1
|
Liu L, Yang S, Chai L, Zhang S, Liu D, Xu H, Zhao Y, Chen S, Jiang G, Li B. Nicotinic acetylcholine receptors regulate growth hormone in pituitary somatotrophs of tigers. Commun Biol 2025; 8:526. [PMID: 40164859 PMCID: PMC11958662 DOI: 10.1038/s42003-025-07980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
The Felidae exhibits remarkable diversity in body size, with lengths ranging from 50 to 370 cm and weights from 1.1 to 423 kg. However, the underlying mechanisms driving this variation remain poorly understood. Here, we focused on the Siberian tiger (Panthera tigris altaica), the largest of the six extant tiger subspecies, and revealed the surprising expression of nicotinic acetylcholine receptors (nAChRs) in pituitary somatotrophs, which are crucial for regulating growth hormone (GH) secretion. Single-nucleus RNA sequencing of Siberian tiger pituitary cells exhibited the coexpression of CHRNA3, CHRNB4, and CHRNA5 genes in somatotrophs, a finding confirmed by electrophysiological experiments demonstrating the formation of functional nAChRs. Activation of these receptors elevated intracellular Ca2+ levels, thereby enhancing GH secretion in somatotrophs. Notably, nAChRs were absent in the pituitary glands of mice, domestic cats, and rats, both in early life and adulthood, despite high acetylcholine levels during early life. These results suggest that nAChRs in Siberian tiger somatotrophs play a pivotal role in GH release, offering new insights into the molecular mechanisms regulating body size in these terrestrial giants.
Collapse
Affiliation(s)
- Lulu Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Shilong Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Longhui Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shipei Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Dan Liu
- Siberian Tiger Park, Harbin, Heilongjiang, China
| | - Haitao Xu
- Siberian Tiger Park, Harbin, Heilongjiang, China
| | - Yue Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shiyu Chen
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
| | - Guangshun Jiang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
| | - Bin Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China.
| |
Collapse
|
2
|
Barrantes FJ. Nicotinic acetylcholine receptors in the brain. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:37-54. [PMID: 40340066 DOI: 10.1016/b978-0-443-19088-9.00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The nicotinic acetylcholine receptor (nAChR) is the archetypal neurotransmitter receptor within the superfamily of pentameric ligand-gated ion channels (pLGICs). Typically, it mediates fast synaptic transmission in response to its endogenous ligand, acetylcholine, and can also intervene in slower signaling mechanisms via intracellular metabolic cascades in association with G-protein-coupled receptors. This review covers the structural and functional aspects of the different neuronal nAChR subtypes and their cellular and anatomic distribution in the brain. The significant progress in our knowledge on the topic derives from the successful combination of biochemical, neuroanatomic, pharmacologic, and cell biology approaches, complemented by site-directed mutagenesis, single-channel electrophysiology, and structural biophysical studies. This multipronged approach provides a comprehensive description of nAChR in health and disease, offering improved chances of success in tackling neurologic and neuropsychiatric diseases involving phenotypic alterations of nAChRs, particularly in neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina; National Scientific & Technological Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Li RQ, Zhao XH, Zhu Q, Liu T, Hondermarck H, Thorne RF, Zhang XD, Gao JN. Exploring neurotransmitters and their receptors for breast cancer prevention and treatment. Theranostics 2023; 13:1109-1129. [PMID: 36793869 PMCID: PMC9925324 DOI: 10.7150/thno.81403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
While psychological factors have long been linked to breast cancer pathogenesis and outcomes, accumulating evidence is revealing how the nervous system contributes to breast cancer development, progression, and treatment resistance. Central to the psychological-neurological nexus are interactions between neurotransmitters and their receptors expressed on breast cancer cells and other types of cells in the tumor microenvironment, which activate various intracellular signaling pathways. Importantly, the manipulation of these interactions is emerging as a potential avenue for breast cancer prevention and treatment. However, an important caveat is that the same neurotransmitter can exert multiple and sometimes opposing effects. In addition, certain neurotransmitters can be produced and secreted by non-neuronal cells including breast cancer cells that similarly activate intracellular signaling upon binding to their receptors. In this review we dissect the evidence for the emerging paradigm linking neurotransmitters and their receptors with breast cancer. Foremost, we explore the intricacies of such neurotransmitter-receptor interactions, including those that impinge on other cellular components of the tumor microenvironment, such as endothelial cells and immune cells. Moreover, we discuss findings where clinical agents used to treat neurological and/or psychological disorders have exhibited preventive/therapeutic effects against breast cancer in either associative or pre-clinical studies. Further, we elaborate on the current progress to identify druggable components of the psychological-neurological nexus that can be exploited for the prevention and treatment of breast cancer as well as other tumor types. We also provide our perspectives regarding future challenges in this field where multidisciplinary cooperation is a paramount requirement.
Collapse
Affiliation(s)
- Ruo Qi Li
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.,These authors contributed equally to this work
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia.,These authors contributed equally to this work
| | - Qin Zhu
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, The University of New South Wales, Sydney, NSW, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia.,Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, China
| | - Jin Nan Gao
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Scholze P, Huck S. The α5 Nicotinic Acetylcholine Receptor Subunit Differentially Modulates α4β2 * and α3β4 * Receptors. Front Synaptic Neurosci 2020; 12:607959. [PMID: 33343327 PMCID: PMC7744819 DOI: 10.3389/fnsyn.2020.607959] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022] Open
Abstract
Nicotine, the principal reinforcing compound in tobacco, acts in the brain by activating neuronal nicotinic acetylcholine receptors (nAChRs). This review summarizes our current knowledge regarding how the α5 accessory nAChR subunit, encoded by the CHRNA5 gene, differentially modulates α4β2* and α3β4* receptors at the cellular level. Genome-wide association studies have linked a gene cluster in chromosomal region 15q25 to increased susceptibility to nicotine addiction, lung cancer, chronic obstructive pulmonary disease, and peripheral arterial disease. Interestingly, this gene cluster contains a non-synonymous single-nucleotide polymorphism (SNP) in the human CHRNA5 gene, causing an aspartic acid (D) to asparagine (N) substitution at amino acid position 398 in the α5 nAChR subunit. Although other SNPs have been associated with tobacco smoking behavior, efforts have focused predominantly on the D398 and N398 variants in the α5 subunit. In recent years, significant progress has been made toward understanding the role that the α5 nAChR subunit—and the role of the D398 and N398 variants—plays on nAChR function at the cellular level. These insights stem primarily from a wide range of experimental models, including receptors expressed heterologously in Xenopus oocytes, various cell lines, and neurons derived from human induced pluripotent stem cells (iPSCs), as well as endogenous receptors in genetically engineered mice and—more recently—rats. Despite providing a wealth of available data, however, these studies have yielded conflicting results, and our understanding of the modulatory role that the α5 subunit plays remains incomplete. Here, we review these reports and the various techniques used for expression and analysis in order to examine how the α5 subunit modulates key functions in α4β2* and α3β4* receptors, including receptor trafficking, sensitivity, efficacy, and desensitization. In addition, we highlight the strikingly different role that the α5 subunit plays in Ca2+ signaling between α4β2* and α3β4* receptors, and we discuss whether the N398 α5 subunit variant can partially replace the D398 variant.
Collapse
Affiliation(s)
- Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Sigismund Huck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Evidence for the exclusive expression of functional homomeric α7 nAChRs in hypothalamic histaminergic tuberomammillary neurons in rats. Neurosci Lett 2014; 563:107-11. [PMID: 24486841 DOI: 10.1016/j.neulet.2014.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 11/21/2022]
Abstract
Hypothalamic histaminergic tuberomammillary (TM) neurons in rats express high densities of nicotinic acetylcholine receptors (nAChRs) whose Ca(2+) permeability, kinetic and pharmacological properties are similar to those of heterologous homomeric α7 nAChRs. However, native α7 nAChR subunits can co-assemble with β or α5 nAChR subunits to form functional heteromeric α7-containing α7β or α7α5 nAChRs with kinetics and pharmacology similar to those of α7 homomers. Therefore, although TM nAChRs have been used as an ex vivo model of functional α7 homomers, the molecular makeup of TM nAChRs has not been determined and the expression of functional α7-containing heteromers in TM neurons has not been excluded. To determine the profile of TM nAChR subunit transcripts, we have conducted single-cell qRT-PCR experiments using acutely dissociated TM neurons in rats. TM neurons were found to express transcripts of only principal α3, α6 and α7 nAChR subunits. Transcripts of other known mammalian neuronal subunits (α2, α4-5, α9-10, β2-4) were not detected. In the absence of β and α5 subunits, the expression of functional α7-containing heteromers in TM neurons is highly unlikely because principal α3, α6 and α7 nAChR subunits alone are not known to form functional heteromeric nAChRs. These results support the exclusive expression of native functional α7 homomers in rat TM neurons and introduce these neurons as a unique reliable source of native functional homomeric α7 nAChRs suitable for ex vivo and in vitro pharmacological assays in developing selective α7 nAChR agents.
Collapse
|
6
|
Improgo MR, Soll LG, Tapper AR, Gardner PD. Nicotinic acetylcholine receptors mediate lung cancer growth. Front Physiol 2013; 4:251. [PMID: 24062692 PMCID: PMC3774984 DOI: 10.3389/fphys.2013.00251] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/26/2013] [Indexed: 01/08/2023] Open
Abstract
Ion channels modulate ion flux across cell membranes, activate signal transduction pathways, and influence cellular transport—vital biological functions that are inexorably linked to cellular processes that go awry during carcinogenesis. Indeed, deregulation of ion channel function has been implicated in cancer-related phenomena such as unrestrained cell proliferation and apoptotic evasion. As the prototype for ligand-gated ion channels, nicotinic acetylcholine receptors (nAChRs) have been extensively studied in the context of neuronal cells but accumulating evidence also indicate a role for nAChRs in carcinogenesis. Recently, variants in the nAChR genes CHRNA3, CHRNA5, and CHRNB4 have been implicated in nicotine dependence and lung cancer susceptibility. Here, we silenced the expression of these three genes to investigate their function in lung cancer. We show that these genes are necessary for the viability of small cell lung carcinomas (SCLC), the most aggressive type of lung cancer. Furthermore, we show that nicotine promotes SCLC cell viability whereas an α3β4-selective antagonist, α-conotoxin AuIB, inhibits it. Our findings posit a mechanism whereby signaling via α3/α5/β4-containing nAChRs promotes lung carcinogenesis.
Collapse
Affiliation(s)
- Ma Reina Improgo
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School Worcester, MA, USA
| | | | | | | |
Collapse
|
7
|
Ciuraszkiewicz A, Schreibmayer W, Platzer D, Orr-Urtreger A, Scholze P, Huck S. Single-channel properties of α3β4, α3β4α5 and α3β4β2 nicotinic acetylcholine receptors in mice lacking specific nicotinic acetylcholine receptor subunits. J Physiol 2013; 591:3271-88. [PMID: 23613527 PMCID: PMC3717227 DOI: 10.1113/jphysiol.2012.246595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Previous attempts to measure the functional properties of recombinant nicotinic acetylcholine receptors (nAChRs) composed of known receptor subunits have yielded conflicting results. The use of knockout mice that lack α5, β2, α5β2 or α5β2α7 nAChR subunits enabled us to measure the single-channel properties of distinct α3β4, α3β4α5 and α3β4β2 receptors in superior cervical ganglion (SCG) neurons. Using this approach, we found that α3β4 receptors had a principal conductance level of 32.6 ± 0.8 pS (mean ± SEM) and both higher and lower secondary conductance levels. α3β4α5 receptors had the same conductance as α3β4 receptors, but differed from α3β4 receptors by having an increased channel open time and increased burst duration. By contrast, α3β4β2 receptors differed from α3β4 and α3β4α5 receptors by having a significantly smaller conductance level (13.6 ± 0.5 pS). After dissecting the single-channel properties of these receptors using our knockout models, we then identified these properties – and hence the receptors themselves – in wild-type SCG neurons. This study is the first to identify the single-channel properties of distinct neuronal nicotinic receptors in their native environment.
Collapse
Affiliation(s)
- Anna Ciuraszkiewicz
- Division of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
8
|
Saur T, DeMarco SE, Ortiz A, Sliwoski GR, Hao L, Wang X, Cohen BM, Buttner EA. A genome-wide RNAi screen in Caenorhabditis elegans identifies the nicotinic acetylcholine receptor subunit ACR-7 as an antipsychotic drug target. PLoS Genet 2013; 9:e1003313. [PMID: 23468647 PMCID: PMC3585123 DOI: 10.1371/journal.pgen.1003313] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/22/2012] [Indexed: 11/18/2022] Open
Abstract
We report a genome-wide RNA interference (RNAi) screen for Suppressors of Clozapine-induced Larval Arrest (scla genes) in Caenorhabditis elegans, the first genetic suppressor screen for antipsychotic drug (APD) targets in an animal. The screen identifies 40 suppressors, including the α-like nicotinic acetylcholine receptor (nAChR) homolog acr-7. We validate the requirement for acr-7 by showing that acr-7 knockout suppresses clozapine-induced larval arrest and that expression of a full-length translational GFP fusion construct rescues this phenotype. nAChR agonists phenocopy the developmental effects of clozapine, while nAChR antagonists partially block these effects. ACR-7 is strongly expressed in the pharynx, and clozapine inhibits pharyngeal pumping. acr-7 knockout and nAChR antagonists suppress clozapine-induced inhibition of pharyngeal pumping. These findings suggest that clozapine activates ACR-7 channels in pharyngeal muscle, leading to tetanus of pharyngeal muscle with consequent larval arrest. No APDs are known to activate nAChRs, but a number of studies indicate that α7-nAChR agonists may prove effective for the treatment of psychosis. α-like nAChR signaling is a mechanism through which clozapine may produce its therapeutic and/or toxic effects in humans, a hypothesis that could be tested following identification of the mammalian ortholog of C. elegans acr-7. Clozapine is the most effective medication for treatment-refractory schizophrenia but produces toxic side effects such as agranulocytosis, metabolic syndrome, and developmental defects after exposure early in life. However, clozapine's molecular mechanisms of action remain poorly understood. In past studies, we showed that pharmacogenomic experiments in C. elegans identify novel signaling pathways through which clozapine exerts its biological effects. Here, we report the first genetic suppressor screen for antipsychotic (APD) drug targets in an animal and identify 40 suppressors of clozapine-induced larval arrest, including the α-like nicotinic acetylcholine receptor (nAChR) acr-7. We validate our RNAi result by showing that an acr-7 knockout suppresses clozapine-induced larval arrest and inhibition of pharyngeal pumping. Expression of a full-length translational acr-7::GFP (Green Fluorescent Protein) construct in the acr-7 mutant rescues suppression of these phenotypes. Clozapine-induced phenotypes are phenocopied by nAChR agonists and blocked by nAChR antagonists. The results suggest that clozapine induces these phenotypes through activation of the ACR-7 receptor. Recent studies have underscored the potential importance of nAChRs in the pathophysiology of schizophrenia. A clearer understanding of APD mechanisms would facilitate the design of improved drugs and may inform our understanding, not only of drug mechanisms, but also of disease pathogenesis.
Collapse
Affiliation(s)
- Taixiang Saur
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Mailman Research Center, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Sarah E. DeMarco
- Mailman Research Center, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Angelica Ortiz
- Department of Molecular Pathology, University of Texas–MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gregory R. Sliwoski
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Limin Hao
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Mailman Research Center, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Xin Wang
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Mailman Research Center, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Mailman Research Center, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Edgar A. Buttner
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Mailman Research Center, McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Nicotinic acetylcholine receptors: From basic science to therapeutics. Pharmacol Ther 2013; 137:22-54. [DOI: 10.1016/j.pharmthera.2012.08.012] [Citation(s) in RCA: 382] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 12/14/2022]
|
10
|
Dobelis P, Staley KJ, Cooper DC. Lack of modulation of nicotinic acetylcholine alpha-7 receptor currents by kynurenic acid in adult hippocampal interneurons. PLoS One 2012; 7:e41108. [PMID: 22848433 PMCID: PMC3405093 DOI: 10.1371/journal.pone.0041108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/21/2012] [Indexed: 11/17/2022] Open
Abstract
Kynurenic acid (KYNA), a classical ionotropic glutamate receptor antagonist is also purported to block the α7-subtype nicotinic acetylcholine receptor (α7* nAChR). Although many published studies cite this potential effect, few have studied it directly. In this study, the α7*-selective agonist, choline, was pressure-applied to interneurons in hippocampal subregions, CA1 stratum radiatum and hilus of acute brain hippocampal slices from adolescent to adult mice and adolescent rats. Stable α7* mediated whole-cell currents were measured using voltage-clamp at physiological temperatures. The effects of bath applied KYNA on spontaneous glutamatergic excitatory postsynaptic potentials (sEPSC) as well as choline-evoked α7* currents were determined. In mouse hilar interneurons, KYNA totally blocked sEPSC whole-cell currents in a rapid and reversible manner, but had no effect on choline-evoked α7* whole-cell currents. To determine if this lack of KYNA effect on α7* function was due to regional and/or species differences in α7* nAChRs, the effects of KYNA on choline-evoked α7* whole-cell currents in mouse and rat stratum radiatum interneurons were tested. KYNA had no effect on either mouse or rat stratum radiatum interneuron choline-evoked α7* whole-cell currents. Finally, to test whether the lack of effect of KYNA was due to unlikely slow kinetics of KYNA interactions with α7* nAChRs, recordings of a7*-mediated currents were made from slices that were prepared and stored in the presence of 1 mM KYNA (>90 minutes exposure). Under these conditions, KYNA had no measurable effect on α7* nAChR function. The results show that despite KYNA-mediated blockade of glutamatergic sEPSCs, two types of hippocampal interneurons that express choline-evoked α7* nAChR currents fail to show any degree of modulation by KYNA. Our results indicate that under our experimental conditions, which produced complete KYNA-mediated blockade of sEPSCs, claims of KYNA effects on choline-evoked α7* nAChR function should be made with caution.
Collapse
Affiliation(s)
- Peter Dobelis
- Center for Neuroscience, Institute for Behavioral Genetics, Department of Neuroscience, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | | | | |
Collapse
|
11
|
Uteshev VV. α7 nicotinic ACh receptors as a ligand-gated source of Ca(2+) ions: the search for a Ca(2+) optimum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:603-38. [PMID: 22453962 DOI: 10.1007/978-94-007-2888-2_27] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The spatiotemporal distribution of cytosolic Ca(2+) ions is a key determinant of neuronal behavior and survival. Distinct sources of Ca(2+) ions including ligand- and voltage-gated Ca(2+) channels contribute to intracellular Ca(2+) homeostasis. Many normal physiological and therapeutic neuronal functions are Ca(2+)-dependent, however an excess of cytosolic Ca(2+) or a lack of the appropriate balance between Ca(2+) entry and clearance may destroy cellular integrity and cause cellular death. Therefore, the existence of optimal spatiotemporal patterns of cytosolic Ca(2+) elevations and thus, optimal activation of ligand- and voltage-gated Ca(2+) ion channels are postulated to benefit neuronal function and survival. Alpha7 nicotinic -acetylcholine receptors (nAChRs) are highly permeable to Ca(2+) ions and play an important role in modulation of neurotransmitter release, gene expression and neuroprotection in a variety of neuronal and non-neuronal cells. In this review, the focus is placed on α7 nAChR-mediated currents and Ca(2+) influx and how this source of Ca(2+) entry compares to NMDA receptors in supporting cytosolic Ca(2+) homeostasis, neuronal function and survival.
Collapse
Affiliation(s)
- Victor V Uteshev
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA.
| |
Collapse
|
12
|
Dash B, Chang Y, Lukas RJ. Reporter mutation studies show that nicotinic acetylcholine receptor (nAChR) α5 Subunits and/or variants modulate function of α6*-nAChR. J Biol Chem 2011; 286:37905-37918. [PMID: 21873428 DOI: 10.1074/jbc.m111.264044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To further the understanding of functional α6α5*-nicotinic acetylcholine receptors (nAChR; the asterisk (*) indicates known or possible presence of other subunits), we have heterologously expressed in oocytes different, mouse or human, nAChR subunit combinations. Coexpression with wild-type α5 subunits or chimeric α5/β3 subunits (in which the human α5 subunit N-terminal, extracellular domain is linked to the remaining domains of the human β3 subunit) almost completely abolishes the very small amount of function seen for α6β4*-nAChR and does not induce function of α6β2*-nAChR. Coexpression with human α5(V9)'(S) subunits bearing a valine 290 to serine mutation in the 9' position of the second transmembrane domain does not rescue the function of α6β4*-nAChR or induce function of α6β2*-nAChR. However, coexpression with mutant chimeric α5/β3(V9)'(S) subunits has a gain-of-function effect (higher functional expression and agonist sensitivity and spontaneous opening inhibited by mecamylamine) on α6β4*-nAChR. Moreover, N143D + M145V mutations in the α6 subunit N-terminal domain enable α5/β3(V9)'(S) subunits to have a gain-of-function effect on α6β2*-nAChR. nAChR containing chimeric α6/α3 subunits plus either β2 or β4 subunits have some function that is modulated in the presence of α5 or α5/β3 subunits. Coexpression with α5/β3(V9)'(S) subunits has a gain-of-function effect more pronounced than that in the presence of α5(V9)'(S) subunits. Gain-of-function effects are dependent, sometimes subtly, on the nature and apparently the extracellular, cytoplasmic, and/or transmembrane domain topology of partner subunits. These studies yield insight into assembly of functional α6α5*-nAChR and provide tools for development of α6*-nAChR-selective ligands that could be important in the treatment of nicotine dependence, and perhaps other neurological diseases.
Collapse
Affiliation(s)
- Bhagirathi Dash
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013
| | - Ronald J Lukas
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013.
| |
Collapse
|
13
|
Papke RL, Wecker L, Stitzel JA. Activation and inhibition of mouse muscle and neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. J Pharmacol Exp Ther 2010; 333:501-18. [PMID: 20100906 PMCID: PMC2872959 DOI: 10.1124/jpet.109.164566] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 01/22/2010] [Indexed: 11/22/2022] Open
Abstract
Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relatively comprehensive characterization of the three primary classes of nAChR: muscle-type receptors, heteromeric neuronal receptors, and homomeric alpha7-type receptors. We evaluated the activation of these receptor subtypes with acetylcholine and cytisine-related compounds, including varenicline. We also characterized the activity of classic nAChR antagonists, confirming the utility of mecamylamine and dihydro-beta-erythroidine as selective antagonists in mouse models of alpha3beta4 and alpha4beta2 receptors, respectively. We also conducted an in-depth analysis of decamethonium and hexamethonium on muscle and neuronal receptor subtypes. Our data indicate that, as with receptors cloned from other species, pairwise expression of neuronal alpha and beta subunits in oocytes generates heterogeneous populations of receptors, most likely caused by variations in subunit stoichiometry. Coexpression of the mouse alpha5 subunit had varying effects, depending on the other subunits expressed. The properties of cytisine-related compounds are similar for mouse, rat, and human nAChR, except that varenicline produced greater residual inhibition of mouse alpha4beta2 receptors than with human receptors. We confirm that decamethonium is a partial agonist, selective for muscle-type receptors, but also note that it is a nondepolarizing antagonist for neuronal-type receptors. Hexamethonium was a relatively nonselective antagonist with mixed competitive and noncompetitive activity.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida 32610-0267, USA.
| | | | | |
Collapse
|
14
|
Liu Q, Huang Y, Xue F, Simard A, DeChon J, Li G, Zhang J, Lucero L, Wang M, Sierks M, Hu G, Chang Y, Lukas RJ, Wu J. A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides. J Neurosci 2009; 29:918-29. [PMID: 19176801 PMCID: PMC2857410 DOI: 10.1523/jneurosci.3952-08.2009] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 12/02/2008] [Accepted: 12/16/2008] [Indexed: 11/21/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) containing alpha7 subunits are thought to assemble as homomers. alpha7-nAChR function has been implicated in learning and memory, and alterations of alpha7-nAChR have been found in patients with Alzheimer's disease (AD). Here we report findings consistent with a novel, naturally occurring nAChR subtype in rodent, basal forebrain cholinergic neurons. In these cells, alpha7 subunits are coexpressed, colocalize, and coassemble with beta2 subunit(s). Compared with homomeric alpha7-nAChRs from ventral tegmental area neurons, functional, presumably heteromeric alpha7beta2-nAChRs on cholinergic neurons freshly dissociated from medial septum/diagonal band (MS/DB) exhibit relatively slow kinetics of whole-cell current responses to nicotinic agonists and are more sensitive to the beta2 subunit-containing nAChR-selective antagonist, dihydro-beta-erythroidine (DHbetaE). Interestingly, presumed, heteromeric alpha7beta2-nAChRs are highly sensitive to functional inhibition by pathologically relevant concentrations of oligomeric, but not monomeric or fibrillar, forms of amyloid beta(1-42) (Abeta(1-42)). Slow whole-cell current kinetics, sensitivity to DHbetaE, and specific antagonism by oligomeric Abeta(1-42) also are characteristics of heteromeric alpha7beta2-nAChRs, but not of homomeric alpha7-nAChRs, heterologously expressed in Xenopus oocytes. Moreover, choline-induced currents have faster kinetics and less sensitivity to Abeta when elicited from MS/DB neurons derived from nAChR beta2 subunit knock-out mice rather than from wild-type mice. The presence of novel, functional, heteromeric alpha7beta2-nAChRs on basal forebrain cholinergic neurons and their high sensitivity to blockade by low concentrations of oligomeric Abeta(1-42) suggests possible mechanisms for deficits in cholinergic signaling that could occur early in the etiopathogenesis of AD and might be targeted by disease therapies.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Acetylcholine/pharmacology
- Amyloid beta-Peptides/pharmacology
- Animals
- Animals, Newborn
- Cells, Cultured
- Choline O-Acetyltransferase/metabolism
- Cholinergic Agents/pharmacology
- Dose-Response Relationship, Drug
- Immunoprecipitation/methods
- Membrane Potentials/drug effects
- Membrane Potentials/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/drug effects
- Neurons/metabolism
- Oocytes
- Patch-Clamp Techniques/methods
- Peptide Fragments/pharmacology
- Prosencephalon/cytology
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Rats
- Rats, Wistar
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/deficiency
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Xenopus laevis
- alpha7 Nicotinic Acetylcholine Receptor
Collapse
Affiliation(s)
| | - Yao Huang
- Department of Obstetrics and Gynecology, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85004
| | - Fenqin Xue
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Alain Simard
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | | | | | - Jianliang Zhang
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Linda Lucero
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Min Wang
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona 85281, and
| | - Michael Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona 85281, and
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yongchang Chang
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Ronald J. Lukas
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Jie Wu
- Divisions of Neurology and
| |
Collapse
|
15
|
Mansvelder HD, Mertz M, Role LW. Nicotinic modulation of synaptic transmission and plasticity in cortico-limbic circuits. Semin Cell Dev Biol 2009; 20:432-40. [PMID: 19560048 DOI: 10.1016/j.semcdb.2009.01.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/11/2009] [Accepted: 01/13/2009] [Indexed: 11/19/2022]
Abstract
Nicotine is the principle addictive agent delivered via cigarette smoking. The addictive activity of nicotine is due to potent interactions with nicotinic acetylcholine receptors (nAChRs) on neurons in the reinforcement and reward circuits of the brain. Beyond its addictive actions, nicotine is thought to have positive effects on performance in working memory and short-term attention-related tasks. The brain areas involved in such behaviors are part of an extensive cortico-limbic network that includes relays between prefrontal cortex (PFC) and cingulate cortex (CC), hippocampus, amygdala, ventral tegmental area (VTA) and the nucleus accumbens (nAcc). Nicotine activates a broad array of nAChRs subtypes that can be targeted to pre- as well as peri- and post-synaptic locations in these areas. Thereby, nicotine not only excites different types of neurons, but it also perturbs baseline neuronal communication, alters synaptic properties and modulates synaptic plasticity. In this review we focus on recent findings on nicotinic modulation of cortical circuits and their targets fields, which show that acute and transient activation of nicotinic receptors in cortico-limbic circuits triggers a series of events that affects cognitive performance in a long lasting manner. Understanding how nicotine induces long-term changes in synapses and alters plasticity in the cortico-limbic circuits is essential to determining how these areas interact in decoding fundamental aspects of cognition and reward.
Collapse
Affiliation(s)
- Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
16
|
Abstract
The discovery that mammalian brain expresses the mRNAs for nine different nicotinic cholinergic receptor subunits (alpha2-alpha7, beta2-beta4) that form functional receptors when expressed in Xenopus laevis oocytes suggests that many different types of nicotinic cholinergic receptors (nAChRs) might be expressed in the mammalian brain., Using an historical approach, this chapter reviews some of the progress made in identifying the nAChR subtypes that seem to play a vital role in modulating dopaminergic function. nAChR subtypes that are expressed in dopamine neurons, as well as neurons that interact with dopamine neurons (glutamatergic, GABAergic), serve as the focus of this review. Subjects that are highlighted include the discovery of a low affinity alpha4beta2* nAChR, the identity of recently characterized alpha6* nAChRs, and the finding that these alpha6* receptors have the highest affinity for receptor activation of any of the native receptors that have been characterized to date. Topics that have been ignored in other recent reviews of this area, such as the discovery and potential importance of alternative transcripts, are presented along with a discussion of their potential importance.
Collapse
|
17
|
Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 2009; 89:73-120. [PMID: 19126755 PMCID: PMC2713585 DOI: 10.1152/physrev.00015.2008] [Citation(s) in RCA: 1280] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a "receptive substance," from which the idea of a "receptor" came to light. Subsequent studies aided by the Torpedo electric organ, a rich source of muscle-type nicotinic receptors (nAChRs), and the discovery of alpha-bungarotoxin, a snake toxin that binds pseudo-irreversibly to the muscle nAChR, resulted in the muscle nAChR being the best characterized ligand-gated ion channel hitherto. With the advancement of functional and genetic studies in the late 1980s, the existence of nAChRs in the mammalian brain was confirmed and the realization that the numerous nAChR subtypes contribute to the psychoactive properties of nicotine and other drugs of abuse and to the neuropathology of various diseases, including Alzheimer's, Parkinson's, and schizophrenia, has since emerged. This review provides a comprehensive overview of these findings and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body. Despite these numerous developments, our understanding of the contributions of specific neuronal nAChR subtypes to the many facets of physiology throughout the body remains in its infancy.
Collapse
Affiliation(s)
- Edson X Albuquerque
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
18
|
O'Leary KT, Loughlin SE, Chen Y, Leslie FM. Nicotinic acetylcholine receptor subunit mRNA expression in adult and developing rat medullary catecholamine neurons. J Comp Neurol 2008; 510:655-72. [PMID: 18698592 DOI: 10.1002/cne.21833] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate numerous visceral functions via medullary catecholamine (CA) neurons found in the nucleus tractus solitarius (NTS), dorsal motor nucleus of the vagus (DMV), and ventrolateral medulla (VLM). However, the nAChR subtypes involved are not known. We have therefore characterized expression of nine nAChR subunit mRNAs in adult and developing rat medullary CA nuclei using combined isotopic/nonisotopic in situ hybridization. Tyrosine hydroxylase (TH) mRNA, the CA-synthesizing enzyme, was used as a marker for CA neurons, because these nuclei consist of heterogeneous populations of cells. Subunit mRNA expression varied within and between nuclei, along the rostrocaudal axis, between cell types, and across development. All CA neurons expressed beta2 mRNA, whereas alpha2 mRNA was completely absent. alpha6 And beta3 mRNA expression were restricted mainly to the VLM. alpha4, alpha5, And alpha7 mRNA expression was significantly greater in the rostral than in the caudal VLM. alpha3 And beta4 mRNAs were highly expressed in the dorsal region of the NTS, whereas dense alpha7 mRNA expression was restricted to the DMV and ventral NTS. The remaining subunit mRNAs were detected to some degree in both DMV and NTS. Except for alpha4 mRNA, which peaked prenatally, expression levels of subunit transcripts in the NTS and DMV were lower during development compared with adults. In the VLM, alpha3, alpha4, and alpha5 mRNAs expression peaked perinatally, whereas alpha6 and beta3 levels increased with age. These variations in nAChR subunit mRNA expression suggest that different receptor subtypes may produce function-specific regulation of medullary CA systems.
Collapse
Affiliation(s)
- Kathryn T O'Leary
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
19
|
Fowler CD, Arends MA, Kenny PJ. Subtypes of nicotinic acetylcholine receptors in nicotine reward, dependence, and withdrawal: evidence from genetically modified mice. Behav Pharmacol 2008; 19:461-84. [PMID: 18690103 PMCID: PMC2669417 DOI: 10.1097/fbp.0b013e32830c360e] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) can regulate the activity of many neurotransmitter pathways throughout the central nervous system and are considered to be important modulators of cognition and emotion. nAChRs are also the primary site of action in the brain for nicotine, the major addictive component of tobacco smoke. nAChRs consist of five membrane-spanning subunits (alpha and beta isoforms) that can associate in various combinations to form functional nAChR ion channels. Owing to a dearth of nAChR subtype-selective ligands, the precise subunit composition of the nAChRs that regulate the rewarding effects of nicotine and the development of nicotine dependence are unknown. The advent of mice with genetic nAChR subunit modifications, however, has provided a useful experimental approach to assess the contribution of individual subunits in vivo. Here, we review data generated from nAChR subunit knockout and genetically modified mice supporting a role for discrete nAChR subunits in nicotine reinforcement and dependence processes. Importantly, the rates of tobacco dependence are far higher in patients suffering from comorbid psychiatric illnesses compared with the general population, which may at least partly reflect disease-associated alterations in nAChR signaling. An understanding of the role of nAChRs in psychiatric disorders associated with high rates of tobacco addiction, therefore, may reveal novel insights into mechanisms of nicotine dependence. Thus, we also briefly review data generated from genetically modified mice to support a role for discrete nAChR subunits in anxiety disorders, depression, and schizophrenia.
Collapse
Affiliation(s)
- Christie D. Fowler
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Michael A. Arends
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Paul J. Kenny
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
20
|
Bierut LJ, Stitzel JA, Wang JC, Hinrichs AL, Grucza RA, Xuei X, Saccone NL, Saccone SF, Bertelsen S, Fox L, Horton WJ, Morgan SD, Breslau N, Budde J, Cloninger CR, Dick DM, Foroud T, Hatsukami D, Hesselbrock V, Johnson EO, Kramer J, Kuperman S, Madden PAF, Mayo K, Nurnberger J, Pomerleau O, Porjesz B, Reyes O, Schuckit M, Swan G, Tischfield JA, Edenberg HJ, Rice JP, Goate AM. Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 2008; 165:1163-71. [PMID: 18519524 PMCID: PMC2574742 DOI: 10.1176/appi.ajp.2008.07111711] [Citation(s) in RCA: 490] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE A recent study provisionally identified numerous genetic variants as risk factors for the transition from smoking to the development of nicotine dependence, including an amino acid change in the alpha5 nicotinic cholinergic receptor (CHRNA5). The purpose of this study was to replicate these findings in an independent data set and more thoroughly investigate the role of genetic variation in the cluster of physically linked nicotinic receptors, CHRNA5-CHRNA3-CHRNB4, and the risk of smoking. METHOD Individuals from 219 European American families (N=2,284) were genotyped across this gene cluster to test the genetic association with smoking. The frequency of the amino acid variant (rs16969968) was studied in 995 individuals from diverse ethnic populations. In vitro studies were performed to directly test whether the amino acid variant in the CHRNA5 influences receptor function. RESULTS A genetic variant marking an amino acid change showed association with the smoking phenotype (p=0.007). This variant is within a highly conserved region across nonhuman species, but its frequency varied across human populations (0% in African populations to 37% in European populations). Furthermore, functional studies demonstrated that the risk allele decreased response to a nicotine agonist. A second independent finding was seen at rs578776 (p=0.003), and the functional significance of this association remains unknown. CONCLUSIONS This study confirms that at least two independent variants in this nicotinic receptor gene cluster contribute to the development of habitual smoking in some populations, and it underscores the importance of multiple genetic variants contributing to the development of common diseases in various populations.
Collapse
Affiliation(s)
- Laura Jean Bierut
- Department of Psychiatry, Washington University School of Medicine, Box 8134, 660 South Euclid Ave., St. Louis, MO 63110, USA.
| | | | - Jen C. Wang
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Xiaoling Xuei
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Sarah Bertelsen
- Washington University School of Medicine, St. Louis, MO, USA
| | - Louis Fox
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | - John Budde
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Tatiana Foroud
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Eric O. Johnson
- Research Triangle Institute International, Research Triangle Park, NC, USA
| | | | | | | | - Kevin Mayo
- Washington University School of Medicine, St. Louis, MO, USA
| | - John Nurnberger
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Bernice Porjesz
- State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Oliver Reyes
- Washington University School of Medicine, St. Louis, MO, USA
| | - Marc Schuckit
- University of California-San Diego, San Diego, CA, USA
| | - Gary Swan
- SRI International, Menlo Park, CA, USA
| | | | | | - John P. Rice
- Washington University School of Medicine, St. Louis, MO, USA
| | - Alison M. Goate
- Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
21
|
Millar NS, Harkness PC. Assembly and trafficking of nicotinic acetylcholine receptors (Review). Mol Membr Biol 2008; 25:279-92. [PMID: 18446614 DOI: 10.1080/09687680802035675] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of an extensive super-family of neurotransmitter-gated ion channels. In humans, nAChRs are expressed within the nervous system and at the neuromuscular junction and are important targets for pharmaceutical drug discovery. They are also the site of action for neuroactive pesticides in insects and other invertebrates. Nicotinic receptors are complex pentameric transmembrane proteins which are assembled from a large family of subunits; seventeen nAChR subunits (alpha1-alpha10, beta1-beta4, gamma, delta and epsilon) have been identified in vertebrate species. This review will discuss nAChR subunit diversity and factors influencing receptor assembly and trafficking.
Collapse
Affiliation(s)
- Neil S Millar
- Department of Pharmacology, University College London, London, UK.
| | | |
Collapse
|
22
|
Abstract
Preclinical studies, using primarily rodent models, have shown acetylcholine to have a critical role in brain maturation via activation of nicotinic acetylcholine receptors (nAChRs), a structurally diverse family of ligand-gated ion channels. nAChRs are widely expressed in fetal central nervous system, with transient upregulation in numerous brain regions during critical developmental periods. Activation of nAChRs can have varied developmental influences that are dependent on the pharmacologic properties and localization of the receptor. These include regulation of transmitter release, gene expression, neurite outgrowth, cell survival, and synapse formation and maturation. Aberrant exposure of fetal and neonatal brain to nicotine, through maternal smoking or nicotine replacement therapy (NRT), has been shown to have detrimental effects on cholinergic modulation of brain development. These include alterations in sexual differentiation of the brain, and in cell survival and synaptogenesis. Long-term alterations in the functional status and pharmacologic properties of nAChRs may also occur, which result in modifications of specific neural circuitry such as the brainstem cardiorespiratory network and sensory thalamocortical gating. Such alterations in brain structure and function may contribute to clinically characterized deficits that result from maternal smoking, such as sudden infant death syndrome and auditory-cognitive dysfunction. Although not the only constituent of tobacco smoke, there is now abundant evidence that nicotine is a neural teratogen. Thus, alternatives to NRT should be sought as tobacco cessation treatments in pregnant women.
Collapse
Affiliation(s)
- Jennifer B Dwyer
- Department of Pharmacology, University of California, Irvine, California 92697, USA.
| | | | | |
Collapse
|
23
|
Abstract
In the adrenal medulla, acetylcholine released by the sympathetic splanchnic nerves activates neuronal-type nicotinic acetylcholine receptors (nAChRs) on the membrane of chromaffin cells which liberate catecholamines into the bloodstream in preparation for the fight and flight reactions. On adrenal chromaffin cells the main class of nAChRs is a pentameric assembly of alpha3 and beta4 subunits that forms ion channels which produce membrane depolarization by increasing Na+, K+ and Ca2+ permeability. Homomeric alpha7 nicotinic receptors are expressed in a species-dependent manner and do not contribute to catecholamine secretion. Chromaffin cell nAChRs rapidly activate and desensitize with full recovery on washout. nAChR activity is subjected to various types of dynamic regulation. It is allosterically modulated by the endogenous neuropeptide substance P that stabilizes receptors in their desensitized state, thus depressing their responsiveness. The full-length peptide CGRP acts as a negative allosteric modulator by inhibiting responses without changing desensitization, whereas its N-terminal fragments act as positive allosteric modulators to transiently enhance nAChR function. nAChR expression increases when cells are chronically exposed to either selective antagonists or agonists such as nicotine, a protocol mimicking the condition of chronic heavy smokers. In this case, large upregulation of nAChRs occurs even though most of the extra nAChRs remain inside the cells, creating a mismatch between the increase in total nAChRs and increase in functional nAChRs on the cell surface. These findings highlight the plastic properties of cholinergic neurotransmission in the adrenal medulla to provide robust mechanisms for adapting catecholamine release to acute and chronic changes in sympathetic activity.
Collapse
Affiliation(s)
- F Sala
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | | | | |
Collapse
|
24
|
Mao D, Perry DC, Yasuda RP, Wolfe BB, Kellar KJ. The α4β2α5 nicotinic cholinergic receptor in rat brain is resistant to up-regulation by nicotine in vivo. J Neurochem 2007; 104:446-56. [DOI: 10.1111/j.1471-4159.2007.05011.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Mao D, Yasuda RP, Fan H, Wolfe BB, Kellar KJ. Heterogeneity of nicotinic cholinergic receptors in rat superior cervical and nodose Ganglia. Mol Pharmacol 2006; 70:1693-9. [PMID: 16882879 DOI: 10.1124/mol.106.027458] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotinic cholinergic receptors (nAChRs) are present in ganglia in the peripheral nervous system. In autonomic ganglia, they are responsible for fast synaptic transmission, whereas in the sensory ganglia and sensory neurons, they may be involved in modulation of neurotransmission. The present study measured nAChRs in several rat autonomic ganglia: the superior cervical ganglia (SCG), sensory nodose ganglia, stellate ganglia, and pelvic ganglia. The densities of the heteromeric nAChRs determined by receptor binding assay in those four ganglia are 481, 45, 9, and 11 fmol/mg protein, respectively. Immunoprecipitation studies with subunit-specific antibodies showed that a majority of the nAChRs in the SCG and nodose ganglia contain the alpha3 and beta4 subunits, but a significant percentage of the nAChRs in these ganglia also contain alpha5 and beta2 subunits. A small percentage of the nAChRs in nodose ganglia also contain alpha2 and alpha4 subunits. Sequential immunoprecipitation assays indicated that in the SCG, all alpha5 subunits are associated with alpha3 and beta4 subunits, forming the mixed heteromeric alpha3beta4alpha5 subtype. A receptor composed of alpha3, beta2, and beta4 subunits in the SCG was also detected. In rat SCG, we found the following distribution of nAChRs subtypes: 55 to 60% simple alpha3beta4 subtype, 25 to 30% alpha3beta4alpha5 subtype, and 10 to 15% alpha3beta4beta2 subtype. These findings indicate that the nAChRs in SCG and nodose ganglia are heterogeneous, which suggests that different receptor subtypes may play different roles in these ganglia or may be activated under different conditions.
Collapse
Affiliation(s)
- Danyan Mao
- Department of Pharmacology and Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
26
|
Xu J, Zhu Y, Heinemann SF. Identification of sequence motifs that target neuronal nicotinic receptors to dendrites and axons. J Neurosci 2006; 26:9780-93. [PMID: 16988049 PMCID: PMC6674458 DOI: 10.1523/jneurosci.0840-06.2006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) belong to a family of ligand-gated ion channels that play important roles in central and peripheral nervous systems. The subcellular distribution of neuronal nAChRs has important implications for function and is not well understood. Here, we analyzed the targeting of two major types of neuronal nAChRs by expressing epitope-tagged subunits in cultured hippocampal neurons. Surprisingly, the alpha7 nAChR (alpha7) and alpha4/beta2 nAChR (alpha4beta2) displayed distinct patterns of expression, with alpha7 targeted preferentially to the somatodendritic compartments, whereas alpha4beta2 was localized to both axonal and dendritic domains. When fused to CD4 or IL2RA (interleukin 2 receptor alpha subunit) proteins, which are normally distributed ubiquitously, the M3-M4 intracellular loop from the alpha7 subunit promoted dendritic expression, whereas the homologous M3-M4 loop from the alpha4 subunit led to surface axonal expression. Systemic screening and alanine substitution further identified a 25-residue leucine motif ([DE]XXXL[LI]) containing an axonal targeting sequence within the alpha4 loop and a 48-residue dileucine and tyrosine motif (YXXØ) containing a dendritic targeting sequence from the alpha7 loop. These results provide valuable information in understanding diverse roles of neuronal nAChRs in mediating and modulating synaptic transmission, synaptic plasticity, and nicotine addiction.
Collapse
Affiliation(s)
- Jian Xu
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, California 92037
| | - Yongling Zhu
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, California 92037
| | - Stephen F. Heinemann
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, California 92037
| |
Collapse
|
27
|
Levandoski MM, Robertson AP, Kuiper S, Qian H, Martin RJ. Single-channel properties of N- and L-subtypes of acetylcholine receptor in Ascaris suum. Int J Parasitol 2005; 35:925-34. [PMID: 15950977 DOI: 10.1016/j.ijpara.2005.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 03/04/2005] [Accepted: 03/08/2005] [Indexed: 11/30/2022]
Abstract
We are interested in the properties of the target site of cholinergic anti-nematodal drugs for therapeutic reasons. The target receptors are ligand-gated ion channels that have different subtypes, and each subtype may have a different pharmacology. In a contraction assay using the parasitic nematode Ascaris suum, our laboratory has identified several subtypes, including an N-subtype, preferentially activated by nicotine, and an L-subtype, preferentially activated by levamisole. Here we use patch-clamp recordings to test the hypothesis that the single-channel selectivities of nicotine and levamisole are different. Unitary currents evoked by nicotine in this preparation were characterised for the first time. In some patches, both nicotine and levamisole activated small- and large-conductance channels. In other patches, the agonists activated just one channel amplitude. Discriminant analysis allowed classification of the one-conductance patch channels into the small or large categories, based on sets defined by the two-conductance patch data. The small channels had a conductance of 26.1+/-1.5 pS, n=18 (mean+/-SEM); the large conductance channels had a conductance of 38.8+/-1.2 pS, n=23 (mean+/-SEM). Analysis of amplitude histograms of the two-conductance patches showed that nicotine preferentially activated the small-conductance channels and levamisole preferentially activated the large-conductance channels. Our observations suggest that the N-subtype receptor channel has a conductance of 26 pS channel and the L-subtype receptor channel has a conductance of 39 pS.
Collapse
|
28
|
Winzer-Serhan UH, Leslie FM. Expression of alpha5 nicotinic acetylcholine receptor subunit mRNA during hippocampal and cortical development. J Comp Neurol 2005; 481:19-30. [PMID: 15558717 DOI: 10.1002/cne.20357] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated pentameric cation channels of alpha and beta subunits. The alpha5 subunit, when added to heteromeric complexes, alters pharmacological and physiological properties of nAChRs, which may be important during development. Here we have evaluated the pre- and postnatal expression of alpha5 subunit mRNA in rat cortex and hippocampus using highly sensitive in situ hybridization. In the cortex, alpha5 mRNA was detected in the subplate, claustrum, and endopiriform nucleus at embryonic day 18 (E18), areas with sustained expression into adulthood. Transient cortical expression was detected in numerous cells, scattered mainly in layers V and II/III, during the first 2 postnatal weeks. In the hippocampus, alpha5 transcripts first appeared in the CA1 region at E18. During postnatal development, increased hybridization signal was detected in CA1 and CA3 pyramidal neurons and granule cells of the dentate gyrus, which strongly contrasted with the low levels in the adult. Interneurons in CA1/CA3 stratum radiatum and moleculare, and in the hilus region of the dentate gyrus, strongly expressed alpha5 mRNA in postnatal and adult animals. With double in situ hybridization, co-expression of alpha5 and alpha7 mRNAs was detected in a subpopulation of hippocampal interneurons. In contrast, in the subiculum, numerous cells exhibited strong hybridization signal for alpha5 and alpha7 mRNAs, but co-expression was rarely detected. In conclusion, similar to other nAChR subunits, there is transient expression of alpha5 mRNA during cortical and hippocampal development. This expression pattern places nicotinic receptors containing the alpha5 subunit in a position to regulate glutamatergic and GABAergic transmission during the postnatal period.
Collapse
Affiliation(s)
- Ursula H Winzer-Serhan
- Department of Medical Pharmacology and Toxicology, Health Science Center, Texas A and M University System, College Station, Texas 77843, USA.
| | | |
Collapse
|
29
|
Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 2005; 74:363-96. [PMID: 15649582 DOI: 10.1016/j.pneurobio.2004.09.006] [Citation(s) in RCA: 716] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 09/29/2004] [Indexed: 02/07/2023]
Abstract
Neuronal nicotinic receptors (NAChRs) form a heterogeneous family of ion channels that are differently expressed in many regions of the central nervous system (CNS) and peripheral nervous system. These different receptor subtypes, which have characteristic pharmacological and biophysical properties, have a pentameric structure consisting of the homomeric or heteromeric combination of 12 different subunits (alpha2-alpha10, beta2-beta4). By responding to the endogenous neurotransmitter acetylcholine, NAChRs contribute to a wide range of brain activities and influence a number of physiological functions. Furthermore, it is becoming evident that the perturbation of cholinergic nicotinic neurotransmission can lead to various diseases involving nAChR dysfunction during development, adulthood and ageing. In recent years, it has been discovered that NAChRs are present in a number of non-neuronal cells where they play a significant functional role and are the pathogenetic targets in several diseases. NAChRs are also the target of natural ligands and toxins including nicotine (Nic), the most widespread drug of abuse. This review will attempt to survey the major achievements reached in the study of the structure and function of NAChRs by examining their regional and cellular localisation and the molecular basis of their functional diversity mainly in pharmacological and biochemical terms. The recent availability of mice with the genetic ablation of single or double nicotinic subunits or point mutations have shed light on the role of nAChRs in major physiological functions, and we will here discuss recent data relating to their behavioural phenotypes. Finally, the role of NAChRs in disease will be considered in some details.
Collapse
Affiliation(s)
- C Gotti
- CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology Section, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | | |
Collapse
|
30
|
Cao YJ, Surowy CS, Puttfarcken PS. Nicotinic acetylcholine receptor-mediated [3H]dopamine release from hippocampus. J Pharmacol Exp Ther 2005; 312:1298-304. [PMID: 15542623 DOI: 10.1124/jpet.104.076794] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism of nicotinic acetylcholine receptor (nAChR)-induced hippocampal dopamine (DA) release was investigated using rat hippocampal slices. nAChRs involved in hippocampal DA and norepinephrine (NE) release were investigated using prototypical agonists and antagonists and several relatively novel compounds: ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine], (+/-)-UB-165 [(2-chloro-5-pyridyl)-9-azabicyclo [4.2.1]non2-ene], and MG 624 [N,N,N-triethyl-2-[4-(2 phenylethenyl)phenoxy]-ethanaminium iodine]. (+/-)-Epibatidine, (+/-)-UB-165, anatoxin-a, ABT-594, (-)-nicotine, 1,1-dimethyl-4-phenyl-piperazinium iodide, and (-)-cytisine (in decreasing order of potency) evoked [(3)H]DA release in a mecamylamine-sensitive manner. Aside from (+/-)-UB-165, all the agonists displayed full efficacy relative to 100 microM (-)-nicotine in [(3)H]DA release. In contrast, (+/-)-UB-165 was a partial agonist, evoking 58% of 100 microM (-)-nicotine response. Mecamylamine, MG 624, hexamethonium, d-tubocurare, and dihydro-beta-erythroidine (in decreasing order of potency), but not alpha-conotoxin-MII, methyllycaconitine, alpha-conotoxin-ImI, or alpha-bungarotoxin, attenuated 100 microM (-)-nicotine-evoked [(3)H]DA release in a concentration-dependent manner. (+/-)-UB-165, ABT-594, and MG 624 exhibited different pharmacologic profiles in the [(3)H]NE release assay when compared with their effect on [(3)H]DA release. ABT-594 was 4.5-fold more potent, and (+/-)-UB-165 was a full agonist in contrast to its partial agonism in [(3)H]DA release. MG 624 potently and completely blocked NE release evoked by 100 microM (-)-nicotine and 10 microM (+/-)-UB-165, whereas it only partially inhibited (-)-nicotine-evoked [(3)H]DA release. In conclusion, we provide evidence that [(3)H]DA can be evoked from the hippocampus and that the pharmacologic profile for nAChR-evoked hippocampal [(3)H]DA release suggests the involvement of alpha3beta4(*) and at least one other nAChR subtype, thus distinguishing it from that of nAChR-evoked hippocampal [(3)H]NE release.
Collapse
Affiliation(s)
- Ying-Jun Cao
- Neurological Diseases Research, Global Pharmaceutical Research and Development, 100 Abbott Park Road, Building AP9A, Room 324, Abbott Park, IL 60064-6125, USA
| | | | | |
Collapse
|
31
|
Fischer H, Orr-Urtreger A, Role LW, Huck S. Selective deletion of the alpha5 subunit differentially affects somatic-dendritic versus axonally targeted nicotinic ACh receptors in mouse. J Physiol 2004; 563:119-37. [PMID: 15611037 PMCID: PMC1665561 DOI: 10.1113/jphysiol.2004.075788] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have compared the functional properties of nicotinic acetylcholine receptors (nAChRs) within both somatic and presynaptic domains of superior cervical ganglion (SCG) neurones from wild-type (WT) mice with those expressed by SCG neurones from mice with a targeted deletion of the gene for the alpha5-subunit. The functional profile of somatic nAChRs was assayed by direct macroscopic current recording and from measurements of nicotinic agonist-induced calcium transients with fura-2 imaging. The profile of nAChRs at presynaptic sites was assayed by measurement of nicotinic agonist-induced transmitter release (as preloaded [3H]noradrenaline) under conditions of action potential blockade. We have examined the responses to the nicotinic agonists acetylcholine, nicotine, cytisine, dimethylphenylpiperazinium iodide (DMPP) and epibatidine. Macroscopic current and calcium imaging assays revealed several differences in the functional profile of somatic nAChRs in WT SCG neurones compared with those from mice with the alpha5 subunit deleted. Somatic nAChRs in control animals were more potently activated by cytisine as compared to DMPP. In contrast, DMPP was consistently more potent than cytisine in mice lacking the alpha5 nAChR subunit. Differences in the somatic nAChR rank order of potency were most prominent after a least 1 day in vitro. The magnitude of somatic nAChR responses to nicotinic agonists was not substantially different in control mice compared with those of alpha5 subunit-deleted animals. Comparison of presynaptic nAChR-mediated responses in WT versus alpha5 subunit-deleted animals revealed a very different set of changes in the functional profile of prejunctional nAChRs compared with somatic nAChRs. In contrast to somatic nAChRs, the responses of prejunctional receptors were markedly enhanced in alpha5 knockout animals compared with control. Furthermore, all prejunctional receptor responses were most potently activated by DMPP in both control and in alpha5 subunit-deleted mice. Hence, the presence or absence of the alpha5 subunit did not affect the rank order of potency of agonists at preterminal sites but greatly affected the magnitude of presynaptic nAChR-mediated responses. The enhanced efficacy of nicotine at presynaptic receptors was corroborated in an acute atrium preparation from postnatal alpha5 subunit-deleted mice. These results confirm and significantly extend our previous observation that in the sympathetic nervous system, somatic and prejunctional receptors are different and rely on the presence of the alpha5 subunit in a distinct manner.
Collapse
Affiliation(s)
- Harald Fischer
- Division of Biochemistry and Molecular Biology, Centre for Brain Research, Medical University Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
32
|
Rau KK, Johnson RD, Cooper BY. Nicotinic AChR in subclassified capsaicin-sensitive and -insensitive nociceptors of the rat DRG. J Neurophysiol 2004; 93:1358-71. [PMID: 15483069 DOI: 10.1152/jn.00591.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nociceptive cells of the dorsal root ganglion (DRG) were subclassified, in vitro, according to patterns of voltage-activated currents. The distribution and form of nicotinic ACh receptors (nAChRs) were determined. nAChRs were present on both capsaicin-sensitive and -insensitive nociceptors but were not universally present in unmyelinated nociceptors. In contrast, all A delta nociceptors (types 4, 6, and 9) expressed slowly decaying nAChR. Three major forms of nicotinic currents were identified. Specific agonists and antagonists were used to demonstrate the presence of alpha7 in two classes of capsaicin-sensitive, unmyelinated nociceptors (types 2 and 8). In type 2 cells, alpha7-mediated currents were found in isolation. Whereas alpha7 was co-expressed with other nAChR in type 8 cells. These were the only classes in which alpha7 was identified. Other nociceptive classes expressed slowly decaying currents with beta4 pharmacology. Based on concentration response curves formed by nicotinic agonists [ACh, nicotine, dimethyl phenyl piperazinium (DMPP), cytisine] evidence emerged of two distinct nAChR differentially expressed in type 4 (alpha3beta4) and types 5 and 8 (alpha3beta4 alpha5). Although identification could not be made with absolute certainty, patterns of potency (type 4: DMPP > cytisine > nicotine = ACh; type 5 and type 8: DMPP = cytisine > nicotine = ACh) and efficacy provided strong support for the presence of two distinct channels based on an alpha3beta4 platform. Studies conducted on one nonnociceptive class (type 3) failed to reveal any nAChR. After multiple injections of Di-I (1,1'-dilinoleyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) into the hairy skin of the hindlimb, we identified cell types 2, 4, 6, 8, and 9 as skin nociceptors that expressed nicotinic receptors. We conclude that at least three nicotinic AChR are diversely distributed into discrete subclasses of nociceptors that innervate hairy skin.
Collapse
Affiliation(s)
- K K Rau
- Deptartment of Neuroscience, College of Medicine and University of Florida McKnight Brain Institute, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
33
|
Wang N, Orr-Urtreger A, Chapman J, Rabinowitz R, Korczyn AD. Nicotinic acetylcholine receptor α5 subunits modulate oxotremorine-induced salivation and tremor. J Neurol Sci 2004; 222:87-91. [PMID: 15240201 DOI: 10.1016/j.jns.2004.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 04/14/2004] [Indexed: 11/30/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are composed of 12 subunits (alpha2-alpha10 and beta2-beta4). alpha5 Subunits, expressed throughout the central nervous system (CNS) and the autonomic nervous system (ANS), possess unique pharmacological properties. The effects of oxotremorine (OXO) on autonomic functions and tremor were examined in mice lacking alpha5 nAChR subunits (alpha5-/-) and compared with those in wild-type (WT) control mice. The alpha5-/- mice showed significantly increased salivation and tremor responses to OXO. The hypothermia, bradycardia and defecation induced by OXO were of similar magnitudes in the two mouse strains. The enhanced OXO effects in alpha5-/- mice indicate inhibitory effects of alpha5 subunits in autonomic ganglia, and support the participation of these subunits in cholinergic transmission in autonomic ganglia.
Collapse
Affiliation(s)
- Ningshan Wang
- Department of Physiology and Pharmacology, Sackler Medical School, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
34
|
Yang L, Zhang FX, Huang F, Lu YJ, Li GD, Bao L, Xiao HS, Zhang X. Peripheral nerve injury induces trans-synaptic modification of channels, receptors and signal pathways in rat dorsal spinal cord. Eur J Neurosci 2004; 19:871-83. [PMID: 15009134 DOI: 10.1111/j.0953-816x.2004.03121.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peripheral tissue injury-induced central sensitization may result from the altered biochemical properties of spinal dorsal horn. However, peripheral nerve injury-induced modification of genes in the dorsal horn remains largely unknown. Here we identified strong changes of 14 channels, 25 receptors and 42 signal transduction related molecules in Sprague-Dawley rat dorsal spinal cord 14 days after peripheral axotomy by cDNA microarray. Twenty-nine genes were further confirmed by semiquantitative RT-PCR, Northern blotting, in situ hybridization and immunohistochemistry. These regulated genes included Ca2+ channel alpha1E and alpha2/delta1 subunits, alpha subunits for Na+ channel 1 and 6, Na+ channel beta subunit, AMAP receptor GluR3 and 4, GABAA receptor alpha5 subunit, nicotinic acetylcholine receptor alpha5 and beta2 subunits, PKC alpha, betaI and delta isozymes, JNK1-3, ERK2-3, p38 MAPK and BatK and Lyn tyrosine-protein kinases, indicating that several signal transduction pathways were activated in dorsal spinal cord by peripheral nerve injury. These results demonstrate that peripheral nerve injury causes phenotypic changes in spinal dorsal horn. Increases in Ca2+ channel alpha2/delta1 subunit, GABAA receptor alpha5 subunit, Na+ channels and nicotinic acetylcholine receptors in both dorsal spinal cord and dorsal root ganglia indicate their potential roles in neuropathic pain control.
Collapse
Affiliation(s)
- Liang Yang
- Laboratory of Sensory System, Institute of Neurosciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Vincler M, Eisenach JC. Plasticity of spinal nicotinic acetylcholine receptors following spinal nerve ligation. Neurosci Res 2004; 48:139-45. [PMID: 14741388 DOI: 10.1016/j.neures.2003.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The nicotinic cholinergic system is known to be important in the processing of nociceptive information. In the spinal cord, nicotinic receptors are expressed on primary afferent terminals, inhibitory interneurons and descending noradrenergic and serotoninergic fibers. Following peripheral nerve injury, the expression of numerous receptors involved in nociceptive processing is altered in the superficial dorsal horn of the spinal cord. However, the expression of nicotinic acetylcholine receptor subunits in the lumbar spinal cord following peripheral nerve injury has not been investigated. We examined the expression of the alpha3, alpha4, alpha5, alpha7, beta2, beta3 and beta4 nicotinic subunits in the spinal cord of normal and spinal nerve ligated rats using immunocytochemistry. Two nicotinic subunits were found to have an increased expression following spinal nerve ligation. The number of cells expressing the alpha3 subunit in the dorsal horn increased bilaterally following spinal nerve injury. Also, the number of alpha5 immunoreactive fibers increased significantly ipsilateral to ligation. The expression of the alpha4, alpha7, beta2, beta3 and beta4 subunits was unchanged. We propose that the increased expression of the alpha3 and alpha5 nicotinic subunits may contribute to the mechanical hypersensitivity observed following spinal nerve ligation.
Collapse
Affiliation(s)
- Michelle Vincler
- Department of Anesthesiology, Center for the Study of Pharmacologic Plasticity in the Presence of Pain, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
36
|
Nicotinic acetylcholine receptors in the nervous system. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1569-2558(03)32012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
37
|
Yakel JL, Shao Z. Functional and molecular characterization of neuronal nicotinic ACh receptors in rat hippocampal interneurons. PROGRESS IN BRAIN RESEARCH 2004; 145:95-107. [PMID: 14650909 DOI: 10.1016/s0079-6123(03)45006-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jerrel L Yakel
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, F2-08, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
38
|
Lang PM, Burgstahler R, Sippel W, Irnich D, Schlotter-Weigel B, Grafe P. Characterization of neuronal nicotinic acetylcholine receptors in the membrane of unmyelinated human C-fiber axons by in vitro studies. J Neurophysiol 2003; 90:3295-303. [PMID: 12878715 DOI: 10.1152/jn.00512.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Application of acetylcholine to peripheral nerve terminals in the skin is a widely used test in studies of human small-fiber functions. However, a detailed pharmacological profile and the subunit composition of nicotinic acetylcholine receptors in human C-fiber axons are not known. In the present study, we recorded acetylcholine-induced changes of the excitability and of the intracellular Ca2+ concentration in C-fiber axons of isolated human nerve segments. In addition, using immunohistochemistry, an antibody of a subtype of nicotinic acetylcholine receptor was tested. Acetylcholine and agonists reduced the current necessary for the generation of action potentials in C fibers by <or=30%. This increase in axonal excitability was accompanied by a rise in the free intracellular Ca2+ concentration. The following rank order of potency for agonists was found: epibatidine >> 5-Iodo-A-85380 > 1,1-dimethyl-4-phenylpiperazinium iodide > nicotine > cytisine > acetylcholine; choline had no effect. The epibatidine-induced increase in axonal excitability was blocked by mecamylamine and, less efficiently, by methyllycacontine and dihydro-beta-erythroidine. Many C-fiber axons were labeled by an antibody that recognizes the alpha5 subunit of nicotinic acetylcholine receptors. In summary, electrophysiological and immunohistochemical data indicate the functional expression of nicotinic acetylcholine receptors composed of alpha3, alpha5, and beta4 but not of alpha4/beta2 or of alpha7 subunits in the axonal membrane of unmyelinated human C fibers. In addition, the observations suggest that the axonal membrane of C fibers in isolated segments of human sural nerve can be used as a model for presumed cholinergic chemosensitivity of axonal terminals.
Collapse
Affiliation(s)
- P M Lang
- Departments of Physiology and Anesthesiology and Friedrich-Baur-Institute, Ludwig-Maximilians University, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Fickbohm D, Trimmer BA. Antisense inhibition of neuronal nicotinic receptors in the tobacco-feeding insect, Manduca sexta. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2003; 53:172-185. [PMID: 12886515 DOI: 10.1002/arch.10100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Acetylcholine is the predominant excitatory transmitter in the insect central nervous system with many of its effects mediated by nicotinic acetylcholine receptors. These receptors are present at very high density and are structurally heterogeneous, although little is known about functional distinctions between them. An interesting system for examining these receptors is the larval stage of Manduca sexta, a nicotine-resistant tobacco-feeding insect. The nicotinic responses of cultured neurons were found to be blocked by mecamylamine and curare but highly resistant to alpha-bungarotoxin. The responses were also unaffected by the reducing agent dithiothreitol and the alkylating agent bromoacetylcholine suggesting that the alpha-subunit dicysteine agonist binding site is protected. To begin determining the functional roles of different subunits in these receptors, cultured neurons were treated with oligonucleotides based on the gene sequence of the alpha subunit, MARA1. Antisense DNA caused a significant downward shift in the amplitude distribution of nicotinic responses compared to sense or reverse antisense treatments. These treatments did not affect currents mediated by the application of GABA. The reduction in the nicotinic depolarization and inward currents did not affect the rate of current onset or recovery, suggesting that antisense MARA1 causes a partial block of all nicotinic responses in these neurons. These results demonstrate that receptor gene expression in insect neurons can be manipulated in a sequence-specific manner by antisense treatment and they provide evidence that MARA1 is important for normal nicotinic responses in Manduca.
Collapse
Affiliation(s)
- David Fickbohm
- Department of Biology, Dana Laboratory, Tufts University, Medford, Massachusetts, 02155, USA
| | | |
Collapse
|
40
|
Arias HR, Kem WR, Trudell JR, Blanton MP. Unique general anesthetic binding sites within distinct conformational states of the nicotinic acetylcholine receptor. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 54:1-50. [PMID: 12785284 DOI: 10.1016/s0074-7742(03)54002-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
General anesthesia is a complex behavioral state provoked by the pharmacological action of a broad range of structurally different hydrophobic molecules called general anesthetics (GAs) on receptor members of the genetically linked ligand-gated ion channel (LGIC) superfamily. This superfamily includes nicotinic acetylcholine (AChRs), type A and C gamma-aminobutyric acid (GABAAR and GABACR), glycine (GlyR), and type 3 5-hydroxytryptamine (5-HT3R) receptors. This review focuses on recent advances in the localization of GA binding sites on conformationally and compositionally distinct AChRs. The experimental evidence outlined in this review suggests that: 1. Several neuronal-type AChRs might be targets for the pharmacological action of distinct GAs. 2. The molecular components of a specific GA binding site on a certain receptor subtype are different from the structural determinants of the locus for the same GA on a different receptor subtype. 3. There are unique binding sites for distinct GAs in the same receptor protein. 4. A GA can activate, potentiate, or inhibit an ion channel, indicating the existence of more than one binding site for the same GA. 5. The affinity of a specific GA depends on the conformational state of the receptor. 6. GAs inhibition channels by at least two mechanisms, an open-channel-blocking and/or an allosteric mechanism. 7. Certain GAs may inhibit AChR function by competing for the agonist binding sites or by augmenting the desensitization rate.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA
| | | | | | | |
Collapse
|
41
|
Di Angelantonio S, Giniatullin R, Costa V, Sokolova E, Nistri A. Modulation of neuronal nicotinic receptor function by the neuropeptides CGRP and substance P on autonomic nerve cells. Br J Pharmacol 2003; 139:1061-73. [PMID: 12871824 PMCID: PMC1573932 DOI: 10.1038/sj.bjp.0705337] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Accepted: 04/29/2003] [Indexed: 11/08/2022] Open
Abstract
1. One classical example of how neuropeptides can affect the function of ligand-gated receptors is the modulation of neuronal nicotinic receptors (nAChRs) by substance P. The present review updates current understanding of this action by substance P and compares it with other neuropeptides more recently found to modulate nAChRs in the autonomic nervous system. 2. Calcitonin gene-related peptide (CGRP) and its N-terminal fragments have been shown to exert complex inhibitory as well facilitatory actions on nAChRs. Fragments such as CGRP(1-4), CGRP(1-5) and CGRP(1-6) rapidly and reversibly enhance agonist sensitivity of nAChRs without directly activating those receptors. Longer fragments or the full-length peptide potently inhibit responses mediated by nAChRs via an apparently competitive-type antagonism. This phenomenon differs from the substance P-induced block, which is agonist use-dependent and preferential towards large nicotinic responses. 3. It is argued that the full-length peptides CGRP and substance P might play distinct roles in the activity-dependent modulation of cholinergic neurotransmission, by inhibiting background noise in the case of CGRP or by reducing excessive excitation in the case of substance P. Hence, multiple neuropeptide mechanisms may represent a wide array of fine-tuning processes to regulate nicotinic synaptic transmission. 4. The availability of novel CGRP derivatives with a strong enhancing action on nAChRs may offer new leads for the drug design targeted for potentiation of nAChRs in the autonomic nervous system as well as in the brain, a subject of interest to counteract the deficit of the nAChR function associated with neurodegenerative diseases like Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Silvia Di Angelantonio
- Biophysics Sector and INFM Unit, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
- IRCCS St Lucia, Via Ardeatina 306, 00178 Rome, Italy
| | - Rashid Giniatullin
- Biophysics Sector and INFM Unit, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| | - Valeria Costa
- Biophysics Sector and INFM Unit, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| | - Elena Sokolova
- Biophysics Sector and INFM Unit, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| | - Andrea Nistri
- Biophysics Sector and INFM Unit, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| |
Collapse
|
42
|
Salas R, Orr-Urtreger A, Broide RS, Beaudet A, Paylor R, De Biasi M. The nicotinic acetylcholine receptor subunit alpha 5 mediates short-term effects of nicotine in vivo. Mol Pharmacol 2003; 63:1059-66. [PMID: 12695534 DOI: 10.1124/mol.63.5.1059] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotine, acting at pentameric neuronal nicotinic acetylcholine receptors (nAChRs), is the primary addictive component in tobacco. At low doses, it affects attention, learning, memory, anxiety, cardiovascular responses, thermoregulation, and nociception. At high doses, nicotine produces more drastic behaviors and eventually induces tonic-clonic seizures in rodents. In mammals, several subunits of the nAChRs have been cloned, including eight alpha and three beta subunits. To study the physiological role of the alpha 5 subunit, we have generated alpha 5-deficient mice. These mice have a generally healthy appearance and are normal in a standard battery of behavioral tests. However, the sensitivity of alpha 5 mutant mice to nicotine-induced behaviors and seizures is dramatically reduced compared with their wild-type littermates. These animals have a normal brain anatomy and normal levels of mRNA for other nAChR subunits, namely alpha 4, alpha 6, alpha 7, beta 2, and beta 4. In addition, (125)I-epibatidine and [(125)I]alpha-bungarotoxin binding in the brains of alpha 5-deficient mice is normal. Together, these results suggest a direct involvement of the alpha 5 subunit in the observed phenotypes.
Collapse
Affiliation(s)
- Ramiro Salas
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
43
|
Tsuneki H, Salas R, Dani JA. Mouse muscle denervation increases expression of an alpha7 nicotinic receptor with unusual pharmacology. J Physiol 2003; 547:169-79. [PMID: 12562921 PMCID: PMC2342616 DOI: 10.1113/jphysiol.2002.036368] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neuronal nicotinic alpha7 subunits have been found in chick and rat skeletal muscle during development and denervation. In the present study, reverse transcriptase-polymerase chain reaction was used to detect alpha7 subunit mRNA in denervated mouse muscle. To determine whether the alpha7 subunit forms functional nicotinic acetylcholine receptors (nAChRs) in muscle, choline was used to induce a membrane depolarization because choline has been considered a specific agonist of alpha7-containing (alpha7*) nAChRs. We found, however, that choline (3-10 mM) also weakly activates muscle nAChRs. After inhibiting muscle nAChRs with a specific muscle nAChR inhibitor, alpha-conotoxin GI (alphaCTxGI), choline was used to activate the alpha7* nAChRs on muscle selectively. Four weeks after denervation, rapid application of choline (10 mM) elicited a substantial depolarization in the presence of alphaCTxGI (0.1 microM). This component of the depolarization was never present in denervated muscles obtained from mutant mice lacking the alpha7 subunit (i.e. alpha7-null mice). The depolarization component that is resistant to alphaCTxGI was antagonized by pancuronium (3-10 microM) and by a 4-oxystilbene derivative (F3, 0.1-0.5 microM) at concentrations considered highly specific for alpha7* nAChRs. Another selective alpha7 antagonist, methyllycaconitine (0.05-5 microM), did not strongly inhibit this choline-induced depolarization. Furthermore, the choline-sensitive nAChRs showed little desensitization over 10 s of application with choline (10-30 mM). These results indicate that functional alpha7* nAChRs are significantly present on denervated muscle, and that these receptors display unusual functional and pharmacological characteristics.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Division of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030-3498, USA
| | | | | |
Collapse
|
44
|
Girod R, Jareb M, Moss J, Role L. Mapping of presynaptic nicotinic acetylcholine receptors using fluorescence imaging of neuritic calcium. J Neurosci Methods 2003; 122:109-22. [PMID: 12573471 DOI: 10.1016/s0165-0270(02)00232-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuronal nicotinic receptors (nAChRs) appear to function at both pre- and postsynaptic sites, to modulate the release of neurotransmitter, and to mediate synaptic transmission, respectively. Localization of functional nAChRs at presynaptic structures has only been possible under the best of circumstances where the presynaptic structure is very large allowing direct nAChR channel recording. We report here a novel and simple method that allows the visualization of stimulus-evoked changes in Fura-2 fluorescence in the presynaptic structures of essentially any neuron type in vitro. Following 'loading' of all neurons by incubation with the calcium-sensitive dye, Fura-2-AM, we selectively reduced the fluorescent signal in the postsynaptic neuron by injecting the Fura-2 quenching agent, Mn(2+), into the postsynaptic neuron. After quenching, nicotine treatment elicits calcium transients that can be observed in spatially distinct regions of neurite bundles contacting the Mn(2+)-infused neuron. Thus, the approach described allows one to readily map the distribution of activated nAChRs on presynaptic inputs in vitro.
Collapse
Affiliation(s)
- Romain Girod
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive PI, Annex 807, New York, NY 10032, USA
| | | | | | | |
Collapse
|
45
|
De Biasi M. Nicotinic mechanisms in the autonomic control of organ systems. JOURNAL OF NEUROBIOLOGY 2002; 53:568-79. [PMID: 12436421 DOI: 10.1002/neu.10145] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Most visceral organs are under the control of the autonomic nervous system (ANS). Information on the state and function of these organs is constantly relayed to the central nervous system (CNS) by sensory afferent fibers. The CNS integrates the sensory inputs and sends neural commands back to the organ through the ANS. The autonomic ganglia are the final site for the integration of the message traveling from the CNS. Nicotinic acetylcholine receptors (nAChRs) are the main mediators of fast synaptic transmission in ganglia, and therefore, are key molecules for the processing of neural information in the ANS. This review focuses on the role of nAChRs in the control of organ systems such as heart, gut, and bladder. The autonomic control of these organ systems is discussed in the light of the results obtained from the analysis of mice carrying mutations targeted to nAChR subunits expressed in the ANS.
Collapse
Affiliation(s)
- Mariella De Biasi
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
46
|
Wang N, Orr-Urtreger A, Korczyn AD. The role of neuronal nicotinic acetylcholine receptor subunits in autonomic ganglia: lessons from knockout mice. Prog Neurobiol 2002; 68:341-60. [PMID: 12531234 DOI: 10.1016/s0301-0082(02)00106-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChR), composed of 12 subunits (alpha2-alpha10, beta2-beta4), are expressed in autonomic ganglia, playing a central role in autonomic transmission. The repertoire of nicotinic subunits in autonomic ganglia includes alpha3, alpha5, alpha7, beta2 and beta4 subunits. In the last 10 years, heterologous expression studies have revealed much about the nature of neuronal nAChRs. However, there is only limited understanding of subunit actions in autonomic system. Functional deletions of subunit by gene knockout in animals could overcome these limitations. We review recent studies on nAChRs on autonomic ganglia for physiological and pharmacological properties and potential locations of the subunits.
Collapse
Affiliation(s)
- Ningshan Wang
- Department of Physiology and Pharmacology, Sackler Medical School, Tel Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|
47
|
Rosenberg MM, Blitzblau RC, Olsen DP, Jacob MH. Regulatory mechanisms that govern nicotinic synapse formation in neurons. JOURNAL OF NEUROBIOLOGY 2002; 53:542-55. [PMID: 12436419 DOI: 10.1002/neu.10112] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Individual cholinoceptive neurons express high levels of different neuronal nicotinic acetylcholine receptor (nAChR) subtypes, and target them to the appropriate synaptic regions for proper function. This review focuses on the intercellular and intracellular processes that regulate nAChR expression in vertebrate peripheral nervous system (PNS) and central nervous system (CNS) neurons. Specifically, we discuss the cellular and molecular mechanisms that govern the induction and maintenance of nAChR expression-innervation, target tissue interactions, soluble factors, and activity. We define the regulatory principles of interneuronal nicotinic synapse differentiation that have emerged from these studies. We also discuss the molecular players that target nAChRs to the surface membrane and the interneuronal synapse.
Collapse
Affiliation(s)
- Madelaine M Rosenberg
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
48
|
Bobryshev AY, Skok VI. Fast excitatory postsynaptic currents in neurons of the rabbit pelvic plexus. Auton Neurosci 2002; 99:78-84. [PMID: 12241091 DOI: 10.1016/s1566-0702(02)00064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fast excitatory postsynaptic currents have been recorded at 23-27 degrees C from rabbit pelvic plexus neurons by a two-electrode voltage-clamp technique. The synaptic current decay was bi-exponential with the fast and slow components characterized at -50 mV by mean time constants of 4.0 +/- 0.3 and 21.9 +/- 2.8 ms (n = 11), respectively. Both components contributed to the synaptic current approximately equally and reversed at -5 mV. Hexamethonium (10 microM) decreased the amplitude and decay time constant of both synaptic current components; this effect increased with hyperpolarization and is consistent with a channel-blocking action. At - 50 mV, mean rate constants of hexamethonium association with open ion channels of nicotinic acetylcholine receptors presumably mediating the fast and slow synaptic current components were (18.4 +/- 2.3) x 10(6) and (6.1 +/- 1.2) x 10(6) M(-1) s(-1) (n = 4), respectively. These data suggest that the fast excitatory postsynaptic current in rabbit pelvic plexus neurons is probably mediated by at least two different subtypes of nicotinic acetylcholine receptors. Hexamethonium blocks open ion channels of both subtypes with efficiency allowing to exclude an appreciable presence of homomeric alpha7 nicotinic acetylcholine receptors on the subsynaptic membrane.
Collapse
Affiliation(s)
- Andrei Yu Bobryshev
- Department of Autonomic Nervous System Physiology, Bogomoletz Institute of Physiology, Kiev, Ukraine.
| | | |
Collapse
|
49
|
Wang N, Orr-Urtreger A, Chapman J, Rabinowitz R, Nachman R, Korczyn AD. Autonomic function in mice lacking alpha5 neuronal nicotinic acetylcholine receptor subunit. J Physiol 2002; 542:347-54. [PMID: 12122136 PMCID: PMC2316148 DOI: 10.1113/jphysiol.2001.013456] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neuronal acetylcholine nicotinic receptors (nAChR) are composed of 12 subunits (alpha2-10, beta2-4), of which alpha3, alpha5, alpha7, beta2 and beta4 subunits are known to exist in the autonomic nervous system (ANS). alpha5 subunits possess unique biophysical and pharmacological properties. The present study was undertaken to examine the functional role and pharmacological properties of the nAChR alpha5 subunits in the ANS using mice lacking alpha5 nAChR subunits (alpha5-/-). These mice grew to normal size showing no obvious physical or neurological deficit. They also showed normality in thermoregulation, pupil size and resting heart rate under physiological conditions. The heart rate and rectal temperature did not differ between alpha5-/- and wild-type mice during exposure to cold stress. An impairment of cardiac parasympathetic ganglionic transmission was observed during high frequency vagal stimulation, which caused cardiac arrest in all wild-type animals while alpha5-/- mice were more resistant. Deficiency of alpha5 subunits strikingly increased the sensitivity to a low concentration of hexamethonium, leading to a nearly complete blockade of bradycardia in response to vagal stimulation. Such a concentration of hexamethonium only slightly depressed the effects of vagal stimulation in control mice. Deficiency of alpha5 subunits significantly increased ileal contractile responses to cytisine and epibatidine. These results suggest that alpha5 subunits may affect the affinity and sensitivity of agonists and antagonists in the native receptors. Previous studies revealed that alpha5 subunits form functional receptors only in combination with other alpha and beta subunits. Thus, the data presented here imply that alpha5 subunits modulate the activity of nAChR in autonomic ganglia in vivo.
Collapse
Affiliation(s)
- Ningshan Wang
- Department of Physiology and Pharmacology, Sackler Medical School, Tel Aviv University, Israel
| | | | | | | | | | | |
Collapse
|
50
|
Marks MJ, Whiteaker P, Grady SR, Picciotto MR, McIntosh JM, Collins AC. Characterization of [(125) I]epibatidine binding and nicotinic agonist-mediated (86) Rb(+) efflux in interpeduncular nucleus and inferior colliculus of beta2 null mutant mice. J Neurochem 2002; 81:1102-15. [PMID: 12065623 DOI: 10.1046/j.1471-4159.2002.00910.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The beta2 nicotinic acetylcholine receptor subunit null mutation eliminated most high affinity [(3) H]epibatidine binding in mouse brain, but significant binding remained in accessory olfactory nucleus, medial habenula, inferior colliculus and interpeduncular nucleus. Residual [(125) I]epibatidine binding sites in the inferior colliculus and interpeduncular nucleus were subsequently characterized. Inhibition of [(125) I]epibatidine binding by 12 agonists and six antagonists was very similar in these regions. Most acetylcholine-stimulated (86) Rb(+) efflux is eliminated in thalamus and superior colliculus of beta2 null mutants, but significant activity remained in inferior colliculus and interpeduncular nucleus. This residual activity was subsequently characterized. The 12 nicotinic agonists tested elicited concentration-dependent (86) Rb(+) efflux. Epibatidine was the most potent agonist. Cytisine was also potent and efficacious. EC(50) values for quaternary agonists were relatively high. Cytisine-stimulated (86) Rb(+) efflux was inhibited by six classical nicotinic antagonists. Mecamylamine and D-tubocurarine were most potent, while decamethonium was the least potent. Agonists and antagonists exhibited similar potency in both brain regions. Alpha-bungarotoxin (100 nm) did not significantly inhibit cytisine-stimulated (86) Rb(+) efflux, while the alpha3beta4 selective antagonist, alphaConotoxinAuIB, inhibited a significant fraction of the response in both brain regions. Thus, beta2 null mutant mice express residual nicotinic activity with properties resembling those of alpha3beta4*-nAChR.
Collapse
Affiliation(s)
- Michael J Marks
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
| | | | | | | | | | | |
Collapse
|