1
|
Rupee S, Rupee K, Singh RB, Hanoman C, Ismail AMA, Smail M, Singh J. Diabetes-induced chronic heart failure is due to defects in calcium transporting and regulatory contractile proteins: cellular and molecular evidence. Heart Fail Rev 2022; 28:627-644. [PMID: 36107271 DOI: 10.1007/s10741-022-10271-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
Heart failure (HF) is a major deteriorating disease of the myocardium due to weak myocardial muscles. As such, the heart is unable to pump blood efficiently around the body to meet its constant demand. HF is a major global health problem with more than 7 million deaths annually worldwide, with some patients dying suddenly due to sudden cardiac death (SCD). There are several risk factors which are associated with HF and SCD which can negatively affect the heart synergistically. One major risk factor is diabetes mellitus (DM) which can cause an elevation in blood glucose level or hyperglycaemia (HG) which, in turn, has an insulting effect on the myocardium. This review attempted to explain the subcellular, cellular and molecular mechanisms and to a lesser extent, the genetic factors associated with the development of diabetes- induced cardiomyopathy due to the HG which can subsequently lead to chronic heart failure (CHF) and SCD. The study first explained the structure and function of the myocardium and then focussed mainly on the excitation-contraction coupling (ECC) processes highlighting the defects of calcium transporting (SERCA, NCX, RyR and connexin) and contractile regulatory (myosin, actin, titin and troponin) proteins. The study also highlighted new therapies and those under development, as well as preventative strategies to either treat or prevent diabetic cardiomyopathy (DCM). It is postulated that prevention is better than cure.
Collapse
|
2
|
Mittal A, Garg R, Bahl A, Khullar M. Molecular Mechanisms and Epigenetic Regulation in Diabetic Cardiomyopathy. Front Cardiovasc Med 2022; 8:725532. [PMID: 34977165 PMCID: PMC8716459 DOI: 10.3389/fcvm.2021.725532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus (DM) is an important lifestyle disease. Type 2 diabetes is one of the prime contributors to cardiovascular diseases (CVD) and diabetic cardiomyopathy (DbCM) and leads to increased morbidity and mortality in patients with DM. DbCM is a typical cardiac disease, characterized by cardiac remodeling in the presence of DM and in the absence of other comorbidities such as hypertension, valvular diseases, and coronary artery disease. DbCM is associated with defective cardiac metabolism, altered mitochondrial structure and function, and other physiological and pathophysiological signaling mechanisms such as oxidative stress, inflammation, myocardial apoptosis, and autophagy. Epigenetic modifiers are crucial players in the pathogenesis of DbCM. Thus, it is important to explore the role of epigenetic modifiers or modifications in regulating molecular pathways associated with DbCM. In this review, we have discussed the role of various epigenetic mechanisms such as histone modifications (acetylation and methylation), DNA methylation and non-coding RNAs in modulating molecular pathways involved in the pathophysiology of the DbCM.
Collapse
Affiliation(s)
- Anupam Mittal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Garg
- Council of Scientific and Industrial Research - Institute of Microbial Technology, Chandigarh, India
| | - Ajay Bahl
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Al Kury LT, Chacar S, Alefishat E, Khraibi AA, Nader M. Structural and Electrical Remodeling of the Sinoatrial Node in Diabetes: New Dimensions and Perspectives. Front Endocrinol (Lausanne) 2022; 13:946313. [PMID: 35872997 PMCID: PMC9302195 DOI: 10.3389/fendo.2022.946313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
The sinoatrial node (SAN) is composed of highly specialized cells that mandate the spontaneous beating of the heart through self-generation of an action potential (AP). Despite this automaticity, the SAN is under the modulation of the autonomic nervous system (ANS). In diabetes mellitus (DM), heart rate variability (HRV) manifests as a hallmark of diabetic cardiomyopathy. This is paralleled by an impaired regulation of the ANS, and by a pathological remodeling of the pacemaker structure and function. The direct effect of diabetes on the molecular signatures underscoring this pathology remains ill-defined. The recent focus on the electrical currents of the SAN in diabetes revealed a repressed firing rate of the AP and an elongation of its tracing, along with conduction abnormalities and contractile failure. These changes are blamed on the decreased expression of ion transporters and cell-cell communication ports at the SAN (i.e., HCN4, calcium and potassium channels, connexins 40, 45, and 46) which further promotes arrhythmias. Molecular analysis crystallized the RGS4 (regulator of potassium currents), mitochondrial thioredoxin-2 (reactive oxygen species; ROS scavenger), and the calcium-dependent calmodulin kinase II (CaMKII) as metabolic culprits of relaying the pathological remodeling of the SAN cells (SANCs) structure and function. A special attention is given to the oxidation of CaMKII and the generation of ROS that induce cell damage and apoptosis of diabetic SANCs. Consequently, the diabetic SAN contains a reduced number of cells with significant infiltration of fibrotic tissues that further delay the conduction of the AP between the SANCs. Failure of a genuine generation of AP and conduction of their derivative waves to the neighboring atrial myocardium may also occur as a result of the anti-diabetic regiment (both acute and/or chronic treatments). All together, these changes pose a challenge in the field of cardiology and call for further investigations to understand the etiology of the structural/functional remodeling of the SANCs in diabetes. Such an understanding may lead to more adequate therapies that can optimize glycemic control and improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| | - Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| |
Collapse
|
4
|
Kubasov IV, Stepanov AV, Panov AA, Chistyakova OV, Sukhov IB, Dobretsov MG. Role of Potassium Currents in the Formation of After-Hyperpolarization Phase of Extracellular Action Potentials Recorded from the Control and Diabetic Rat Heart Ventricular Myocytes. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Ozturk N, Uslu S, Ozdemir S. Diabetes-induced changes in cardiac voltage-gated ion channels. World J Diabetes 2021; 12:1-18. [PMID: 33520105 PMCID: PMC7807254 DOI: 10.4239/wjd.v12.i1.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus affects the heart through various mechanisms such as microvascular defects, metabolic abnormalities, autonomic dysfunction and incompatible immune response. Furthermore, it can also cause functional and structural changes in the myocardium by a disease known as diabetic cardiomyopathy (DCM) in the absence of coronary artery disease. As DCM progresses it causes electrical remodeling of the heart, left ventricular dysfunction and heart failure. Electrophysiological changes in the diabetic heart contribute significantly to the incidence of arrhythmias and sudden cardiac death in diabetes mellitus patients. In recent studies, significant changes in repolarizing K+ currents, Na+ currents and L-type Ca2+ currents along with impaired Ca2+ homeostasis and defective contractile function have been identified in the diabetic heart. In addition, insulin levels and other trophic factors change significantly to maintain the ionic channel expression in diabetic patients. There are many diagnostic tools and management options for DCM, but it is difficult to detect its development and to effectively prevent its progress. In this review, diabetes-associated alterations in voltage-sensitive cardiac ion channels are comprehensively assessed to understand their potential role in the pathophysiology and pathogenesis of DCM.
Collapse
Affiliation(s)
- Nihal Ozturk
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Serkan Uslu
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Semir Ozdemir
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| |
Collapse
|
6
|
Ramadan NM, Malek HA, Rahman KAE, El-Kholy E, Shaalan D, Elkashef W. Liraglutide Effect on Ventricular Transient Outward K + Channel and Connexin-43 Protein Expression. Exp Clin Endocrinol Diabetes 2020; 129:899-907. [PMID: 32559789 DOI: 10.1055/a-1162-8196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Human glucagon-like peptide-1 analogue, Liraglutide, has shown cardioprotective effects in animal and clinical studies of type 2 diabetes mellitus. This study was conducted to assess the effect of Liraglutide on diabetes-induced myocardial electrical remodeling. MATERIALS AND METHODS A rat model of type 2 diabetes mellitus was induced by high-fat diet and low dose Streptozotocin (35 mg/kg). Diabetic rats were randomized into 4 subgroups (n=6-7): diabetic-untreated, diabetics treated with Liraglutide, diabetics treated with Ramipril, and diabetics treated with Metformin in addition to a control group. Changes in serum glucose, insulin, lipid profile and revised quantitative insulin sensitivity check index (QUICKI index) were assessed. QT and QTc intervals were measured and the degree of cardiac interstitial and perivascular fibrosis was examined. The expression of myocardial Ito channel α subunits, gap junction protein; Kv 4.2/4.3 and connexin 43 (Cx43) respectively, were assessed by western blotting and immunohistochemistry. RESULTS Similar to Ramipril, both Liraglutide and Metformin effectively inhibited the diabetes-induced myocardial hypertrophy and fibrosis. However, Liraglutide treatment significantly improved Kv 4.2/4.3 and Cx43 expression/distribution and prevented diabetes-related QTc interval prolongation. CONCLUSIONS We have shown that pathological alterations in myocardial Cx43 expression and distribution, in addition to reduced Ito channel expression, may underlie the QTc interval prolongation in high-fat diet/STZ rat model of type 2 diabetes mellitus. The beneficial effects of Liraglutide, as those of Ramipril, on cardiac electrophysiology could be at least attributed to its direct ability to normalize expression and distribution of Cx43 and Ito channels in the diabetic rat heart.
Collapse
Affiliation(s)
- Nehal M Ramadan
- Department of Clinical Pharmacology, Mansoura University, Faculty of Medicine, Mansoura, Egypt
| | - Hala Abdel Malek
- Department of Clinical Pharmacology, Mansoura University, Faculty of Medicine, Mansoura, Egypt
| | - Karawan Abd-El Rahman
- Department of Clinical Pharmacology, Mansoura University, Faculty of Medicine, Mansoura, Egypt
| | - Elhamy El-Kholy
- Department of Clinical Pharmacology, Mansoura University, Faculty of Medicine, Mansoura, Egypt
| | - Dalia Shaalan
- Departments of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Wagdi Elkashef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Zhang X, Qu L, Chen L, Chen C. Improvement of cardiomyocyte function by in vivo hexarelin treatment in streptozotocin-induced diabetic rats. Physiol Rep 2018; 6:e13612. [PMID: 29446246 PMCID: PMC5812882 DOI: 10.14814/phy2.13612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/27/2023] Open
Abstract
Diabetic cardiomyopathy is characterized by diastolic and systolic cardiac dysfunction, yet no therapeutic drug to specifically treat it. Hexarelin has been demonstrated to improve heart function in various types of cardiomyopathy via its receptor GHS-R. This experiment aims to test the effect of hexarelin on cardiomyocytes under experimental diabetes. Streptozotocin (STZ, 65 mg/kg)-induced diabetic rat model was employed with vehicle injection group as control. Daily hexarelin (100 μg/kg) treatment was performed for 2 weeks after 4-week STZ-induced diabetes. Cardiomyocytes were isolated by enzyme treatment under O2 -saturated perfusion for single-cell shortening, [Ca2+ ]i transient, and electrophysiology recordings. GHS-R expression and apoptosis-related signaling proteins Bax, Bcl-2, caspase-3 and 9, were assessed by western blot. Experimental data demonstrated a reduced cell contraction and relaxation in parallel with depressed rise and fall of [Ca2+ ]i transients in diabetic cardiomyocytes. Hexarelin reversed the changes in both contraction and [Ca2+ ]i . Action potential duration and transient outward potassium current (Ito ) density were dramatically increased in diabetic cardiomyocytes and hexarelin treatment reverse such changes. Upregulated GHS receptor (GHS-R) expression was observed in both control and diabetic groups after hexarelin treatment, which also caused antiapoptotic changes of Bax, Bcl-2, caspase-3 and 9 expression. In STZ-induced diabetic rats, hexarelin is able to improve cardiomyocyte function through recovery of Ito K+ currents, intracellular Ca2+ homeostasis and antiapoptotic signaling pathways.
Collapse
Affiliation(s)
- Xinli Zhang
- School of Biomedical SciencesUniversity of QueenslandSt LuciaBrisbaneQueenslandAustralia
| | - Linbing Qu
- State Key Laboratories of Respiratory DiseasesGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Ling Chen
- State Key Laboratories of Respiratory DiseasesGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Chen Chen
- School of Biomedical SciencesUniversity of QueenslandSt LuciaBrisbaneQueenslandAustralia
| |
Collapse
|
8
|
Dubó S, Gallegos D, Cabrera L, Sobrevia L, Zúñiga L, González M. Cardiovascular Action of Insulin in Health and Disease: Endothelial L-Arginine Transport and Cardiac Voltage-Dependent Potassium Channels. Front Physiol 2016; 7:74. [PMID: 27014078 PMCID: PMC4791397 DOI: 10.3389/fphys.2016.00074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
Impairment of insulin signaling on diabetes mellitus has been related to cardiovascular dysfunction, heart failure, and sudden death. In human endothelium, cationic amino acid transporter 1 (hCAT-1) is related to the synthesis of nitric oxide (NO) and insulin has a vascular effect in endothelial cells through a signaling pathway that involves increases in hCAT-1 expression and L-arginine transport. This mechanism is disrupted in diabetes, a phenomenon potentiated by excessive accumulation of reactive oxygen species (ROS), which contribute to lower availability of NO and endothelial dysfunction. On the other hand, electrical remodeling in cardiomyocytes is considered a key factor in heart failure progression associated to diabetes mellitus. This generates a challenge to understand the specific role of insulin and the pathways involved in cardiac function. Studies on isolated mammalian cardiomyocytes have shown prolongated action potential in ventricular repolarization phase that produces a long QT interval, which is well explained by attenuation in the repolarizing potassium currents in cardiac ventricles. Impaired insulin signaling causes specific changes in these currents, such a decrease amplitude of the transient outward K(+) (Ito) and the ultra-rapid delayed rectifier (IKur) currents where, together, a reduction of mRNA and protein expression levels of α-subunits (Ito, fast; Kv 4.2 and IKs; Kv 1.5) or β-subunits (KChIP2 and MiRP) of K(+) channels involved in these currents in a MAPK mediated pathway process have been described. These results support the hypothesis that lack of insulin signaling can produce an abnormal repolarization in cardiomyocytes. Furthermore, the arrhythmogenic potential due to reduced Ito current can contribute to an increase in the incidence of sudden death in heart failure. This review aims to show, based on pathophysiological models, the regulatory function that would have insulin in vascular system and in cardiac electrophysiology.
Collapse
Affiliation(s)
- Sebastián Dubó
- Department of Kinesiology, Faculty of Medicine, Universidad de Concepción Concepción, Chile
| | - David Gallegos
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Lissette Cabrera
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Department of Morphophysiology, Faculty of Medicine, Universidad Diego PortalesSantiago, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de SevillaSeville, Spain; Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research (UQCCR), University of QueenslandHerston, QLD, Queensland, Australia
| | - Leandro Zúñiga
- Centro de Investigaciones Médicas, Escuela de Medicina, Universidad de Talca Talca, Chile
| | - Marcelo González
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS-Health)Chillán, Chile
| |
Collapse
|
9
|
|
10
|
Gallego M, Alday A, Alonso H, Casis O. Adrenergic regulation of cardiac ionic channels: role of membrane microdomains in the regulation of kv4 channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:692-9. [PMID: 23811359 DOI: 10.1016/j.bbamem.2013.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022]
Abstract
The heart must constantly adapt its activity to the needs of the body. In any potentially dangerous or physically demanding situation the activated sympathetic nervous system leads a very fast cardiac response. Under these circumstances, α1-adrenergic receptors activate intracellular signaling pathways that finally phosphorylate the caveolae-located subpopulation of Kv4 channels and reduce the transient outward K(+) current (Ito) amplitude. This reduction changes the shape of the cardiac action potential and makes the plateau phase to start at higher voltages. This means that there are more calcium ions entering the myocyte and the result is an increase in the strength of the contraction. However, an excessive reduction of Ito could dangerously prolong action potential duration and this could cause arrhythmias when the heart rate is high. This excessive current reduction does not occur because there is a second population of Ito channels located in non-caveolar membrane rafts that are not accessible for α1-AR mediated regulation. Thus, the location of the components of a given transduction signaling pathway in membrane domains determines the correct and safe behavior of the heart. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Mónica Gallego
- Lascaray Research Center, University of the Basque Country (UPV/EHU), Av. Miguel de Unamuno 3, 01006 Vitoria, Spain; Departamento de Fisiología, Facultad de Farmacia, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain.
| | - Aintzane Alday
- Departamento de Fisiología, Facultad de Farmacia, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain.
| | - Hiart Alonso
- Lascaray Research Center, University of the Basque Country (UPV/EHU), Av. Miguel de Unamuno 3, 01006 Vitoria, Spain; Departamento de Fisiología, Facultad de Farmacia, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain.
| | - Oscar Casis
- Lascaray Research Center, University of the Basque Country (UPV/EHU), Av. Miguel de Unamuno 3, 01006 Vitoria, Spain; Departamento de Fisiología, Facultad de Farmacia, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain.
| |
Collapse
|
11
|
Torres-Jacome J, Gallego M, Rodríguez-Robledo JM, Sanchez-Chapula JA, Casis O. Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes. Acta Physiol (Oxf) 2013. [PMID: 23181465 DOI: 10.1111/apha.12043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS The fast transient outward current, I(to,fast) , is the most extensively studied cardiac K(+) current in diabetic animals. Two hypotheses have been proposed to explain how type-1 diabetes reduces this current in cardiac muscle. The first one is a deficiency in channel expression due to a defect in the trophic effect of insulin. The second one proposes flawed glucose metabolism as the cause of the reduced I(to,fast) . Moreover, little information exists about the effects and possible mechanisms of diabetes on the other repolarizing currents of the human heart: I(to,slow) , I(Kr) , I(Ks) , I(Kur) , I(Kslow) and I(K1) . METHODS We recorded cardiac action potentials and K(+) currents in ventricular cells isolated from control and streptozotocin- or alloxan-induced diabetic mice and rabbits. Channel protein expression was determined by immunofluorescence. RESULTS Diabetes reduces the amplitude of I(to,fast) , I(to,slow) and I(Kslow) , in ventricular myocytes from mouse and rabbit, with no effect on I(ss) , I(Kr) or I(K1) . The absence of changes in the biophysical properties of the currents and the immunofluorescence experiments confirmed the reduction in channel protein synthesis. Six-hour incubation of myocytes with insulin or pyruvate recovered current amplitudes and fluorescent staining. The activation of AMP-K reduced the same K(+) currents in healthy myocytes and prevented the pyruvate-induced current recovery. CONCLUSION Diabetes reduces K(+) current densities in ventricular myocytes due to a defect in channel protein synthesis. Activation of AMP-K secondary to deterioration in the metabolic status of the cells is responsible for K(+) channel reductions.
Collapse
Affiliation(s)
- J. Torres-Jacome
- Unidad de Investigación ‘Carlos Médez’ del Centro Universitario de Investigaciones Biomédicas; Universidad de Colima; Colima; México
| | | | - J. M. Rodríguez-Robledo
- Department of Physiology; School of Pharmacy; University of the Basque Country UPV/EHU; Vitoria; Spain
| | - J. A. Sanchez-Chapula
- Unidad de Investigación ‘Carlos Médez’ del Centro Universitario de Investigaciones Biomédicas; Universidad de Colima; Colima; México
| | | |
Collapse
|
12
|
Zhang X, Chen C. A new insight of mechanisms, diagnosis and treatment of diabetic cardiomyopathy. Endocrine 2012; 41:398-409. [PMID: 22322947 DOI: 10.1007/s12020-012-9623-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/28/2012] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is one of the most common chronic diseases across the world. Cardiovascular complication is the major morbidity and mortality among the diabetic patients. Diabetic cardiomyopathy, a new entity independent of coronary artery disease or hypertension, has been increasingly recognized by clinicians and epidemiologists. Cardiac dysfunction is the major characteristic of diabetic cardiomyopathy. For a better understanding of diabetic cardiomyopathy and necessary treatment strategy, several pathological mechanisms such as impaired calcium handling and increased oxidative stress, have been proposed through clinical and experimental observations. In this review, we will discuss the development of cardiac dysfunction, the mechanisms underlying diabetic cardiomyopathy, diagnostic methods, and treatment options.
Collapse
Affiliation(s)
- Xinli Zhang
- School of Biomedical Sciences, University of Queensland, Room 409A, Sir William MacGregor Building (64), St Lucia Campus, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
13
|
Cheng L, Yung A, Covarrubias M, Radice GL. Cortactin is required for N-cadherin regulation of Kv1.5 channel function. J Biol Chem 2011; 286:20478-89. [PMID: 21507952 DOI: 10.1074/jbc.m111.218560] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intercalated disc serves as an organizing center for various cell surface components at the termini of the cardiomyocyte, thus ensuring proper mechanoelectrical coupling throughout the myocardium. The cell adhesion molecule, N-cadherin, is an essential component of the intercalated disc. Cardiac-specific deletion of N-cadherin leads to abnormal electrical conduction and sudden arrhythmic death in mice. The mechanisms linking the loss of N-cadherin in the heart and spontaneous malignant ventricular arrhythmias are poorly understood. To investigate whether ion channel remodeling contributes to arrhythmogenesis in N-cadherin conditional knock-out (N-cad CKO) mice, cardiac myocyte excitability and voltage-gated potassium channel (Kv), as well as inwardly rectifying K(+) channel remodeling, were investigated in N-cad CKO cardiomyocytes by whole cell patch clamp recordings. Action potential duration was prolonged in N-cad CKO ventricle myocytes compared with wild type. Relative to wild type, I(K,slow) density was significantly reduced consistent with decreased expression of Kv1.5 and Kv accessory protein, Kcne2, in the N-cad CKO myocytes. The decreased Kv1.5/Kcne2 expression correlated with disruption of the actin cytoskeleton and reduced cortactin at the sarcolemma. Biochemical experiments revealed that cortactin co-immunoprecipitates with Kv1.5. Finally, cortactin was required for N-cadherin-mediated enhancement of Kv1.5 channel activity in a heterologous expression system. Our results demonstrate a novel mechanistic link among the cell adhesion molecule, N-cadherin, the actin-binding scaffold protein, cortactin, and Kv channel remodeling in the heart. These data suggest that in addition to gap junction remodeling, aberrant Kv1.5 channel function contributes to the arrhythmogenic phenotype in N-cad CKO mice.
Collapse
Affiliation(s)
- Lan Cheng
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
14
|
Niwa N, Nerbonne JM. Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. J Mol Cell Cardiol 2009; 48:12-25. [PMID: 19619557 DOI: 10.1016/j.yjmcc.2009.07.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/25/2009] [Accepted: 07/10/2009] [Indexed: 12/21/2022]
Abstract
Rapidly activating and inactivating cardiac transient outward K(+) currents, I(to), are expressed in most mammalian cardiomyocytes, and contribute importantly to the early phase of action potential repolarization and to plateau potentials. The rapidly recovering (I(t)(o,f)) and slowly recovering (I(t)(o,s)) components are differentially expressed in the myocardium, contributing to regional heterogeneities in action potential waveforms. Consistent with the marked differences in biophysical properties, distinct pore-forming (alpha) subunits underlie the two I(t)(o) components: Kv4.3/Kv4.2 subunits encode I(t)(o,f), whereas Kv1.4 encodes I(t)(o,s), channels. It has also become increasingly clear that cardiac I(t)(o) channels function as components of macromolecular protein complexes, comprising (four) Kvalpha subunits and a variety of accessory subunits and regulatory proteins that influence channel expression, biophysical properties and interactions with the actin cytoskeleton, and contribute to the generation of normal cardiac rhythms. Derangements in the expression or the regulation of I(t)(o) channels in inherited or acquired cardiac diseases would be expected to increase the risk of potentially life-threatening cardiac arrhythmias. Indeed, a recently identified Brugada syndrome mutation in KCNE3 (MiRP2) has been suggested to result in increased I(t)(o,f) densities. Continued focus in this area seems certain to provide new and fundamentally important insights into the molecular determinants of functional I(t)(o) channels and into the molecular mechanisms involved in the dynamic regulation of I(t)(o) channel functioning in the normal and diseased myocardium.
Collapse
Affiliation(s)
- Noriko Niwa
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8103, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
15
|
Gallego M, Alday A, Urrutia J, Casis O. Transient outward potassium channel regulation in healthy and diabetic heartsThis article is one of a selection of papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart Health (published in part 1 of a 2-part Special Issue). Can J Physiol Pharmacol 2009; 87:77-83. [DOI: 10.1139/y08-106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetic patients have a higher incidence of cardiac arrhythmias, including ventricular fibrillation and sudden death, and show important alterations in the electrocardiogram, most of these related to the repolarization. In myocytes isolated from diabetic hearts, the transient outward K+ current (Ito) is the repolarizing current that is mainly affected. Type 1 diabetes alters Ito at 3 levels: the recovery of inactivation, the responsiveness to physiologic regulators, and the functional expression of the channel. Diabetes slows down Ito recovery of inactivation because it triggers the switching from fast-recovering Kv4.x channels to the slow-recovering Kv1.4. Diabetic animals also have decreased responsiveness of Ito towards the sympathetic nervous system; thus, the diabetic heart develops a resistance to its physiologic regulator. Finally, diabetes impairs support of various trophic factors required for the functional expression of the channel and reduces Ito amplitude by decreasing the amount of Kv4.2 and Kv4.3 proteins.
Collapse
Affiliation(s)
- Mónica Gallego
- Department of Physiology, School of Pharmacy, Universidad del País Vasco, P.O. Box 699, Bilbao 48080, Spain
| | - Aintzane Alday
- Department of Physiology, School of Pharmacy, Universidad del País Vasco, P.O. Box 699, Bilbao 48080, Spain
| | - Janire Urrutia
- Department of Physiology, School of Pharmacy, Universidad del País Vasco, P.O. Box 699, Bilbao 48080, Spain
| | - Oscar Casis
- Department of Physiology, School of Pharmacy, Universidad del País Vasco, P.O. Box 699, Bilbao 48080, Spain
| |
Collapse
|
16
|
PKC-induced intracellular trafficking of Ca(V)2 precedes its rapid recruitment to the plasma membrane. J Neurosci 2008; 28:2601-12. [PMID: 18322103 DOI: 10.1523/jneurosci.4314-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of protein kinase C (PKC) potentiates secretion in Aplysia peptidergic neurons, in part by inducing new sites for peptide release at growth cone terminals. The mechanisms by which ion channels are trafficked to such sites are, however, not well understood. We now show that PKC activation rapidly recruits new Ca(V)2 subunits to the plasma membrane, and that recruitment is blocked by latrunculin B, an inhibitor of actin polymerization. In contrast, inhibition of microtubule polymerization selectively prevents the appearance of Ca(V)2 subunits only at the distal edge of the growth cone. In resting neurons, Ca(V)2-containing organelles reside in the central region of growth cones, but are absent from distal lamellipodia. After activation of PKC, these organelles are transported on microtubules to the lamellipodium. The ability to traffic to the most distal sites of channel insertion inside the lamellipodium does, therefore, not require intact actin but requires intact microtubules. Only after activation of PKC do Ca(V)2 channels associate with actin and undergo insertion into the plasma membrane.
Collapse
|
17
|
Nicolas CS, Park KH, El Harchi A, Camonis J, Kass RS, Escande D, Mérot J, Loussouarn G, Le Bouffant F, Baró I. IKs response to protein kinase A-dependent KCNQ1 phosphorylation requires direct interaction with microtubules. Cardiovasc Res 2008; 79:427-35. [PMID: 18390900 DOI: 10.1093/cvr/cvn085] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS KCNQ1 (alias KvLQT1 or Kv7.1) and KCNE1 (alias IsK or minK) co-assemble to form the voltage-activated K(+) channel responsible for I(Ks)-a major repolarizing current in the human heart-and their dysfunction promotes cardiac arrhythmias. The channel is a component of larger macromolecular complexes containing known and undefined regulatory proteins. Thus, identification of proteins that modulate its biosynthesis, localization, activity, and/or degradation is of great interest from both a physiological and pathological point of view. METHODS AND RESULTS Using a yeast two-hybrid screening, we detected a direct interaction between beta-tubulin and the KCNQ1 N-terminus. The interaction was confirmed by co-immunoprecipitation of beta-tubulin and KCNQ1 in transfected COS-7 cells and in guinea pig cardiomyocytes. Using immunocytochemistry, we also found that they co-localized in cardiomyocytes. We tested the effects of microtubule-disrupting and -stabilizing agents (colchicine and taxol, respectively) on the KCNQ1-KCNE1 channel activity in COS-7 cells by means of the permeabilized-patch configuration of the patch-clamp technique. None of these agents altered I(Ks). In addition, colchicine did not modify the current response to osmotic challenge. On the other hand, the I(Ks) response to protein kinase A (PKA)-mediated stimulation depended on microtubule polymerization in COS-7 cells and in cardiomyocytes. Strikingly, KCNQ1 channel and Yotiao phosphorylation by PKA-detected by phospho-specific antibodies-was maintained, as was the association of the two partners. CONCLUSION We propose that the KCNQ1-KCNE1 channel directly interacts with microtubules and that this interaction plays a major role in coupling PKA-dependent phosphorylation of KCNQ1 with I(Ks) activation.
Collapse
|
18
|
Effects of rosiglitazone on altered electrical left ventricular papillary muscle activities of diabetic rat. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:415-21. [DOI: 10.1007/s00210-007-0234-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 11/23/2007] [Indexed: 10/22/2022]
|
19
|
Cesario DA, Brar R, Shivkumar K. Alterations in ion channel physiology in diabetic cardiomyopathy. Endocrinol Metab Clin North Am 2006; 35:601-10, ix-x. [PMID: 16959588 DOI: 10.1016/j.ecl.2006.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is one of the most common chronic illnesses worldwide. This article focuses on a subgroup of diabetic patients with a specific cardiac complication of this disease--diabetic cardiomyopathy. This article initially gives some general background on diabetic cardiomyopathy and ion channels. Next the focus is on how diabetic cardiomyopathy alters calcium homeostasis in cardiac myocytes and highlights the specific alterations in ion channel function that are characteristic of this type of cardiomyopathy. Finally, the importance of the renin-angiotensin system in diabetic cardiomyopathy is reviewed.
Collapse
Affiliation(s)
- David A Cesario
- UCLA Cardiac Arrhythmia Center, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 47-123 CHS, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
20
|
Howarth FC, Jacobson M, Shafiullah M, Adeghate E. Effects of insulin treatment on heart rhythm, body temperature and physical activity in streptozotocin-induced diabetic rat. Clin Exp Pharmacol Physiol 2006; 33:327-31. [PMID: 16620296 DOI: 10.1111/j.1440-1681.2006.04370.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Streptozotocin (STZ)-induced diabetic cardiomyopathy is frequently associated with depressed diastolic/systolic function and altered heart rhythm. 2. The effects of insulin treatment on heart rhythm, body temperature and physical activity in STZ-induced diabetic rats were investigated using biotelemetry techniques. 3. Transmitter devices were surgically implanted in the peritoneal cavity of young adult male Wistar rats. Electrodes from the transmitter were arranged in Einthoven bipolar - Lead II configuration. Electrocardiogram, physical activity and body temperature data were recorded with a telemetry system for 10 days before STZ treatment, for 20 days following administration of STZ (60 mg/kg) and thereafter, for 30 days while rats received daily insulin. 4. Heart rate, physical activity and body temperature declined rapidly 3-5 days after administration of STZ. Pre-STZ heart rate was 362 +/- 7 b.p.m., falling to 266 +/- 12 b.p.m. 5-15 days after STZ with significant recovery to 303 +/- 14 b.p.m. 10-20 days after commencement of insulin. Pre-STZ body temperature was 37.5 +/- 0.1C, falling to 37.2 +/- 0.2C 5-15 days after STZ with significant recovery to 37.5 +/- 0.1C 10-20 days after commencement of insulin. Physical activity and heart rate variability were also reduced after STZ but there was no significant recovery during insulin replacement. 5. Defective autonomic regulation and/or mechanisms of control that are intrinsic to the heart may underlie disturbances in heart rhythm in the STZ-induced diabetic rat.
Collapse
Affiliation(s)
- F C Howarth
- Department of Physiology, Faculty of Medicine & Health Sciences, United Arab Emirates University, Al Ain.
| | | | | | | |
Collapse
|
21
|
Abstract
Experiments were designed to compare effects of dexamethasone on transient (Ipeak) and sustained (Isus) K+ currents in control and diabetic rat myocytes. Ventricular myocytes were isolated from control or type 1 streptozotocin (STZ)-induced diabetic male and female rats. Currents were measured using whole-cell voltage-clamp methods. Incubation of cells from control males or females with 100 nM dexamethasone (5-9 h) significantly (P<0.005) augmented Isus (by 28-31%). Ipeak was unchanged. Isus augmentation was abolished by cycloheximide or cytochalasin D, but not by inhibition of protein kinases A or C. Inhibition of tyrosine kinases by genistein (but not its inactive analog genistin) prevented the increase of Isus by dexamethasone. In marked contrast, dexamethasone had a significantly (P<0.015) smaller effect on Isus (11% increase) in cells from male STZ-diabetic rats, as compared to control cells. However, Isus augmentation in cells from female STZ-diabetic rats was normal (31% increase). In ovariectomized-diabetic rats, Isus was unchanged by dexamethasone. The reduced effect in diabetic males might be due to preactivation of tyrosine kinases linking dexamethasone to current modulation. In conclusion, type I diabetes is associated with gender-specific changes in sensitivity of K+ currents to glucocorticoids, linked to alterations in tyrosine-phosphorylated proteins.
Collapse
Affiliation(s)
- Yakhin Shimoni
- Cardiovascular Research Group, Department of Physiology and Biophysics, Health Sciences Centre, University of Calgary, 3330 Hospital Dr. N.W., Calgary, Alberta, Canada T2N 4N1.
| |
Collapse
|
22
|
Bikhazi AB, Skoury MM, Zwainy DS, Jurjus AR, Kreydiyyeh SI, Smith DE, Audette K, Jacques D. Effect of diabetes mellitus and insulin on the regulation of the PepT 1 symporter in rat jejunum. Mol Pharm 2005; 1:300-8. [PMID: 15981589 DOI: 10.1021/mp049972u] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This investigation focused on studying the effects of insulin-dependent diabetes mellitus and insulin treatment on absorption of glycylsarcosine (Gly-Sar) across the Sprague-Dawley rat jejunum, using in situ perfusion in a physiologic acidic microenvironment at pH 6.0. Rats were divided into five groups: normal controls in group I, normal colchicine-treated rats in group II, normal cytochalasin-treated rats in group III, streptozotocin-induced diabetic rats in group IV, and insulin-treated diabetic rats in group V. Histologic studies of the five different groups showed morphologic changes upon induction of diabetes and treatments with colchicine and cytochalasin and several variations in post-1 month diabetic rats treated with insulin. The rate of uptake of Gly-Sar was significantly reduced in the diabetic state. The comparison of colchicine-treated and cytochalasin-treated rats to the diabetic group suggests that an intact cytoskeleton and tight junctions may play a role in jejunal dipeptide absorption. In the diabetic and insulin-treated group, the dipeptide influx rate was significantly increased compared to that of the nontreated controls. The regulation of the PepT 1 symporter was further assessed by immunostaining and Western blot analyses in the normal, diabetic, and diabetic and insulin-treated groups. Our results showed that a downregulation of PepT 1 in the diabetics seemed to be due in part to the low systemic insulin levels, and not necessarily to hyperglycemia. In addition, the results suggest a probable role of systemic insulin binding at the vascular site of the jejunal epithelium, and the role that this hormone may be playing in the regulation and probably cellular trafficking of PepT1.
Collapse
Affiliation(s)
- Anwar B Bikhazi
- Department of Physiology, American University of Beirut, Beirut, Lebanon.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ayaz M, Ozdemir S, Yaras N, Vassort G, Turan B. Selenium-induced alterations in ionic currents of rat cardiomyocytes. Biochem Biophys Res Commun 2005; 327:163-173. [PMID: 15629445 DOI: 10.1016/j.bbrc.2004.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Indexed: 11/16/2022]
Abstract
In the present study, rats were treated with sodium selenite (5 micromol/kg body weight/day, ip) for 4 weeks and the parameters of contractile activity, action potential, L-type Ca2+-current (ICaL), as well as transient outward (Ito), inward rectifier (IK1), and steady state (Iss) K+-currents were investigated. Sodium selenite treatment increased rat blood glucose level and lowered plasma insulin level, significantly. This treatment also caused slightly prolongation in action potential with no significant effects on spontaneous contraction parameters and intracellular Ca2+ transients of the heart preparations. These effects were associated with marked alterations in the kinetics of both ICaL and Ito including a significant slowing in both inactivation time constants of ICaL and a significant shift to negative potential at half-inactivation of these channels without any change in the current density. Also, there was a significantly faster inactivation of Ito and no shift in half-inactivation of this channel without any change in its current density. Consequently, there was a approximately 50% increase in total charges carried by Ca2+ current and approximately 50% decrease in total charges carried by K+ currents of the treated rat cardiomyocytes. Additionally we observed a significant inhibition in IK1 density in treated rat cardiomyocytes. Oxidized glutathione level was significantly increased (70%) while the observed decrease in reduced glutathione was much less. Since a shift in redox state of regulatory proteins is related with cell dysfunction, selenium-induced increase in blood glucose and decrease in plasma insulin may correlate these alterations. These alterations, in the kinetics of the channels and in IK1 density, might lead to proarrhythmic effect of chronic selenium supplementation.
Collapse
Affiliation(s)
- Murat Ayaz
- Department of Biophysics, School of Medicine, Ankara University, 06100 Ankara, Turkey
| | | | | | | | | |
Collapse
|
24
|
Turan B, Ugur M, Ozdemir S, Yaras N. Altered mechanical and electrical activities of the diabetic heart: Possible use of new therapeutics? Exp Clin Cardiol 2005; 10:189-195. [PMID: 19641686 PMCID: PMC2716250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Diabetes mellitus produces functional, biochemical and morphological myocardial abnormalities independent of coronary atherosclerosis and hypertension. Although tight glycemic control decreases the risk of heart failure in patients with diabetes, the effects of different diabetic treatment regimens on heart failure have yet to be determined and remain subject to further investigation.Evidence suggests that reactive oxygen species play an important role in the development of diabetic cardiomyopathy, and antioxidants have been used to reduce cardiomyopathy in patients with diabetes. Therefore, the present study examines the treatment of streptozotocin-induced diabetic rats with sodium selenite (5 mumol/kg/day, intraperitoneally). The results showed that sodium selenite treatment could restore the altered mechanical and electrical activities of diabetic rat hearts. The results also demonstrate that the beneficial effects of this treatment on diabetic rat heart dysfunction appear to be due to the restoration of diminished K(+) currents; the restoration of increased intracellular Ca(2+) concentrations in diabetes; and all these beneficial effects are partially related to the restoration of the cell glutathione redox cycle.It has been hypothesized that the angiotensin II (Ang II) signalling pathway may also play a role in the development of diabetic cardiomyopathy. It is the ability of Ang II to produce reactive oxygen species and the involvement of these molecules in signal transduction that are the hallmark of Ang II activation. Although action potential prolongation and diminished K(+) currents were reversed by angiotensin receptor type I (AT(1)) blockers in diabetic rat heart, their effects on Ca(2+) homeostasis in diabetic cardiomyocytes are not yet clear. Thus, the effects of AT(1) blocker treatment (candesartan cilexetil) on cardiac Ca(2+) metabolism, and on the contractile state and electrical activity of papillary muscle in diabetic rats were examined. It was shown that treatment with an AT(1) blocker restored the altered kinetics of Ca2+ transients in cardiomyocytes and the contractile activity in papillary muscle strips from diabetic rats. Thus, Ang II receptor blockade protects the heart from the development of cellular alterations that are typically related to diabetes.
Collapse
Affiliation(s)
- Belma Turan
- Department of Biophysics, School of Medicine, Ankara University, Ankara, Turkey
| | - Mehmet Ugur
- Department of Biophysics, School of Medicine, Ankara University, Ankara, Turkey
| | - Semir Ozdemir
- Department of Biophysics, School of Medicine, Ankara University, Ankara, Turkey
| | - Nazmi Yaras
- Department of Biophysics, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
25
|
Li XL, Zheng HF, Jin ZY, Yang M, Li ZL, Xu WX. Effect of actin microfilament on potassium current in guinea pig gastric myocytes. World J Gastroenterol 2004; 10:3303-7. [PMID: 15484305 PMCID: PMC4572300 DOI: 10.3748/wjg.v10.i22.3303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To investigate the effect of actin microfilament on potassium current and hyposmotic membrane stretch-induced increase of potassium current in gastric antral circular myocytes of guinea pig.
METHODS: Whole-cell patch clamp technique was used to record potassium current in isolated gastric myocyes.
RESULTS: When the membrane potential was clamped at -60 mV, an actin microfilament disruptor, cytochanlasin-B(Cyt-B, 20 μmol/L in pipette) increased calcium-activated potassium current (IK(Ca)) and delayed rectifier potassium current (IK(V)) to 138.4% ± 14.3% and 142.1% ± 13.1% respectively at +60 mV. In the same condition, an actin microfilament stabilizer phalloidin(20 μmol/L in pipette) inhibited IK(Ca) and IK(V) to 74.2% ± 7.1% and 75.4% ± 9.9% respectively. At the holding potential of -60 mV, hyposmotic membrane stretch increased IK(Ca) and IK(V) by 50.6% ± 9.7% and 24.9% ± 3.3% at +60 mV respectively. In the presence of cytochalasin-B and phalloidin (20 μmol/L, in the pipette) condition, hyposmotic membrane stretch also increased IK(Ca) by 44.5% ± 7.9% and 55.7% ± 9.8% at +60 mV respectively. In the same condition, cytochalasin-B and phalloidin also increased IK(V) by 23.0% ± 5.5% and 30.3% ± 4.5% respectively. However, Cyt-B and phalloidin did not affect the amplitude of hyposmotic membrane stretch-induced increase of IK(Ca) and IK(V).
CONCLUSION: Actin microfilaments regulate the activities of potassium channels, but they are not involved in the process of hyposmotic membrane stretch-induced increase of potassium currents in gastric antral circular myocytes of guinea pig.
Collapse
Affiliation(s)
- Xiang-Lan Li
- Department of Physiology, Yanbian University College of Medicine, Yanji, Jilin Province, China
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Oxidative stress and the resulting change in cell redox state are proposed to contribute to pathogenic alterations in ion channels that underlie electrical remodeling of the diseased heart. The present study examined whether K(+) channel remodeling is controlled by endogenous oxidoreductase systems that regulate redox-sensitive cell functions. Diabetes was induced in rats by streptozotocin, and experiments were conducted after 3-5 wk of hyperglycemia. Spectrophotometric assays of ventricular tissue extracts from diabetic rat hearts revealed divergent changes in two major oxidoreductase systems. The thioredoxin (TRX) system in diabetic rat heart was characterized by a 52% decrease in TRX reductase (TRXR) activity from control heart (P < 0.05), whereas TRX activity was 1.7-fold greater than control heart (P < 0.05). Diabetes elicited similar changes in the glutaredoxin (GRX) system: glutathione reductase was decreased 35% from control level (P < 0.05), and GRX activity was 2.5-fold greater than in control heart (P < 0.05). The basal activity of glucose-6-phosphate dehydrogenase, which generates NADPH required by the TRX and GRX systems, was not altered by diabetes. Voltage-clamp studies showed that the characteristically decreased density of the transient outward K(+) current (I(to)) in isolated diabetic rat myocytes was normalized by in vitro treatment with insulin (0.1 microM) or the metabolic activator dichloroacetate (1.5 mM). The effect of these agonists on I(to) was blocked by inhibitors of glucose-6-phosphate dehydrogenase. Moreover, inhibitors of TRXR, which controls the reducing activity of TRX, also blocked upregulation of I(to) by insulin and dichloroacetate. These data suggest that K(+) channels underlying I(to) are regulated in a redox-sensitive manner by the TRX system and the remodeling of I(to) that occurs in diabetes may be due to decreased TRXR activity. We propose that oxidoreductase systems are an important repair mechanism that protects ion channels and associated regulatory proteins from irreversible oxidative damage.
Collapse
Affiliation(s)
- Xun Li
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, USA
| | | | | | | |
Collapse
|
27
|
Doronin SV, Potapova IA, Lu Z, Cohen IS. Angiotensin Receptor Type 1 Forms a Complex with the Transient Outward Potassium Channel Kv4.3 and Regulates Its Gating Properties and Intracellular Localization. J Biol Chem 2004; 279:48231-7. [PMID: 15342638 DOI: 10.1074/jbc.m405789200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a novel signal transduction complex of the angiotensin receptor type 1. In this complex the angiotensin receptor type 1 associates with the potassium channel alpha-subunit Kv4.3 and regulates its intracellular distribution and gating properties. Co-localization of Kv4.3 with angiotensin receptor type 1 and fluorescent resonance energy transfer between those two proteins labeled with cyan and yellow-green variants of green fluorescent protein revealed that Kv4.3 and angiotensin receptor type I are located in close proximity to each other in the cell. The angiotensin receptor type 1 also co-immunoprecipitates with Kv4.3 from canine ventricle or when co-expressed with Kv4.3 and its beta-subunit KChIP2 in human embryonic kidney 293 cells. Treatment of the cells with angiotensin II results in the internalization of Kv4.3 in a complex with the angiotensin receptor type 1. When stimulated with angiotensin II, angiotensin receptors type 1 modulate gating properties of the remaining Kv4.3 channels on the cell surface by shifting their activation voltage threshold to more positive values. We hypothesize that the angiotensin receptor type 1 provides its internalization molecular scaffold to Kv4.3 and in this way regulates the cell surface representation of the ion channel.
Collapse
Affiliation(s)
- Sergey V Doronin
- Department of Physiology and Biophysics, Institute of Molecular Cardiology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| | | | | | | |
Collapse
|
28
|
Ayaz M, Ozdemir S, Ugur M, Vassort G, Turan B. Effects of selenium on altered mechanical and electrical cardiac activities of diabetic rat. Arch Biochem Biophys 2004; 426:83-90. [PMID: 15130786 DOI: 10.1016/j.abb.2004.03.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 03/25/2004] [Indexed: 01/11/2023]
Abstract
Since selenium compounds can restore some metabolic parameters and structural alterations of diabetic rat heart, we were tempted to investigate whether these beneficial effects extend to the diabetic rat cardiac dysfunctions. Diabetes was induced by streptozotocin (50mg/kg body weight) and rats were then treated with sodium selenite (5 micromol/kg body weight/day) for four weeks. Electrically stimulated isometric contraction and intracellular action potential in isolated papillary muscle strips and transient (I(to)) and steady state (I(ss)) outward K(+) currents in isolated cardiomyocytes were recorded. Sodium selenite treatment could reverse the prolongation in both action potential duration and twitch duration of the diabetic rats, and also cause significant increases in the diminished amplitudes of the two K(+) currents. Treatment of rats with sodium selenite also markedly increased the depressed acid-soluble sulfhydryl levels of the hearts. Our data suggest that the beneficial effects of sodium selenite treatment on the mechanical and electrical activities of the diabetic rat heart appear to be due to the restoration of the diminished K(+) currents, partially, related to the restoration of the cell glutathione redox cycle.
Collapse
Affiliation(s)
- Murat Ayaz
- Department of Biophysics, Faculty of Medicine, Ankara University, 06100 Ankara, Turkey
| | | | | | | | | |
Collapse
|
29
|
Calaghan SC, Le Guennec JY, White E. Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:29-59. [PMID: 14642867 DOI: 10.1016/s0079-6107(03)00057-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cardiac myocyte has an intracellular scaffold, the cytoskeleton, which has been implicated in several cardiac pathologies including hypertrophy and failure. In this review we describe the role that the cytoskeleton plays in modulating both the electrical activity (through ion channels and exchangers) and mechanical (or contractile) activity of the adult heart. We focus on the 3 components of the cytoskeleton, actin microfilaments, microtubules, and desmin filaments. The limited visual data available suggest that the subsarcolemmal actin cytoskeleton is sparse in the adult myocyte. Selective disruption of cytoskeletal actin by pharmacological tools has yet to be verified in the adult cell, yet evidence exists for modulation of several ionic currents, including I(CaL), I(Na), I(KATP), I(SAC) by actin microfilaments. Microtubules exist as a dense network throughout the adult cardiac cell, and their structure, architecture, kinetics and pharmacological manipulation are well described. Both polymerised and free tubulin are functionally significant. Microtubule proliferation reduces contraction by impeding sarcomeric motion; modulation of sarcoplasmic reticulum Ca(2+) release may also be involved in this effect. The lack of effect of microtubule disruption on cardiac contractility in adult myocytes, and the concentration-dependent modulation of the rate of contraction by the disruptor nocodazole in neonatal myocytes, support the existence of functionally distinct microtubule populations. We address the controversy regarding the stimulation of the beta-adrenergic signalling pathway by free tubulin. Work with mice lacking desmin has demonstrated the importance of intermediate filaments to normal cardiac function, but the precise role that desmin plays in the electrical and mechanical activity of cardiac muscle has yet to be determined.
Collapse
Affiliation(s)
- S C Calaghan
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
30
|
Shimoni Y, Chuang M, Abel ED, Severson DL. Gender-dependent attenuation of cardiac potassium currents in type 2 diabetic db/db mice. J Physiol 2003; 555:345-54. [PMID: 14694146 PMCID: PMC1664833 DOI: 10.1113/jphysiol.2003.055590] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Single ventricular myocytes were prepared from control db/+ and insulin-resistant diabetic db/db male mice at 6 and 12 weeks of age. Peak and sustained outward potassium currents were measured using whole-cell voltage clamp methods. At 6 weeks currents were fully developed in control and diabetic mice, with no differences in the density of either current. By 12 weeks both currents were significantly attenuated in the diabetic mice, but could be augmented by in vitro incubation with the angiotensin-converting enzyme (ACE) inhibitor quinapril (1 microM, 5-9 h). In cells from female db/db mice (12 weeks of age), K(+) currents were not attenuated and no effects of quinapril were observed. To investigate whether lack of insulin action accounts for these gender differences, cells were also isolated from cardiomyocyte-specific insulin receptor knockout (CIRKO) mice. Both K(+) currents were significantly attenuated in cells from male and female CIRKO mice, and action potentials were significantly prolonged. Incubation with quinapril did not augment K(+) currents. Our results demonstrate that type 2 diabetes is associated with gender-selective attenuation of K(+) currents in cardiomyocytes, which may underlie gender differences in the development of some cardiac arrhythmias. The mechanism for attenuation of K(+) currents in cells from male mice is due, at least in part, to an autocrine effect resulting from activation of a cardiac renin-angiotensin system. Insulin is not involved in these gender differences, since the absence of insulin action in CIRKO mice diminishes K(+) currents in cells from both males and females.
Collapse
Affiliation(s)
- Yakhin Shimoni
- Department of Physiology and Biophysics, Health Sciences Centre, 3330 Hospital Dr N.W., Calgary AB, Canada T2N 4N1.
| | | | | | | |
Collapse
|
31
|
Wang Z, Eldstrom JR, Jantzi J, Moore ED, Fedida D. Increased focal Kv4.2 channel expression at the plasma membrane is the result of actin depolymerization. Am J Physiol Heart Circ Physiol 2003; 286:H749-59. [PMID: 14551056 DOI: 10.1152/ajpheart.00398.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage-dependent potassium channel trafficking and localization are regulated by proteins of the cytoskeleton, but the mechanisms by which these occur are still unclear. Using human embryonic kidney (HEK) cells as a heterologous expression system, we tested the role of the actin cytoskeleton in modulating the function of Kv4.2 channels. Pretreatment (>or=1 h) of HEK cells with 5 microM cytochalasin D to disrupt the actin microfilaments greatly augmented whole cell Kv4.2 currents at potentials positive to -20 mV. However, no changes in the voltage dependence of activation and inactivation of macroscopic currents were observed to account for this increase. Similarly, single channel recordings failed to reveal any significant changes in the single channel conductance, open probability, and kinetics. However, the mean patch current was increased from 0.9 +/- 0.2 pA in control to 6.7 +/- 3.0 pA in the presence of cytochalasin D. Imaging experiments revealed a clear increase in the surface expression of the channels and the appearance of "bright spot" features, suggesting that large numbers of channels were being grouped at specific sites. Our data provide clear evidence that increased numbers and altered distribution of Kv4.2 channels at the cell surface are primarily the result of reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Zhuren Wang
- Department of Physiology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
32
|
Abstract
1. Electrical remodelling of the ventricle is a common pathogenic feature of cardiovascular disease states that lead to heart failure. Experimental data suggest this change in electrophysiological phenotype is largely due to downregulation of K(+) channels involved in repolarization of the action potential. 2. Voltage-clamp studies of the transient outward current (I(to)) in diabetic cardiomyopathy support a metabolic mechanism for K(+) channel downregulation. In particular, I(to) density is significantly increased in diabetic rat isolated ventricular myocytes treated in vitro with insulin or agents that activate pyruvate dehydrogenase. Recent data suggest this mechanism is not limited to diabetic conditions, because metabolic stimuli that upregulate I(to) in diabetic rat myocytes act similarly in non- diabetic models of heart failure. 3. Depressed I(to) channel activity is also reversed by experimental conditions that increase myocyte levels of reduced glutathione, indicating that oxidative stress is involved in electrical remodelling. Moreover, upregulation of I(to) density by activators of glucose utilization is blocked by inhibitors of glutathione metabolism, supporting the premise that there is a functional link between glucose utilization and the glutathione system. 4. Electrophysiological studies of diabetic and non-diabetic disease conditions affecting the heart suggest I(to) channels are regulated by a redox-sensitive mechanism, where glucose utilization plays an essential role in maintaining a normally reduced state of the myocyte. This hypothesis has implications for clinical approaches aimed at reversing pathogenic electrical remodelling in a variety of cardiovascular disease states.
Collapse
Affiliation(s)
- George J Rozanski
- Department of Physiology and Biophysics, University of Nebraska Medical Center, Omaha, Nebraska 68198-4575, USA.
| | | |
Collapse
|
33
|
Shimoni Y, Rattner JB. Type 1 diabetes leads to cytoskeleton changes that are reflected in insulin action on rat cardiac K(+) currents. Am J Physiol Endocrinol Metab 2001; 281:E575-85. [PMID: 11500313 DOI: 10.1152/ajpendo.2001.281.3.e575] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A sustained K(+) current (I(ss)) is attenuated in ventricular cells from streptozotocin (STZ)-induced diabetic rats. The in vitro addition of insulin to isolated cells augments I(ss) in a process that is blocked by disrupting either actin microfilaments (with cytochalasin D) or microtubules (with colchicine). When these agents are added at progressively later times, the effect of insulin becomes evident in a time-dependent manner. I(ss) is also augmented by insulin in control cells in a cytoskeleton-dependent manner. However, in contrast to diabetic cells, cytoskeleton-dependent augmentation of I(ss) by insulin occurs at a considerably faster rate in control cells. Immunofluorescent labeling shows a reduced density of beta-tubulin in diabetic cells, particularly in perinuclear regions. In vitro insulin replacement or in vivo insulin injections given to STZ-treated rats enhances beta-tubulin density. These results suggest an impairment of cytoskeleton function and structure under insulin-deficient conditions, which may have implications for cardiac function.
Collapse
Affiliation(s)
- Y Shimoni
- Department of Physiology and Biophysics, University of Calgary Health Sciences Centre, 3330 Hospital Dr. NW, Calgary, Alberta, Canada T2N 4N1.
| | | |
Collapse
|
34
|
Qin D, Huang B, Deng L, El-Adawi H, Ganguly K, Sowers JR, El-Sherif N. Downregulation of K(+) channel genes expression in type I diabetic cardiomyopathy. Biochem Biophys Res Commun 2001; 283:549-53. [PMID: 11341759 DOI: 10.1006/bbrc.2001.4825] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Type I diabetic cardiomyopathy has consistently been shown to be associated with decrease of repolarising K(+) currents, but the mechanisms responsible for the decrease are not well defined. We investigated the streptozotocin (STZ) rat model of type I diabetes. We utilized RNase protection assay and Western blot analysis to investigate the message expression and protein density of key cardiac K(+) channel genes in the diabetic rat left ventricular (LV) myocytes. Our results show that message and protein density of Kv2.1, Kv4.2, and Kv4.3 are significantly decreased as early as 14 days following induction of type I diabetes in the rat. The results demonstrate, for the first time, that insulin-deficient type I diabetes is associated with early downregulation of the expression of key cardiac K(+) channel genes that could account for the depression of cardiac K(+) currents, I(to-f) and I(to-s). These represent the main electrophysiological abnormality in diabetic cardiomyopathy and is known to enhance the arrhythmogenecity of the diabetic heart. The findings also extend the extensive list of gene expression regulation by insulin.
Collapse
Affiliation(s)
- D Qin
- Department of Veterans Affairs, New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, New York, 11209, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Kilic G, Doctor RB, Fitz JG. Insulin stimulates membrane conductance in a liver cell line: evidence for insertion of ion channels through a phosphoinositide 3-kinase-dependent mechanism. J Biol Chem 2001; 276:26762-8. [PMID: 11349127 DOI: 10.1074/jbc.m100992200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Activation of insulin receptors stimulates a rapid increase in the ion permeability of liver cells. To evaluate whether this response involves insertion of ion channels, plasma membrane turnover was measured in a model liver cell line using the fluorescent membrane marker FM1-43. Under basal conditions, the rate of constitutive membrane turnover was approximately 2%min(-1), and balanced exocytosis and endocytosis maintained the total cell membrane area constant. Exposure to insulin stimulated a transient increase in membrane turnover of up to 10-fold above constitutive rates. The response was concentration-dependent (0.001-10 microm). Insulin also caused a parallel increase in membrane conductance as measured by whole-cell patch clamp recording due to opening of Cl(-)- and K(+)-selective ion channels. The insulin-stimulated membrane turnover did not appear to involve the constitutive recycling compartments, suggesting that a distinct pool of vesicles may be involved. The effects of insulin on membrane turnover and membrane conductance were inhibited by blockers of phosphoinositide 3-kinase LY294002 and wortmannin or by disrupting microtubule assembly with nocodazole. Taken together, these findings indicate that insulin stimulates recruitment of new membranes through phosphoinositide 3-kinase-dependent mechanisms. Thus, regulated insertion of a separate population of ion channel-containing vesicles may represent one mechanism for mediating the changes in membrane conductance that are essential for the cellular response to insulin.
Collapse
Affiliation(s)
- G Kilic
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
36
|
Oudit GY, Kassiri Z, Sah R, Ramirez RJ, Zobel C, Backx PH. The molecular physiology of the cardiac transient outward potassium current (I(to)) in normal and diseased myocardium. J Mol Cell Cardiol 2001; 33:851-72. [PMID: 11343410 DOI: 10.1006/jmcc.2001.1376] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
G. Y. Oudit, Z. Kassiri, R. Sah, R. J. Ramirez, C. Zobel and P. H. Backx. The Molecular Physiology of the Cardiac Transient Outward Potassium Current (I(to)) in Normal and Diseased Myocardium. Journal of Molecular and Cellular Cardiology (2001) 33, 851-872. The Ca(2+)-independent transient outward potassium current (I(to)) plays an important role in early repolarization of the cardiac action potential. I(to)has been clearly demonstrated in myocytes from different cardiac regions and species. Two kinetic variants of cardiac I(to)have been identified: fast I(to), called I(to,f), and slow I(to), called I(to,s). Recent findings suggest that I(to,f)is formed by assembly of K(v4.2)and/or K(v4.3)alpha pore-forming voltage-gated subunits while I(to,s)is comprised of K(v1.4)and possibly K(v1.7)subunits. In addition, several regulatory subunits and pathways modulating the level and biophysical properties of cardiac I(to)have been identified. Experimental findings and data from computer modeling of cardiac action potentials have conclusively established an important physiological role of I(to)in rodents, with its role in large mammals being less well defined due to complex interplay between a multitude of cardiac ionic currents. A central and consistent electrophysiological change in cardiac disease is the reduction in I(to)density with a loss of heterogeneity of I(to)expression and associated action potential prolongation. Alterations of I(to)in rodent cardiac disease have been linked to repolarization abnormalities and alterations in intracellular Ca(2+)homeostasis, while in larger mammals the link with functional changes is far less certain. We review the current literature on the molecular basis for cardiac I(to)and the functional consequences of changes in I(to)that occur in cardiovascular disease.
Collapse
Affiliation(s)
- G Y Oudit
- Department of Medicine and Physiology, Toronto General Hospital, 101 College Street, Toronto, M5G 2C4, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Kerfant BG, Vassort G, Gómez AM. Microtubule disruption by colchicine reversibly enhances calcium signaling in intact rat cardiac myocytes. Circ Res 2001; 88:E59-65. [PMID: 11304499 DOI: 10.1161/hh0701.090462] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using the whole-cell patch-clamp configuration in rat ventricular myocytes, we recently reported that microtubule disruption increases calcium current (I(Ca)) and [Ca(2+)](i) transient and accelerates their kinetics by adenylyl cyclase activation. In the present report, we further analyzed the effects of microtubule disruption by 1 micromol/L colchicine on Ca(2+) signaling in cardiac myocytes with intact sarcolemma. In quiescent intact cells, it is possible to investigate ryanodine receptor (RyR) activity by analyzing the characteristics of spontaneous Ca(2+) sparks. Colchicine treatment decreased Ca(2+) spark amplitude (F/F(0): 1.78+/-0.01, n=983, versus 1.64+/-0.01, n=1660, recorded in control versus colchicine-treated cells; P<0.0001) without modifying the sarcoplasmic reticulum Ca(2+) load and enhanced their time to peak (in ms: 6.85+/-0.09, n=1185, versus 7.33+/-0.13, n=1647; P<0.0001). Microtubule disruption also induced the appearance of Ca(2+) sparks in doublets. These alterations may reflect RyR phosphorylation. To further investigate Ca(2+) signaling in cardiac myocytes with intact sarcolemma, we analyzed [Ca(2+)](i) transient evoked by field stimulation. Cells were loaded with the fluorescence Ca(2+) indicator, Fluo-3 cell permeant, and stimulated at 1 HZ: [Ca(2+)](i) transient amplitude was greater and its decay was accelerated in colchicine-treated, field-stimulated myocytes. This effect is reversible. When colchicine-treated myocytes were placed in a colchicine-free solution for 30 minutes, tubulin was repolymerized into microtubules, as shown by immunofluorescence, and the increase in [Ca(2+)](i) transient was reversed. In summary, we demonstrate that microtubule disruption by colchicine reversibly modulates Ca(2+) signaling in cardiac cells with intact sarcolemma.
Collapse
Affiliation(s)
- B G Kerfant
- Physiopathologie Cardiovasculaire, INSERM U-390, Montpellier, France
| | | | | |
Collapse
|
38
|
Abstract
Cardiovascular diseases (CVDs) are the major causes of mortality in persons with diabetes, and many factors, including hypertension, contribute to this high prevalence of CVD. Hypertension is approximately twice as frequent in patients with diabetes compared with patients without the disease. Conversely, recent data suggest that hypertensive persons are more predisposed to the development of diabetes than are normotensive persons. Furthermore, up to 75% of CVD in diabetes may be attributable to hypertension, leading to recommendations for more aggressive treatment (ie, reducing blood pressure to <130/85 mm Hg) in persons with coexistent diabetes and hypertension. Other important risk factors for CVD in these patients include the following: obesity, atherosclerosis, dyslipidemia, microalbuminuria, endothelial dysfunction, platelet hyperaggregability, coagulation abnormalities, and "diabetic cardiomyopathy." The cardiomyopathy associated with diabetes is a unique myopathic state that appears to be independent of macrovascular/microvascular disease and contributes significantly to CVD morbidity and mortality in diabetic patients, especially those with coexistent hypertension. This update reviews the current knowledge regarding these risk factors and their treatment, with special emphasis on the cardiometabolic syndrome, hypertension, microalbuminuria, and diabetic cardiomyopathy. This update also examines the role of the renin-angiotensin system in the increased risk for CVD in diabetic patients and the impact of interrupting this system on the development of clinical diabetes as well as CVD.
Collapse
Affiliation(s)
- J R Sowers
- SUNY Downstate Medical Center and VAMC, Brooklyn, NY, USA.
| | | | | |
Collapse
|
39
|
Quiñones-Galvan A, Ferrannini E. Metabolic effects of glucose-insulin infusions: myocardium and whole body. Curr Opin Clin Nutr Metab Care 2001; 4:157-63. [PMID: 11224662 DOI: 10.1097/00075197-200103000-00013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In target organs, insulin switches substrate utilization from free fatty acids to glucose, a change that: (i) is oxygen-efficient; (ii) repletes glycogen stores; (iii) removes potentially toxic fatty acids; and (iv) restores intracellular potassium. During or after an ischaemic challenge, the insulin metabolic mode should protect cellular functions provided that insulin can reach the ischaemic tissue. Insulin, however, also exerts non-metabolic effects, such as membrane hyperpolarization, the stimulation of adrenergic activity, and inhibition of parasympathetic tone, which may counter its beneficial metabolic actions. The net balance between the favourable and unfavourable effects of insulin on ischaemic tissues depends on: (i) the dose-response of the various effects; (ii) the presence of insulin resistance; (iii) the coexistence of hyperglycaemia; and (iv) the stage of ischaemic tissue damage. At present, a role for glucose-insulin-potassium infusions in clinical practice seems to be clearly established in the case of diabetic patients with acute coronary syndromes, and in patients undergoing urgent or elective cardiac surgery. Its role as an adjunctive therapy in the management of myocardial infarction in non-diabetic individuals has been tested in several clinical trials; however, the evidence emerging from them is inconclusive.
Collapse
Affiliation(s)
- A Quiñones-Galvan
- Metabolism Unit, CNR Institute of Clinical Physiology, University of Pisa School of Medicine, Via Savi, 8 I-56100 Pisa, Italy
| | | |
Collapse
|
40
|
Shimoni Y, Severson D, Ewart HS. Insulin resistance and the modulation of rat cardiac K(+) currents. Am J Physiol Heart Circ Physiol 2000; 279:H639-49. [PMID: 10924063 DOI: 10.1152/ajpheart.2000.279.2.h639] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
K(+) currents were measured using a whole cell voltage-clamp method in enzymatically isolated rat ventricular myocytes obtained from two hyperinsulinemic, insulin-resistant models. Fructose-fed rats as well as genetically obese rats, both of which are resistant to the metabolic effects of insulin, were used. The normal augmentation of a calcium-independent sustained K(+) current was reduced or abolished in insulin-resistant states. This resistance can be reversed by the insulin-sensitizing drug metformin. Vanadyl sulfate (3-4 wk treatment or after 5-6 h in vitro) enhanced the sustained K(+) current. The in vitro effect of vanadyl was blocked by cycloheximide. Insulin resistance of the K(+) current was not reversed by vanadyl sulfate. The results show that insulin resistance is expressed in terms of insulin actions on ion channels, in addition to its actions on metabolism. This resistance can be reversed by the insulin-sensitizing drug metformin. Vanadate compounds, which mimic the effects of insulin on metabolism, also mimic the augmenting effects of insulin on a cardiac K(+) current in a manner suggesting synthesis of new channels.
Collapse
Affiliation(s)
- Y Shimoni
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | | | |
Collapse
|
41
|
Chattou S, Coulombe A, Diacono J, Le Grand B, John G, Feuvray D. Slowly inactivating component of sodium current in ventricular myocytes is decreased by diabetes and partially inhibited by known Na(+)-H(+)Exchange blockers. J Mol Cell Cardiol 2000; 32:1181-92. [PMID: 10860762 DOI: 10.1006/jmcc.2000.1151] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence has suggested a major role for a slowly inactivating component of Na(+)current (I(NaL)) as a contributor to ischemic Na(+)loading. The purposes of this study were to investigate veratrine and lysophosphatidylcholine (LPC)-induced I(NaL)in single ventricular myocytes of normal and diabetic rats and to analyse the effects on this current of three pharmacological agents, known as Na(+)/H(+)exchange inhibitors, whose selectivity has been questioned in several studies. A decrease in Na(+)/H(+)exchange activity has been previously shown to be associated with diabetes, and this has been found to confer some protection to the diabetic heart after an episode of ischemia/reperfusion. Recordings were made using the whole-cell patch-clamp technique. I(NaL)was stimulated either by veratrine (100 mg/ml) or by LPC (10 micromol/l) applied extracellularly. Veratrine as well as LPC-induced I(NaL)was found to be significantly decreased in ventricular myocytes isolated from diabetic rat hearts. Veratrine- and LPC-induced I(NaL)in ventricular myocytes of normal rats was significantly (in the range 10(-7)to 10(-4)mol/l) inhibited by the Na(+)/H(+)exchange blockers HOE 694, EIPA and HOE 642. HOE 694 was the most potent inhibitor, followed by the amiloride derivative EIPA and HOE 642. The sensitivity of veratrine-induced I(NaL)to inhibition by HOE 694 and EIPA was markedly reduced in diabetic ventricular myocytes, with no observed inhibition by HOE 642. These data may have important implications as to the protection that may be afforded against ischemic and reperfusion injury, especially during ischemia and when ischemia occurs in a diabetic situation.
Collapse
Affiliation(s)
- S Chattou
- Laboratoire de Physiologie Cellulaire, UFR dOrsay, France
| | | | | | | | | | | |
Collapse
|
42
|
Shimoni Y. Hormonal control of cardiac ion channels and transporters. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 72:67-108. [PMID: 10446502 DOI: 10.1016/s0079-6107(99)00005-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Y Shimoni
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Alta., Canada.
| |
Collapse
|