1
|
Averin AS, Storey KB, Nenov MN. The effects of nickel chloride on papillary muscle contractility under normothermic and hypothermic conditions: Comparison of active and hibernating ground squirrels (Urocitellus undulatus) with Wistar rats. J Therm Biol 2024; 119:103785. [PMID: 38320933 DOI: 10.1016/j.jtherbio.2024.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Extracellular Ca2+ plays a pivotal role in the regulation of cardiac contractility under normal and extreme conditions. Here, by using nickel chloride (NiCl2), a non-specific blocker of extracellular Ca2+ influx, we studied the input of extracellular Ca2+ on the regulation of papillary muscle (PM) contractility under normal and hypothermic conditions in ground squirrels (GS), and rats. By measuring isometric force of contraction, we studied how NiCl2 affects force-frequency relationship and the rest effect in PM of these species at 30 °C and 10 °C. We found that at 30 °C 1.5 mM NiCl2 significantly reduced force of contraction across entire frequency range in active GS and rats, whereas in hibernating GS force of contraction was reduced at low and high frequency range. Additionally, NiCl2 evoked spontaneous contractility in rats but not GS PM. The rest effect was significantly reduced by NiCl2 for active GS and rats but not hibernating GS. At 10 °C, NiCl2 fully reduced contractility in active GS and, to a lesser extent, in rats, whereas in hibernating GS it was significant only at 0.3 Hz. The rest effect was significantly reduced by NiCl2 in both active and hibernating GS, whereas it was unmasked in rats that had high contractility under hypothermic conditions in control. Our results show a significant contribution of extracellular Ca2+ to myocardial contractility in GS not only in active but also in hibernating states, especially under hypothermic conditions, whereas limitation of extracellular Ca2+ influx in rats under hypothermia can play protective role for myocardial contractility.
Collapse
Affiliation(s)
- Alexey S Averin
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Miroslav N Nenov
- Department of Psychology and Neuroscience, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
2
|
Averin AS, Zakharova NM, Ignatiev DA. Effects of Nickel Chloride on Myocardial Contractile Properties in Active Ground Squirrels with Different Responses to Hypothermia. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922050049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
3
|
Averin AS, Zakharova NM, Ignatiev DA. The Effect of the Extracellular Ca2+ Concentration on the Force–Frequency Dependence in the Myocardium of the Guinea Pig: Potentiation by a Pause under Pronounced Hypothermia. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921060026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Averin AS, Zakharova NM, Tarlachkov SV. Effect of Cooling on Force-Frequency Relationship, Rest Potentiation, and Frequency-Dependent Acceleration of Relaxation in the Guinea Pig Myocardium. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Chen MP, Kiduko SA, Saad NS, Canan BD, Kilic A, Mohler PJ, Janssen PML. Stretching single titin molecules from failing human hearts reveals titin's role in blunting cardiac kinetic reserve. Cardiovasc Res 2020; 116:127-137. [PMID: 30778519 DOI: 10.1093/cvr/cvz043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/08/2018] [Accepted: 02/13/2019] [Indexed: 11/15/2022] Open
Abstract
AIMS Heart failure (HF) patients commonly experience symptoms primarily during elevated heart rates, as a result of physical activities or stress. A main determinant of diastolic passive tension, the elastic sarcomeric protein titin, has been shown to be associated with HF, with unresolved involvement regarding its role at different heart rates. To determine whether titin is playing a role in the heart rate (frequency-) dependent acceleration of relaxation (FDAR). W, we studied the FDAR responses in live human left ventricular cardiomyocytes and the corresponding titin-based passive tension (TPT) from failing and non-failing human hearts. METHODS AND RESULTS Using atomic force, we developed a novel single-molecule force spectroscopy approach to detect TPT based on the frequency-modulated cardiac cycle. Mean TPT reduced upon an increased heart rate in non-failing human hearts, while this reduction was significantly blunted in failing human hearts. These mechanical changes in the titin distal Ig domain significantly correlated with the frequency-dependent relaxation kinetics of human cardiomyocytes obtained from the corresponding hearts. Furthermore, the data suggested that the higher the TPT, the faster the cardiomyocytes relaxed, but the lower the potential of myocytes to speed up relaxation at a higher heart rate. Such poorer FDAR response was also associated with a lesser reduction or a bigger increase in TPT upon elevated heart rate. CONCLUSIONS Our study established a novel approach in detecting dynamic heart rate relevant tension changes physiologically on native titin domains. Using this approach, the data suggested that the regulation of kinetic reserve in cardiac relaxation and its pathological changes were associated with the intensity and dynamic changes of passive tension by titin.
Collapse
Affiliation(s)
- Mei-Pian Chen
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA
| | - Salome A Kiduko
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA
| | - Nancy S Saad
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Benjamin D Canan
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA
| | - Ahmet Kilic
- Division of Cardiothoracic Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, 410 W 10th Ave, Columbus, OH 43210, USA
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, Columbus, OH 43210, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Zhang H, Zhang S, Wang W, Wang K, Shen W. A Mathematical Model of the Mouse Atrial Myocyte With Inter-Atrial Electrophysiological Heterogeneity. Front Physiol 2020; 11:972. [PMID: 32848887 PMCID: PMC7425199 DOI: 10.3389/fphys.2020.00972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
Biophysically detailed mathematical models of cardiac electrophysiology provide an alternative to experimental approaches for investigating possible ionic mechanisms underlying the genesis of electrical action potentials and their propagation through the heart. The aim of this study was to develop a biophysically detailed mathematical model of the action potentials of mouse atrial myocytes, a popular experimental model for elucidating molecular and cellular mechanisms of arrhythmogenesis. Based on experimental data from isolated mouse atrial cardiomyocytes, a set of mathematical equations for describing the biophysical properties of membrane ion channel currents, intracellular Ca2+ handling, and Ca2+-calmodulin activated protein kinase II and β-adrenergic signaling pathways were developed. Wherever possible, membrane ion channel currents were modeled using Markov chain formalisms, allowing detailed representation of channel kinetics. The model also considered heterogeneous electrophysiological properties between the left and the right atrial cardiomyocytes. The developed model was validated by its ability to reproduce the characteristics of action potentials and Ca2+ transients, matching quantitatively to experimental data. Using the model, the functional roles of four K+ channel currents in atrial action potential were evaluated by channel block simulations, results of which were quantitatively in agreement with existent experimental data. To conclude, this newly developed model of mouse atrial cardiomyocytes provides a powerful tool for investigating possible ion channel mechanisms of atrial electrical activity at the cellular level and can be further used to investigate mechanisms underlying atrial arrhythmogenesis.
Collapse
Affiliation(s)
- Henggui Zhang
- Department of Physics and Astronomy, Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom.,Peng Cheng Laboratory, Shenzhen, China
| | - Shanzhuo Zhang
- Department of Physics and Astronomy, Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom.,School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wei Wang
- Department of Physics and Astronomy, Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom.,Peng Cheng Laboratory, Shenzhen, China.,Shenzhen Key Laboratory of Visual Object Detection and Recognition, Harbin Institute of Technology, Shenzhen, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Weijian Shen
- Department of Physics and Astronomy, Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Tran K, Taberner AJ, Loiselle DS, Han JC. Energetics Equivalent of the Cardiac Force-Length End-Systolic Zone: Implications for Contractility and Economy of Contraction. Front Physiol 2020; 10:1633. [PMID: 32038302 PMCID: PMC6985585 DOI: 10.3389/fphys.2019.01633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/26/2019] [Indexed: 11/23/2022] Open
Abstract
We have recently demonstrated the existence of a region on the cardiac mechanics stress-length plane, which we have designated "The cardiac end-systolic zone." The zone is defined as the area on the pressure-volume (or stress-length) plane within which all stress-length contraction profiles reach their end-systolic points. It is enclosed by three boundaries: the isometric end-systolic relation, the work-loop (shortening) end-systolic relation, and the zero-active stress isotonic end-systolic relation. The existence of this zone reflects the contraction-mode dependence of the cardiac end-systolic force-length relations, and has been confirmed in a range of cardiac preparations at the whole-heart, tissue and myocyte levels. This finding has led us to speculate that a comparable zone prevails for cardiac metabolism. Specifically, we hypothesize the existence of an equivalent zone on the energetics plane (heat vs. stress), and that it can be attributed to the recently-revealed heat of shortening in cardiac muscle. To test these hypotheses, we subjected trabeculae to both isometric contractions and work-loop contractions over wide ranges of preloads and afterloads. We found that the heat-stress relations for work-loop contractions were distinct from those of isometric contractions, mirroring the contraction mode-dependence of the stress-length relation. The zone bounded by these contraction-mode dependent heat-stress relations reflects the heat of shortening. Isoproterenol-induced enhancement of contractility led to proportional increases in the zones on both the mechanics and energetics planes, thereby supporting our hypothesis.
Collapse
Affiliation(s)
- Kenneth Tran
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Andrew J. Taberner
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Denis S. Loiselle
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - June-Chiew Han
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
High tension in sarcomeres hinders myocardial relaxation: A computational study. PLoS One 2018; 13:e0204642. [PMID: 30286135 PMCID: PMC6171862 DOI: 10.1371/journal.pone.0204642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 09/12/2018] [Indexed: 11/19/2022] Open
Abstract
Experiments have shown that the relaxation phase of cardiac sarcomeres during an isometric twitch is prolonged in muscles that reached a higher peak tension. However, the mechanism is not completely understood. We hypothesize that the binding of calcium to troponin is enhanced by the tension in the thin filament, thus contributing to the prolongation of contraction upon higher peak tension generation. To test this hypothesis, we developed a computational model of sarcomere mechanics that incorporates tension-dependence of calcium binding. The model was used to simulate isometric twitch experiments with time dependency in the form of a two-state cross-bridge cycle model and a transient intracellular calcium concentration. In the simulations, peak isometric twitch tension appeared to increase linearly by 51.1 KPa with sarcomere length from 1.9 μm to 2.2 μm. Experiments showed an increase of 47.3 KPa over the same range of sarcomere lengths. The duration of the twitch also increased with both sarcomere length and peak intracellular calcium concentration, likely to be induced by the inherently coupled increase of the peak tension in the thin filament. In the model simulations, the time to 50% relaxation (tR50) increased over the range of sarcomere lengths from 1.9 μm to 2.2 μm by 0.11s, comparable to the increased duration of 0.12s shown in experiments. Model simulated tR50 increased by 0.12s over the range of peak intracellular calcium concentrations from 0.87 μM to 1.45 μM. Our simulation results suggest that the prolongation of contraction at higher tension is a result of the tighter binding of Ca2+ to troponin in areas under higher tension, thus delaying the deactivation of the troponin.
Collapse
|
9
|
Chung JH, Biesiadecki BJ, Ziolo MT, Davis JP, Janssen PML. Myofilament Calcium Sensitivity: Role in Regulation of In vivo Cardiac Contraction and Relaxation. Front Physiol 2016; 7:562. [PMID: 28018228 PMCID: PMC5159616 DOI: 10.3389/fphys.2016.00562] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
Myofilament calcium sensitivity is an often-used indicator of cardiac muscle function, often assessed in disease states such as hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). While assessment of calcium sensitivity provides important insights into the mechanical force-generating capability of a muscle at steady-state, the dynamic behavior of the muscle cannot be sufficiently assessed with a force-pCa curve alone. The equilibrium dissociation constant (Kd) of the force-pCa curve depends on the ratio of the apparent calcium association rate constant (kon) and apparent calcium dissociation rate constant (koff) of calcium on TnC and as a stand-alone parameter cannot provide an accurate description of the dynamic contraction and relaxation behavior without the additional quantification of kon or koff, or actually measuring dynamic twitch kinetic parameters in an intact muscle. In this review, we examine the effect of length, frequency, and beta-adrenergic stimulation on myofilament calcium sensitivity and dynamic contraction in the myocardium, the effect of membrane permeabilization/mechanical- or chemical skinning on calcium sensitivity, and the dynamic consequences of various myofilament protein mutations with potential implications in contractile and relaxation behavior.
Collapse
Affiliation(s)
- Jae-Hoon Chung
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Mark T Ziolo
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Department of Internal Medicine, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| |
Collapse
|
10
|
Johnston CM, Han JC, Loiselle DS, Nielsen PMF, Taberner AJ. Cardiac activation heat remains inversely dependent on temperature over the range 27-37°C. Am J Physiol Heart Circ Physiol 2016; 310:H1512-9. [PMID: 27016583 DOI: 10.1152/ajpheart.00903.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/22/2016] [Indexed: 11/22/2022]
Abstract
The relation between heat output and stress production (force per cross-sectional area) of isolated cardiac tissue is a key metric that provides insight into muscle energetic performance. The heat intercept of the relation, termed "activation heat," reflects the metabolic cost of restoring transmembrane gradients of Na(+) and K(+) following electrical excitation, and myoplasmic Ca(2+) concentration following its release from the sarcoplasmic reticulum. At subphysiological temperatures, activation heat is inversely dependent on temperature. Thus one may presume that activation heat would decrease even further at body temperature. However, this assumption is prima facie inconsistent with a study, using intact hearts, which revealed no apparent change in the combination of activation and basal metabolism between 27 and 37°C. It is thus desired to directly determine the change in activation heat between 27 and 37°C. In this study, we use our recently constructed high-thermal resolution muscle calorimeter to determine the first heat-stress relation of isolated cardiac muscle at 37°C. We compare the relation at 37°C to that at 27°C to examine whether the inverse temperature dependence of activation heat, observed under hypothermic conditions, prevails at body temperature. Our results show that activation heat was reduced (from 3.5 ± 0.3 to 2.3 ± 0.3 kJ/m(3)) at the higher temperature. This leads us to conclude that activation metabolism continues to decline as temperature is increased from hypothermia to normothermia and allows us to comment on results obtained from the intact heart by previous investigators.
Collapse
Affiliation(s)
- Callum M Johnston
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand;
| | - June-Chiew Han
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Denis S Loiselle
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Poul M F Nielsen
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Engineering Science, The University of Auckland, Auckland, New Zealand; and
| | - Andrew J Taberner
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Engineering Science, The University of Auckland, Auckland, New Zealand; and
| |
Collapse
|
11
|
Bugenhagen SM, Beard DA. Computational analysis of the regulation of Ca(2+) dynamics in rat ventricular myocytes. Phys Biol 2015; 12:056008. [PMID: 26358004 DOI: 10.1088/1478-3975/12/5/056008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Force-frequency relationships of isolated cardiac myocytes show complex behaviors that are thought to be specific to both the species and the conditions associated with the experimental preparation. Ca(2+) signaling plays an important role in shaping the force-frequency relationship, and understanding the properties of the force-frequency relationship in vivo requires an understanding of Ca(2+) dynamics under physiologically relevant conditions. Ca(2+) signaling is itself a complicated process that is best understood on a quantitative level via biophysically based computational simulation. Although a large number of models are available in the literature, the models are often a conglomeration of components parameterized to data of incompatible species and/or experimental conditions. In addition, few models account for modulation of Ca(2+) dynamics via β-adrenergic and calmodulin-dependent protein kinase II (CaMKII) signaling pathways even though they are hypothesized to play an important regulatory role in vivo. Both protein-kinase-A and CaMKII are known to phosphorylate a variety of targets known to be involved in Ca(2+) signaling, but the effects of these pathways on the frequency- and inotrope-dependence of Ca(2+) dynamics are not currently well understood. In order to better understand Ca(2+) dynamics under physiological conditions relevant to rat, a previous computational model is adapted and re-parameterized to a self-consistent dataset obtained under physiological temperature and pacing frequency and updated to include β-adrenergic and CaMKII regulatory pathways. The necessity of specific effector mechanisms of these pathways in capturing inotrope- and frequency-dependence of the data is tested by attempting to fit the data while including and/or excluding those effector components. We find that: (1) β-adrenergic-mediated phosphorylation of the L-type calcium channel (LCC) (and not of phospholamban (PLB)) is sufficient to explain the inotrope-dependence; and (2) that CaMKII-mediated regulation of neither the LCC nor of PLB is required to explain the frequency-dependence of the data.
Collapse
Affiliation(s)
- Scott M Bugenhagen
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
12
|
Guilbert A, Lim HJ, Cheng J, Wang Y. CaMKII-dependent myofilament Ca2+ desensitization contributes to the frequency-dependent acceleration of relaxation. Cell Calcium 2015; 58:489-99. [PMID: 26297240 DOI: 10.1016/j.ceca.2015.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/06/2015] [Accepted: 08/04/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies suggest that CaMKII activity is required for frequency-dependent acceleration of relaxation (FDAR) in ventricular myocytes. We propose that the underlying mechanism involves CaMKII-dependent regulation of myofilament Ca(2+) sensitivity. METHODS AND RESULTS Cardiac function was measured in mice using murine echo machine. [Ca(2+)]i and sarcomere length were measured by IonOptix Ca(2+) image system. Increasing pacing rate from 0.5 to 4 Hz in left ventricular myocytes induced frequency-dependent myofilament Ca(2+) desensitization (FDMCD) and FDAR. Acute inhibition of PKA or PKC had no effect, whereas CaMKII inhibition abolished both FDMCD and FDAR. Co-immunoprecipitation of CaMKII and troponin I (TnI) has been detected and CaMKII inhibition significantly reduced serine residue phosphorylation of TnI. Finally, chronic inhibition of CaMKII in vivo reduced TnI phosphorylation and abolished both FDAR and FDMCD, leading to impaired diastolic function. CONCLUSIONS Our results suggest that CaMKII-dependent TnI phosphorylation is involved in FDMCD and the consequent FDAR and that CaMKII inhibition removes this mechanism and thus induces diastolic dysfunction.
Collapse
Affiliation(s)
| | - Hyun Joung Lim
- Department of Pediatrics, Emory University, Atlanta, USA
| | - Jun Cheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, China; Department of Pediatrics, Emory University, Atlanta, USA
| | - Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, China; Department of Pediatrics, Emory University, Atlanta, USA.
| |
Collapse
|
13
|
Shen X, Cannell MB, Ward ML. Effect of SR load and pH regulatory mechanisms on stretch-dependent Ca(2+) entry during the slow force response. J Mol Cell Cardiol 2013; 63:37-46. [PMID: 23880608 DOI: 10.1016/j.yjmcc.2013.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/11/2013] [Accepted: 07/11/2013] [Indexed: 12/22/2022]
Abstract
When cardiac muscle is stretched, there is an initial inotropic response that coincides with the stretch followed by a slower increase in twitch force that develops over several minutes (the "slow force response", or SFR). Unlike the initial response to stretch, the SFR is produced by an increase in Ca(2+) transient amplitude, but the cellular mechanisms that give rise to the increased transients are still debated. We have examined the relationship between the SFR, intracellular [Ca(2+)] and the inotropic state of right ventricular trabeculae from rat hearts at 37°C. The magnitude of the SFR varied with [Ca(2+)]o and stimulation frequency, so that the SFR was greatest for conditions associated with a reduced SR Ca(2+) content. The SFR was not blocked by the AT1 receptor blocker losartan, but was reduced by SN-6, an inhibitor of reverse mode Na(+)/Ca(2+)-exchange (NCX). The Na(+)/H(+)-exchange (NHE) inhibitor HOE642 had no effect in HCO3(-)-buffered solutions, but blocked 50% of the SFR in HCO3(-)-free solution. Inhibition of HCO3(-) transport by DIDS increased the SFR and made it sensitive to HOE642. The addition of cross-bridge cycle inhibitors (20mM BDM or 20μM blebbistatin) to the superfusate reduced the SFR as monitored by changes in Ca(2+). In HCO3(-)-free conditions, the SFR was associated with a slow acidification that was inhibited by BDM, and by stopping electrical stimulation. These results can be explained by stretch increasing metabolic demand and stimulating Na(+) entry via both NHE and the Na(+)/HCO3(-) transporters. This mechanism provides a novel link between inotropic state and stretch, as well as a way for the cell to compensate for increased acid load. The feedback mechanism between force and Ca(2+) transient amplitude that we describe is also limited by the degree of SR Ca(2+) load.
Collapse
Affiliation(s)
- Xin Shen
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand
| | | | | |
Collapse
|
14
|
Han JC, Tran K, Taberner AJ, Nickerson DP, Kirton RS, Nielsen PMF, Ward ML, Nash MP, Crampin EJ, Loiselle DS. Myocardial twitch duration and the dependence of oxygen consumption on pressure-volume area: experiments and modelling. J Physiol 2012; 590:4603-22. [PMID: 22570375 PMCID: PMC3477760 DOI: 10.1113/jphysiol.2012.228965] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/02/2012] [Indexed: 11/08/2022] Open
Abstract
We tested the proposition that linear length dependence of twitch duration underlies the well-characterised linear dependence of oxygen consumption (V(O(2)) ) on pressure–volume area (PVA) in the heart. By way of experimental simplification, we reduced the problem from three dimensions to one by substituting cardiac trabeculae for the classically investigated whole-heart. This allowed adoption of stress–length area (SLA) as a surrogate for PVA, and heat as a proxy for V(O(2)) . Heat and stress (force per cross-sectional area), at a range of muscle lengths and at both 1 mM and 2 mM [Ca(2+)](o), were recorded from continuously superfused rat right-ventricular trabeculae undergoing fixed-end contractions. The heat–SLA relations of trabeculae (reported here, for the first time) are linear. Twitch duration increases monotonically (but not strictly linearly) with muscle length. We probed the cellular mechanisms of this phenomenon by determining: (i) the length dependence of the duration of the Ca(2+) transient, (ii) the length dependence of the rate of force redevelopment following a length impulse (an index of Ca(2+) binding to troponin-C), (iii) the effect on the simulated time course of the twitch of progressive deletion of length and Ca(2+)-dependent mechanisms of crossbridge cooperativity, using a detailed mathematical model of the crossbridge cycle, and (iv) the conditions required to achieve these multiple length dependencies, using a greatly simplified model of twitch mechano-energetics. From the results of these four independent investigations, we infer that the linearity of the heat–SLA relation (and, by analogy, the V(O(2))–PVA relation) is remarkably robust in the face of departures from linearity of length-dependent twitch duration.
Collapse
Affiliation(s)
- J-C Han
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Staurosporine inhibits frequency-dependent myofilament desensitization in intact rabbit cardiac trabeculae. Biochem Res Int 2012; 2012:290971. [PMID: 22649731 PMCID: PMC3357507 DOI: 10.1155/2012/290971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/22/2012] [Indexed: 11/17/2022] Open
Abstract
Myofilament calcium sensitivity decreases with frequency in intact healthy rabbit trabeculae and associates with Troponin I and Myosin light chain-2 phosphorylation. We here tested whether serine-threonine kinase activity is primarily responsible for this frequency-dependent modulations of myofilament calcium sensitivity. Right ventricular trabeculae were isolated from New Zealand White rabbit hearts and iontophoretically loaded with bis-fura-2. Twitch force-calcium relationships and steady state force-calcium relationships were measured at frequencies of 1 and 4 Hz at 37 °C. Staurosporine (100 nM), a nonspecific serine-threonine kinase inhibitor, or vehicle (DMSO) was included in the superfusion solution before and during the contractures. Staurosporine had no frequency-dependent effect on force development, kinetics, calcium transient amplitude, or rate of calcium transient decline. The shift in the pCa50 of the force-calcium relationship was significant from 6.05 ± 0.04 at 1 Hz versus 5.88 ± 0.06 at 4 Hz under control conditions (vehicle, P < 0.001) but not in presence of staurosporine (5.89 ± 0.08 at 1 Hz versus 5.94 ± 0.07 at 4 Hz, P = NS). Phosphoprotein analysis (Pro-Q Diamond stain) confirmed that staurosporine significantly blunted the frequency-dependent phosphorylation at Troponin I and Myosin light chain-2. We conclude that frequency-dependent modulation of calcium sensitivity is mediated through a kinase-specific effect involving phosphorylation of myofilament proteins.
Collapse
|
16
|
Maier LS. Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII) in the Heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:685-702. [DOI: 10.1007/978-94-007-2888-2_30] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Wiegerinck RF, Cojoc A, Zeidenweber CM, Ding G, Shen M, Joyner RW, Fernandez JD, Kanter KR, Kirshbom PM, Kogon BE, Wagner MB. Force frequency relationship of the human ventricle increases during early postnatal development. Pediatr Res 2009; 65:414-9. [PMID: 19127223 PMCID: PMC2788428 DOI: 10.1203/pdr.0b013e318199093c] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Understanding developmental changes in contractility is critical to improving therapies for young cardiac patients. Isometric developed force was measured in human ventricular muscle strips from two age groups: newborns (<2 wk) and infants (3-14 mo) undergoing repair for congenital heart defects. Muscle strips were paced at several cycle lengths (CLs) to determine the force frequency response (FFR). Changes in Na/Ca exchanger (NCX), sarcoplasmic reticulum Ca-ATPase (SERCA), and phospholamban (PLB) were characterized. At CL 2000 ms, developed force was similar in the two groups. Decreasing CL increased developed force in the infant group to 131 +/- 8% (CL 1000 ms) and 157 +/- 18% (CL 500 ms) demonstrating a positive FFR. The FFR in the newborn group was flat. NCX mRNA and protein levels were significantly larger in the newborn than infant group whereas SERCA levels were unchanged. PLB mRNA levels and PLB/SERCA ratio increased with age. Immunostaining for NCX in isolated newborn cells showed peripheral staining. In infant cells, NCX was also found in T-tubules. SERCA staining was regular and striated in both groups. This study shows for the first time that the newborn human ventricle has a flat FFR, which increases with age and may be caused by developmental changes in calcium handling.
Collapse
Affiliation(s)
- Rob F Wiegerinck
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
A simulation study on the activation of cardiac CaMKII delta-isoform and its regulation by phosphatases. Biophys J 2008; 95:2139-49. [PMID: 18502812 DOI: 10.1529/biophysj.107.118505] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the highly conserved Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is known to play an essential role in cardiac myocytes, its involvement in the frequency-dependent acceleration of relaxation is still controversial. To investigate the functional significance of CaMKII autophosphorylation and its regulation by protein phosphatases (PPs) in heart, we developed a new mathematical model for the CaMKIIdelta isoform. Due to better availability of experimental data, the model was first adjusted to the kinetics of the neuronal CaMKIIalpha isoform and then converted to a CaMKIIdelta model by fitting to kinetic data of the delta isoform. Both models satisfactorily reproduced experimental data of the CaMKII-calmodulin interaction, the autophosphorylation rate, and the frequency dependence of activation. The level of autophosphorylated CaMKII cumulatively increased upon starting the Ca(2+) stimulation at 3 Hz in the delta model. Variations in PP concentration remarkably affected the frequency-dependent activation of CaMKIIdelta, suggesting that cellular PP activity plays a key role in adjusting CaMKII activation in heart. The inhibitory effect of PP was stronger for CaMKIIalpha compared to CaMKIIdelta. Simulation results revealed a potential involvement of CaMKIIdelta autophosphorylation in the frequency-dependent acceleration of relaxation at physiological heart rates and PP concentrations.
Collapse
|
19
|
Abstract
Calcium (Ca) is a universal intracellular second messenger. In muscle, Ca is best known for its role in contractile activation. However, in recent years the critical role of Ca in other myocyte processes has become increasingly clear. This review focuses on Ca signaling in cardiac myocytes as pertaining to electrophysiology (including action potentials and arrhythmias), excitation-contraction coupling, modulation of contractile function, energy supply-demand balance (including mitochondrial function), cell death, and transcription regulation. Importantly, although such diverse Ca-dependent regulations occur simultaneously in a cell, the cell can distinguish distinct signals by local Ca or protein complexes and differential Ca signal integration.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Physiology and Cardiovascular Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
20
|
Janssen PML, Periasamy M. Determinants of frequency-dependent contraction and relaxation of mammalian myocardium. J Mol Cell Cardiol 2007; 43:523-31. [PMID: 17919652 PMCID: PMC2093987 DOI: 10.1016/j.yjmcc.2007.08.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/13/2007] [Accepted: 08/16/2007] [Indexed: 11/18/2022]
Abstract
An increase in heart rate is the primary mechanism that up-regulates cardiac output during conditions such as exercise and stress. When the heart rate increases, cardiac output increases due to (1) an increased number of beats per time period, and (2) the fact that myocardium generates a higher level of force. In this review, we focus on the underlying mechanisms that are at the basis of frequency-dependent activation of the heart. In addition to increased force development, the kinetics of both cardiac activation and relaxation are faster. This is crucial, as in between successive beats there is less time, and cardiac output can only be maintained if the ventricle can fill adequately. We will discuss the cellular mechanisms that are involved in the regulation of rate-dependent changes in kinetics, with a focus on changes that occur in regulation of the intracellular calcium transient, and the changes in the myofilament responsiveness that occur when the heart rate changes.
Collapse
Affiliation(s)
- Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210-1218, USA.
| | | |
Collapse
|
21
|
Dibb KM, Eisner DA, Trafford AW. Regulation of systolic [Ca2+]i and cellular Ca2+ flux balance in rat ventricular myocytes by SR Ca2+, L-type Ca2+ current and diastolic [Ca2+]i. J Physiol 2007; 585:579-92. [PMID: 17932152 DOI: 10.1113/jphysiol.2007.141473] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The force-frequency response is an important physiological mechanism regulating cardiac output changes and is accompanied in vivo by beta-adrenergic stimulation. We sought to determine the role of sarcoplasmic reticulum (SR) Ca2+ content and L-type current (ICa-L) in the frequency response of the systolic Ca2+ transient alone and during beta-adrenergic stimulation. Experiments (on single rat ventricular myocytes) were designed to be as physiological as possible. Under current clamp stimulation SR Ca2+ content increased in line with stimulation frequency (1-8 Hz) but the systolic Ca2+ transient was maximal at 6 Hz. Under voltage clamp, increasing frequency decreased both systolic Ca2+ transient and ICa-L. Normalizing peak ICa-L by altering the test potential decreased the Ca2+ transient amplitude less than an equivalent reduction achieved through changes in frequency. This suggests that, in addition to SR Ca2+ content and ICa-L, another factor, possibly refractoriness of Ca2+ release from the SR contributes. Under current clamp, beta-adrenergic stimulation (isoprenaline, 30 nm) increased both the Ca2+ transient and the SR Ca2+ content and removed the dependence of both on frequency. In voltage clamp experiments, beta-adrenergic stimulation still increased SR Ca2+ content yet there was an inverse relation between frequency and Ca2+ transient amplitude and ICa-L. Diastolic [Ca2+]i increased with stimulation frequency and this contributed substantially (69.3 +/- 6% at 8 Hz) to the total Ca2+ efflux from the cell. We conclude that Ca2+ flux balance is maintained by the combination of increased efflux due to elevated diastolic [Ca2+]i and a decrease of influx on IC-L) on each pulse.
Collapse
Affiliation(s)
- K M Dibb
- Unit of Cardiac Physiology, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK.
| | | | | |
Collapse
|
22
|
Maier LS, Bers DM. Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation–contraction coupling in the heart. Cardiovasc Res 2007; 73:631-40. [PMID: 17157285 DOI: 10.1016/j.cardiores.2006.11.005] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/03/2006] [Accepted: 11/06/2006] [Indexed: 11/27/2022] Open
Abstract
Calcium (Ca(2+)) is the central second messenger in the translation of electrical signals into mechanical activity of the heart. This highly coordinated process, termed excitation-contraction coupling or ECC, is based on Ca(2+)-induced Ca(2+) release from the sarcoplasmic reticulum (SR). In recent years it has become increasingly clear that several Ca(2+)-dependent proteins contribute to the fine tuning of ECC. One of these is the Ca(2+)/calmodulin-dependent protein kinase (CaMK) of which CaMKII is the predominant cardiac isoform. During ECC CaMKII phosphorylates several Ca(2+) handling proteins with multiple functional consequences. CaMKII may also be co-localized to distinct target proteins. CaMKII expression as well as activity are reported to be increased in heart failure and CaMKII overexpression can exert distinct and novel effects on ECC in the heart and in isolated myocytes of animals. In the present review we summarize important aspects of the role of CaMKII in ECC with an emphasis on recent novel findings.
Collapse
Affiliation(s)
- Lars S Maier
- Abt. Kardiologie & Pneumologie / Herzzentrum, Georg-August-Universität Göttingen, 37075 Göttingen, Germany.
| | | |
Collapse
|
23
|
Grimm M, El-Armouche A, Zhang R, Anderson ME, Eschenhagen T. Reduced contractile response to α1-adrenergic stimulation in atria from mice with chronic cardiac calmodulin kinase II inhibition. J Mol Cell Cardiol 2007; 42:643-52. [PMID: 17292391 DOI: 10.1016/j.yjmcc.2006.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 12/15/2006] [Accepted: 12/20/2006] [Indexed: 10/01/2022]
Abstract
The sustained positive inotropic effect of alpha-adrenoceptor agonists in the heart is associated with a small increase in intracellular Ca(2+) transients together with a larger sensitization of myofilaments to Ca(2+). The multifunctional Ca(2+) and calmodulin-dependent protein kinase II (CaMKII) could contribute to this effect, either by affecting the Ca(2+) release (ryanodine receptor) or by an uptake mechanism (via phospholamban [PLB] and SR Ca(2+) ATPase). Here we examined the role of CaMKII in the positive inotropic effect of the alpha-adrenoceptor agonist phenylephrine in left atria isolated from a genetic mouse model of cardiac CaMKII inhibition (AC3-I). Compared to atria from wild-type (WT) or AC3-C (scrambled peptide), AC3-I atria showed the following abnormalities. PLB phosphorylation at Thr17, a known CaMKII target, was significantly lower ( approximately 20%). Post-rest (30 s, 1 Hz, 37 degrees C) potentiation of force was absent (AC3-C, 190% of pre-rest amplitude). Basal force was approximately 20% lower at 1.8 mM Ca(2+), but normal at high Ca(2+) concentration (>4.5 mM). The maximal positive inotropic effect of phenylephrine, which was more pronounced at low frequencies in WT and AC3-C atria, lost its frequency dependence (1 Hz to 8 Hz). Thus, the effect of phenylephrine was reduced by approximately 50% at 1 Hz, but was normal at 8 Hz. All three groups showed a negative force-frequency relation, and did not differ in the frequency-dependent acceleration of relaxation. Our data indicate a role of CaMKII in post-rest potentiation and the positive inotropic effect of alpha-adrenergic stimulation at low frequencies.
Collapse
Affiliation(s)
- Michael Grimm
- Institute of Experimental and Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
24
|
Varian KD, Janssen PML. Frequency-dependent acceleration of relaxation involves decreased myofilament calcium sensitivity. Am J Physiol Heart Circ Physiol 2007; 292:H2212-9. [PMID: 17209002 DOI: 10.1152/ajpheart.00778.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The force-frequency relationship is an intrinsic modulator of cardiac contractility and relaxation. Force of contraction increases with frequency, while simultaneously a frequency-dependent acceleration of relaxation occurs. While frequency dependency of calcium handling and sarcoplasmic reticulum calcium load have been well described, it remains unknown whether frequency-dependent changes in myofilament calcium sensitivity occur. We hypothesized that an increase in heart rate that results in acceleration of relaxation is accompanied by a proportional decrease in myofilament calcium sensitivity. To test our hypothesis, ultrathin right ventricular trabeculae were isolated from New Zealand White rabbit hearts and iontophorically loaded with the calcium indicator bis-fura 2. Twitch and intracellular calcium handling parameters were measured and showed a robust increase in twitch force, acceleration of relaxation, and rise in both diastolic and systolic intracellular calcium concentration with increased frequency. Steady-state force-intracellular calcium concentration relationships were measured at frequencies 1, 2, 3, and 4 Hz at 37 degrees C using potassium-induced contractures. EC(50) significantly and gradually increased with frequency, from 475 +/- 64 nM at 1 Hz to 1,004 +/- 142 nM at 4 Hz (P < 0.05) and correlated with the corresponding changes in half relaxation time. No significant changes in maximal active force development or in the myofilament cooperativity coefficient were found. Myofilament protein phosphorylation was assessed using Pro-Q Diamond staining on protein gels of trabeculae frozen at either 1 or 4 Hz, revealing troponin I and myosin light chain-2 phosphorylation associated with the myofilament desensitization. We conclude that myofilament calcium sensitivity is substantially and significantly decreased at higher frequencies, playing a prominent role in frequency-dependent acceleration of relaxation.
Collapse
Affiliation(s)
- Kenneth D Varian
- Department of Physiology and Cell Biology, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210-1218, USA
| | | |
Collapse
|
25
|
Picht E, DeSantiago J, Huke S, Kaetzel MA, Dedman JR, Bers DM. CaMKII inhibition targeted to the sarcoplasmic reticulum inhibits frequency-dependent acceleration of relaxation and Ca2+ current facilitation. J Mol Cell Cardiol 2007; 42:196-205. [PMID: 17052727 PMCID: PMC1828135 DOI: 10.1016/j.yjmcc.2006.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 09/08/2006] [Indexed: 11/28/2022]
Abstract
Cardiac Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in heart has been implicated in Ca(2+) current (I(Ca)) facilitation, enhanced sarcoplasmic reticulum (SR) Ca(2+) release and frequency-dependent acceleration of relaxation (FDAR) via enhanced SR Ca(2+) uptake. However, questions remain about how CaMKII may work in these three processes. Here we tested the role of CaMKII in these processes using transgenic mice (SR-AIP) that express four concatenated repeats of the CaMKII inhibitory peptide AIP selectively in the SR membrane. Wild type mice (WT) and mice expressing AIP exclusively in the nucleus (NLS-AIP) served as controls. Increasing stimulation frequency produced typical FDAR in WT and NLS-AIP, but FDAR was markedly inhibited in SR-AIP. Quantitative analysis of cytosolic Ca(2+) removal during [Ca(2+)](i) decline revealed that FDAR is due to an increased apparent V(max) of SERCA. CaMKII-dependent RyR phosphorylation at Ser2815 and SR Ca(2+) leak was both decreased in SR-AIP vs. WT. This decrease in SR Ca(2+) leak may partly balance the reduced SERCA activity leading to relatively unaltered SR-Ca(2+) load in SR-AIP vs. WT myocytes. Surprisingly, CaMKII regulation of the L-type Ca(2+) channel (I(Ca) facilitation and recovery from inactivation) was abolished by the SR-targeted CaMKII inhibition in SR-AIP mice. Inhibition of CaMKII effects on I(Ca) and RyR function by the SR-localized AIP places physical constraints on the localization of these proteins at the junctional microdomain. Thus SR-targeted CaMKII inhibition can directly inhibit the activation of SR Ca(2+) uptake, SR Ca(2+) release and I(Ca) by CaMKII, effects which have all been implicated in triggered arrhythmias.
Collapse
Affiliation(s)
- Eckard Picht
- Department of Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| | - Jaime DeSantiago
- Department of Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| | - Sabine Huke
- Department of Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| | - Marcia A. Kaetzel
- Department of Genome Science, University of Cincinnati College of Medicine, 2180 E. Galbraith Road, Cincinnati, Ohio 45237, USA
| | - John R. Dedman
- Department of Genome Science, University of Cincinnati College of Medicine, 2180 E. Galbraith Road, Cincinnati, Ohio 45237, USA
| | - Donald M. Bers
- Department of Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| |
Collapse
|
26
|
Huke S, Bers DM. Temporal dissociation of frequency-dependent acceleration of relaxation and protein phosphorylation by CaMKII. J Mol Cell Cardiol 2006; 42:590-9. [PMID: 17239900 PMCID: PMC1857340 DOI: 10.1016/j.yjmcc.2006.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/07/2006] [Accepted: 12/13/2006] [Indexed: 11/20/2022]
Abstract
Frequency-dependent acceleration of relaxation (FDAR) is an important intrinsic mechanism that allows for diastolic filling of the ventricle at higher heart rates, yet its molecular mechanism is still not understood. Previous studies showed that FDAR is dependent on functional sarcoplasmic reticulum (SR) and can be abolished by phosphatase or by Ca/CaM kinase (CaMKII) inhibition. Additionally, CaMKII activity/autophosphorylation has been shown to be frequency-dependent. Thus, we tested the hypothesis that CaMKII phosphorylation of SR Ca(2+)-handling proteins (Phospholamban (PLB), Ca(2+) release channel (RyR)) mediates FDAR. Here we show that FDAR occurs abruptly in fluo-4 loaded isolated rat ventricular myocytes when frequency is raised from 0.1 to 2 Hz. The effect is essentially complete within four beats (2 s) with the tau of [Ca(2+)](i) decline decreasing by 42+/-3%. While there is a detectable increase in PLB Thr-17 and RyR Ser-2814 phosphorylation, the increase is quantitatively small (PLB<5%, RyR approximately 8%) and the time-course is clearly delayed with regard to FDAR. The low substrate phosphorylation indicates that pacing of myocytes only mildly activates CaMKII and consistent with this CaMKIIdelta autophosphorylation did not increase with pacing alone. However, in the presence of phosphatase 1 inhibition pacing triggered a net-increase in autophosphorylated CaMKII and also greatly enhanced PLB and RyR phosphorylation. We conclude that FDAR does not rely on phosphorylation of PLB or RyR. Even though CaMKII does become activated when myocytes are paced, phosphatases immediately antagonize CaMKII action, limit substrate phosphorylation and also prevent sustained CaMKII autophosphorylation (thereby suppressing global CaMKII effects).
Collapse
Affiliation(s)
- Sabine Huke
- Department of Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Ave, Maywood, IL 60153-5500, USA
| | | |
Collapse
|
27
|
Dias FAL, Walker LA, Arteaga GM, Walker JS, Vijayan K, Peña JR, Ke Y, Fogaca RTH, Sanbe A, Robbins J, Wolska BM. The effect of myosin regulatory light chain phosphorylation on the frequency-dependent regulation of cardiac function. J Mol Cell Cardiol 2006; 41:330-9. [PMID: 16806259 DOI: 10.1016/j.yjmcc.2006.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 05/11/2006] [Accepted: 05/16/2006] [Indexed: 11/25/2022]
Abstract
Although it has been suggested that in cardiac muscle the phosphorylation level of myosin regulatory light chain (RLC) correlates with frequency of stimulation, its significance in the modulation of the force-frequency and pressure-frequency relationships remains unclear. We examined the role of RLC phosphorylation on the force-frequency relation (papillary muscles), the pressure-frequency relation (Langendorff perfused hearts) and shortening-frequency relation (isolated cardiac myocytes) in nontransgenic (NTG) and transgenic mouse hearts expressing a nonphosphorylatable RLC protein (RLC(P-)). At 22 degrees C, NTG and RLC(P-) muscles showed a negative force-frequency relation. At 32 degrees C, at frequencies above 1 Hz, both groups showed a flat force-frequency relation. There was a small increase in RLC phosphorylation in NTG muscles when the frequency of stimulation was increased from 0.2 Hz to 4.0 Hz. However, the level of RLC phosphorylation in these isolated muscles was significantly lower compared to samples taken from NTG intact hearts. In perfused hearts, there was no difference in the slope of pressure-frequency relationship between groups, but the RLC(P-) group consistently developed a reduced systolic pressure and demonstrated a decreased contractility. There was no difference in the level of RLC phosphorylation in hearts paced at 300 and 600 bpm. In RLC(P-) hearts, the level of TnI phosphorylation was reduced compared to NTG. There was no change in the expression of PLB between groups, but expression of SERCA2 was increased in hearts from RLC(P-) compared to NTG. In isolated cardiac myocytes, there was no change in shortening-frequency relationship between groups. Moreover, there was no change in Ca(2+) transient parameters in cells from NTG and RLC(P-) hearts. Our data demonstrate that in cardiac muscle RLC phosphorylation is not an essential determinant of force- and pressure-frequency relations but the absence of RLC phosphorylation decreases contractility in force/pressure developing preparations.
Collapse
Affiliation(s)
- Fernando A L Dias
- Center for Cardiovascular Research, Department of Medicine, Section of Cardiology, University of Illinois at Chicago, 60612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kirchhefer U, Hanske G, Jones LR, Justus I, Kaestner L, Lipp P, Schmitz W, Neumann J. Overexpression of junctin causes adaptive changes in cardiac myocyte Ca(2+) signaling. Cell Calcium 2005; 39:131-42. [PMID: 16289269 DOI: 10.1016/j.ceca.2005.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 10/02/2005] [Accepted: 10/05/2005] [Indexed: 11/22/2022]
Abstract
In cardiac muscle, junctin forms a quaternary protein complex with the ryanodine receptor (RyR), calsequestrin, and triadin 1 at the luminal face of the junctional sarcoplasmic reticulum (jSR). By binding directly the RyR and calsequestrin, junctin may mediate the Ca(2+)-dependent regulatory interactions between both proteins. To gain more insight into the underlying mechanisms of impaired contractile relaxation in transgenic mice with cardiac-specific overexpression of junctin (TG), we studied cellular Ca(2+) handling in these mice. We found that the SR Ca(2+) load was reduced by 22% in cardiomyocytes from TG mice. Consistent with this, the frequency of Ca(2+) sparks was diminished by 32%. The decay of spontaneous Ca(2+) sparks was prolonged by 117% in TG. This finding was associated with a lower Na(+)-Ca(2+) exchanger (NCX) protein expression (by 67%) and a higher basal RyR phosphorylation at Ser(2809) (by 64%) in TG. The shortening- and Delta[Ca](i)-frequency relationships (0.5-4 Hz) were flat in TG compared to wild-type (WT) which exhibited a positive staircase for both parameters. Furthermore, increasing stimulation frequencies hastened the time of relaxation and the decay of [Ca](i) by a higher percentage in TG. We conclude that the impaired relaxation in TG may result from a reduced NCX expression and/or a higher SR Ca(2+) leak. The altered shortening-frequency relationship in TG seems to be a consequence of an impaired excitation-contraction coupling with depressed SR Ca(2+) release at higher rates of stimulation. Our data suggest that the more prominent frequency-dependent hastening of relaxation in TG results from a stimulation of SR Ca(2+) transport reflected by corresponding changes of [Ca](i).
Collapse
Affiliation(s)
- Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Domagkstr. 12, 48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Endoh M. Force-frequency relationship in intact mammalian ventricular myocardium: physiological and pathophysiological relevance. Eur J Pharmacol 2005; 500:73-86. [PMID: 15464022 DOI: 10.1016/j.ejphar.2004.07.013] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 11/21/2022]
Abstract
The force-frequency relationship (FFR) is an important intrinsic regulatory mechanism of cardiac contractility. The FFR in most mammalian ventricular myocardium is positive; that is, an increase in contractile force in association with an increase in the amplitude of Ca(2+) transients is induced by elevation of the stimulation frequency, which reflects the cardiac contractile reserve. The relationship is different depending on the range of frequency and species of animal. In some species, including rat and mouse, a 'primary-phase' negative FFR is induced over the low-frequency range up to approximately 0.5-1 Hz (rat) and 1-2 Hz (mouse). Even in these species, the FFR over the frequency range close to the physiological heart rate is positive and qualitatively similar to that in larger mammalian species, although the positive FFR is less prominent. The integrated dynamic balance of the intracellular Ca(2+) concentration ([Ca(2+)](i)) is the primary cellular mechanism responsible for the FFR and is determined by sarcoplasmic reticulum (SR) Ca(2+) load and Ca(2+) flux through the sarcolemma via L-type Ca(2+) channels and the Na(+)-Ca(2+) exchanger. Intracellular Na(+) concentration is also an important factor in [Ca(2+)](i) regulation. In isolated rabbit papillary muscle, over a lower frequency range (<0.5 Hz), an increase in duration rather than amplitude of Ca(2+) transients appears to be responsible for the increase in contractile force, while over an intermediate frequency range (0.5-2.0 Hz), the amplitude of Ca(2+) transients correlates well with the increase in contractile force. Over a higher frequency range (>2.5 Hz), the contractile force is dissociated from the amplitude of Ca(2+) transients probably due to complex cellular mechanisms, including oxygen limitation in the central fibers of isolated muscle preparations, while the amplitude of Ca(2+) transients increases further with increasing frequency ('secondary-phase' negative FFR). Calmodulin (CaM) may contribute to a positive FFR and the frequency-dependent acceleration of relaxation, although the role of calmodulin has not yet been established unequivocally. In failing ventricular myocardium, the positive FFR disappears or is inverted and becomes negative. The activation and overexpression of cardiac sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a) is able to reverse these abnormalities. Frequency-dependent alterations of systolic and diastolic force in association with those of Ca(2+) transients and diastolic [Ca(2+)](i) levels are excellent indicators for analysis of cardiac excitation-contraction coupling, and for evaluating the severity of cardiac contractile dysfunction, cardiac reserve capacity and the effectiveness of therapeutic agents in congestive heart failure.
Collapse
Affiliation(s)
- Masao Endoh
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| |
Collapse
|
30
|
Palomeque J, Vila Petroff MG, Mattiazzi A. Pacing Staircase Phenomenon in the Heart: From Bodwitch to the XXI Century. Heart Lung Circ 2004; 13:410-20. [PMID: 16352227 DOI: 10.1016/j.hlc.2004.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The frequency of pacing is a fundamental physiological modulator of myocardial function. When the pacing rate increases there is normally an increase in contractility (a positive force-frequency relationship). However in small rodents, fish and end-stage failing myocardium, the force-frequency response has been found to be flat or even negative. The positive staircase is understood to be related with the increase in the intracellular Ca(2+) transient, mainly due to an enhanced sarcoplasmic reticulum Ca(2+) content at higher stimulation frequencies, resulting from an increase in Ca(2+) influx per unit time and reduced Ca(2+) efflux between beats. However, additional mechanisms, such as increased activity of Ca(2+)/calmodulin-dependent protein kinase or enhanced myofilament responsiveness to Ca(2+) may also play a role. Although an increase in contraction frequency has been shown to be associated with an increase in intracellular Na(+), several studies have shown a temporal dissociation between the increase in Na(i)(+) and the increase in force evoked by changes in pacing frequency. The way in which the Na(+)/Ca(2+) exchanger contributes to contraction frequency inotropy is still not well understood. The aim of this review is to examine the contribution of the fundamental components of cardiac excitation-contraction coupling to frequency inotropy in healthy and failing hearts.
Collapse
Affiliation(s)
- Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata 1900, Argentina
| | | | | |
Collapse
|
31
|
Valverde CA, Mundiña-Weilenmann C, Said M, Ferrero P, Vittone L, Salas M, Palomeque J, Petroff MV, Mattiazzi A. Frequency-dependent acceleration of relaxation in mammalian heart: a property not relying on phospholamban and SERCA2a phosphorylation. J Physiol 2004; 562:801-13. [PMID: 15528241 PMCID: PMC1665530 DOI: 10.1113/jphysiol.2004.075432] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
An increase in stimulation frequency causes an acceleration of myocardial relaxation (FDAR). Several mechanisms have been postulated to explain this effect, among which is the Ca(2+)-calmodulin-dependent protein kinase (CaMKII)-dependent phosphorylation of the Thr(17) site of phospholamban (PLN). To gain further insights into the mechanisms of FDAR, we studied the FDAR and the phosphorylation of PLN residues in perfused rat hearts, cat papillary muscles and isolated cat myocytes. This allowed us to sweep over a wide range of frequencies, in species with either positive or negative force-frequency relationships, as well as to explore the FDAR under isometric (or isovolumic) and isotonic conditions. Results were compared with those produced by isoprenaline, an intervention known to accelerate relaxation (IDAR) via PLN phosphorylation. While IDAR occurs tightly associated with a significant increase in the phosphorylation of Ser(16) and Thr(17) of PLN, FDAR occurs without significant changes in the phosphorylation of PLN residues in the intact heart and cat papillary muscles. Moreover, in intact hearts, FDAR was not associated with any significant change in the CaMKII-dependent phosphorylation of sarcoplasmic/endoplasmic Ca(2+) ATPase (SERCA2a), and was not affected by the presence of the CaMKII inhibitor, KN-93. In isolated myocytes, FDAR occurred associated with an increase in Thr(17) phosphorylation. However, for a similar relaxant effect produced by isoprenaline, the phosphorylation of PLN (Ser(16) and Thr(17)) was significantly higher in the presence of the beta-agonist. Moreover, the time course of Thr(17) phosphorylation was significantly delayed with respect to the onset of FDAR. In contrast, the time course of Ser(16) phosphorylation, the first residue that becomes phosphorylated with isoprenaline, was temporally associated with IDAR. Furthermore, KN-93 significantly decreased the phosphorylation of Thr(17) that was evoked by increasing the stimulation frequency, but failed to affect FDAR. Taken together, the results provide direct evidence indicating that CaMKII phosphorylation pathways are not involved in FDAR and that FDAR and IDAR do not share a common underlying mechanism. More likely, a CaMKII-independent mechanism could be involved, whereby increasing stimulation frequency would disrupt the SERCA2a-PLN interaction, leading to an increase in SR Ca(2+) uptake and myocardial relaxation.
Collapse
Affiliation(s)
- Carlos A Valverde
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hobai IA, Maack C, O'Rourke B. Partial inhibition of sodium/calcium exchange restores cellular calcium handling in canine heart failure. Circ Res 2004; 95:292-9. [PMID: 15217911 PMCID: PMC2703731 DOI: 10.1161/01.res.0000136817.28691.2d] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sodium/calcium (Na+/Ca2+) exchange (NCX) overexpression is common to human heart failure and heart failure in many animal models, but its specific contribution to the cellular Ca2+ ([Ca2+]i) handling deficit is unclear. Here, we investigate the effects of exchange inhibitory peptide (XIP) on Ca2+ handling in myocytes isolated from canine tachycardic pacing-induced failing hearts. Whole-cell patch-clamped left ventricular myocytes from failing hearts (F) showed a 52% decrease in steady-state sarcoplasmic reticulum (SR) Ca2+ load and a 44% reduction in the amplitude of the [Ca2+]i transient, as compared with myocytes from normal hearts (N). Intracellular application of XIP (30 micromol/L) normalized the [Ca2+]i transient amplitude in F (3.86-fold increase), concomitant with a similar increase in SR Ca2+ load. The degree of NCX inhibition at this concentration of XIP was 27% and was selective for NCX: L-type Ca2+ currents and plasmalemmal Ca2+ pumps were not affected. XIP also indirectly improved the rate of [Ca2+]i removal at steady-state, secondary to Ca2+-dependent activation of SR Ca2+ uptake. The findings indicate that in the failing heart cell, NCX inhibition can improve SR Ca2+ load by shifting the balance of Ca2+ fluxes away from trans-sarcolemmal efflux toward SR accumulation. Hence, inhibition of the Ca2+ efflux mode of the exchanger could potentially be an effective therapeutic strategy for improving contractility in congestive heart failure.
Collapse
Affiliation(s)
- Ion A Hobai
- Johns Hopkins University Institute of Molecular Cardiobiology, Department of Medicine, Baltimore, Md 21205-2195, USA
| | | | | |
Collapse
|
33
|
Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM. Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res 2003; 92:904-11. [PMID: 12676813 DOI: 10.1161/01.res.0000069685.20258.f1] [Citation(s) in RCA: 364] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) delta is the predominant cardiac isoform, and the deltaC splice variant is cytoplasmic. We overexpressed CaMKIIdeltaC in mouse heart and observed dilated heart failure and altered myocyte Ca2+ regulation in 3-month-old CaMKIIdeltaC transgenic mice (TG) versus wild-type littermates (WT). Heart/body weight ratio and cardiomyocyte size were increased about 2-fold in TG versus WT. At 1 Hz, twitch shortening, [Ca2+]i transient amplitude, and diastolic [Ca2+]i were all reduced by approximately 50% in TG versus WT. This is explained by >50% reduction in SR Ca2+ content in TG versus WT. Peak Ca2+ current (ICa) was slightly increased, and action potential duration was prolonged in TG versus WT. Despite lower SR Ca2+ load and diastolic [Ca2+]i, fractional SR Ca2+ release was increased and resting spontaneous SR Ca2+ release events (Ca2+ sparks) were doubled in frequency in TG versus WT (with prolonged width and duration, but lower amplitude). Enhanced Ca2+ spark frequency was also seen in TG at 4 weeks (before heart failure onset). Acute CaMKII inhibition normalized Ca2+ spark frequency and ICa, consistent with direct CaMKII activation of ryanodine receptors (and ICa) in TG. The rate of [Ca2+]i decline during caffeine exposure was faster in TG, indicating enhanced Na+-Ca2+ exchange function (consistent with protein expression measurements). Enhanced diastolic SR Ca2+ leak (via sparks), reduced SR Ca2+-ATPase expression, and increased Na+-Ca2+ exchanger explain the reduced diastolic [Ca2+]i and SR Ca2+ content in TG. We conclude that CaMKIIdeltaC overexpression causes acute modulation of excitation-contraction coupling, which contributes to heart failure.
Collapse
Affiliation(s)
- Lars S Maier
- Department of Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Ave, Maywood, Ill 60153, USA
| | | | | | | | | | | |
Collapse
|
34
|
Stuyvers BD, McCulloch AD, Guo J, Duff HJ, ter Keurs HEDJ. Effect of stimulation rate, sarcomere length and Ca(2+) on force generation by mouse cardiac muscle. J Physiol 2002; 544:817-30. [PMID: 12411526 PMCID: PMC2290620 DOI: 10.1113/jphysiol.2002.024430] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The relations between stress, stimulation rate and sarcomere length (SL) were investigated in 24 cardiac trabeculae isolated from right ventricles of mice (CF-1 males, 25-30 g) and superfused with Hepes solution ([Ca(2+)](o) = 1 mM, pH 7.4, 25 degrees C). Stress and SL were measured by a strain gauge transducer and laser diffraction technique, respectively. Stress versus stimulation frequency formed a biphasic relation (25 degrees C, [Ca(2+)](o) = 2 mM) with a minimum at 0.7-1 Hz (~15 mN mm(-2)), a 150 % decrease from 0.1 to 1 Hz (descending limb) and a 75 % increase from 1 to 5 Hz (ascending limb). Ryanodine (0.1 microM) inhibited specifically the descending limb, while nifedipine (0.1 microM) affected specifically the ascending limb. This result suggests two separate sources of Ca(2+) for stress development: (1) net Ca(2+) influx during action potentials (AP); and (2) Ca(2+) entry into the cytosol from the extracellular space during diastolic intervals; Ca(2+) from both (1) and (2) is sequestered by the SR between beats. Raising the temperature to 37 degrees C lowered the stress-frequency relation (SFR) by approximately 0-15 mN mm(-2) at each frequency. Because the amount of Ca(2+) carried by I(Ca,L) showed a approximately 3-fold increase under the same conditions, we conclude that reduced Ca(2+) loading of the SR was probably responsible for this temperature effect. A simple model of Ca(2+) fluxes addressed the mechanisms underlying the SFR. Simulation of the effect of inorganic phosphates (P(i)) on force production was incorporated into the model. The results suggested that O(2) diffusion limits force production at stimulation rates >3 Hz. The stress-SL relations from slack length (approximately 1.75 microm) to 2.25 microm showed that the passive stress-SL curve of mouse cardiac trabeculae is exponential with a steep increase at SL >2.1 microm. Active stress (at 1 Hz) increased with SL, following a curved relation with convexity toward the abscissa at [Ca(2+)] = 2 mM. At [Ca(2+)] from 4 to 12 mM, the stress-SL curves superimposed and the relation became linear, which revealed a saturation step in the activation of force production. EC coupling in mouse cardiac muscle is similar to that observed previously in the rat, although important differences exist in the Ca(2+) dependence of force development. These results may suggest a lower capacity of the SR for buffering Ca(2+), which makes the generation of force in mouse cardiac ventricle more dependent on Ca(2+) entering during action potentials, particularly at high heart rate.
Collapse
Affiliation(s)
- Bruno D Stuyvers
- University of Calgary, Health Sciences Center, Department of Medicine, Physiology & Biophysics, Alberta, Canada
| | | | | | | | | |
Collapse
|
35
|
Hoit BD. Relaxation... it's not getting any easier. J Mol Cell Cardiol 2002; 34:1135-9. [PMID: 12392887 DOI: 10.1006/jmcc.2002.2055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
DeSantiago J, Maier LS, Bers DM. Frequency-dependent acceleration of relaxation in the heart depends on CaMKII, but not phospholamban. J Mol Cell Cardiol 2002; 34:975-84. [PMID: 12234767 DOI: 10.1006/jmcc.2002.2034] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Frequency-dependent acceleration of relaxation (FDAR) is an intrinsic physiological mechanism, which allows more rapid ventricular diastolic filling at higher heart rates. FDAR is also observed in isolated myocardial trabeculae and cardiac myocytes, but its mechanism is still poorly understood. We tested the hypothesis that FDAR results mainly from Ca/calmodulin-dependent protein kinase II (CaMKII) dependent stimulation of sarcoplasmic reticulum (SR) Ca transport, but does not require phospholamban. Experiments were performed at 23 or 35 degrees C in isolated ventricular muscle and single myocytes from wild-type (WT) and phospholamban knockout (PLB-KO) mice and rat ventricular myocytes. Isometric twitch force of muscles and unloaded shortening and Ca transients in myocytes were measured ([Ca](o)=1mM) in the absence and presence of CaMKII inhibitors (1 microM KN-93 or 20 microM autocamtide-2 related inhibitory peptide, AIP). Stimulation frequency was altered over a wide range (0.2-8Hz) and post-rest vs steady state twitches were also compared. In both WT and PLB-KO mouse muscles FDAR of twitch force was prominent, but was largely suppressed by KN-93. FDAR of twitch contractions was associated with FDAR of Ca transients in PLB-KO myocytes, and both were inhibited by KN-93. Similarly, a different CaMKII inhibitor (AIP) inhibited FDAR of contraction and Ca transients in rat ventricular myocytes. We conclude that FDAR results mainly from CaMKII-dependent stimulation of SR Ca transport, but does not require phospholamban.
Collapse
Affiliation(s)
- Jaime DeSantiago
- Department of Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | |
Collapse
|
37
|
Abstract
Calcium (Ca) is the key regulator of cardiac contraction during excitation-contraction (E-C) coupling. However, differences exist between the amount of Ca being transported into the myocytes upon electrical stimulation as compared to Ca released from the sarcoplasmic reticulum (SR). Moreover, alterations in E-C coupling occur in cardiac hypertrophy and heart failure. In addition to the direct effects of Ca on the myofilaments, Ca plays a pivotal role in activation of a number of Ca-dependent proteins or second messengers, which can modulate E-C coupling. Of these proteins, calmodulin (CaM) and Ca-CaM-dependent kinase II (CaMKII) are of special interest in the heart because of their role of modulating Ca influx, SR Ca release, and SR Ca uptake during E-C coupling. Indeed, CaM and CaMKII may be associated with some ion channels and Ca transporters and both can modulate acute cellular Ca handling. In addition to the changes in Ca, CaM and CaMKII signals from beat-to-beat, changes may occur on a longer time scale. These may occur over seconds to minutes involving phosphorylation/dephosphorylation reactions, and even a longer time frame in altering gene transcription (excitation-transcription (E-T) coupling) in hypertrophic signaling and heart failure. Here we review the classical role of Ca in E-C coupling and extend this view to the role of the Ca-dependent proteins CaM and CaMKII in modulating E-C coupling and their contribution to E-T coupling.
Collapse
Affiliation(s)
- Lars S Maier
- Department of Physiology, Stritch School of Medicine, Loyola University-Chicago, 2160 South First Avenue, Chicago, IL 60153, USA
| | | |
Collapse
|
38
|
|
39
|
Janssen PML, Stull LB, Marbán E. Myofilament properties comprise the rate-limiting step for cardiac relaxation at body temperature in the rat. Am J Physiol Heart Circ Physiol 2002; 282:H499-507. [PMID: 11788397 DOI: 10.1152/ajpheart.00595.2001] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The majority of studies aimed at characterizing basic contractile mechanisms have been conducted at room temperature. To elucidate the mechanism of cardiac relaxation under more physiological conditions, we investigated contractile function and calcium handling in ultrathin rat cardiac trabeculae. Active developed tension was unaltered between 22.5 and 30.0 degrees C (from 89 +/- 10 to 86 +/- 11 mN/mm(2), P = not significant) but steeply declined at 37.5 degrees C (30 +/- 5 mN/mm(2)). Meanwhile, the speed of relaxation (time from peak force to 50% relaxation) declined from 22.5 to 30.0 degrees C (from 360 +/- 40 to 157 +/- 17 ms) and further declined at 37.5 degrees C to 76 +/- 13 ms. Phase-plane analysis of calcium versus force revealed that, with increasing temperature, the relaxation phase is shifted rightward, indicating that the rate-limiting step of relaxation tends to depend more on calcium kinetics as temperature rises. The force-frequency relationship, which was slightly negative at 22.5 degrees C (0.1 vs. 1 Hz: 77 +/- 12 vs. 66 +/- 7 mN/mm(2)), became clearly positive at 37.5 degrees C (1 vs. 10 Hz: 30 +/- 5 vs. 69 +/- 9 mN/mm(2)). Phase-plane analyses indicated that, with increasing frequency, the relaxation phase is shifted leftward. We conclude that temperature independently affects contraction and relaxation, and cross-bridge cycling kinetics become rate limiting for cardiac relaxation under experimental conditions closest to those in vivo.
Collapse
Affiliation(s)
- Paul M L Janssen
- Institute of Molecular Cardiobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
40
|
Baker AJ, Redfern CH, Harwood MD, Simpson PC, Conklin BR. Abnormal contraction caused by expression of G(i)-coupled receptor in transgenic model of dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2001; 280:H1653-9. [PMID: 11247776 DOI: 10.1152/ajpheart.2001.280.4.h1653] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although increased G(i) signaling has been associated with dilated cardiomyopathy in humans, its role is not clear. Our goal was to determine the effects of chronically increased G(i) signaling on myocardial function. We studied transgenic mice that expressed a G(i)-coupled receptor (Ro1) that was targeted to the heart and regulated by a tetracycline-controlled expression system. Ro1 expression for 8 wk resulted in abnormal contractions of right ventricular muscle strips in vitro. Ro1 expression reduced myocardial force by >60% (from 35 +/- 3 to 13 +/- 2 mN/mm(2), P < 0.001). Nevertheless, sensitivity to extracellular Ca(2+) was enhanced. The extracellular [Ca(2+)] resulting in half-maximal force was lower with Ro1 expression compared with control (0.41 +/- 0.05 vs. 0.88 +/- 0.05 mM, P < 0.001). Ro1 expression slowed both contraction and relaxation kinetics, increasing the twitch time to peak (143 +/- 6 vs. 100 +/- 4 ms in control, P < 0.001) and the time to half relaxation (124 +/- 6 vs. 75 +/- 6 ms in control, P < 0.001). Increased pacing frequency increased contractile force threefold in control myocardium (P < 0.001) but caused no increase of force in Ro1-expressing myocardium. When stimulation was interrupted with rests, postrest force increased in control myocardium, but there was postrest decay of force in Ro1-expressing myocardium. These results suggest that defects in contractility mediated by G(i) signaling may contribute to the development of dilated cardiomyopathy.
Collapse
Affiliation(s)
- A J Baker
- Department of Radiology, University of California, San Francisco, California 94143, USA.
| | | | | | | | | |
Collapse
|