1
|
Mohammed ASA, Naveed M, Szabados T, Szatmári I, Lőrinczi B, Mátyus P, Czompa A, Orvos P, Husti Z, Hornyik T, Topal L, Déri S, Jost N, Virág L, Bencsik P, Baczkó I, Varró A. Effects of SZV-2649, a new multiple ion channel inhibitor mexiletine analogue. Sci Rep 2024; 14:23188. [PMID: 39369049 PMCID: PMC11455950 DOI: 10.1038/s41598-024-73576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024] Open
Abstract
The antiarrhythmic and cardiac electrophysiological effects of SZV-2649 that contains a 2,6-diiodophenoxy moiety but lacks the benzofuran ring system present in amiodarone, were studied in mammalian cell line, rat and dog cardiac preparations. SZV-2649 exerted antiarrhythmic effects against coronary artery occlusion/reperfusion induced ventricular arrhythmias in rats and in acetylcholine- and burst stimulation induced atrial fibrillation in dogs. SZV-2649 inhibited hERG and GIRK currents in HEK cells (IC50: 342 and 529 nM, respectively). In canine ventricular myocytes, SZV-2649 (10 µM) decreased the densities of IKr, and Ito outward and INaL and ICaL inward currents. The compound (2.5-10 µM) elicited Class IB type Vmax reducing and Class III type action potential duration prolonging effects in dog right ventricular muscle preparations. In canine atrial muscle, SZV-2629 (2.5-10 µM) moderately prolonged action potential duration and this effect was greatly augmented in preparations pretreated with 1 µM carbachol. In conclusion, SZV-2649, has antiarrhythmic effects based on its multiple ion channel blocking properties. Since its chemical structure substantially differs from that of amiodarone, it is expected that SZV-2649 would exhibit fewer adverse effects than the currently used most effective multichannel inhibitor drug amiodarone and may be a promising molecule for further development.
Collapse
Grants
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- KDP-2020 Ministry for Innovation and Technology, Cooperative Doctoral Programme
- RRF-2.3.1-21-2022-00001 Recovery and Resilience Facility (RRF)
- NKFIH K 135464, K 142738, K 147212 TKP2021-EGA-32, FK 138223, GINOP-2.3.2.-15-2016-00006, GINOP-2.3.2.-15-2016-00040 National Research Development and Innovation Office
- NKFIH K 135464, K 142738, K 147212 TKP2021-EGA-32, FK 138223, GINOP-2.3.2.-15-2016-00006, GINOP-2.3.2.-15-2016-00040 National Research Development and Innovation Office
- NKFIH K 135464, K 142738, K 147212 TKP2021-EGA-32, FK 138223, GINOP-2.3.2.-15-2016-00006, GINOP-2.3.2.-15-2016-00040 National Research Development and Innovation Office
- NKFIH K 135464, K 142738, K 147212 TKP2021-EGA-32, FK 138223, GINOP-2.3.2.-15-2016-00006, GINOP-2.3.2.-15-2016-00040 National Research Development and Innovation Office
- NKFIH K 135464, K 142738, K 147212 TKP2021-EGA-32, FK 138223, GINOP-2.3.2.-15-2016-00006, GINOP-2.3.2.-15-2016-00040 National Research Development and Innovation Office
- NKFIH K 135464, K 142738, K 147212 TKP2021-EGA-32, FK 138223, GINOP-2.3.2.-15-2016-00006, GINOP-2.3.2.-15-2016-00040 National Research Development and Innovation Office
- NKFIH K 135464, K 142738, K 147212 TKP2021-EGA-32, FK 138223, GINOP-2.3.2.-15-2016-00006, GINOP-2.3.2.-15-2016-00040 National Research Development and Innovation Office
- SZTE AOK-KKA 2021, SZGYA 2021, SZTE AOK-KKA 2022 The Albert Szent-Györgyi Medical School institutional grant
- SZTE AOK-KKA 2021, SZGYA 2021, SZTE AOK-KKA 2022 The Albert Szent-Györgyi Medical School institutional grant
- SZTE AOK-KKA 2021, SZGYA 2021, SZTE AOK-KKA 2022 The Albert Szent-Györgyi Medical School institutional grant
- HUN-REN TKI project Hungarian Research Network
- HUN-REN TKI project Hungarian Research Network
- HUN-REN TKI project Hungarian Research Network
- bo_481_21 Hungarian Academy of Sciences, János Bolyai Research Scholarships
- RRF-2.3.1-21-2022-00003 National Heart Laboratory, Hungary
Collapse
Affiliation(s)
- Aiman Saleh A Mohammed
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamara Szabados
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Stereochemistry Research Group, Hungarian Research Network, Szeged, Hungary
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Péter Mátyus
- Department of Organic Chemistry, Semmelweis University, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Andrea Czompa
- Department of Organic Chemistry, Semmelweis University, Budapest, Hungary
| | - Péter Orvos
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Leila Topal
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Szilvia Déri
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary
- Interdisciplinary Research and Development and Innovation Centre of Excellence, University of Szeged, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Interdisciplinary Research and Development and Innovation Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Péter Bencsik
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Interdisciplinary Research and Development and Innovation Centre of Excellence, University of Szeged, Szeged, Hungary.
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary.
- Interdisciplinary Research and Development and Innovation Centre of Excellence, University of Szeged, Szeged, Hungary.
| |
Collapse
|
2
|
Ágoston M, Kohajda Z, Virág L, Baláti B, Nagy N, Lengyel C, Bitay M, Bogáts G, Vereckei A, Papp JG, Varró A, Jost N. A Comparative Study of the Rapid (I Kr) and Slow (I Ks) Delayed Rectifier Potassium Currents in Undiseased Human, Dog, Rabbit, and Guinea Pig Cardiac Ventricular Preparations. Pharmaceuticals (Basel) 2024; 17:1091. [PMID: 39204196 PMCID: PMC11357539 DOI: 10.3390/ph17081091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
To understand the large inter-species variations in drug effects on repolarization, the properties of the rapid (IKr) and the slow (IKs) components of the delayed rectifier potassium currents were compared in myocytes isolated from undiseased human donor (HM), dog (DM), rabbit (RM) and guinea pig (GM) ventricles by applying the patch clamp and conventional microelectrode techniques at 37 °C. The amplitude of the E-4031-sensitive IKr tail current measured at -40 mV after a 1 s long test pulse of 20 mV, which was very similar in HM and DM but significant larger in RM and GM. The L-735,821-sensitive IKs tail current was considerably larger in GM than in RM. In HM, the IKs tail was even smaller than in DM. At 30 mV, the IKr component was activated extremely rapidly and monoexponentially in each studied species. The deactivation of the IKr component in HM, DM, and RM measured at -40 mV. After a 30 mV pulse, it was slow and biexponential, while in GM, the IKr tail current was best fitted triexponentially. At 30 mV, the IKs component activated slowly and had an apparent monoxponential time course in HM, DM, and RM. In contrast, in GM, the activation was clearly biexponential. In HM, DM, and RM, IKs component deactivation measured at -40 mV was fast and monoexponential, while in GM, in addition to the fast component, another slower component was also revealed. These results suggest that the IK in HM resembles that measured in DM and RM and considerably differs from that observed in GM. These findings suggest that the dog and rabbit are more appropriate species than the guinea pig for preclinical evaluation of new potential drugs expected to affect cardiac repolarization.
Collapse
Affiliation(s)
- Márta Ágoston
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, P.O. Box 427, 6701 Szeged, Hungary
| | - Zsófia Kohajda
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, 6701 Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, P.O. Box 427, 6701 Szeged, Hungary
- Interdisciplinary Research and Development and Innovation Centre of Excellence, University of Szeged, 6720 Szeged, Hungary
| | - Beáta Baláti
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, P.O. Box 427, 6701 Szeged, Hungary
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, P.O. Box 427, 6701 Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, 6701 Szeged, Hungary
| | - Csaba Lengyel
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Miklós Bitay
- Department of Cardiac Surgery, Albert Szent-Györgyi Medical School, University of Szeged, 6742 Szeged, Hungary
| | - Gábor Bogáts
- Department of Cardiac Surgery, Albert Szent-Györgyi Medical School, University of Szeged, 6742 Szeged, Hungary
| | - András Vereckei
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary
| | - Julius Gy. Papp
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, P.O. Box 427, 6701 Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, 6701 Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, P.O. Box 427, 6701 Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, 6701 Szeged, Hungary
- Interdisciplinary Research and Development and Innovation Centre of Excellence, University of Szeged, 6720 Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, P.O. Box 427, 6701 Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, 6701 Szeged, Hungary
- Interdisciplinary Research and Development and Innovation Centre of Excellence, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
3
|
Sönmez MI, Goldack S, Nurkkala E, Schulz C, Klampe B, Schulze T, Hansen A, Eschenhagen T, Koivumäki J, Christ T. Human induced pluripotent stem cell-derived atrial cardiomyocytes recapitulate contribution of the slowly activating delayed rectifier currents IKs to repolarization in the human atrium. Europace 2024; 26:euae140. [PMID: 38788213 PMCID: PMC11167676 DOI: 10.1093/europace/euae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/23/2024] [Indexed: 05/26/2024] Open
Abstract
AIMS Human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCM) could be a helpful tool to study the physiology and diseases of the human atrium. To fulfil this expectation, the electrophysiology of hiPSC-aCM should closely resemble the situation in the human atrium. Data on the contribution of the slowly activating delayed rectifier currents (IKs) to repolarization are lacking for both human atrium and hiPSC-aCM. METHODS AND RESULTS Human atrial tissues were obtained from patients with sinus rhythm (SR) or atrial fibrillation (AF). Currents were measured in human atrial cardiomyocytes (aCM) and compared with hiPSC-aCM and used to model IKs contribution to action potential (AP) shape. Action potential was recorded by sharp microelectrodes. HMR-1556 (1 µM) was used to identify IKs and to estimate IKs contribution to repolarization. Less than 50% of hiPSC-aCM and aCM possessed IKs. Frequency of occurrence, current densities, activation/deactivation kinetics, and voltage dependency of IKs did not differ significantly between hiPSC-aCM and aCM, neither in SR nor AF. β-Adrenoceptor stimulation with isoprenaline did not increase IKs neither in aCM nor in hiPSC-aCM. In tissue from SR, block of IKs with HMR-1556 did not lengthen the action potential duration, even when repolarization reserve was reduced by block of the ultra-rapid repolarizing current with 4-aminopyridine or the rapidly activating delayed rectifier potassium outward current with E-4031. CONCLUSION I Ks exists in hiPSC-aCM with biophysics not different from aCM. As in adult human atrium (SR and AF), IKs does not appear to relevantly contribute to repolarization in hiPSC-aCM.
Collapse
Affiliation(s)
- Muhammed Ikbal Sönmez
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Silvana Goldack
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Elina Nurkkala
- Tech Unit and Centre of Excellence in Body-on-Chip Research (CoEBoC), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finnland
| | - Carl Schulz
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Thomas Schulze
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jussi Koivumäki
- Tech Unit and Centre of Excellence in Body-on-Chip Research (CoEBoC), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finnland
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
4
|
Wada Y, Wang L, Hall LD, Yang T, Short LL, Solus JF, Glazer AM, Roden DM. The electrophysiologic effects of KCNQ1 extend beyond expression of IKs: evidence from genetic and pharmacologic block. Cardiovasc Res 2024; 120:735-744. [PMID: 38442735 PMCID: PMC11135641 DOI: 10.1093/cvr/cvae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
AIMS While variants in KCNQ1 are the commonest cause of the congenital long QT syndrome, we and others find only a small IKs in cardiomyocytes from human-induced pluripotent stem cells (iPSC-CMs) or human ventricular myocytes. METHODS AND RESULTS We studied population control iPSC-CMs and iPSC-CMs from a patient with Jervell and Lange-Nielsen (JLN) syndrome due to compound heterozygous loss-of-function (LOF) KCNQ1 variants. We compared the effects of pharmacologic IKs block to those of genetic KCNQ1 ablation, using JLN cells, cells homozygous for the KCNQ1 LOF allele G643S, or siRNAs reducing KCNQ1 expression. We also studied the effects of two blockers of IKr, the other major cardiac repolarizing current, in the setting of pharmacologic or genetic ablation of KCNQ1: moxifloxacin, associated with a very low risk of drug-induced long QT, and dofetilide, a high-risk drug. In control cells, a small IKs was readily recorded but the pharmacologic IKs block produced no change in action potential duration at 90% repolarization (APD90). In contrast, in cells with genetic ablation of KCNQ1 (JLN), baseline APD90 was markedly prolonged compared with control cells (469 ± 20 vs. 310 ± 16 ms). JLN cells displayed increased sensitivity to acute IKr block: the concentration (μM) of moxifloxacin required to prolong APD90 100 msec was 237.4 [median, interquartile range (IQR) 100.6-391.6, n = 7] in population cells vs. 23.7 (17.3-28.7, n = 11) in JLN cells. In control cells, chronic moxifloxacin exposure (300 μM) mildly prolonged APD90 (10%) and increased IKs, while chronic exposure to dofetilide (5 nM) produced greater prolongation (67%) and no increase in IKs. However, in the siRNA-treated cells, moxifloxacin did not increase IKs and markedly prolonged APD90. CONCLUSION Our data strongly suggest that KCNQ1 expression modulates baseline cardiac repolarization, and the response to IKr block, through mechanisms beyond simply generating IKs.
Collapse
Affiliation(s)
- Yuko Wada
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| | - Lili Wang
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| | - Lynn D Hall
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| | - Tao Yang
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| | - Laura L Short
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| | - Joseph F Solus
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| | - Andrew M Glazer
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Mohammed ASA, Mohácsi G, Naveed M, Prorok J, Jost N, Virág L, Baczkó I, Topal L, Varró A. Cellular electrophysiological effects of the citrus flavonoid hesperetin in dog and rabbit cardiac ventricular preparations. Sci Rep 2024; 14:7237. [PMID: 38538818 PMCID: PMC10973458 DOI: 10.1038/s41598-024-57828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
Recent experimental data shows that hesperetin, a citrus flavonoid, affects potassium channels and can prolong the QTc interval in humans. Therefore, in the present study we investigated the effects of hesperetin on various transmembrane ionic currents and on ventricular action potentials. Transmembrane current measurements and action potential recordings were performed by patch-clamp and the conventional microelectrode techniques in dog and rabbit ventricular preparations. At 10 µM concentration hesperetin did not, however, at 30 µM significantly decreased the amplitude of the IK1, Ito, IKr potassium currents. Hesperetin at 3-30 µM significantly and in a concentration-dependent manner reduced the amplitude of the IKs current. The drug significantly decreased the amplitudes of the INaL and ICaL currents at 30 µM. Hesperetin (10 and 30 µM) did not change the action potential duration in normal preparations, however, in preparations where the repolarization reserve had been previously attenuated by 100 nM dofetilide and 1 µg/ml veratrine, caused a moderate but significant prolongation of repolarization. These results suggest that hesperetin at close to relevant concentrations inhibits the IKs outward potassium current and thereby reduces repolarization reserve. This effect in certain specific situations may prolong the QT interval and consequently may enhance proarrhythmic risk.
Collapse
Affiliation(s)
- Aiman Saleh A Mohammed
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Mohácsi
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
| | - Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
| | - János Prorok
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary.
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary.
| | - Leila Topal
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary.
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary.
| |
Collapse
|
6
|
Chen-Izu Y, Hegyi B, Jian Z, Horvath B, Shaw JA, Banyasz T, Izu LT. INNOVATIVE TECHNIQUES AND NEW INSIGHTS: Studying cardiac ionic currents and action potentials in physiologically relevant conditions. PHYSIOLOGICAL MINI-REVIEWS 2023; 16:22-34. [PMID: 38107545 PMCID: PMC10722976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cardiac arrhythmias are associated with various forms of heart diseases. Ventricular arrhythmias present a significant risk for sudden cardiac death. Atrial fibrillations predispose to blood clots leading to stroke and heart attack. Scientists have been developing patch-clamp technology to study ion channels and action potentials (APs) underlying cardiac excitation and arrhythmias. Beyond the traditional patch-clamp techniques, innovative new techniques were developed for studying complex arrhythmia mechanisms. Here we review the recent development of methods including AP-Clamp, Dynamic Clamp, AP-Clamp Sequential Dissection, and Patch-Clamp-in-Gel. These methods provide powerful tools for researchers to decipher how the dynamic systems in excitation-Ca2+ signaling-contraction feedforward and feedback to control cardiac function and how their dysregulations lead to heart diseases.
Collapse
Affiliation(s)
- Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, USA
- Department of Biomedical Engineering, University of California, Davis, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California, Davis, USA
| | - Zhong Jian
- Department of Pharmacology, University of California, Davis, USA
| | - Balazs Horvath
- Department of Pharmacology, University of California, Davis, USA
- Department of Physiology, University of Debrecen, Hungary
| | - John A. Shaw
- Department of Pharmacology, University of California, Davis, USA
- Department of Aerospace Engineering, University of Michigan, Ann Arbor, USA
| | - Tamas Banyasz
- Department of Pharmacology, University of California, Davis, USA
- Department of Physiology, University of Debrecen, Hungary
| | - Leighton T. Izu
- Department of Pharmacology, University of California, Davis, USA
| |
Collapse
|
7
|
Holmuhamedov EL, Chakraborty P, Oberlin A, Liu X, Yousufuddin M, Shen WK, Terzic A, Jahangir A. Aging-associated susceptibility to stress-induced ventricular arrhythmogenesis is attenuated by tetrodotoxin. Biochem Biophys Res Commun 2022; 623:44-50. [PMID: 35870261 DOI: 10.1016/j.bbrc.2022.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Aging is associated with increased prevalence of life-threatening ventricular arrhythmias, but mechanisms underlying higher susceptibility to arrhythmogenesis and means to prevent such arrhythmias under stress are not fully defined. We aimed to define differences in aging-associated susceptibility to ventricular fibrillation (VF) induction between young and aged hearts. VF induction was attempted in isolated perfused hearts of young (6-month) and aged (24-month-old) male Fischer-344 rats by rapid pacing before and following isoproterenol (1 μM) or global ischemia and reperfusion (I/R) injury with or without pretreatment with low-dose tetrodotoxin, a late sodium current blocker. At baseline, VF could not be induced; however, the susceptibility to inducible VF after isoproterenol and spontaneous VF following I/R was 6-fold and 3-fold higher, respectively, in old hearts (P < 0.05). Old animals had longer epicardial monophasic action potential at 90% repolarization (APD90; P < 0.05) and displayed a loss of isoproterenol-induced shortening of APD90 present in the young. In isolated ventricular cardiomyocytes from older but not younger animals, 4-aminopyridine prolonged APD and induced early afterdepolarizations (EADs) and triggered activity with isoproterenol. Low-dose tetrodotoxin (0.5 μM) significantly shortened APD without altering action potential upstroke and prevented 4-aminopyridine-mediated APD prolongation, EADs, and triggered activity. Tetrodotoxin pretreatment prevented VF induction by pacing in isoproterenol-challenged hearts. Vulnerability to VF following I/R or catecholamine challenge is significantly increased in old hearts that display reduced repolarization reserve and increased propensity to EADs, triggered activity, and ventricular arrhythmogenesis that can be suppressed by low-dose tetrodotoxin, suggesting a role of slow sodium current in promoting arrhythmogenesis with aging.
Collapse
Affiliation(s)
- Ekhson L Holmuhamedov
- Division of Cardiovascular Diseases, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA; Aurora Cardiovascular and Thoracic Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 W. Kinnickinnic River Parkway, Ste. 880, Milwaukee, WI, 53215, USA
| | - Praloy Chakraborty
- Department of Cardiac Electrophysiology, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Andrew Oberlin
- Division of Cardiovascular Diseases, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xiaoke Liu
- Division of Cardiovascular Diseases, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mohammed Yousufuddin
- Division of Cardiovascular Diseases, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA
| | - Win K Shen
- Division of Cardiovascular Diseases, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA; Mayo Clinic Arizona, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Andre Terzic
- Division of Cardiovascular Diseases, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA
| | - Arshad Jahangir
- Division of Cardiovascular Diseases, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA; Aurora Cardiovascular and Thoracic Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 W. Kinnickinnic River Parkway, Ste. 880, Milwaukee, WI, 53215, USA; Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 W. Kinnickinnic River Parkway, Ste. 777, Milwaukee, WI, 53215, USA.
| |
Collapse
|
8
|
Abramochkin DV, Filatova TS, Pustovit KB, Voronina YA, Kuzmin VS, Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111204. [PMID: 35346823 DOI: 10.1016/j.cbpa.2022.111204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
Abstract
The orderly contraction of the vertebrate heart is determined by generation and propagation of cardiac action potentials (APs). APs are generated by the integrated activity of time- and voltage-dependent ionic channels which carry inward Na+ and Ca2+ currents, and outward K+ currents. This review compares atrial and ventricular APs and underlying ion currents between different taxa of vertebrates. We have collected literature data and attempted to find common electrophysiological features for two or more vertebrate groups, show differences between taxa and cardiac chambers, and indicate gaps in the existing data. Although electrical excitability of the heart in all vertebrates is based on the same superfamily of channels, there is a vast variability of AP waveforms between atrial and ventricular myocytes, between different species of the same vertebrate class and between endothermic and ectothermic animals. The wide variability of AP shapes is related to species-specific differences in animal size, heart rate, stage of ontogenetic development, excitation-contraction coupling, temperature and oxygen availability. Some of the differences between taxa are related to evolutionary development of genomes, which appear e.g. in the expression of different Na+ and K+ channel orthologues in cardiomyocytes of vertebrates. There is a wonderful variability of AP shapes and underlying ion currents with which electrical excitability of vertebrate heart can be generated depending on the intrinsic and extrinsic conditions of animal body. This multitude of ionic mechanisms provides excellent material for studying how the function of the vertebrate heart can adapt or acclimate to prevailing physiological and environmental conditions.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia.
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Yana A Voronina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3(rd) Cherepkovskaya str., 15A, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
9
|
Árpádffy-Lovas T, Mohammed ASA, Naveed M, Koncz I, Baláti B, Bitay M, Jost N, Nagy N, Baczkó I, Virág L, Varró A. Species dependent differences in the inhibition of various potassium currents and in their effects on repolarization in cardiac ventricular muscle. Can J Physiol Pharmacol 2022; 100:880-889. [PMID: 35442802 DOI: 10.1139/cjpp-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Even though rodents are accessible model animals, their electrophysiological properties are deeply different from that of human, making the translation of rat studies to human rather difficult. We compared the mechanisms of ventricular repolarization in various animal models to those of human by measuring cardiac ventricular action potentials from ventricular papillary muscle preparations using conventional microelectrodes, and applying selective inhibitors of various potassium transmembrane ion currents. Inhibition of the IK1 current (10 µM barium chloride) significantly prolonged rat ventricular repolarization, but only slightly prolonged it in dog, and did not affect it in human. On the contrary, IKr inhibition (50 nM dofetilide) significantly prolonged repolarization in human, rabbit, and dog, but not in rat. Inhibition of the IKur current (1 µM XEN-D0101) only prolonged rat ventricular repolarization, and had no effect in human or dog. Inhibition of the IKs (500 nM HMR-1556) and Ito currents (100 µM chromanol-293B) elicited similar effects in all investigated species. We conclude that dog ventricular preparations have the strongest, and rat ventricular preparations have the weakest translational value in cardiac electrophysiological experiments.
Collapse
Affiliation(s)
- Tamás Árpádffy-Lovas
- University of Szeged Albert Szent-Györgyi Faculty of Medicine, 37443, Department of Pharmacology and Pharmacotherapy, Szeged, Csongrád, Hungary;
| | - Aiman Saleh A Mohammed
- University of Szeged Albert Szent-Györgyi Faculty of Medicine, 37443, Department of Pharmacology and Pharmacotherapy, Szeged, Csongrád, Hungary;
| | - Muhammad Naveed
- University of Szeged Albert Szent-Györgyi Faculty of Medicine, 37443, Department of Pharmacology and Pharmacotherapy, Szeged, Csongrád, Hungary;
| | - István Koncz
- University of Szeged Albert Szent-Györgyi Faculty of Medicine, 37443, Department of Pharmacology and Pharmacotherapy, Szeged, Csongrád, Hungary;
| | - Beáta Baláti
- University of Szeged Albert Szent-Györgyi Faculty of Medicine, 37443, Department of Pharmacology and Pharmacotherapy, Szeged, Csongrád, Hungary;
| | - Miklós Bitay
- University of Szeged Albert Szent-Györgyi Faculty of Medicine, 37443, Department of Cardiac Surgery, Second Department of Internal Medicine and Cardiology Center, Szeged, Csongrád, Hungary;
| | - Norbert Jost
- University of Szeged Albert Szent-Györgyi Faculty of Medicine, 37443, Department of Pharmacology and Pharmacotherapy, Szeged, Csongrád, Hungary.,Eötvös Loránd Research Network, 579839, ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary, Budapest, Hungary;
| | - Norbert Nagy
- University of Szeged Albert Szent-Györgyi Faculty of Medicine, 37443, Department of Pharmacology and Pharamacotherapy, Szeged, Csongrád, Hungary.,Eötvös Loránd Research Network, 579839, ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary, Budapest, Hungary;
| | - István Baczkó
- University of Szeged Albert Szent-Györgyi Faculty of Medicine, 37443, Department of Pharmacology and Pharmacotherapy, Szeged, Csongrád, Hungary;
| | - László Virág
- University of Szeged Albert Szent-Györgyi Faculty of Medicine, 37443, Department of Pharmacology and Pharmacotherapy, Szeged, Csongrád, Hungary;
| | - András Varró
- University of Szeged Albert Szent-Györgyi Faculty of Medicine, 37443, Department of Pharmacology and Pharmacotherapy, Szeged, Csongrád, Hungary.,Eötvös Loránd Research Network, 579839, ELKH-SZTE Research Group of Cardiovascular Pharmacology, Budapest, Hungary;
| |
Collapse
|
10
|
Horváth B, Szentandrássy N, Dienes C, Kovács ZM, Nánási PP, Chen-Izu Y, Izu LT, Banyasz T. Exploring the Coordination of Cardiac Ion Channels With Action Potential Clamp Technique. Front Physiol 2022; 13:864002. [PMID: 35370800 PMCID: PMC8966222 DOI: 10.3389/fphys.2022.864002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
The patch clamp technique underwent continual advancement and developed numerous variants in cardiac electrophysiology since its introduction in the late 1970s. In the beginning, the capability of the technique was limited to recording one single current from one cell stimulated with a rectangular command pulse. Since that time, the technique has been extended to record multiple currents under various command pulses including action potential. The current review summarizes the development of the patch clamp technique in cardiac electrophysiology with special focus on the potential applications in integrative physiology.
Collapse
Affiliation(s)
- Balázs Horváth
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Norbert Szentandrássy
- Department of Physiology, University of Debrecen, Debrecen, Hungary
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Csaba Dienes
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | | | - Péter P. Nánási
- Department of Physiology, University of Debrecen, Debrecen, Hungary
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Leighton T. Izu
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Tamas Banyasz
- Department of Physiology, University of Debrecen, Debrecen, Hungary
- *Correspondence: Tamas Banyasz,
| |
Collapse
|
11
|
Husti Z, Varró A, Baczkó I. Arrhythmogenic Remodeling in the Failing Heart. Cells 2021; 10:cells10113203. [PMID: 34831426 PMCID: PMC8623396 DOI: 10.3390/cells10113203] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic heart failure is a clinical syndrome with multiple etiologies, associated with significant morbidity and mortality. Cardiac arrhythmias, including ventricular tachyarrhythmias and atrial fibrillation, are common in heart failure. A number of cardiac diseases including heart failure alter the expression and regulation of ion channels and transporters leading to arrhythmogenic electrical remodeling. Myocardial hypertrophy, fibrosis and scar formation are key elements of arrhythmogenic structural remodeling in heart failure. In this article, the mechanisms responsible for increased arrhythmia susceptibility as well as the underlying changes in ion channel, transporter expression and function as well as alterations in calcium handling in heart failure are discussed. Understanding the mechanisms of arrhythmogenic remodeling is key to improving arrhythmia management and the prevention of sudden cardiac death in patients with heart failure.
Collapse
Affiliation(s)
- Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
12
|
Zou S, Qiu S, Su S, Zhang J, Sun J, Wang Y, Shi C, Xu Y. Inhibitory G-protein-mediated modulation of slow delayed rectifier potassium channels contributes to increased susceptibility to arrhythmogenesis in aging heart. Heart Rhythm 2021; 18:2197-2209. [PMID: 34536591 DOI: 10.1016/j.hrthm.2021.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Slow delayed rectifier potassium current (IKs) is an important component of repolarization reserve during sympathetic nerve excitement. However, little is known about age-related functional changes of IKs and its involvement in age-dependent arrhythmogenesis. OBJECTIVE The purpose of this study was to investigate age-related alteration of the IKs response to β-adrenergic receptor (βAR) activation. METHODS Dunkin-Hartley guinea pigs were used. Whole-cell patch-clamp recording was used to record K+ currents. Optical mapping of membrane potential was performed in ex vivo heart. RESULTS There was no difference in IKs density in ventricular cardiomyocytes between young and old guinea pigs. However, in contrast to IKs potentiation in young hearts, isoproterenol (ISO) evoked an acute inhibition on IKs in a concentration-dependent manner in old guinea pig hearts. The β2AR antagonist, but not β1AR antagonist, reversed the inhibitory response. Preincubation of cardiomyocytes with the inhibitory G protein (Gi) inhibitor pertussis toxin (PTX) also reversed the inhibitory response. In HEK293 cells cotransfected with cloned IKs channel and β2AR, ISO enhanced the current but reduced it when cells were cotransfected with Gi2, and PTX restored the ISO-induced excitatory response. Moreover, in aging cardiomyocytes, Gβγ inhibitor gallein, PLC inhibitor U73122, or protein kinase C inhibitor Bis-1 prevented the reduction of IKs by ISO. Furthermore, cardiac-specific Gi2 overexpression in young guinea pigs predisposed the heart to ventricular tachyarrhythmias. PTX pretreatment protected the hearts from ventricular arrhythmias. CONCLUSION βAR activation acutely induces an inhibitory IKs response in aging guinea pig hearts through β2AR-Gi signaling, which contributes to increased susceptibility to arrhythmogenesis in aging hearts.
Collapse
Affiliation(s)
- Sihao Zou
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Suhua Qiu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Shi Su
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Jiali Zhang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Jinglei Sun
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Yuhong Wang
- Institute of Masteria Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chenxia Shi
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China.
| |
Collapse
|
13
|
Canine Myocytes Represent a Good Model for Human Ventricular Cells Regarding Their Electrophysiological Properties. Pharmaceuticals (Basel) 2021; 14:ph14080748. [PMID: 34451845 PMCID: PMC8398821 DOI: 10.3390/ph14080748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
Due to the limited availability of healthy human ventricular tissues, the most suitable animal model has to be applied for electrophysiological and pharmacological studies. This can be best identified by studying the properties of ion currents shaping the action potential in the frequently used laboratory animals, such as dogs, rabbits, guinea pigs, or rats, and comparing them to those of human cardiomyocytes. The authors of this article with the experience of three decades of electrophysiological studies, performed in mammalian and human ventricular tissues and isolated cardiomyocytes, summarize their results obtained regarding the major canine and human cardiac ion currents. Accordingly, L-type Ca2+ current (ICa), late Na+ current (INa-late), rapid and slow components of the delayed rectifier K+ current (IKr and IKs, respectively), inward rectifier K+ current (IK1), transient outward K+ current (Ito1), and Na+/Ca2+ exchange current (INCX) were characterized and compared. Importantly, many of these measurements were performed using the action potential voltage clamp technique allowing for visualization of the actual current profiles flowing during the ventricular action potential. Densities and shapes of these ion currents, as well as the action potential configuration, were similar in human and canine ventricular cells, except for the density of IK1 and the recovery kinetics of Ito. IK1 displayed a largely four-fold larger density in canine than human myocytes, and Ito recovery from inactivation displayed a somewhat different time course in the two species. On the basis of these results, it is concluded that canine ventricular cells represent a reasonably good model for human myocytes for electrophysiological studies, however, it must be borne in mind that due to their stronger IK1, the repolarization reserve is more pronounced in canine cells, and moderate differences in the frequency-dependent repolarization patterns can also be anticipated.
Collapse
|
14
|
Ion current profiles in canine ventricular myocytes obtained by the "onion peeling" technique. J Mol Cell Cardiol 2021; 158:153-162. [PMID: 34089737 DOI: 10.1016/j.yjmcc.2021.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
The profiles of ion currents during the cardiac action potential can be visualized by the action potential voltage clamp technique. To obtain multiple ion current data from the same cell, the "onion peeling" technique, based on sequential pharmacological dissection of ion currents, has to be applied. Combination of the two methods allows recording of several ion current profiles from the same myocyte under largely physiological conditions. Using this approach, we have studied the densities and integrals of the major cardiac inward (ICa, INCX, INa-late) and outward (IKr, IKs, IK1) currents in canine ventricular cells and studied the correlation between them. For this purpose, canine ventricular cardiomyocytes were chosen because their electrophysiological properties are similar to those of human ones. Significant positive correlation was observed between the density and integral of ICa and IKr, and positive correlation was found also between the integral of ICa and INCX. No further correlations were detected. The Ca2+-sensitivity of K+ currents was studied by comparing their parameters in the case of normal calcium homeostasis and following blockade of ICa. Out of the three K+ currents studied, only IKs was Ca2+-sensitive. The density and integral of IKs was significantly greater, while its time-to-peak value was shorter at normal Ca2+ cycling than following ICa blockade. No differences were detected for IKr or IK1 in this regard. Present results indicate that the positive correlation between ICa and IKr prominently contribute to the balance between inward and outward fluxes during the action potential plateau in canine myocytes. The results also suggest that the profiles of cardiac ion currents have to be studied under physiological conditions, since their behavior may strongly be influenced by the intracellular Ca2+ homeostasis and the applied membrane potential protocol.
Collapse
|
15
|
Filatova TS, Abramochkin DV, Pavlova NS, Pustovit KB, Konovalova OP, Kuzmin VS, Dobrzynski H. Repolarizing potassium currents in working myocardium of Japanese quail: a novel translational model for cardiac electrophysiology. Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110919. [PMID: 33582263 DOI: 10.1016/j.cbpa.2021.110919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022]
|
16
|
Magyar T, Árpádffy-Lovas T, Pászti B, Tóth N, Szlovák J, Gazdag P, Kohajda Z, Gyökeres A, Györe B, Gurabi Z, Jost N, Virág L, Papp JG, Nagy N, Koncz I. Muscarinic agonists inhibit the ATP-dependent potassium current and suppress the ventricle-Purkinje action potential dispersion. Can J Physiol Pharmacol 2021; 99:247-253. [PMID: 33242286 DOI: 10.1139/cjpp-2020-0408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of the parasympathetic nervous system has been reported to have an antiarrhythmic role during ischemia-reperfusion injury by decreasing the arrhythmia triggers. Furthermore, it was reported that the parasympathetic neurotransmitter acetylcholine is able to modulate the ATP-dependent potassium current (I K-ATP), a crucial current activated during hypoxia. However, the possible significance of this current modulation in the antiarrhythmic mechanism is not fully clarified. Action potentials were measured using the conventional microelectrode technique from canine left ventricular papillary muscle and free-running Purkinje fibers, under normal and hypoxic conditions. Ionic currents were measured using the whole-cell configuration of the patch-clamp method. Acetylcholine at 5 μmol/L did not influence the action potential duration (APD) either in Purkinje fibers or in papillary muscle preparations. In contrast, it significantly lengthened the APD and suppressed the Purkinje-ventricle APD dispersion when it was administered after 5 μmol/L pinacidil application. Carbachol at 3 μmol/L reduced the pinacidil-activated I K-ATP under voltage-clamp conditions. Acetylcholine lengthened the ventricular action potential under simulated ischemia condition. In this study, we found that acetylcholine inhibits the I K-ATP and thus suppresses the ventricle-Purkinje APD dispersion. We conclude that parasympathetic tone may reduce the arrhythmogenic substrate exerting a complex antiarrhythmic mechanism during hypoxic conditions.
Collapse
Affiliation(s)
- Tibor Magyar
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Árpádffy-Lovas
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Bence Pászti
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Noémi Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Jozefina Szlovák
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Gazdag
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsófia Kohajda
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - András Gyökeres
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Balázs Györe
- Faculty of Dentistry, University of Szeged, Hungary
| | - Zsolt Gurabi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Julius Gy Papp
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - István Koncz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
17
|
Ozturk N, Uslu S, Ozdemir S. Diabetes-induced changes in cardiac voltage-gated ion channels. World J Diabetes 2021; 12:1-18. [PMID: 33520105 PMCID: PMC7807254 DOI: 10.4239/wjd.v12.i1.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus affects the heart through various mechanisms such as microvascular defects, metabolic abnormalities, autonomic dysfunction and incompatible immune response. Furthermore, it can also cause functional and structural changes in the myocardium by a disease known as diabetic cardiomyopathy (DCM) in the absence of coronary artery disease. As DCM progresses it causes electrical remodeling of the heart, left ventricular dysfunction and heart failure. Electrophysiological changes in the diabetic heart contribute significantly to the incidence of arrhythmias and sudden cardiac death in diabetes mellitus patients. In recent studies, significant changes in repolarizing K+ currents, Na+ currents and L-type Ca2+ currents along with impaired Ca2+ homeostasis and defective contractile function have been identified in the diabetic heart. In addition, insulin levels and other trophic factors change significantly to maintain the ionic channel expression in diabetic patients. There are many diagnostic tools and management options for DCM, but it is difficult to detect its development and to effectively prevent its progress. In this review, diabetes-associated alterations in voltage-sensitive cardiac ion channels are comprehensively assessed to understand their potential role in the pathophysiology and pathogenesis of DCM.
Collapse
Affiliation(s)
- Nihal Ozturk
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Serkan Uslu
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Semir Ozdemir
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| |
Collapse
|
18
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
19
|
Varga RS, Hornyik T, Husti Z, Kohajda Z, Krajsovszky G, Nagy N, Jost N, Virág L, Tálosi L, Mátyus P, Varró A, Baczkó I. Antiarrhythmic and cardiac electrophysiological effects of SZV-270, a novel compound with combined Class I/B and Class III effects, in rabbits and dogs. Can J Physiol Pharmacol 2020; 99:89-101. [PMID: 32970956 DOI: 10.1139/cjpp-2020-0412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cardiovascular diseases are the leading causes of mortality. Sudden cardiac death is most commonly caused by ventricular fibrillation (VF). Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and a major cause of stroke and heart failure. Pharmacological management of VF and AF remains suboptimal due to limited efficacy of antiarrhythmic drugs and their ventricular proarrhythmic adverse effects. In this study, the antiarrhythmic and cardiac cellular electrophysiological effects of SZV-270, a novel compound, were investigated in rabbit and canine models. SZV-270 significantly reduced the incidence of VF in rabbits subjected to coronary artery occlusion/reperfusion and reduced the incidence of burst-induced AF in a tachypaced conscious canine model of AF. SZV-270 prolonged the frequency-corrected QT interval, lengthened action potential duration and effective refractory period in ventricular and atrial preparations, blocked I Kr in isolated cardiomyocytes (Class III effects), and reduced the maximum rate of depolarization (V max) at cycle lengths smaller than 1000 ms in ventricular preparations (Class I/B effect). Importantly, SZV-270 did not provoke Torsades de Pointes arrhythmia in an anesthetized rabbit proarrhythmia model characterized by impaired repolarization reserve. In conclusion, SZV-270 with its combined Class I/B and III effects can prevent reentry arrhythmias with reduced risk of provoking drug-induced Torsades de Pointes.
Collapse
Affiliation(s)
- Richárd S Varga
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Zsófia Kohajda
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Krajsovszky
- Department of Organic Chemistry, Semmelweis University, Budapest, Hungary
| | - Norbert Nagy
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - László Tálosi
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Péter Mátyus
- Department of Organic Chemistry, Semmelweis University, Budapest, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
20
|
Pászti B, Prorok J, Magyar T, Árpádffy-Lovas T, Györe B, Topál L, Gazdag P, Szlovák J, Naveed M, Jost N, Nagy N, Varró A, Virág L, Koncz I. Cardiac electrophysiological effects of ibuprofen in dog and rabbit ventricular preparations: possible implication to enhanced proarrhythmic risk. Can J Physiol Pharmacol 2020; 99:102-109. [PMID: 32937079 DOI: 10.1139/cjpp-2020-0386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ibuprofen is a widely used nonsteroidal anti-inflammatory drug, which has recently been associated with increased cardiovascular risk, but its electrophysiological effects have not yet been properly studied in isolated cardiac preparations. We studied the effects of ibuprofen on action potential characteristics and several transmembrane ionic currents using the conventional microelectrode technique and the whole-cell configuration of the patch-clamp technique on cardiac preparations and enzymatically isolated ventricular myocytes. In dog (200 µM; n = 6) and rabbit (100 µM; n = 7) papillary muscles, ibuprofen moderately but significantly prolonged repolarization at 1 Hz stimulation frequency. In dog Purkinje fibers, repolarization was abbreviated and maximal rate of depolarization was depressed in a frequency-dependent manner. Levofloxacin (40 µM) alone did not alter repolarization, but augmented the ibuprofen-evoked repolarization lengthening in rabbit preparations (n = 7). In dog myocytes, ibuprofen (250 µM) did not significantly influence IK1, but decreased the amplitude of Ito and IKr potassium currents by 28.2% (60 mV) and 15.2% (20 mV), respectively. Ibuprofen also depressed INaL and ICa currents by 19.9% and 16.4%, respectively. We conclude that ibuprofen seems to be free from effects on action potential parameters at lower concentrations. However, at higher concentrations it may alter repolarization reserve, contributing to the observed proarrhythmic risk in patients.
Collapse
Affiliation(s)
- Bence Pászti
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - János Prorok
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Tibor Magyar
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Árpádffy-Lovas
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Balázs Györe
- Department of Oral Surgery, Faculty of Dentistry, University of Szeged, Szeged, Hungary
| | - Leila Topál
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Gazdag
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Jozefina Szlovák
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - István Koncz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
21
|
Baczkó I, Hornyik T, Brunner M, Koren G, Odening KE. Transgenic Rabbit Models in Proarrhythmia Research. Front Pharmacol 2020; 11:853. [PMID: 32581808 PMCID: PMC7291951 DOI: 10.3389/fphar.2020.00853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Drug-induced proarrhythmia constitutes a potentially lethal side effect of various drugs. Most often, this proarrhythmia is mechanistically linked to the drug's potential to interact with repolarizing cardiac ion channels causing a prolongation of the QT interval in the ECG. Despite sophisticated screening approaches during drug development, reliable prediction of proarrhythmia remains very challenging. Although drug-induced long-QT-related proarrhythmia is often favored by conditions or diseases that impair the individual's repolarization reserve, most cellular, tissue, and whole animal model systems used for drug safety screening are based on normal, healthy models. In recent years, several transgenic rabbit models for different types of long QT syndromes (LQTS) with differences in the extent of impairment in repolarization reserve have been generated. These might be useful for screening/prediction of a drug's potential for long-QT-related proarrhythmia, particularly as different repolarizing cardiac ion channels are impaired in the different models. In this review, we summarize the electrophysiological characteristics of the available transgenic LQTS rabbit models, and the pharmacological proof-of-principle studies that have been performed with these models—highlighting the advantages and disadvantages of LQTS models for proarrhythmia research. In the end, we give an outlook on potential future directions and novel models.
Collapse
Affiliation(s)
- István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Brunner
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland.,Institute of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Trovato C, Passini E, Nagy N, Varró A, Abi-Gerges N, Severi S, Rodriguez B. Human Purkinje in silico model enables mechanistic investigations into automaticity and pro-arrhythmic abnormalities. J Mol Cell Cardiol 2020; 142:24-38. [PMID: 32251669 PMCID: PMC7294239 DOI: 10.1016/j.yjmcc.2020.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Cardiac Purkinje cells (PCs) are implicated in lethal arrhythmias caused by cardiac diseases, mutations, and drug action. However, the pro-arrhythmic mechanisms in PCs are not entirely understood, particularly in humans, as most investigations are conducted in animals. The aims of this study are to present a novel human PCs electrophysiology biophysically-detailed computational model, and to disentangle ionic mechanisms of human Purkinje-related electrophysiology, pacemaker activity and arrhythmogenicity. The new Trovato2020 model incorporates detailed Purkinje-specific ionic currents and Ca2+ handling, and was developed, calibrated and validated using human experimental data acquired at multiple frequencies, both in control conditions and following drug application. Multiscale investigations were performed in a Purkinje cell, in fibre and using an experimentally-calibrated population of PCs to evaluate biological variability. Simulations demonstrate the human Purkinje Trovato2020 model is the first one to yield: (i) all key AP features consistent with human Purkinje recordings; (ii) Automaticity with funny current up-regulation (iii) EADs at slow pacing and with 85% hERG block; (iv) DADs following fast pacing; (v) conduction velocity of 160 cm/s in a Purkinje fibre, as reported in human. The human in silico PCs population highlights that: (1) EADs are caused by ICaL reactivation in PCs with large inward currents; (2) DADs and triggered APs occur in PCs experiencing Ca2+ accumulation, at fast pacing, caused by large L-type calcium current and small Na+/Ca2+ exchanger. The novel human Purkinje model unlocks further investigations into the role of cardiac Purkinje in ventricular arrhythmias through computer modeling and multiscale simulations.
Collapse
Affiliation(s)
- Cristian Trovato
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX13QD, United Kingdom.
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX13QD, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged H-6720, Hungary; Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged H-6720, Hungary; Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Najah Abi-Gerges
- AnaBios Corporation, San Diego Science Center, San Diego, CA 92109, USA
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Cesena 47521, Italy
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX13QD, United Kingdom.
| |
Collapse
|
23
|
Wang X, Fitts RH. Cardiomyocyte slowly activating delayed rectifier potassium channel: regulation by exercise and β-adrenergic signaling. J Appl Physiol (1985) 2020; 128:1177-1185. [DOI: 10.1152/japplphysiol.00802.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Results demonstrate that exercise training (TRN) downregulates ventricular IKs channel current and the channel’s responsiveness to β-agonist factors mediated by TRN-induced decline in channel subunits KCNQ1 and KCNE1 and the A-kinase anchoring protein yotiao. The reduced IKs current helps explain the TRN-induced prolongation of the action potential in basal conditions and, coupled with previously reported upregulation of the KATP channel, results in a more efficient heart that is better able to respond to beat-by-beat changes in metabolism.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Robert H. Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
24
|
Lee YK, Sala L, Mura M, Rocchetti M, Pedrazzini M, Ran X, Mak TSH, Crotti L, Sham PC, Torre E, Zaza A, Schwartz PJ, Tse HF, Gnecchi M. MTMR4 SNVs modulate ion channel degradation and clinical severity in congenital long QT syndrome: insights in the mechanism of action of protective modifier genes. Cardiovasc Res 2020; 117:767-779. [PMID: 32173736 PMCID: PMC7898949 DOI: 10.1093/cvr/cvaa019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 01/26/2023] Open
Abstract
Aims In long QT syndrome (LQTS) patients, modifier genes modulate the arrhythmic risk associated with a disease-causing mutation. Their recognition can improve risk stratification and clinical management, but their discovery represents a challenge. We tested whether a cellular-driven approach could help to identify new modifier genes and especially their mechanism of action. Methods and results We generated human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) from two patients carrying the same KCNQ1-Y111C mutation, but presenting opposite clinical phenotypes. We showed that the phenotype of the iPSC-CMs derived from the symptomatic patient is due to impaired trafficking and increased degradation of the mutant KCNQ1 and wild-type human ether-a-go-go-related gene. In the iPSC-CMs of the asymptomatic (AS) patient, the activity of an E3 ubiquitin-protein ligase (Nedd4L) involved in channel protein degradation was reduced and resulted in a decreased arrhythmogenic substrate. Two single-nucleotide variants (SNVs) on the Myotubularin-related protein 4 (MTMR4) gene, an interactor of Nedd4L, were identified by whole-exome sequencing as potential contributors to decreased Nedd4L activity. Correction of these SNVs by CRISPR/Cas9 unmasked the LQTS phenotype in AS cells. Importantly, the same MTMR4 variants were present in 77% of AS Y111C mutation carriers of a separate cohort. Thus, genetically mediated interference with Nedd4L activation seems associated with protective effects. Conclusion Our finding represents the first demonstration of the cellular mechanism of action of a protective modifier gene in LQTS. It provides new clues for advanced risk stratification and paves the way for the design of new therapies targeting this specific molecular pathway.
Collapse
Affiliation(s)
- Yee-Ki Lee
- Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Luca Sala
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milano, Italy.,Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Manuela Mura
- Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marcella Rocchetti
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Matteo Pedrazzini
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Xinru Ran
- Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, The University of Hong Kong, Hong Kong SAR, China.,Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Timothy S H Mak
- Department of Psychiatry, The University of Hong Kong, Hong Kong SAR, China
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy.,Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong SAR, China.,Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory for Cognitive and Brain Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Eleonora Torre
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Antonio Zaza
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, The University of Hong Kong, Hong Kong SAR, China.,Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,Shenzhen Institutes of Research and Innovation, The University of Hong Kong, Hong Kong SAR, China
| | - Massimiliano Gnecchi
- Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences, Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Kopljar I, Lu HR, Van Ammel K, Otava M, Tekle F, Teisman A, Gallacher DJ. Development of a Human iPSC Cardiomyocyte-Based Scoring System for Cardiac Hazard Identification in Early Drug Safety De-risking. Stem Cell Reports 2019; 11:1365-1377. [PMID: 30540961 PMCID: PMC6294263 DOI: 10.1016/j.stemcr.2018.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising cardiac safety platform, demonstrated by numerous validation studies using drugs with known cardiac adverse effects in humans. However, the challenge remains to implement hiPSC-CMs into cardiac de-risking of new chemical entities (NCEs) during preclinical drug development. Here, we used the calcium transient screening assay in hiPSC-CMs to develop a hazard score system for cardiac electrical liabilities. Tolerance interval calculations and evaluation of different classes of cardio-active drugs enabled us to develop a weighted scoring matrix. This approach allowed the translation of various pharmacological effects in hiPSC-CMs into a single hazard label (no, low, high, or very high hazard). Evaluation of 587 internal NCEs and good translation to ex vivo and in vivo models for a subset of these NCEs highlight the value of the cardiac hazard scoring in facilitating the selection of compounds during early drug safety screening. Scoring system identifies different degrees of cardiac hazard Can be applied within R&D to cardiac safety screening of NCEs Controls and reference drugs are essential for development of scoring matrix Analysis can be applied to other in vitro drug safety assays
Collapse
Affiliation(s)
- Ivan Kopljar
- Global Safety Pharmacology, Non-Clinical Safety, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Hua Rong Lu
- Global Safety Pharmacology, Non-Clinical Safety, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Karel Van Ammel
- Global Safety Pharmacology, Non-Clinical Safety, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Martin Otava
- Statistics and Decision Sciences, Quantitative Sciences, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Fetene Tekle
- Statistics and Decision Sciences, Quantitative Sciences, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Non-Clinical Safety, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Non-Clinical Safety, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
26
|
Varshneya M, Devenyi RA, Sobie EA. Slow Delayed Rectifier Current Protects Ventricular Myocytes From Arrhythmic Dynamics Across Multiple Species: A Computational Study. Circ Arrhythm Electrophysiol 2019; 11:e006558. [PMID: 30354408 DOI: 10.1161/circep.118.006558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The slow and rapid delayed rectifier K+ currents (IKs and IKr, respectively) are responsible for repolarizing the ventricular action potential (AP) and preventing abnormally long APs that may lead to arrhythmias. Although differences in biophysical properties of the 2 currents have been carefully documented, the respective physiological roles of IKr and IKs are less established. In this study, we sought to understand the individual roles of these currents and quantify how effectively each stabilizes the AP and protects cells against arrhythmias across multiple species. METHODS We compared 10 mathematical models describing ventricular myocytes from human, rabbit, dog, and guinea pig. We examined variability within heterogeneous cell populations, tested the susceptibility of cells to proarrhythmic behavior, and studied how IKs and IKr responded to changes in the AP. RESULTS We found that (1) models with higher baseline IKs exhibited less cell-to-cell variability in AP duration; (2) models with higher baseline IKs were less susceptible to early afterdepolarizations induced by depolarizing perturbations; (3) as AP duration is lengthened, IKs increases more profoundly than IKr, thereby providing negative feedback that resists excessive AP prolongation; and (4) the increase in IKs that occurs during β-adrenergic stimulation is critical for protecting cardiac myocytes from early afterdepolarizations under these conditions. CONCLUSIONS Slow delayed rectifier current is uniformly protective across a variety of cell types. These results suggest that IKs enhancement could potentially be an effective antiarrhythmic strategy.
Collapse
Affiliation(s)
- Meera Varshneya
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (M.V., R.A.D., E.A.S.)
| | - Ryan A Devenyi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (M.V., R.A.D., E.A.S.)
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (M.V., R.A.D., E.A.S.)
| |
Collapse
|
27
|
Ferdinandy P, Baczkó I, Bencsik P, Giricz Z, Görbe A, Pacher P, Varga ZV, Varró A, Schulz R. Definition of hidden drug cardiotoxicity: paradigm change in cardiac safety testing and its clinical implications. Eur Heart J 2019; 40:1771-1777. [PMID: 29982507 PMCID: PMC6554653 DOI: 10.1093/eurheartj/ehy365] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Unexpected cardiac adverse effects are the leading causes of discontinuation of clinical trials and withdrawal of drugs from the market. Since the original observations in the mid-90s, it has been well established that cardiovascular risk factors and comorbidities (such as ageing, hyperlipidaemia, and diabetes) and their medications (e.g. nitrate tolerance, adenosine triphosphate-dependent potassium inhibitor antidiabetic drugs, statins, etc.) may interfere with cardiac ischaemic tolerance and endogenous cardioprotective signalling pathways. Indeed drugs may exert unwanted effects on the diseased and treated heart that is hidden in the healthy myocardium. Hidden cardiotoxic effects may be due to (i) drug-induced enhancement of deleterious signalling due to ischaemia/reperfusion injury and/or the presence of risk factors and/or (ii) inhibition of cardioprotective survival signalling pathways, both of which may lead to ischaemia-related cell death and/or pro-arrhythmic effects. This led to a novel concept of 'hidden cardiotoxicity', defined as cardiotoxity of a drug that manifests only in the diseased heart with e.g. ischaemia/reperfusion injury and/or in the presence of its major comorbidities. Little is known on the mechanism of hidden cardiotoxocity, moreover, hidden cardiotoxicity cannot be revealed by the routinely used non-clinical cardiac safety testing methods on healthy animals or tissues. Therefore, here, we emphasize the need for development of novel cardiac safety testing platform involving combined experimental models of cardiac diseases (especially myocardial ischaemia/reperfusion and ischaemic conditioning) in the presence and absence of major cardiovascular comorbidities and/or cotreatments.
Collapse
Affiliation(s)
- Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, Hungary
- Pharmahungary Group, Hajnoczy u. 6, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, Szeged, Hungary
| | | | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, Hungary
- Pharmahungary Group, Hajnoczy u. 6, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, Hungary
- Pharmahungary Group, Hajnoczy u. 6, Szeged, Hungary
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Fishers Lane, Bethesda, MD, USA
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, Hungary
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Fishers Lane, Bethesda, MD, USA
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Aulweg 129, Giessen, Germany
| |
Collapse
|
28
|
Policarová M, Novotný T, Bébarová M. Impaired Adrenergic/Protein Kinase A Response of Slow Delayed Rectifier Potassium Channels as a Long QT Syndrome Motif: Importance and Unknowns. Can J Cardiol 2019; 35:511-522. [DOI: 10.1016/j.cjca.2018.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
|
29
|
Johnson DM, Antoons G. Arrhythmogenic Mechanisms in Heart Failure: Linking β-Adrenergic Stimulation, Stretch, and Calcium. Front Physiol 2018; 9:1453. [PMID: 30374311 PMCID: PMC6196916 DOI: 10.3389/fphys.2018.01453] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022] Open
Abstract
Heart failure (HF) is associated with elevated sympathetic tone and mechanical load. Both systems activate signaling transduction pathways that increase cardiac output, but eventually become part of the disease process itself leading to further worsening of cardiac function. These alterations can adversely contribute to electrical instability, at least in part due to the modulation of Ca2+ handling at the level of the single cardiac myocyte. The major aim of this review is to provide a definitive overview of the links and cross talk between β-adrenergic stimulation, mechanical load, and arrhythmogenesis in the setting of HF. We will initially review the role of Ca2+ in the induction of both early and delayed afterdepolarizations, the role that β-adrenergic stimulation plays in the initiation of these and how the propensity for these may be altered in HF. We will then go onto reviewing the current data with regards to the link between mechanical load and afterdepolarizations, the associated mechano-sensitivity of the ryanodine receptor and other stretch activated channels that may be associated with HF-associated arrhythmias. Furthermore, we will discuss how alterations in local Ca2+ microdomains during the remodeling process associated the HF may contribute to the increased disposition for β-adrenergic or stretch induced arrhythmogenic triggers. Finally, the potential mechanisms linking β-adrenergic stimulation and mechanical stretch will be clarified, with the aim of finding common modalities of arrhythmogenesis that could be targeted by novel therapeutic agents in the setting of HF.
Collapse
Affiliation(s)
- Daniel M Johnson
- Department of Cardiothoracic Surgery, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Gudrun Antoons
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
30
|
Abstract
Women have a longer QT interval than men, which appears to evolve after puberty suggesting that sex hormones have an influence on cardiac electrophysiology. Sex hormones do in fact regulate cardiac ion channels via genomic and nongenomic pathways. Women are at greater risk for life-threatening arrhythmias under conditions that prolong the QT interval. In addition, women exhibit greater sensitivity to QT interval–prolonging drugs. Female sex has also an impact on propensity to cardiovascular disease, including atrial fibrillation. However, ex vivo recorded atrial action potentials (APs) from female and male patients in atrial fibrillation did not exhibit significant differences in shape, except that APs from women had slower upstroke velocity. It is concluded that sex-related differences should be taken into account not only in the clinics, but also in basic research.
Collapse
Affiliation(s)
- Ursula Ravens
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg • Bad Krozingen, Medical Faculty, University of Freiburg, Germany; Institute of Physiology, Medical Faculty Carl Gustav Carus, TU Dresden, Germany
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg • Bad Krozingen, Medical Faculty, University of Freiburg, Germany; Institute of Physiology, Medical Faculty Carl Gustav Carus, TU Dresden, Germany
| |
Collapse
|
31
|
Shattock MJ, Park KC, Yang HY, Lee AWC, Niederer S, MacLeod KT, Winter J. Restitution slope is principally determined by steady-state action potential duration. Cardiovasc Res 2018; 113:817-828. [PMID: 28371805 PMCID: PMC5437364 DOI: 10.1093/cvr/cvx063] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/22/2017] [Indexed: 12/02/2022] Open
Abstract
Aims The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Methods and results Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM – to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Conclusion(s) Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on steady-state APD may contribute to the failure of restitution slope to predict sudden cardiac death.
Collapse
Affiliation(s)
- Michael J Shattock
- Cardiovascular Division, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Kyung Chan Park
- Cardiovascular Division, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Hsiang-Yu Yang
- NHLI, ICTEM Building, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.,Department of Surgery, Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Angela W C Lee
- Biomedical Engineering, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Steven Niederer
- Biomedical Engineering, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Kenneth T MacLeod
- NHLI, ICTEM Building, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - James Winter
- Cardiovascular Division, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| |
Collapse
|
32
|
Abstract
This study examines the interaction between hERG and Kv4.3. The functional interaction between hERG and Kv4.3, expressed in a heterologous cell line, was studied using patch clamp techniques, western blot, immunofluorescence, and co-immunoprecipitation. Co-expression of Kv4.3 with hERG increased hERG current density (tail current after a step to +10 mV: 26 ± 3 versus 56 ± 7 pA/pF, p < 0.01). Kv4.3 co-expression also increased the protein expression and promoted the membrane localization of hERG. Western blot showed Kv4.3 increased hERG expression by Hsp70. hERG and Kv4.3 co-localized and co-immunoprecipitated in cultured 293 T cells, indicating physical interactions between hERG and Kv4.3 proteins in vitro. In addition, Hsp70 interacted with hERG and Kv4.3 respectively, and formed complexes with hERG and Kv4.3. The α subunit of Ito Kv4.3 can interact with and modify the localization of the α subunit of IKr hERG, thus providing potentially novel insights into the molecular mechanism of the malignant ventricular arrhythmia in heart failure.
Collapse
|
33
|
β-adrenergic stimulation augments transmural dispersion of repolarization via modulation of delayed rectifier currents I Ks and I Kr in the human ventricle. Sci Rep 2017; 7:15922. [PMID: 29162896 PMCID: PMC5698468 DOI: 10.1038/s41598-017-16218-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022] Open
Abstract
Long QT syndrome (LQTS) is an inherited or drug induced condition associated with delayed repolarization and sudden cardiac death. The cardiac potassium channel, IKr, and the adrenergic-sensitive cardiac potassium current, IKs, are two primary contributors to cardiac repolarization. This study aimed to elucidate the role of β-adrenergic (β-AR) stimulation in mediating the contributions of IKr and IKs to repolarizing the human left ventricle (n = 18). Optical mapping was used to measure action potential durations (APDs) in the presence of the IKs blocker JNJ-303 and the IKr blocker E-4031. We found that JNJ-303 alone did not increase APD. However, under isoprenaline (ISO), both the application of JNJ-303 and additional E-4031 significantly increased APD. With JNJ-303, ISO decreased APD significantly more in the epicardium as compared to the endocardium, with subsequent application E-4031 increasing mid- and endocardial APD80 more significantly than in the epicardium. We found that β-AR stimulation significantly augmented the effect of IKs blocker JNJ-303, in contrast to the reduced effect of IKr blocker E-4031. We also observed synergistic augmentation of transmural repolarization gradient by the combination of ISO and E-4031. Our results suggest β-AR-mediated increase of transmural dispersion of repolarization, which could pose arrhythmogenic risk in LQTS patients.
Collapse
|
34
|
Gao X, Zhao L, Zhuang J, Zang N, Xu F. Prenatal nicotinic exposure prolongs superior laryngeal C-fiber-mediated apnea and bradycardia through enhancing neuronal TRPV1 expression and excitation. FASEB J 2017; 31:4325-4334. [PMID: 28615326 PMCID: PMC5602895 DOI: 10.1096/fj.201700163r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/30/2017] [Indexed: 02/03/2023]
Abstract
Maternal cigarette smoke, including prenatal nicotinic exposure (PNE), is responsible for sudden infant death syndrome (SIDS). The fatal events of SIDS are characterized by severe bradycardia and life-threatening apneas. Although activation of transient receptor potential vanilloid 1 (TRPV1) of superior laryngeal C fibers (SLCFs) could induce bradycardia and apnea and has been implicated in SIDS pathogenesis, how PNE affects the SLCF-mediated cardiorespiratory responses remains unexplored. Here, we tested the hypothesis that PNE would aggravate the SLCF-mediated apnea and bradycardia via up-regulating TRPV1 expression and excitation of laryngeal C neurons in the nodose/jugular (N/J) ganglia. To this end, we compared the following outcomes between control and PNE rat pups at postnatal days 11-14: 1) the cardiorespiratory responses to intralaryngeal application of capsaicin (10 µg/ml, 50 µl), a selective stimulant for TRPV1 receptors, in anesthetized preparation; 2) immunoreactivity and mRNA of TRPV1 receptors of laryngeal sensory C neurons in the N/J ganglia retrogradely traced by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate; and 3) TRPV1 currents and electrophysiological characteristics of these neurons by using whole-cell patch-clamp technique in vitro Our results showed that PNE markedly prolonged the apneic response and exacerbated the bradycardic response to intralaryngeal perfusion of capsaicin, which was associated with up-regulation of TRPV1 expression in laryngeal C neurons. In addition, PNE increased the TRPV1 currents, depressed the slow delayed rectifier potassium currents, and increased the resting membrane potential of these neurons. Our results suggest that PNE is capable of aggravating the SLCF-mediated apnea and bradycardia through TRPV1 sensitization and neuronal excitation, which may contribute to the pathogenesis of SIDS.-Gao, X., Zhao, L., Zhuang, J., Zang, N., Xu, F. Prenatal nicotinic exposure prolongs superior laryngeal C-fiber-mediated apnea and bradycardia through enhancing neuronal TRPV1 expression and excitation.
Collapse
Affiliation(s)
- Xiuping Gao
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Lei Zhao
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Jianguo Zhuang
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Na Zang
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Fadi Xu
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| |
Collapse
|
35
|
Nánási PP, Magyar J, Varró A, Ördög B. Beat-to-beat variability of cardiac action potential duration: underlying mechanism and clinical implications. Can J Physiol Pharmacol 2017; 95:1230-1235. [PMID: 28746810 DOI: 10.1139/cjpp-2016-0597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Beat-to-beat variability of cardiac action potential duration (short-term variability, SV) is a common feature of various cardiac preparations, including the human heart. Although it is believed to be one of the best arrhythmia predictors, the underlying mechanisms are not fully understood at present. The magnitude of SV is basically determined by the intensity of cell-to-cell coupling in multicellular preparations and by the duration of the action potential (APD). To compensate for the APD-dependent nature of SV, the concept of relative SV (RSV) has been introduced by normalizing the changes of SV to the concomitant changes in APD. RSV is reduced by ICa, IKr, and IKs while increased by INa, suggesting that ion currents involved in the negative feedback regulation of APD tend to keep RSV at a low level. RSV is also influenced by intracellular calcium concentration and tissue redox potential. The clinical implications of APD variability is discussed in detail.
Collapse
Affiliation(s)
- Péter P Nánási
- a Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,b Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - János Magyar
- a Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - András Varró
- c Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Balázs Ördög
- c Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
36
|
Osadchii OE. Role of abnormal repolarization in the mechanism of cardiac arrhythmia. Acta Physiol (Oxf) 2017; 220 Suppl 712:1-71. [PMID: 28707396 DOI: 10.1111/apha.12902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In cardiac patients, life-threatening tachyarrhythmia is often precipitated by abnormal changes in ventricular repolarization and refractoriness. Repolarization abnormalities typically evolve as a consequence of impaired function of outward K+ currents in cardiac myocytes, which may be caused by genetic defects or result from various acquired pathophysiological conditions, including electrical remodelling in cardiac disease, ion channel modulation by clinically used pharmacological agents, and systemic electrolyte disorders seen in heart failure, such as hypokalaemia. Cardiac electrical instability attributed to abnormal repolarization relies on the complex interplay between a provocative arrhythmic trigger and vulnerable arrhythmic substrate, with a central role played by the excessive prolongation of ventricular action potential duration, impaired intracellular Ca2+ handling, and slowed impulse conduction. This review outlines the electrical activity of ventricular myocytes in normal conditions and cardiac disease, describes classical electrophysiological mechanisms of cardiac arrhythmia, and provides an update on repolarization-related surrogates currently used to assess arrhythmic propensity, including spatial dispersion of repolarization, activation-repolarization coupling, electrical restitution, TRIaD (triangulation, reverse use dependence, instability, and dispersion), and the electromechanical window. This is followed by a discussion of the mechanisms that account for the dependence of arrhythmic vulnerability on the location of the ventricular pacing site. Finally, the review clarifies the electrophysiological basis for cardiac arrhythmia produced by hypokalaemia, and gives insight into the clinical importance and pathophysiology of drug-induced arrhythmia, with particular focus on class Ia (quinidine, procainamide) and Ic (flecainide) Na+ channel blockers, and class III antiarrhythmic agents that block the delayed rectifier K+ channel (dofetilide).
Collapse
Affiliation(s)
- O. E. Osadchii
- Department of Health Science and Technology; University of Aalborg; Aalborg Denmark
| |
Collapse
|
37
|
Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ, Kass RS. Molecular Pathophysiology of Congenital Long QT Syndrome. Physiol Rev 2017; 97:89-134. [PMID: 27807201 PMCID: PMC5539372 DOI: 10.1152/physrev.00008.2016] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ion channels represent the molecular entities that give rise to the cardiac action potential, the fundamental cellular electrical event in the heart. The concerted function of these channels leads to normal cyclical excitation and resultant contraction of cardiac muscle. Research into cardiac ion channel regulation and mutations that underlie disease pathogenesis has greatly enhanced our knowledge of the causes and clinical management of cardiac arrhythmia. Here we review the molecular determinants, pathogenesis, and pharmacology of congenital Long QT Syndrome. We examine mechanisms of dysfunction associated with three critical cardiac currents that comprise the majority of congenital Long QT Syndrome cases: 1) IKs, the slow delayed rectifier current; 2) IKr, the rapid delayed rectifier current; and 3) INa, the voltage-dependent sodium current. Less common subtypes of congenital Long QT Syndrome affect other cardiac ionic currents that contribute to the dynamic nature of cardiac electrophysiology. Through the study of mutations that cause congenital Long QT Syndrome, the scientific community has advanced understanding of ion channel structure-function relationships, physiology, and pharmacological response to clinically employed and experimental pharmacological agents. Our understanding of congenital Long QT Syndrome continues to evolve rapidly and with great benefits: genotype-driven clinical management of the disease has improved patient care as precision medicine becomes even more a reality.
Collapse
Affiliation(s)
- M S Bohnen
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - G Peng
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - S H Robey
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - C Terrenoire
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - V Iyer
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - K J Sampson
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - R S Kass
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| |
Collapse
|
38
|
Telles CJ, Decker SE, Motley WW, Peters AW, Mehr AP, Frizzell RA, Forrest JN. Functional and molecular identification of a TASK-1 potassium channel regulating chloride secretion through CFTR channels in the shark rectal gland: implications for cystic fibrosis. Am J Physiol Cell Physiol 2016; 311:C884-C894. [PMID: 27653983 PMCID: PMC5206301 DOI: 10.1152/ajpcell.00030.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/18/2016] [Indexed: 11/22/2022]
Abstract
In the shark rectal gland (SRG), apical chloride secretion through CFTR channels is electrically coupled to a basolateral K+ conductance whose type and molecular identity are unknown. We performed studies in the perfused SRG with 17 K+ channel inhibitors to begin this search. Maximal chloride secretion was markedly inhibited by low-perfusate pH, bupivicaine, anandamide, zinc, quinidine, and quinine, consistent with the properties of an acid-sensitive, four-transmembrane, two-pore-domain K+ channel (4TM-K2P). Using PCR with degenerate primers to this family, we identified a TASK-1 fragment in shark rectal gland, brain, gill, and kidney. Using 5' and 3' rapid amplification of cDNA ends PCR and genomic walking, we cloned the full-length shark gene (1,282 bp), whose open reading frame encodes a protein of 375 amino acids that was 80% identical to the human TASK-1 protein. We expressed shark and human TASK-1 cRNA in Xenopus oocytes and characterized these channels using two-electrode voltage clamping. Both channels had identical current-voltage relationships (outward rectifying) and a reversal potential of -90 mV. Both were inhibited by quinine, bupivicaine, and acidic pH. The pKa for current inhibition was 7.75 for shark TASK-1 vs. 7.37 for human TASK-1, values similar to the arterial pH for each species. We identified this protein in SRG by Western blot and confocal immunofluorescent microscopy and detected the protein in SRG and human airway cells. Shark TASK-1 is the major K+ channel coupled to chloride secretion in the SRG, is the oldest 4TM 2P family member identified, and is the first TASK-1 channel identified to play a role in setting the driving force for chloride secretion in epithelia. The detection of this potassium channel in mammalian lung tissue has implications for human biology and disease.
Collapse
Affiliation(s)
- Connor J Telles
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Sarah E Decker
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - William W Motley
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Alexander W Peters
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Ali Poyan Mehr
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Raymond A Frizzell
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - John N Forrest
- Nephrology Division, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut;
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| |
Collapse
|
39
|
Sriwattanakomen R, Mukamal KJ, Shvilkin A. A novel algorithm to predict the QT interval during intrinsic atrioventricular conduction from an electrocardiogram obtained during ventricular pacing. Heart Rhythm 2016; 13:2076-82. [DOI: 10.1016/j.hrthm.2016.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 01/08/2023]
|
40
|
Lu HR, Gallacher DJ, Yan GX. Assessment of drug-induced proarrhythmia: The importance of study design in the rabbit left ventricular wedge model. J Pharmacol Toxicol Methods 2016; 81:151-60. [PMID: 27374776 DOI: 10.1016/j.vascn.2016.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 01/09/2023]
Abstract
In the present study, we investigated an impact of the stimulation rate on the detection of the proarrhythmic potential of 10 reference compounds with effects on different cardiac ion channels in the isolated arterially-perfused rabbit left ventricular wedge preparation. The compounds were tested in the wedge model using two distinct protocols; including baseline stimulation at 1-Hz followed by a brief period at 0.5-Hz, either without an additional brief period of 2-Hz stimulation (i.e. Protocol 1) or with 2-Hz stimulation (i.e. Protocol 2). As expected, QT-prolonging drugs (ibutilide and quinidine) prolonged the QT interval, similarly increased the Torsades de Pointes (TdP) score, and elicited early afterdepolarizations (EADs) in both protocols. HMR1556 and JNJ-303 (IKs blockers) also prolonged the QT interval up to 1μM similarly in both protocols. Nifedipine (Ca(2+) antagonist) shortened the QT interval, and reduced force of contraction similarly in both protocols. However, Na(+) channel blockers (Ia, Ib, Ic) widened the QRS duration more in Protocol 2 than in Protocol 1. Furthermore, it was only possible to detect non-TdP-like ventricular tachycardia/fibrillation (VT/VF) induced by Na(+) blockers and by QT-shortening drugs (levcromakalim and mallotoxin) using the 2-Hz stimulation (Protocol 2). Our data suggest that the inclusion of a brief period of fast stimulation at 2Hz is critical for detecting drug-induced slowing of conduction (QRS widening), QT shortening and associated (non-TdP-like) VT/VF, which are distinct from the QT prolongation/TdP proarrhythmia in isolated, arterially-perfused rabbit left ventricular wedges.
Collapse
Affiliation(s)
- Hua Rong Lu
- Global Safety Pharmacology, Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Belgium.
| | - David J Gallacher
- Global Safety Pharmacology, Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Belgium
| | - Gan-Xin Yan
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| |
Collapse
|
41
|
Major P, Baczkó I, Hiripi L, Odening KE, Juhász V, Kohajda Z, Horváth A, Seprényi G, Kovács M, Virág L, Jost N, Prorok J, Ördög B, Doleschall Z, Nattel S, Varró A, Bősze Z. A novel transgenic rabbit model with reduced repolarization reserve: long QT syndrome caused by a dominant-negative mutation of the KCNE1 gene. Br J Pharmacol 2016; 173:2046-61. [PMID: 27076034 DOI: 10.1111/bph.13500] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/25/2016] [Accepted: 04/01/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE The reliable assessment of proarrhythmic risk of compounds under development remains an elusive goal. Current safety guidelines focus on the effects of blocking the KCNH2/HERG ion channel-in tissues and animals with intact repolarization. Novel models with better predictive value are needed that more closely reflect the conditions in patients with cardiac remodelling and reduced repolarization reserve. EXPERIMENTAL APPROACH We have developed a model for the long QT syndrome type-5 in rabbits (LQT5 ) with cardiac-specific overexpression of a mutant (G52R) KCNE1 β-subunit of the channel that carries the slow delayed-rectifier K(+) -current (IKs ). ECG parameters, including short-term variability of the QT interval (STVQT ), a biomarker for proarrhythmic risk, and arrhythmia development were recorded. In vivo, arrhythmia susceptibility was evaluated by i.v. administration of the IKr blocker dofetilide. K(+) currents were measured with the patch-clamp technique. KEY RESULTS Patch-clamp studies in ventricular myocytes isolated from LQT5 rabbits revealed accelerated IKs and IKr deactivation kinetics. At baseline, LQT5 animals exhibited slightly but significantly prolonged heart-rate corrected QT index (QTi) and increased STVQT . Dofetilide provoked Torsade-de-Pointes arrhythmia in a greater proportion of LQT5 rabbits, paralleled by a further increase in STVQT . CONCLUSION AND IMPLICATIONS We have created a novel transgenic LQT5 rabbit model with increased susceptibility to drug-induced arrhythmias that may represent a useful model for testing proarrhythmic potential and for investigations of the mechanisms underlying arrhythmias and sudden cardiac death due to repolarization disturbances.
Collapse
Affiliation(s)
- Péter Major
- Rabbit Genome and Biomodel Group, NARIC - Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - István Baczkó
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - László Hiripi
- Rabbit Genome and Biomodel Group, NARIC - Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Freiburg, Germany
| | - Viktor Juhász
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Zsófia Kohajda
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - András Horváth
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - György Seprényi
- Department of Biology, University of Szeged, Szeged, Hungary
| | - Mária Kovács
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - László Virág
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - János Prorok
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Balázs Ördög
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Zoltán Doleschall
- Department of Pathogenetics, National Institute of Oncology, Budapest, Hungary
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada.,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - András Varró
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsuzsanna Bősze
- Rabbit Genome and Biomodel Group, NARIC - Agricultural Biotechnology Institute, Gödöllő, Hungary
| |
Collapse
|
42
|
Baczkó I, Jost N, Virág L, Bősze Z, Varró A. Rabbit models as tools for preclinical cardiac electrophysiological safety testing: Importance of repolarization reserve. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:157-68. [PMID: 27208697 DOI: 10.1016/j.pbiomolbio.2016.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/01/2016] [Indexed: 01/26/2023]
Abstract
It is essential to more reliably assess the pro-arrhythmic liability of compounds in development. Current guidelines for pre-clinical and clinical testing of drug candidates advocate the use of healthy animals/tissues and healthy individuals and focus on the test compound's ability to block the hERG current and prolong cardiac ventricular repolarization. Also, pre-clinical safety tests utilize several species commonly used in cardiac electrophysiological studies. In this review, important species differences in cardiac ventricular repolarizing ion currents are considered, followed by the discussion on electrical remodeling associated with chronic cardiovascular diseases that leads to altered ion channel and transporter expression and densities in pathological settings. We argue that the choice of species strongly influences experimental outcome and extrapolation of results to human clinical settings. We suggest that based on cardiac cellular electrophysiology, the rabbit is a useful species for pharmacological pro-arrhythmic investigations. In addition to healthy animals and tissues, the use of animal models (e.g. those with impaired repolarization reserve) is suggested that more closely resemble subsets of patients exhibiting increased vulnerability towards the development of ventricular arrhythmias and sudden cardiac death.
Collapse
Affiliation(s)
- István Baczkó
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Dóm tér 12., 6720 Szeged, Hungary.
| | - Norbert Jost
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Dóm tér 12., 6720 Szeged, Hungary; MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Dóm tér 12., 6720 Szeged, Hungary
| | - László Virág
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Dóm tér 12., 6720 Szeged, Hungary
| | - Zsuzsanna Bősze
- Rabbit Genome and Biomodel Group, NARIC-Agricultural Biotechnology Institute, 2100 Gödöllő, Hungary
| | - András Varró
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Dóm tér 12., 6720 Szeged, Hungary; MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Dóm tér 12., 6720 Szeged, Hungary
| |
Collapse
|
43
|
Wu W, Sanguinetti MC. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology. Card Electrophysiol Clin 2016; 8:275-84. [PMID: 27261821 DOI: 10.1016/j.ccep.2016.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112, USA
| | - Michael C Sanguinetti
- Department of Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
44
|
Rajamohan D, Kalra S, Duc Hoang M, George V, Staniforth A, Russell H, Yang X, Denning C. Automated Electrophysiological and Pharmacological Evaluation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Dev 2016; 25:439-52. [PMID: 26906236 PMCID: PMC4790208 DOI: 10.1089/scd.2015.0253] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Automated planar patch clamp systems are widely used in drug evaluation studies because of their ability to provide accurate, reliable, and reproducible data in a high-throughput manner. Typically, CHO and HEK tumorigenic cell lines overexpressing single ion channels are used since they can be harvested as high-density, homogenous, single-cell suspensions. While human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are physiologically more relevant, these cells are fragile, have complex culture requirements, are inherently heterogeneous, and are expensive to produce, which has restricted their use on automated patch clamp (APC) devices. Here, we used high efficiency differentiation protocols to produce cardiomyocytes from six different hPSC lines for analysis on the Patchliner (Nanion Technologies GmbH) APC platform. We developed a two-step cell preparation protocol that yielded cell catch rates and whole-cell breakthroughs of ∼80%, with ∼40% of these cells allowing electrical activity to be recorded. The protocol permitted formation of long-lasting (>15 min), high quality seals (>2 GΩ) in both voltage- and current-clamp modes. This enabled density of sodium, calcium, and potassium currents to be evaluated, along with dose–response curves to their respective channel inhibitors, tetrodotoxin, nifedipine, and E-4031. Thus, we show the feasibility of using the Patchliner platform for automated evaluation of the electrophysiology and pharmacology of hPSC-CMs, which will enable considerable increase in throughput for reliable and efficient drug evaluation.
Collapse
Affiliation(s)
- Divya Rajamohan
- 1 Division of Cancer and Stem Cells, School of Medicine, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, University of Nottingham , Nottingham, United Kingdom
| | - Spandan Kalra
- 1 Division of Cancer and Stem Cells, School of Medicine, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, University of Nottingham , Nottingham, United Kingdom
| | - Minh Duc Hoang
- 1 Division of Cancer and Stem Cells, School of Medicine, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, University of Nottingham , Nottingham, United Kingdom
| | - Vinoj George
- 1 Division of Cancer and Stem Cells, School of Medicine, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, University of Nottingham , Nottingham, United Kingdom
| | - Andrew Staniforth
- 2 Nottingham University Hospitals NHS Trust , Department of Cardiology, Nottingham, United Kingdom
| | - Hugh Russell
- 3 Biomaterials and Tissue Engineering Group, Department of Oral Biology, University of Leeds, St. James's University Hospital , Leeds, United Kingdom
| | - Xuebin Yang
- 3 Biomaterials and Tissue Engineering Group, Department of Oral Biology, University of Leeds, St. James's University Hospital , Leeds, United Kingdom
| | - Chris Denning
- 1 Division of Cancer and Stem Cells, School of Medicine, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, University of Nottingham , Nottingham, United Kingdom
| |
Collapse
|
45
|
CSAHi study: Validation of multi-electrode array systems (MEA60/2100) for prediction of drug-induced proarrhythmia using human iPS cell-derived cardiomyocytes -assessment of inter-facility and cells lot-to-lot-variability. Regul Toxicol Pharmacol 2016; 77:75-86. [PMID: 26884090 DOI: 10.1016/j.yrtph.2016.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/01/2016] [Accepted: 02/12/2016] [Indexed: 01/22/2023]
Abstract
In vitro screening of hERG channels are recommended under ICH S7B guidelines to predict drug-induced QT prolongation and Torsade de Pointes (TdP), whereas proarrhythmia is known to be evoked by blockage of other ion channels involved in cardiac contraction and compensation mechanisms. A consortium for drug safety assessment using human iPS cells-derived cardiomyocytes (hiPS-CMs), CSAHi, has been organized to establish a novel in vitro test system that would enable better prediction of drug-induced proarrhythmia and QT prolongation. Here we report the inter-facility and cells lot-to-lot variability evaluated with FPDc (corrected field potential duration), FPDc10 (10% FPDc change concentration), beat rate and incidence of arrhythmia-like waveform or arrest on hiPS-CMs in a multi-electrode array system. Arrhythmia-like waveforms were evident for all test compounds, other than chromanol 293B, that evoked FPDc prolongation in this system and are reported to induce TdP in clinical practice. There was no apparent cells lot-to-lot variability, while inter-facility variabilities were limited within ranges from 3.9- to 20-folds for FPDc10 and about 10-folds for the minimum concentration inducing arrhythmia-like waveform or arrests. In conclusion, the new assay model reported here would enable accurate prediction of a drug potential for proarrhythmia.
Collapse
|
46
|
Denning C, Borgdorff V, Crutchley J, Firth KSA, George V, Kalra S, Kondrashov A, Hoang MD, Mosqueira D, Patel A, Prodanov L, Rajamohan D, Skarnes WC, Smith JGW, Young LE. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1728-48. [PMID: 26524115 PMCID: PMC5221745 DOI: 10.1016/j.bbamcr.2015.10.014] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/12/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom.
| | - Viola Borgdorff
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - James Crutchley
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Karl S A Firth
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Vinoj George
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Alexander Kondrashov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Minh Duc Hoang
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Diogo Mosqueira
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Asha Patel
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Ljupcho Prodanov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Divya Rajamohan
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - William C Skarnes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - James G W Smith
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Lorraine E Young
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
47
|
Nagy N, Szél T, Jost N, Tóth A, Gy. Papp J, Varró A. Novel experimental results in human cardiac electrophysiology: measurement of the Purkinje fibre action potential from the undiseased human heart. Can J Physiol Pharmacol 2015; 93:803-10. [DOI: 10.1139/cjpp-2014-0532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Data obtained from canine cardiac electrophysiology studies are often extrapolated to the human heart. However, it has been previously demonstrated that because of the lower density of its K+ currents, the human ventricular action potential has a less extensive repolarization reserve. Since the relevance of canine data to the human heart has not yet been fully clarified, the aim of the present study was to determine for the first time the action potentials of undiseased human Purkinje fibres (PFs) and to compare them directly with those of dog PFs. All measurements were performed at 37 °C using the conventional microelectrode technique. At a stimulation rate of 1 Hz, the plateau potential of human PFs is more positive (8.0 ± 1.8 vs 8.6 ± 3.4 mV, n = 7), while the amplitude of the spike is less pronounced. The maximal rate of depolarization is significantly lower in human PKs than in canine PFs (406.7 ± 62 vs 643 ± 36 V/s, respectively, n = 7). We assume that the appreciable difference in the protein expression profiles of the 2 species may underlie these important disparities. Therefore, caution is advised when canine PF data are extrapolated to humans, and further experiments are required to investigate the characteristics of human PF repolarization and its possible role in arrhythmogenesis.
Collapse
Affiliation(s)
- Norbert Nagy
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Szél
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Norbert Jost
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - András Tóth
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Julius Gy. Papp
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - András Varró
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
48
|
Kistamás K, Hegyi B, Váczi K, Horváth B, Bányász T, Magyar J, Szentandrássy N, Nánási PP. Oxidative shift in tissue redox potential increases beat-to-beat variability of action potential duration. Can J Physiol Pharmacol 2015; 93:563-8. [DOI: 10.1139/cjpp-2014-0531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Profound changes in tissue redox potential occur in the heart under conditions of oxidative stress frequently associated with cardiac arrhythmias. Since beat-to-beat variability (short term variability, SV) of action potential duration (APD) is a good indicator of arrhythmia incidence, the aim of this work was to study the influence of redox changes on SV in isolated canine ventricular cardiomyocytes using a conventional microelectrode technique. The redox potential was shifted toward a reduced state using a reductive cocktail (containing dithiothreitol, glutathione, and ascorbic acid) while oxidative changes were initiated by superfusion with H2O2. Redox effects were evaluated as changes in “relative SV” determined by comparing SV changes with the concomitant APD changes. Exposure of myocytes to the reductive cocktail decreased SV significantly without any detectable effect on APD. Application of H2O2 increased both SV and APD, but the enhancement of SV was the greater, so relative SV increased. Longer exposure to H2O2 resulted in the development of early afterdepolarizations accompanied by tremendously increased SV. Pretreatment with the reductive cocktail prevented both elevation in relative SV and the development of afterdepolarizations. The results suggest that the increased beat-to-beat variability during an oxidative stress contributes to the generation of cardiac arrhythmias.
Collapse
Affiliation(s)
- Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, P.O. Box 22, Hungary
| | - Bence Hegyi
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, P.O. Box 22, Hungary
| | - Krisztina Váczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, P.O. Box 22, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, P.O. Box 22, Hungary
- Faculty of Pharmacy, University of Debrecen, H-4012 Debrecen, P.O. Box 22, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, P.O. Box 22, Hungary
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, P.O. Box 22, Hungary
- Division of Sport Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, P.O. Box 22, Hungary
| | - Norbert Szentandrássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, P.O. Box 22, Hungary
- Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, H-4012 Debrecen, P.O. Box 22, Hungary
| | - Péter P. Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, P.O. Box 22, Hungary
- Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, H-4012 Debrecen, P.O. Box 22, Hungary
| |
Collapse
|
49
|
Abstract
Optimal cardiac function depends on proper timing of excitation and contraction in various regions of the heart, as well as on appropriate heart rate. This is accomplished via specialized electrical properties of various components of the system, including the sinoatrial node, atria, atrioventricular node, His-Purkinje system, and ventricles. Here we review the major regionally determined electrical properties of these cardiac regions and present the available data regarding the molecular and ionic bases of regional cardiac function and dysfunction. Understanding these differences is of fundamental importance for the investigation of arrhythmia mechanisms and pharmacotherapy.
Collapse
Affiliation(s)
- Daniel C Bartos
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, California, USA
| |
Collapse
|
50
|
Husti Z, Tábori K, Juhász V, Hornyik T, Varró A, Baczkó I. Combined inhibition of key potassium currents has different effects on cardiac repolarization reserve and arrhythmia susceptibility in dogs and rabbits. Can J Physiol Pharmacol 2015; 93:535-44. [DOI: 10.1139/cjpp-2014-0514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A reliable assessment of the pro-arrhythmic potential for drugs in the development phase remains elusive. Rabbits and dogs are commonly used to create models of pro-arrhythmia, but the differences between them with respect to repolarizing potassium currents are poorly understood. We investigated the incidence of drug-induced torsades de pointes (TdP) and measured conventional ECG parameters and the short-term variability of the QT interval (STVQT) following combined pharmacological inhibition of IK1+IKs and IK1+IKr in conscious dogs and anesthetized rabbits. A high incidence of TdP was observed following the combined inhibition of IK1+IKs in dogs (67% vs. 14% in rabbits). Rabbits exhibited higher TdP incidence after inhibition of IK1+IKr (72% vs. 14% in dogs). Increased TdP incidence was associated with significantly larger STVQT in both models. The relatively different roles of IK1 and IKs in dog and rabbit repolarization reserve should be taken into account when extrapolating the results from animal models of pro-arrhythmia to humans. A stronger repolarization reserve in dogs (likely due to stronger IK1 and IKs), and the more human-like susceptibility to arrhythmia of rabbits argues for the preferred use of rabbits in the evaluation of adverse pro-arrhythmic effects.
Collapse
Affiliation(s)
- Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, University of Szeged; H-6720, Dóm tér 12, P.O. Box 427, Szeged, Hungary
| | - Katalin Tábori
- Department of Pharmacology and Pharmacotherapy, University of Szeged; H-6720, Dóm tér 12, P.O. Box 427, Szeged, Hungary
| | - Viktor Juhász
- Department of Pharmacology and Pharmacotherapy, University of Szeged; H-6720, Dóm tér 12, P.O. Box 427, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, University of Szeged; H-6720, Dóm tér 12, P.O. Box 427, Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged; H-6720, Dóm tér 12, P.O. Box 427, Szeged, Hungary
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, H-6720, Dóm tér 12, P.O. Box 427, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged; H-6720, Dóm tér 12, P.O. Box 427, Szeged, Hungary
| |
Collapse
|