphometric (3D-GM) investigation of the distal fibula in extant hominids and Australopithecus afarensis with the aim of pointing out morphological correlations to arboreal behavior. METHODS Three-dimensional surface meshes of the distal fibula were obtained using computer tomography for 40 extant hominid specimens and laser scanner for five A. afarensis specimens. Distal fibula morphology was quantified positioning 11 fixed landmarks, 40 curve semilandmarks, and 20 surface landmarks on each specimen. A generalized Procrustes analysis (GPA) was carried out on all landmark coordinates followed by Procrustes ANOVA. Principal component analysis (PCA) was performed on the GPA-aligned shape coordinates. Kruskal-Wallis tests and Mann-Whitney test were performed on scores along PCs. RESULTS Great apes are characterized by a shorter subcutaneous triangular surface (STS), more downward facing fibulotalar articular facets, more anteriorly facing lateral malleolus and wider/deeper malleolar fossa than humans. Within great apes, orangutans are characterized by more medially facing fibulotalar articular facets. Australopithecus afarensis shows a unique distal fibular morphology with several traits that are generally associated more to arboreality and less to bipedalism such as a short STS, a more anteriorly facing, laterally pointing malleolus and deeper and larger malleolar fossa. CONCLUSIONS The distal fibula morphology is indicative of locomotor patterns within extant hominids. The 3D-GM method presented here can be successfully used to further our understanding of arboreal adaptations in fossil hominins.
Collapse
Affiliation(s)
- Damiano Marchi
- Department of BiologyUniversity of PisaPisa
- Centre for the Exploration of the Deep Human JourneyUniversity of the WitwatersrandWits
| | | | - Daniel García‐Martínez
- Centre for the Exploration of the Deep Human JourneyUniversity of the WitwatersrandWits
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH)BurgosSpain
- Paleoanthropology GroupMuseo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| | - Markus Bastir
- Centre for the Exploration of the Deep Human JourneyUniversity of the WitwatersrandWits
- Paleoanthropology GroupMuseo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| |
Collapse
|
16
|
Rosen KH, Jones CE, DeSilva JM. Bipedal locomotion in zoo apes: Revisiting the hylobatian model for bipedal origins. EVOLUTIONARY HUMAN SCIENCES 2022; 4:e12. [PMID: 37588936 PMCID: PMC10426021 DOI: 10.1017/ehs.2022.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bipedal locomotion is a hallmark of being human. Yet the body form from which bipedalism evolved remains unclear. Specifically, the positional behaviour (i.e. orthograde vs. pronograde) and the length of the lumbar spine (i.e. long and mobile vs. short and stiff) of the last common ancestor (LCA) of the African great apes and humans require further investigation. While fossil evidence would be the most conclusive, the paucity of hominid fossils from 5-10 million years ago makes this field of research challenging. In their absence, extant primate anatomy and behaviour may offer some insight into the ancestral body form from which bipedalism could most easily evolve. Here, we quantify the frequency of bipedalism in a large sample (N = 496) of zoo-housed hominoids and cercopithecines. Our results show that while each studied species of ape and monkey can move bipedally, hylobatids are significantly more bipedal and engage in bipedal locomotion more frequently and for greater distances than any other primate sampled. These data support hypotheses of an orthograde, long-backed and arboreal LCA, which is consistent with hominoid fossils from the middle-to-late Miocene. If true, knuckle-walking evolved in parallel in Pan and Gorilla, and the human body form, particularly the long lower back and orthograde posture, is conserved.
Collapse
Affiliation(s)
- Kyle H. Rosen
- Department of Anthropology, Dartmouth College, 6047 Silsby Hall, Hanover, NH, USA
| | - Caroline E. Jones
- Department of Psychology, University of Georgia, 125 Baldwin Street, Athens, GA, USA
| | - Jeremy M. DeSilva
- Department of Anthropology, Dartmouth College, 6047 Silsby Hall, Hanover, NH, USA
| |
Collapse
|
17
|
Weihmann T. The Smooth Transition From Many-Legged to Bipedal Locomotion—Gradual Leg Force Reduction and its Impact on Total Ground Reaction Forces, Body Dynamics and Gait Transitions. Front Bioeng Biotechnol 2022; 9:769684. [PMID: 35186911 PMCID: PMC8855104 DOI: 10.3389/fbioe.2021.769684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Most terrestrial animals move with a specific number of propulsive legs, which differs between clades. The reasons for these differences are often unknown and rarely queried, despite the underlying mechanisms being indispensable for understanding the evolution of multilegged locomotor systems in the animal kingdom and the development of swiftly moving robots. Moreover, when speeding up, a range of species change their number of propulsive legs. The reasons for this behaviour have proven equally elusive. In animals and robots, the number of propulsive legs also has a decisive impact on the movement dynamics of the centre of mass. Here, I use the leg force interference model to elucidate these issues by introducing gradually declining ground reaction forces in locomotor apparatuses with varying numbers of leg pairs in a first numeric approach dealing with these measures’ impact on locomotion dynamics. The effects caused by the examined changes in ground reaction forces and timing thereof follow a continuum. However, the transition from quadrupedal to a bipedal locomotor system deviates from those between multilegged systems with different numbers of leg pairs. Only in quadrupeds do reduced ground reaction forces beneath one leg pair result in increased reliability of vertical body oscillations and therefore increased energy efficiency and dynamic stability of locomotion.
Collapse
|
18
|
Lequin M, Marchal F. Comment la connaissance de la diversité posturo-locomotrice des primates a-t-elle transformé la compréhension de celle des hominines ? REVUE DE PRIMATOLOGIE 2021. [DOI: 10.4000/primatologie.10214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Tarrega-Saunders ELR, King C, Roberts AM, Thorpe SKS. Knuckle-walking and behavioural flexibility in great apes. REVUE DE PRIMATOLOGIE 2021. [DOI: 10.4000/primatologie.10855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Druelle F, Molina-Vila P. A baboon walking on a treadmill: the use of positive reinforcement techniques to study bipedal walking in non-human primates. REVUE DE PRIMATOLOGIE 2021. [DOI: 10.4000/primatologie.11455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Rôle des environnements dans les origines et l’évolution de la bipédie chez les hominidés : exemple des zones boisées sèches de l’Afrique. REVUE DE PRIMATOLOGIE 2021. [DOI: 10.4000/primatologie.11037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Kimura T. Habitual locomotor types and the shape of lower leg bones in primates, especially in hominoids. REVUE DE PRIMATOLOGIE 2021. [DOI: 10.4000/primatologie.10570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Carroll C. Female excellence in rock climbing likely has an evolutionary origin. Curr Res Physiol 2021; 4:39-46. [PMID: 34746825 PMCID: PMC8562198 DOI: 10.1016/j.crphys.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
The human body is exceptional for many reasons, not the least of which is the wide variety of movements it is capable of executing. Because our species is able to execute so many discrete activities, researchers often disagree on which were the movements most essential to the evolution of our species. This paper continues a recently introduced analysis, that the performance gap between female and male athletes narrows in sports which most reflect the movements humans evolved to do. Here, I examine the performance gap in rock climbing. Female climbers are some of the best in the world irrespective of gender, a trend that is not found in any other major sport. I conclude that the exceptional ability of female rock climbers relative to male rock climbers is further evidence of the existence of sex-blind musculoskeletal adaptations, which developed over the course of human evolution – as a result of external (non-sexual) selection forces – to facilitate essential movements. These adaptations abate some of the general physical sexual dimorphism which exists in humans. This paper provides more evidence that the human body was shaped, in part, by pressure to climb well. Rock climbing is the sport most similar to tree climbing, a movement essential to human development. Multiple women can be found in the list of top 100 rock climbers, a trend not found in any other major sport. Sports with a higher degree of gender equity, may reflect movements with a greater degree of evolutionary importance. Rock climbing’s gender gap provides further evidence that early humans faced external selection pressure to climb well. Thus, the importance of climbing to the survival of humans - even after the onset of genus Homo - may be understated.
Collapse
Affiliation(s)
- Collin Carroll
- Columbia University. 2 Broad Street, Westport, CT, 06880, USA
| |
Collapse
|
24
|
Gecelter RC, Ilyaguyeva Y, Thompson NE. The menisci are not shock absorbers: A biomechanical and comparative perspective. Anat Rec (Hoboken) 2021; 305:1051-1064. [PMID: 34486236 DOI: 10.1002/ar.24752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 01/22/2023]
Abstract
The lateral and medial menisci are fibrocartilaginous structures in the knee that play a crucial role in normal knee biomechanics. However, one commonly cited role of the menisci is that they function as "shock absorbers." Here we provide a critique of this notion, drawing upon a review of comparative anatomical and biomechanical data from humans and other tetrapods. We first review those commonly, and often exclusively, cited studies in support of a shock absorption function and show that evidence for a shock absorptive function is dubious. We then review the evolutionary and comparative evidence to show that (1) the human menisci are unremarkable in morphology compared with most other tetrapods, and (2) "shock" during locomotion is uncommon, with humans standing out as one of the only tetrapods that regularly experiences high levels of shock during locomotion. A shock-absorption function does not explain the origin of menisci, nor are human menisci specialized in any way that would explain a unique shock-absorbing function during human gait. Finally, we show that (3) the material properties of menisci are distinctly poorly suited for energy dissipation and that (4) estimations of meniscal energy absorption based on published data are negligible, both in their absolute amount and in comparison to other well-accepted structures which mitigate shock during locomotion. The menisci are evolutionarily ancient structures crucial for joint congruity, load distribution, and stress reduction, among a number of other functions. However, the menisci are not meaningful shock absorbers, neither in tetrapods broadly, nor in humans.
Collapse
Affiliation(s)
| | - Yaffa Ilyaguyeva
- NYIT College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Nathan E Thompson
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
25
|
Brown JG. Ticks, Hair Loss, and Non-Clinging Babies: A Novel Tick-Based Hypothesis for the Evolutionary Divergence of Humans and Chimpanzees. Life (Basel) 2021; 11:435. [PMID: 34066043 PMCID: PMC8150933 DOI: 10.3390/life11050435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
Human straight-legged bipedalism represents one of the earliest events in the evolutionary split between humans (Homo spp.) and chimpanzees (Pan spp.), although its selective basis is a mystery. A carrying-related hypothesis has recently been proposed in which hair loss within the hominin lineage resulted in the inability of babies to cling to their mothers, requiring mothers to walk upright to carry their babies. However, a question remains for this model: what drove the hair loss that resulted in upright walking? Observers since Darwin have suggested that hair loss in humans may represent an evolutionary strategy for defence against ticks. The aim of this review is to propose and evaluate a novel tick-based evolutionary hypothesis wherein forest fragmentation in hominin paleoenvironments created conditions that were favourable for tick proliferation, selecting for hair loss in hominins and grooming behaviour in chimpanzees as divergent anti-tick strategies. It is argued that these divergent anti-tick strategies resulted in different methods for carrying babies, driving the locomotor divergence of humans and chimpanzees.
Collapse
|
26
|
Stratford D, Crompton R. Introduction to special issue StW 573: A 3.67 Ma Australopithecus prometheus skeleton from Sterkfontein Caves, South Africa-An introduction to the special issue. J Hum Evol 2021; 158:103008. [PMID: 33933277 DOI: 10.1016/j.jhevol.2021.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Dominic Stratford
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, WITS, Johannesburg, 2050, South Africa.
| | - Robin Crompton
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences, and School of Archaeology, Classics and Egyptology, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
27
|
Divergence-time estimates for hominins provide insight into encephalization and body mass trends in human evolution. Nat Ecol Evol 2021; 5:808-819. [PMID: 33795855 DOI: 10.1038/s41559-021-01431-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/25/2021] [Indexed: 12/18/2022]
Abstract
Quantifying speciation times during human evolution is fundamental as it provides a timescale to test for the correlation between key evolutionary transitions and extrinsic factors such as climatic or environmental change. Here, we applied a total evidence dating approach to a hominin phylogeny to estimate divergence times under different topological hypotheses. The time-scaled phylogenies were subsequently used to perform ancestral state reconstructions of body mass and phylogenetic encephalization quotient (PEQ). Our divergence-time estimates are consistent with other recent studies that analysed extant species. We show that the origin of the genus Homo probably occurred between 4.30 and 2.56 million years ago. The ancestral state reconstructions show a general trend towards a smaller body mass before the emergence of Homo, followed by a trend towards a greater body mass. PEQ estimations display a general trend of gradual but accelerating encephalization evolution. The obtained results provide a rigorous temporal framework for human evolution.
Collapse
|
28
|
Aversi-Ferreira TA, Freitas-Ferreira E, Aversi-Ferreira RAGMF. Differences among the forelimb arteries in groups of primates and a mathematical model explanation. J Med Primatol 2020; 50:21-28. [PMID: 33063350 DOI: 10.1111/jmp.12498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recently, some studies about primates have claimed the importance of the vessels to maintain the muscles working; in fact, the arterial supply could suggest how strenuous the muscular performance is associated to locomotor behavior. The aim of this work was to study the anatomy of the arteries of the forelimbs of different groups of primates to evidence a general arterial model in comparative terms. METHODS We propose a biophysical explanation for the arterial pattern of the forelimbs of primates' groups. RESULTS Three pattern of the forelimb arteries in Primates were descript and the differences were explained using mathematical formulas. CONCLUSIONS The anatomical study about the comparative anatomy of the arteries of the forelimbs of primates provided hypothesis about the three observed models, mainly in relation to brachial artery division and the number of the palmar arches, in mathematical models' terms.
Collapse
Affiliation(s)
- Tales Alexandre Aversi-Ferreira
- Laboratory of Biomathematics and Physical Anthropology, Department of Structural Biology, Federal University of Alfenas, Alfenas, Brazil
| | - Emmanuel Freitas-Ferreira
- Laboratory of Biomathematics and Physical Anthropology, Department of Structural Biology, Federal University of Alfenas, Alfenas, Brazil.,Department of Physics, Federal University of Alfenas, Alfenas, Brazil
| | | |
Collapse
|
29
|
Thompson NE. The biomechanics of knuckle-walking: 3-D kinematics of the chimpanzee and macaque wrist, hand and fingers. J Exp Biol 2020; 223:jeb224360. [PMID: 32554524 DOI: 10.1242/jeb.224360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/05/2020] [Indexed: 08/26/2023]
Abstract
The origin and evolution of knuckle-walking has long been a key focus in understanding African ape, including human, origins. Yet, despite numerous studies documenting morphological characteristics potentially associated with knuckle-walking, little quantitative three-dimensional (3-D) data exist of forelimb motion during knuckle-walking. Nor do any comparative 3-D data exist for hand postures used during quadrupedalism in monkeys. This lack of data has limited the testability of proposed adaptations for knuckle-walking in African apes. This study presents the first 3-D kinematic data of the wrist, hand and metacarpophalangeal joints during knuckle-walking in chimpanzees and in macaques using digitigrade and palmigrade hand postures. These results clarify the unique characteristics of, and commonalities between, knuckle-walking and digitigrady/palmigrady in multiple planes of motion. Notably, chimpanzees utilized more wrist ulnar deviation than any macaque hand posture. Maximum extension of the chimpanzee wrist was slight (5-20 deg) and generally overlapped with macaque digitigrady. Metacarpophalangeal joint motion displayed distinct differences between digits in both species, likely related to the timing of force application. These data also reveal that maximum metacarpophalangeal extension angles during knuckle-walking (26-59 deg) were generally higher than previously considered. In macaques, maximum metacarpophalangeal extension during digitigrady and palmigrady overlapped for most digits, highlighting additional complexity in the interpretation of skeletal features that may be related to limiting metacarpophalangeal motion. Most importantly, however, these new 3-D data serve as a fundamental dataset with which evaluation of proposed musculoskeletal adaptations for knuckle-walking can be tested.
Collapse
Affiliation(s)
- Nathan E Thompson
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| |
Collapse
|
30
|
Comparative Gross Anatomy of the Forelimb Arteries of the Japanese Monkey ( Macaca fuscata) and a Comparative Pattern of Forelimb Arterial Distribution in Primates. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8635917. [PMID: 32724814 PMCID: PMC7381946 DOI: 10.1155/2020/8635917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022]
Abstract
Macaca fuscata displays characteristic behaviours, such as stone handling, locomotor behaviour, gait position, and intermittent bipedalism. Differences in characteristic behaviours among primate species/genera could be explained by anatomical details of the body. However, the anatomical details have not been well studied in Macaca fuscata. Arterial models could be one of the anatomical bases for the phylogenetic and functional differences among species, since the arterial supply could be associated with the muscular performance, especially locomotor behaviour. In this study, five thoracic limbs of Macaca fuscata adults were dissected to analyse the vessels. Patterns of arterial distribution in the thoracic limbs of Macaca fuscata were compared with those in other primates. The results indicated that the arterial distribution in the Japanese monkeys was more similar to those in Macaca mulatta and Papio anubis, which is consistent with phylogenetic similarities. However, compared with Papio anubis and other macaques, there were anatomical differences in several points, including (1) the origin of the common, anterior, posterior circumflex, and profunda brachii, and (2) the origins of the collateralis ulnaris artery. The comparative anatomy of the arteries in the forelimb of Macaca fuscata, along with the anatomical studies in other primates, indicated characteristic patterns of brachial artery division and the number of the palmar arches in primates, which is consistent with the phylogenetic division among New World primates, Old World primates, and apes.
Collapse
|
31
|
Püschel TA, Marcé-Nogué J, Chamberlain AT, Yoxall A, Sellers WI. The biomechanical importance of the scaphoid-centrale fusion during simulated knuckle-walking and its implications for human locomotor evolution. Sci Rep 2020; 10:3526. [PMID: 32103129 PMCID: PMC7044280 DOI: 10.1038/s41598-020-60590-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 02/10/2020] [Indexed: 12/02/2022] Open
Abstract
Inferring the locomotor behaviour of the last common ancestor (LCA) of humans and African apes is still a divisive issue. An African great-ape-like ancestor using knuckle-walking is still the most parsimonious hypothesis for the LCA, despite diverse conflicting lines of evidence. Crucial to this hypothesis is the role of the centrale in the hominoid wrist, since the fusion of this bone with the scaphoid is among the clearest morphological synapomorphies of African apes and hominins. However, the exact functional significance of this fusion remains unclear. We address this question by carrying out finite element simulations of the hominoid wrist during knuckle-walking by virtually generating fused and unfused morphologies in a sample of hominoids. Finite element analysis was applied to test the hypothesis that a fused scaphoid-centrale better withstands the loads derived from knuckle-walking. The results show that fused morphologies display lower stress values, hence supporting a biomechanical explanation for the fusion as a functional adaptation for knuckle-walking. This functional interpretation for the fusion contrasts with the current inferred positional behaviour of the earliest hominins, thus suggesting that this morphology was probably retained from an LCA that exhibited knuckle-walking as part of its locomotor repertoire and that was probably later exapted for other functions.
Collapse
Affiliation(s)
- Thomas A Püschel
- Primate Models for Behavioural Evolution Lab, Institute of Cognitive and Evolutionary Anthropology, School of Anthropology, University of Oxford, 64 Banbury Road, OX2 6PN, Oxford, United Kingdom.
| | - Jordi Marcé-Nogué
- Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Andrew T Chamberlain
- Department of Earth and Environmental Sciences, University of Manchester, M13 9PL, Manchester, United Kingdom
| | - Alaster Yoxall
- Art and Design Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - William I Sellers
- Department of Earth and Environmental Sciences, University of Manchester, M13 9PL, Manchester, United Kingdom
| |
Collapse
|
32
|
Plomp KA, Dobney K, Weston DA, Strand Viðarsdóttir U, Collard M. 3D shape analyses of extant primate and fossil hominin vertebrae support the ancestral shape hypothesis for intervertebral disc herniation. BMC Evol Biol 2019; 19:226. [PMID: 31842740 PMCID: PMC6916256 DOI: 10.1186/s12862-019-1550-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recently we proposed an evolutionary explanation for a spinal pathology that afflicts many people, intervertebral disc herniation (Plomp et al. [2015] BMC Evolutionary Biology 15, 68). Using 2D data, we found that the bodies and pedicles of lower vertebrae of pathological humans were more similar in shape to those of chimpanzees than were those of healthy humans. Based on this, we hypothesized that some individuals are more prone to intervertebral disc herniation because their vertebrae exhibit ancestral traits and therefore are less well adapted for the stresses associated with bipedalism. Here, we report a study in which we tested this "Ancestral Shape Hypothesis" with 3D data from the last two thoracic and first lumbar vertebrae of pathological Homo sapiens, healthy H. sapiens, Pan troglodytes, and several extinct hominins. RESULTS We found that the pathological and healthy H. sapiens vertebrae differed significantly in shape, and that the pathological H. sapiens vertebrae were closer in shape to the P. troglodytes vertebrae than were the healthy H. sapiens vertebrae. Additionally, we found that the pathological human vertebrae were generally more similar in shape to the vertebrae of the extinct hominins than were the healthy H. sapiens vertebrae. These results are consistent with the predictions of the Ancestral Shape Hypothesis. Several vertebral traits were associated with disc herniation, including a vertebral body that is both more circular and more ventrally wedged, relatively short pedicles and laminae, relatively long, more cranio-laterally projecting transverse processes, and relatively long, cranially-oriented spinous processes. We found that there are biomechanical and comparative anatomical reasons for suspecting that all of these traits are capable of predisposing individuals to intervertebral disc herniation. CONCLUSIONS The results of the present study add weight to the hypothesis that intervertebral disc herniation in H. sapiens is connected with vertebral shape. Specifically, they suggest that individuals whose vertebrae are towards the ancestral end of the range of shape variation within H. sapiens have a greater propensity to develop the condition than other individuals. More generally, the study shows that evolutionary thinking has the potential to shed new light on human skeletal pathologies.
Collapse
Affiliation(s)
- Kimberly A Plomp
- Department of Archaeology, Classics and Egyptology, University of Liverpool, 14 Abercromby Square, Liverpool, L69 7WZ, UK.,Department of Archaeology, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada
| | - Keith Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, 14 Abercromby Square, Liverpool, L69 7WZ, UK.,Department of Archaeology, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada.,Department of Archaeology, School of Geosciences, University of Aberdeen, St Mary's, Elphinstone Road, Scotland, UK, AB24 3UF, Aberdeen
| | - Darlene A Weston
- Department of Anthropology, University of British Columbia, 6303 NW Marine Drive, Vancouver, BC, V6T 1Z1, Canada
| | - Una Strand Viðarsdóttir
- Biomedical Center, University of Iceland, Læknagarður, Vatnsmýrarvegi 16, 101, Reykjavík, Iceland
| | - Mark Collard
- Department of Archaeology, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
33
|
Plomp K, Viðarsdóttir US, Dobney K, Weston D, Collard M. Potential adaptations for bipedalism in the thoracic and lumbar vertebrae of Homo sapiens: A 3D comparative analysis. J Hum Evol 2019; 137:102693. [PMID: 31711026 DOI: 10.1016/j.jhevol.2019.102693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
A number of putative adaptations for bipedalism have been identified in the hominin spine. However, it is possible that some have been overlooked because only a few studies have used 3D and these studies have focused on cervical vertebrae. With this in mind, we used geometric morphometric techniques to compare the 3D shapes of three thoracic and two lumbar vertebrae of Homo sapiens, Pan troglodytes, Gorilla gorilla, and Pongo pygmaeus. The study had two goals. One was to confirm the existence of traits previously reported to distinguish the thoracic and lumbar vertebrae of H. sapiens from those of the great apes. The other was to, if possible, identify hitherto undescribed traits that differentiate H. sapiens thoracic and lumbar vertebrae from those of the great apes. Both goals were accomplished. Our analyses not only substantiated a number of traits that have previously been discussed in the literature but also identified four traits that have not been described before: (1) dorsoventrally shorter pedicles in the upper thoracic vertebrae; (2) dorsoventrally longer laminae in all five of the vertebrae examined; (3) longer transverse processes in the upper thoracic vertebrae; and (4) craniocaudally 'pinched' spinous process tips in all of the vertebrae examined. A review of the biomechanical literature suggests that most of the traits highlighted in our analyses can be plausibly linked to bipedalism, including three of the four new ones. As such, the present study not only sheds further light on the differences between the spines of H. sapiens and great apes but also enhances our understanding of how the shift to bipedalism affected the hominin vertebral column.
Collapse
Affiliation(s)
- Kimberly Plomp
- Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Department of Archaeology, Classics and Egyptology, University of Liverpool, 14 Abercromby Square, Liverpool, L69 7WZ, UK.
| | - Una Strand Viðarsdóttir
- Biomedical Center, University of Iceland, Læknagarður, Vatnsmýrarvegi 16, 101 Reykjavík, Iceland
| | - Keith Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, 14 Abercromby Square, Liverpool, L69 7WZ, UK
| | - Darlene Weston
- Department of Anthropology, University of British Columbia, 6303 NW Marine Drive, Vancouver, BC V6T 1Z1, Canada
| | - Mark Collard
- Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
34
|
Block JE, Lavelle WF, Nunley PD. Toward a cure for lumbar spinal stenosis: The potential of interspinous process decompression. Med Hypotheses 2019; 132:109357. [PMID: 31421414 DOI: 10.1016/j.mehy.2019.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/24/2022]
Abstract
There is a growing impetus to treat aging as a disease in the quest to significantly extend the human life span through cellular regeneration methods. This approach, while promising, overlooks the fact that the evolutionary adaptation to bipedalism puts the human body in a distinctively vulnerable biomechanical and functional position. Orthograde human posture places unusually-high axial compressive loads on the weight-bearing joints of the skeleton, resulting in arthritic deterioration with aging. The effects are particularly robust in the lumbar spine were age-related degeneration, most commonly lumbar spinal stenosis (LSS), is ubiquitous among the elderly. It is postulated that re-establishing a favorable mechanical environment via interventions that unload the affected spinal joint complex may mitigate and potentially reverse the structural damage that is the cardinal pathoanatomical feature of this disease. The hypothesis of this paper is that a minimally-invasive surgical procedure, interspinous process decompression (IPD), which utilizes a stand-alone intervertebral spacer, effectively unloads the diseased spinal motion segment providing a healthy micro-environment to reverse and repair age-related and genetic deterioration of the spinal motion segment. Several lines of supporting evidence are provided from long-term follow-up results of a randomized controlled trial of IPD safety and effectiveness of the Superion® device including clinical outcomes, reoperation rates, opioid analgesic usage and advanced imaging utilization. All of these outcomes show uniquely-favorable trends with time that imply that the benefits of IPD are structural. The compendium of evidence suggests that IPD offers both a durable palliative effect due to direct blocking of back extension and a disease-modifying effect due to unloading of the spinal joint complex.
Collapse
Affiliation(s)
- Jon E Block
- 2210 Jackson Street, Ste. 401, San Francisco, CA 94115, United States.
| | - William F Lavelle
- Upstate Bone and Joint Center, East Syracuse, NY 13057, United States.
| | - Pierce D Nunley
- Spine Institute of Louisiana, Shreveport, LA 71101, United States.
| |
Collapse
|
35
|
Heaton JL, Pickering TR, Carlson KJ, Crompton RH, Jashashvili T, Beaudet A, Bruxelles L, Kuman K, Heile AJ, Stratford D, Clarke RJ. The long limb bones of the StW 573 Australopithecus skeleton from Sterkfontein Member 2: Descriptions and proportions. J Hum Evol 2019; 133:167-197. [DOI: 10.1016/j.jhevol.2019.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
|
36
|
Druelle F, Berthet M, Quintard B. The body center of mass in primates: Is it more caudal than in other quadrupedal mammals? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:170-178. [DOI: 10.1002/ajpa.23813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/10/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022]
Affiliation(s)
- François Druelle
- Laboratory for Functional Morphology, Biology DepartmentUniversity of Antwerp Campus Drie Eiken (Building D) Antwerp Belgium
| | | | | |
Collapse
|
37
|
Arias‐Martorell J. The morphology and evolutionary history of the glenohumeral joint of hominoids: A review. Ecol Evol 2019; 9:703-722. [PMID: 30680150 PMCID: PMC6342098 DOI: 10.1002/ece3.4392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 11/10/2022] Open
Abstract
The glenohumeral joint, the most mobile joint in the body of hominoids, is involved in the locomotion of all extant primates apart from humans. Over the last few decades, our knowledge of how variation in its morphological characteristics relates to different locomotor behaviors within extant primates has greatly improved, including features of the proximal humerus and the glenoid cavity of the scapula, as well as the muscles that function to move the joint (the rotator cuff muscles). The glenohumeral joint is a region with a strong morphofunctional signal, and hence, its study can shed light on the locomotor behaviors of crucial ancestral nodes in the evolutionary history of hominoids (e.g., the last common ancestor between humans and chimpanzees). Hominoids, in particular, are distinct in showing round and relatively big proximal humeri with lowered tubercles and flattened and oval glenoid cavities, morphology suited to engage in a wide range of motions, which enables the use of locomotor behaviors such as suspension. The comparison with extant taxa has enabled more informed functional interpretations of morphology in extinct primates, including hominoids, from the Early Miocene through to the emergence of hominins. Here, I review our current understanding of glenohumeral joint functional morphology and its evolution throughout the Miocene and Pleistocene, as well as highlighting the areas where a deeper study of this joint is still needed.
Collapse
Affiliation(s)
- Julia Arias‐Martorell
- Animal Postcranial Evolution LabSkeletal Biology Research CentreSchool of Anthropology and ConservationUniversity of KentCanterburyUK
| |
Collapse
|
38
|
Affiliation(s)
- TASUKU KIMURA
- The University Museum, The University of Tokyo, Tokyo
| |
Collapse
|
39
|
Analysis of limb movement synchronization in primates locomotion. ANTHROPOLOGICAL REVIEW 2018. [DOI: 10.2478/anre-2018-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The authors present an original mathematical model based on features identified with discrete variables using vector and hierarchical cluster analysis in primates locomotion. Proposed model allows to formalize and analyze the synchronization variability of movements in given locomotion types of adaptation and specialization in monkeys, apes and humans. The material covers observations of 102 forms including 9 species of primates: the chimpanzee, bonobo, orangutan, gibbon, gelada, mandrill, brown capuchin and ring–tailed lemur. The studies included also the synchronization of locomotory movements in man. The sequences of moves of pectoral and pelvic limbs, right and left, were studied in four categories: walking, running, jumping and brachiation. The locomotion movements depend on the brain centers and allow to find phylogenetic relations between examined forms in the evolution process.
The knowledge of the pattern of movements is used in the treatment of paraplegia and paraparesis in humans.
Collapse
|
40
|
Holowka NB, Lieberman DE. Rethinking the evolution of the human foot: insights from experimental research. J Exp Biol 2018; 221:221/17/jeb174425. [DOI: 10.1242/jeb.174425] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABSTRACT
Adaptive explanations for modern human foot anatomy have long fascinated evolutionary biologists because of the dramatic differences between our feet and those of our closest living relatives, the great apes. Morphological features, including hallucal opposability, toe length and the longitudinal arch, have traditionally been used to dichotomize human and great ape feet as being adapted for bipedal walking and arboreal locomotion, respectively. However, recent biomechanical models of human foot function and experimental investigations of great ape locomotion have undermined this simple dichotomy. Here, we review this research, focusing on the biomechanics of foot strike, push-off and elastic energy storage in the foot, and show that humans and great apes share some underappreciated, surprising similarities in foot function, such as use of plantigrady and ability to stiffen the midfoot. We also show that several unique features of the human foot, including a spring-like longitudinal arch and short toes, are likely adaptations to long distance running. We use this framework to interpret the fossil record and argue that the human foot passed through three evolutionary stages: first, a great ape-like foot adapted for arboreal locomotion but with some adaptations for bipedal walking; second, a foot adapted for effective bipedal walking but retaining some arboreal grasping adaptations; and third, a human-like foot adapted for enhanced economy during long-distance walking and running that had lost its prehensility. Based on this scenario, we suggest that selection for bipedal running played a major role in the loss of arboreal adaptations.
Collapse
Affiliation(s)
- Nicholas B. Holowka
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA 02138, USA
| | - Daniel E. Lieberman
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA 02138, USA
| |
Collapse
|
41
|
Ryan TM, Carlson KJ, Gordon AD, Jablonski N, Shaw CN, Stock JT. Human-like hip joint loading in Australopithecus africanus and Paranthropus robustus. J Hum Evol 2018; 121:12-24. [DOI: 10.1016/j.jhevol.2018.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 02/02/2023]
|
42
|
Georgiou L, Kivell TL, Pahr DH, Skinner MM. Trabecular bone patterning in the hominoid distal femur. PeerJ 2018; 6:e5156. [PMID: 30002981 PMCID: PMC6035864 DOI: 10.7717/peerj.5156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In addition to external bone shape and cortical bone thickness and distribution, the distribution and orientation of internal trabecular bone across individuals and species has yielded important functional information on how bone adapts in response to load. In particular, trabecular bone analysis has played a key role in studies of human and nonhuman primate locomotion and has shown that species with different locomotor repertoires display distinct trabecular architecture in various regions of the skeleton. In this study, we analyse trabecular structure throughout the distal femur of extant hominoids and test for differences due to locomotor loading regime. METHODS Micro-computed tomography scans of Homo sapiens (n = 11), Pan troglodytes (n = 18), Gorilla gorilla (n = 14) and Pongo sp. (n = 7) were used to investigate trabecular structure throughout the distal epiphysis of the femur. We predicted that bone volume fraction (BV/TV) in the medial and lateral condyles in Homo would be distally concentrated and more anisotropic due to a habitual extended knee posture at the point of peak ground reaction force during bipedal locomotion, whereas great apes would show more posteriorly concentrated BV/TV and greater isotropy due to a flexed knee posture and more variable hindlimb use during locomotion. RESULTS Results indicate some significant differences between taxa, with the most prominent being higher BV/TV in the posterosuperior region of the condyles in Pan and higher BV/TV and anisotropy in the posteroinferior region in Homo. Furthermore, trabecular number, spacing and thickness differ significantly, mainly separating Gorilla from the other apes. DISCUSSION The trabecular architecture of the distal femur holds a functional signal linked to habitual behaviour; however, there was more similarity across taxa and greater intraspecific variability than expected. Specifically, there was a large degree of overlap in trabecular structure across the sample, and Homo was not as distinct as predicted. Nonetheless, this study offers a comparative sample of trabecular structure in the hominoid distal femur and can contribute to future studies of locomotion in extinct taxa.
Collapse
Affiliation(s)
- Leoni Georgiou
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent at Canterbury, Canterbury, Kent, UK
| | - Tracy L. Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent at Canterbury, Canterbury, Kent, UK
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dieter H. Pahr
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria
- Department of Anatomy and Biomechanics, Karl Landsteiner Private University of Health Sciences, Krems an der Donau, Austria
| | - Matthew M. Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent at Canterbury, Canterbury, Kent, UK
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
43
|
Dierick F, Bouché AF, Scohier M, Guille C, Buisseret F. Unstable footwear as a speed-dependent noise-based training gear to exercise inverted pendulum motion during walking. J Sports Sci 2018; 36:2818-2826. [PMID: 29764290 DOI: 10.1080/02640414.2018.1474726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Previous research on unstable footwear has suggested that it may induce mechanical noise during walking. The purpose of this study was to explore whether unstable footwear could be considered as a noise-based training gear to exercise body center of mass (CoM) motion during walking. Ground reaction forces were collected among 24 healthy young women walking at speeds between 3 and 6 km h-1 with control running shoes and unstable rocker-bottom shoes. The external mechanical work, the recovery of mechanical energy of the CoM during and within the step cycles, and the phase shift between potential and kinetic energy curves of the CoM were computed. Our findings support the idea that unstable rocker-bottom footwear could serve as a speed-dependent noise-based training gear to exercise CoM motion during walking. At slow speed, it acts as a stochastic resonance or facilitator that reduces external mechanical work; whereas at brisk speed it acts as a constraint that increases external mechanical work and could mimic a downhill slope.
Collapse
Affiliation(s)
- Frédéric Dierick
- a Forme & Fonctionnement Humain Lab, Department of Physical Therapy, CERISIC , Haute Ecole Louvain en Hainaut , Montignies sur Sambre , Belgium.,b Faculty of Motor Sciences , Université catholique de Louvain , Louvain-la-Neuve , Belgium
| | | | - Mikaël Scohier
- a Forme & Fonctionnement Humain Lab, Department of Physical Therapy, CERISIC , Haute Ecole Louvain en Hainaut , Montignies sur Sambre , Belgium
| | - Clément Guille
- a Forme & Fonctionnement Humain Lab, Department of Physical Therapy, CERISIC , Haute Ecole Louvain en Hainaut , Montignies sur Sambre , Belgium
| | - Fabien Buisseret
- a Forme & Fonctionnement Humain Lab, Department of Physical Therapy, CERISIC , Haute Ecole Louvain en Hainaut , Montignies sur Sambre , Belgium.,d Service de Physique Nucléaire et Subnucléaire, Université de Mons , UMONS Research Institute for Complex Systems , Mons , Belgium
| |
Collapse
|
44
|
Gilsanz V, Wren TAL, Ponrartana S, Mora S, Rosen CJ. Sexual Dimorphism and the Origins of Human Spinal Health. Endocr Rev 2018; 39:221-239. [PMID: 29385433 PMCID: PMC5888211 DOI: 10.1210/er.2017-00147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
Recent observations indicate that the cross-sectional area (CSA) of vertebral bodies is on average 10% smaller in healthy newborn girls than in newborn boys, a striking difference that increases during infancy and puberty and is greatest by the time of sexual and skeletal maturity. The smaller CSA of female vertebrae is associated with greater spinal flexibility and could represent the human adaptation to fetal load in bipedal posture. Unfortunately, it also imparts a mechanical disadvantage that increases stress within the vertebrae for all physical activities. This review summarizes the potential endocrine, genetic, and environmental determinants of vertebral cross-sectional growth and current knowledge of the association between the small female vertebrae and greater risk for a broad array of spinal conditions across the lifespan.
Collapse
Affiliation(s)
- Vicente Gilsanz
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Tishya A L Wren
- Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Skorn Ponrartana
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Stefano Mora
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074
| |
Collapse
|
45
|
Meyer MR, Woodward C, Tims A, Bastir M. Neck function in early hominins and suspensory primates: Insights from the uncinate process. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:613-637. [PMID: 29492962 DOI: 10.1002/ajpa.23448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Uncinate processes are protuberances on the cranial surface of subaxial cervical vertebrae that assist in stabilizing and guiding spinal motion. Shallow uncinate processes reduce cervical stability but confer an increased range of motion in clinical studies. Here we assess uncinate processes among extant primates and model cervical kinematics in early fossil hominins. MATERIALS AND METHODS We compare six fossil hominin vertebrae with 48 Homo sapiens and 99 nonhuman primates across 20 genera. We quantify uncinate morphology via geometric morphometric methods to understand how uncinate process shape relates to allometry, taxonomy, and mode of locomotion. RESULTS Across primates, allometry explains roughly 50% of shape variation, as small, narrow vertebrae feature the relatively tallest, most pronounced uncinate processes, whereas larger, wider vertebrae typically feature reduced uncinates. Taxonomy only weakly explains the residual variation, however, the association between Uncinate Shape and mode of locomotion is robust, as bipeds and suspensory primates occupy opposite extremes of the morphological continuum and are distinguished from arboreal generalists. Like humans, Australopithecus afarensis and Homo erectus exhibit shallow uncinate processes, whereas A. sediba resembles more arboreal taxa, but not fully suspensory primates. DISCUSSION Suspensory primates exhibit the most pronounced uncinates, likely to maintain visual field stabilization. East African hominins exhibit reduced uncinate processes compared with African apes and A. sediba, likely signaling different degrees of neck motility and modes of locomotion. Although soft tissues constrain neck flexibility beyond limits suggested by osteology alone, this study may assist in modeling cervical kinematics and positional behaviors in extinct taxa.
Collapse
Affiliation(s)
- Marc R Meyer
- Department of Anthropology, Chaffey College, Rancho Cucamonga, California 91737
| | - Charles Woodward
- Department of Anthropology, University of California, Berkeley, California 94720
| | - Amy Tims
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, California 95616
| | - Markus Bastir
- Paleoanthropology Group, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid 28006, Spain
| |
Collapse
|
46
|
Villamil CI. Phenotypic integration of the cervical vertebrae in the Hominoidea (Primates). Evolution 2018; 72:490-517. [DOI: 10.1111/evo.13433] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Catalina I. Villamil
- Department of Anthropology; Dickinson College; P.O. Box 1773 Carlisle Pennsylvania 17013
- Center for the Study of Human Origins, Department of Anthropology; New York University; 25 Waverly Place New York New York 10003
- New York Consortium in Evolutionary Primatology; New York New York 10024
| |
Collapse
|
47
|
Simpson SW, Latimer B, Lovejoy CO. Why Do Knuckle-Walking African Apes Knuckle-Walk? Anat Rec (Hoboken) 2018; 301:496-514. [DOI: 10.1002/ar.23743] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/18/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Scott W. Simpson
- Department of Anatomy; Case Western Reserve University School of Medicine; Cleveland Ohio
- Laboratory of Physical Anthropology; Cleveland Museum of Natural History; Cleveland Ohio
| | - Bruce Latimer
- Department of Orthodontics; Case Western Reserve University School of Dental Medicine; Cleveland Ohio
- Laboratory of Physical Anthropology; Cleveland Museum of Natural History; Cleveland Ohio
| | - C. Owen Lovejoy
- Department of Anthropology; Kent State University; Kent Ohio
- Laboratory of Physical Anthropology; Cleveland Museum of Natural History; Cleveland Ohio
| |
Collapse
|
48
|
Morimoto N, Nakatsukasa M, Ponce de León MS, Zollikofer CPE. Femoral ontogeny in humans and great apes and its implications for their last common ancestor. Sci Rep 2018; 8:1930. [PMID: 29386644 PMCID: PMC5792642 DOI: 10.1038/s41598-018-20410-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/18/2018] [Indexed: 11/09/2022] Open
Abstract
Inferring the morphology of the last common ancestor of humans, chimpanzees and gorillas is a matter of ongoing debate. Recent findings and reassessment of fossil hominins leads to the hypothesis that the last common ancestor was not extant African ape-like. However, an African great-ape-like ancestor with knuckle walking features still remains plausible and the most parsimonious scenario. Here we address this question via an evolutionary developmental approach, comparing taxon-specific patterns of shape change of the femoral diaphysis from birth to adulthood in great apes, humans, and macaques. While chimpanzees and gorillas exhibit similar locomotor behaviors, our data provide evidence for distinct ontogenetic trajectories, indicating independent evolutionary histories of femoral ontogeny. Our data further indicate that anthropoid primates share a basic pattern of femoral diaphyseal ontogeny that reflects shared developmental constraints. Humans escaped from these constraints via differential elongation of femur.
Collapse
Affiliation(s)
- Naoki Morimoto
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | - Masato Nakatsukasa
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
49
|
Halsey LG, Coward SRL, Thorpe SKS. Bridging the gap: parkour athletes provide new insights into locomotion energetics of arboreal apes. Biol Lett 2017; 12:rsbl.2016.0608. [PMID: 27881766 DOI: 10.1098/rsbl.2016.0608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/31/2016] [Indexed: 11/12/2022] Open
Abstract
The tree canopy is an energetically challenging environment to traverse. Along with compliant vegetation, gaps in the canopy can prove energetically costly if they force a route-extending detour. Arboreal apes exhibit diverse locomotion strategies, including for gap crossing. Which one they employ in any given scenario may be influenced by the energy costs to do so, which are affected by the details of the immediate environment in combination with their body size. Measuring energetics of arboreal apes is not tractable; thus our knowledge in this area is limited. We devised a novel, custom-made experimental set-up to record the energy expenditure of parkour athletes tree-swaying, jumping and vertical climbing. The latter strategy was vastly more expensive, indicating that when energy economy is the focus arboreal apes will prioritize routes that limit height changes. Whether tree-swaying or jumping was most economical for the athletes depended upon interactions between tree stiffness, the distance to cross, number of tree-sways required and their own mass. Updated analysis of previous interspecific correlations suggests that whether the relative costs to vertical climb are size-invariant across primate species is complicated by details of the climbing context.
Collapse
Affiliation(s)
| | - Samuel R L Coward
- University of Birmingham, Birmingham B15 2TT, UK.,Dudley College, Dudley DY1 4AS, UK
| | | |
Collapse
|
50
|
Mahmoudi Saber M, Saitou N. Silencing Effect of Hominoid Highly Conserved Noncoding Sequences on Embryonic Brain Development. Genome Biol Evol 2017; 9:2037-2048. [PMID: 28633494 PMCID: PMC5591954 DOI: 10.1093/gbe/evx105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
Superfamily Hominoidea, which consists of Hominidae (humans and great apes) and Hylobatidae (gibbons), is well-known for sharing human-like characteristics, however, the genomic origins of these shared unique phenotypes have mainly remained elusive. To decipher the underlying genomic basis of Hominoidea-restricted phenotypes, we identified and characterized Hominoidea-restricted highly conserved noncoding sequences (HCNSs) that are a class of potential regulatory elements which may be involved in evolution of lineage-specific phenotypes. We discovered 679 such HCNSs from human, chimpanzee, gorilla, orangutan and gibbon genomes. These HCNSs were demonstrated to be under purifying selection but with lineage-restricted characteristics different from old CNSs. A significant proportion of their ancestral sequences had accelerated rates of nucleotide substitutions, insertions and deletions during the evolution of common ancestor of Hominoidea, suggesting the intervention of positive Darwinian selection for creating those HCNSs. In contrary to enhancer elements and similar to silencer sequences, these Hominoidea-restricted HCNSs are located in close proximity of transcription start sites. Their target genes are enriched in the nervous system, development and transcription, and they tend to be remotely located from the nearest coding gene. Chip-seq signals and gene expression patterns suggest that Hominoidea-restricted HCNSs are likely to be functional regulatory elements by imposing silencing effects on their target genes in a tissue-restricted manner during fetal brain development. These HCNSs, emerged through adaptive evolution and conserved through purifying selection, represent a set of promising targets for future functional studies of the evolution of Hominoidea-restricted phenotypes.
Collapse
Affiliation(s)
- Morteza Mahmoudi Saber
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| | - Naruya Saitou
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| |
Collapse
|