1
|
Demori I, Losacco S, Giordano G, Mucci V, Blanchini F, Burlando B. Fibromyalgia pathogenesis explained by a neuroendocrine multistable model. PLoS One 2024; 19:e0303573. [PMID: 38990866 PMCID: PMC11238986 DOI: 10.1371/journal.pone.0303573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/26/2024] [Indexed: 07/13/2024] Open
Abstract
Fibromyalgia (FM) is a central disorder characterized by chronic pain, fatigue, insomnia, depression, and other minor symptoms. Knowledge about pathogenesis is lacking, diagnosis difficult, clinical approach puzzling, and patient management disappointing. We conducted a theoretical study based on literature data and computational analysis, aimed at developing a comprehensive model of FM pathogenesis and addressing suitable therapeutic targets. We started from the evidence that FM must involve a dysregulation of central pain processing, is female prevalent, suggesting a role for the hypothalamus-pituitary-gonadal (HPG) axis, and is stress-related, suggesting a role for the HP-adrenocortical (HPA) axis. Central pathogenesis was supposed to involve a pain processing loop system including the thalamic ventroposterolateral nucleus (VPL), the primary somatosensory cortex (SSC), and the thalamic reticular nucleus (TRN). For decreasing GABAergic and/or increasing glutamatergic transmission, the loop system crosses a bifurcation point, switching from monostable to bistable, and converging on a high-firing-rate steady state supposed to be the pathogenic condition. Thereafter, we showed that GABAergic transmission is positively correlated with gonadal-hormone-derived neurosteroids, notably allopregnanolone, whereas glutamatergic transmission is positively correlated with stress-induced glucocorticoids, notably cortisol. Finally, we built a dynamic model describing a multistable, double-inhibitory loop between HPG and HPA axes. This system has a high-HPA/low-HPG steady state, allegedly reached in females under combined premenstrual/postpartum brain allopregnanolone withdrawal and stress condition, driving the thalamocortical loop to the high-firing-rate steady state, and explaining the connection between endocrine and neural mechanisms in FM pathogenesis. Our model accounts for FM female prevalence and stress correlation, suggesting the use of neurosteroid drugs as a possible solution to currently unsolved problems in the clinical treatment of the disease.
Collapse
Affiliation(s)
- Ilaria Demori
- Department of Pharmacy, DIFAR, University of Genova, Genova, Italy
| | - Serena Losacco
- Department of Pharmacy, DIFAR, University of Genova, Genova, Italy
| | - Giulia Giordano
- Department of Industrial Engineering, University of Trento, Trento, (TN), Italy
- Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
| | - Viviana Mucci
- School of Science, Western Sydney University, Penrith, Australia
| | - Franco Blanchini
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | - Bruno Burlando
- Department of Pharmacy, DIFAR, University of Genova, Genova, Italy
| |
Collapse
|
2
|
Lucchi C, Codeluppi A, Filaferro M, Vitale G, Rustichelli C, Avallone R, Mandrioli J, Biagini G. Human Microglia Synthesize Neurosteroids to Cope with Rotenone-Induced Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12040963. [PMID: 37107338 PMCID: PMC10135967 DOI: 10.3390/antiox12040963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
We obtained evidence that mouse BV2 microglia synthesize neurosteroids dynamically to modify neurosteroid levels in response to oxidative damage caused by rotenone. Here, we evaluated whether neurosteroids could be produced and altered in response to rotenone by the human microglial clone 3 (HMC3) cell line. To this aim, HMC3 cultures were exposed to rotenone (100 nM) and neurosteroids were measured in the culture medium by liquid chromatography with tandem mass spectrometry. Microglia reactivity was evaluated by measuring interleukin 6 (IL-6) levels, whereas cell viability was monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. After 24 h (h), rotenone increased IL-6 and reactive oxygen species levels by approximately +37% over the baseline, without affecting cell viability; however, microglia viability was significantly reduced at 48 h (p < 0.01). These changes were accompanied by the downregulation of several neurosteroids, including pregnenolone, pregnenolone sulfate, 5α-dihydroprogesterone, and pregnanolone, except for allopregnanolone, which instead was remarkably increased (p < 0.05). Interestingly, treatment with exogenous allopregnanolone (1 nM) efficiently prevented the reduction in HMC3 cell viability. In conclusion, this is the first evidence that human microglia can produce allopregnanolone and that this neurosteroid is increasingly released in response to oxidative stress, to tentatively support the microglia's survival.
Collapse
Affiliation(s)
- Chiara Lucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alessandro Codeluppi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Monica Filaferro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Vitale
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
3
|
Kapur J, Joshi S. Progesterone modulates neuronal excitability bidirectionally. Neurosci Lett 2021; 744:135619. [PMID: 33421486 PMCID: PMC7821816 DOI: 10.1016/j.neulet.2020.135619] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
Progesterone acts on neurons directly by activating its receptor and through metabolic conversion to neurosteroids. There is emerging evidence that progesterone exerts excitatory effects by activating its cognate receptors (progesterone receptors, PRs) through enhanced expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). Progesterone metabolite 5α,3α-tetrahydro-progesterone (allopregnanolone, THP) mediates its anxiolytic and sedative actions through the potentiation of synaptic and extrasynaptic γ-aminobutyric acid type-A receptors (GABAARs). Here, we review progesterone's neuromodulatory actions exerted through PRs and THP and their opposing role in regulating seizures, catamenial epilepsy, and seizure exacerbation associated with progesterone withdrawal.
Collapse
Affiliation(s)
- Jaideep Kapur
- Department of Neurology, University of Virginia-HSC, Charlottesville, VA, 22908, United States; Department of Neuroscience, University of Virginia-HSC, Charlottesville, VA, 22908, United States; UVA Brain Institute, University of Virginia-HSC, Charlottesville, VA, 22908, United States
| | - Suchitra Joshi
- Department of Neurology, University of Virginia-HSC, Charlottesville, VA, 22908, United States.
| |
Collapse
|
4
|
Joshi S, Roden WH, Kapur J, Jansen LA. Reduced neurosteroid potentiation of GABA A receptors in epilepsy and depolarized hippocampal neurons. Ann Clin Transl Neurol 2020; 7:527-542. [PMID: 32243088 PMCID: PMC7187710 DOI: 10.1002/acn3.51023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Neurosteroids regulate neuronal excitability by potentiating γ-aminobutyric acid type-A receptors (GABARs). In animal models of temporal lobe epilepsy, the neurosteroid sensitivity of GABARs is diminished and GABAR subunit composition is altered. We tested whether similar changes occur in patients with epilepsy and if depolarization-induced increases in neuronal activity can replicate this effect. METHODS We determined GABAR α4 subunit expression in cortical tissue resected from pediatric epilepsy patients. Modulation of human GABARs by allopregnanolone and Ro15-4513 was measured in Xenopus oocytes using whole-cell patch clamp. To extend the findings obtained using tissue from epilepsy patients, we evaluated GABAR expression and modulation by allopregnanolone and Ro15-4513 in cultured rat hippocampal neurons exposed to high extracellular potassium (HK) to increase neuronal activity. RESULTS Expression of α4 subunits was increased in pediatric cortical epilepsy specimens encompassing multiple pathologies. The potentiation of GABA-evoked currents by the neurosteroid allopregnanolone was decreased in Xenopus oocytes expressing GABARs isolated from epilepsy patients. Furthermore, receptors isolated from epilepsy but not control tissue were sensitive to potentiation by Ro15-4513, indicating higher expression of α4 βx γ2 subunit-containing receptors. Correspondingly, increasing the activity of cultured rat hippocampal neurons reduced allopregnanolone potentiation of miniature inhibitory postsynaptic currents (mIPSCs), increased modulation of tonic GABAR current by Ro15-4513, upregulated the surface expression of α4 and γ2 subunits, and increased the colocalization of α4 and γ2 subunit immunoreactivity. INTERPRETATION These findings suggest that seizure activity-induced upregulation of α4 βx γ2 subunit-containing GABARs could affect the anticonvulsant actions of neurosteroids.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia
| | | | - Jaideep Kapur
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia
- Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginia
- UVA Brain InstituteUniversity of VirginiaCharlottesvilleVirginia
| | - Laura A. Jansen
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia
- Seattle Children’s Research InstituteSeattleWashington
- Department of NeurologyWashington University School of MedicineSt. LouisWashington
| |
Collapse
|
5
|
Joshi S, Kapur J. Neurosteroid regulation of GABA A receptors: A role in catamenial epilepsy. Brain Res 2019; 1703:31-40. [PMID: 29481795 PMCID: PMC6107446 DOI: 10.1016/j.brainres.2018.02.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/08/2017] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
Abstract
The female reproductive hormones progesterone and estrogen regulate network excitability. Fluctuations in the circulating levels of these hormones during the menstrual cycle cause frequent seizures during certain phases of the cycle in women with epilepsy. This seizure exacerbation, called catamenial epilepsy, is a dominant form of drug-refractory epilepsy in women of reproductive age. Progesterone, through its neurosteroid derivative allopregnanolone, increases γ-aminobutyric acid type-A receptor (GABAR)-mediated inhibition in the brain and keeps seizures under control. Catamenial seizures are believed to be a neurosteroid withdrawal symptom, and it was hypothesized that exogenous administration of progesterone to maintain its levels high during luteal phase will treat catamenial seizures. However, in a multicenter, double-blind, phase III clinical trial, progesterone treatment did not suppress catamenial seizures. The expression of GABARs with reduced neurosteroid sensitivity in epileptic animals may explain the failure of the progesterone clinical trial. The expression of neurosteroid-sensitive δ subunit-containing GABARs is reduced, and the expression of α4γ2 subunit-containing GABARs is upregulated, which alters the inhibition of dentate granule cells in epilepsy. These changes reduce the endogenous neurosteroid control of seizures and contribute to catamenial seizures.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States.
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, United States
| |
Collapse
|
6
|
Clossen BL, Reddy DS. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1519-1538. [PMID: 28179120 PMCID: PMC5474195 DOI: 10.1016/j.bbadis.2017.02.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
Abstract
This article describes the recent advances in epileptogenesis and novel therapeutic approaches for the prevention of epilepsy, with a special emphasis on the pharmacological basis of disease-modification of epileptogenesis for curing epilepsy. Here we assess animal studies and human clinical trials of epilepsy spanning 1982-2016. Epilepsy arises from a number of neuronal factors that trigger epileptogenesis, which is the process by which a brain shifts from a normal physiologic state to an epileptic condition. The events precipitating these changes can be of diverse origin, including traumatic brain injury, cerebrovascular damage, infections, chemical neurotoxicity, and emergency seizure conditions such as status epilepticus. Expectedly, the molecular and system mechanisms responsible for epileptogenesis are not well defined or understood. To date, there is no approved therapy for the prevention of epilepsy. Epigenetic dysregulation, neuroinflammation, and neurodegeneration appear to trigger epileptogenesis. Targeted drugs are being identified that can truly prevent the development of epilepsy in at-risk people. The promising agents include rapamycin, COX-2 inhibitors, TRK inhibitors, epigenetic modulators, JAK-STAT inhibitors, and neurosteroids. Recent evidence suggests that neurosteroids may play a role in modulating epileptogenesis. A number of promising drugs are under investigation for the prevention or modification of epileptogenesis to halt the development of epilepsy. Some drugs in development appear rational for preventing epilepsy because they target the initial trigger or related signaling pathways as the brain becomes progressively more prone to seizures. Additional research into the target validity and clinical investigation is essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
7
|
Clossen BL, Reddy DS. Catamenial-like seizure exacerbation in mice with targeted ablation of extrasynaptic δGABA-a receptors in the brain. J Neurosci Res 2017; 95:1906-1916. [PMID: 28236431 DOI: 10.1002/jnr.24028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/18/2016] [Accepted: 01/03/2017] [Indexed: 01/19/2023]
Abstract
Neurosteroids play a key role in catamenial epilepsy, a menstrual cycle-related seizure clustering in women with epilepsy. While neurosteroids act on all GABA-A receptor isoforms, they cause greater effects on extrasynaptic δGABA-A receptors that mediate tonic inhibition in the brain. Previously, we identified a potential GABA-A receptor mechanism for catamenial epilepsy. However, the precise functional role of extrasynaptic δGABA-A receptors in the pathophysiology of catamenial epilepsy remains unclear. In this study, we utilized mice lacking extrasynaptic δGABA-A receptors (δKO) to investigate whether reduction of tonic inhibition affects catamenial seizure susceptibility or intensity. Intact female wildtype (WT) and δKO mice were subjected to hippocampus kindling until they exhibited stage 5 seizures. Elevated gonadal hormone-based neurosteroid levels were induced by standard gonadotropin regimen and neurosteroid withdrawal (NSW) was triggered by finasteride. NSW increased susceptibility to, as well the intensity of evoked catamenial-like seizures in WT and δKO mice. However, fully kindled δKO mice exhibited an accelerated and augmented response to NSW, with a more rapid increase in seizure susceptibility and intensity than WT mice undergoing the NSW paradigm. Moreover, δKO mice in NSW showed reduced benzodiazepine sensitivity, but in stark contrast to the increased neurosteroid sensitivity observed in WT animals, δKO mice displayed no change in neurosteroid sensitivity in response to NSW. The increased catamenial seizure exacerbation and alterations in antiseizure drug responses are consistent with NSW-induced changes in the abundance of δGABA-A receptors. Collectively, these findings provide evidence of a potential protective role for extrasynaptic δGABA-A receptors in catamenial-like seizures. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
8
|
Hamed SA. The effect of epilepsy and antiepileptic drugs on sexual, reproductive and gonadal health of adults with epilepsy. Expert Rev Clin Pharmacol 2016; 9:807-819. [PMID: 26934627 DOI: 10.1586/17512433.2016.1160777] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/29/2016] [Indexed: 12/31/2022]
Abstract
Epilepsy is a common chronic medical illness. Hyposexuality is the most frequent abnormality in men and women with epilepsy. In men with epilepsy, hypoandrogenimia, hypogonadism and sperm abnormalities are common. Testicular atrophy was also infrequently reported. In women with epilepsy, hyperandrogenism, polycystic ovaries (PCOs) and PCO syndrome are frequent. Decreased serum free testosterone, dehydroepiandrosterone levels, free androgen index and free testosterone/leutinizing hormone (LH) ratio and increased sex hormone binding globulin, estradiol, prolactin, LH, follicle stimulating hormone (FSH) levels and LH/FSH ratio are common with epilepsy. Disturbance of central and/or peripheral control of hypothalamic-pituitary-gonadal axis and alteration of central neurotrasmitters (GABA, glutamate and serotonin) by epileptic discharges or antiepileptic drugs (AEDs), direct gonadal toxicity by AEDs and pcyshicatric/psychosocial factors are all incriminated in sexual, reproductive and gonadal abnormalities associated with epilepsy. Patients may benefit from multidisplinary evaluation, tight seizure control, change the AED, androgen therapy, genital vasodilators, L-carnitine supplementation and psychotherapy.
Collapse
Affiliation(s)
- Sherifa A Hamed
- a Department of Neurology and Psychiatry , Assiut University Hospital , Assiut , Egypt
| |
Collapse
|
9
|
Dengler CG, Coulter DA. Normal and epilepsy-associated pathologic function of the dentate gyrus. PROGRESS IN BRAIN RESEARCH 2016; 226:155-78. [PMID: 27323942 DOI: 10.1016/bs.pbr.2016.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The dentate gyrus plays critical roles both in cognitive processing, and in regulation of the induction and propagation of pathological activity. The cellular and circuit mechanisms underlying these diverse functions overlap extensively. At the cellular level, the intrinsic properties of dentate granule cells combine to endow these neurons with a fundamental reluctance to activate, one of their hallmark traits. At the circuit level, the dentate gyrus constitutes one of the more heavily inhibited regions of the brain, with strong, fast feedforward and feedback GABAergic inhibition dominating responses to afferent activation. In pathologic states such as epilepsy, a number of alterations within the dentate gyrus combine to compromise the regulatory properties of this circuit, culminating in a collapse of its normal function. This epilepsy-associated transformation in the fundamental properties of this critical regulatory hippocampal circuit may contribute both to seizure propensity, and cognitive and emotional comorbidities characteristic of this disease state.
Collapse
Affiliation(s)
- C G Dengler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - D A Coulter
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
10
|
Enduring changes in tonic GABAA receptor signaling in dentate granule cells after controlled cortical impact brain injury in mice. Exp Neurol 2016; 277:178-189. [DOI: 10.1016/j.expneurol.2016.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 11/23/2022]
|
11
|
Puia G, Ravazzini F, Castelnovo LF, Magnaghi V. PKCε and allopregnanolone: functional cross-talk at the GABAA receptor level. Front Cell Neurosci 2015; 9:83. [PMID: 25852476 PMCID: PMC4365694 DOI: 10.3389/fncel.2015.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/23/2015] [Indexed: 11/13/2022] Open
Abstract
Changes in GABAergic inhibition occur during physiological processes, during response to drugs and in various pathologies. These changes can be achieved through direct allosteric modifications at the γ-amino butyric acid (GABA) type A (GABAA) receptor protein level, or by altering the synthesis, trafficking and stability of the receptor. Neurosteroids (NSs) and protein kinase C (PKC) are potent modulators of GABAA receptors and their effects are presumably intermingled, even though evidence for this hypothesis is only partially explored. However, several PKC isoforms are able to phosphorylate the GABAA receptor, producing different functional effects. We focused on the ε isoform, that has been correlated to the sensitivity of the GABAA receptor to allosteric modulators and whose expression may be regulated in peripheral sensory neurons by NSs. The cross-talk between PKC-ε and NSs, leading to changes in GABAA receptor functionality, is considered and discussed in this perspective.
Collapse
Affiliation(s)
- Giulia Puia
- Department of Life Science, University of Modena and Reggio Emilia Modena, Italy
| | - Federica Ravazzini
- Department of Life Science, University of Modena and Reggio Emilia Modena, Italy
| | - Luca Franco Castelnovo
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| |
Collapse
|
12
|
Altered expression of δGABAA receptors in health and disease. Neuropharmacology 2014; 88:24-35. [PMID: 25128850 DOI: 10.1016/j.neuropharm.2014.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/28/2014] [Accepted: 08/03/2014] [Indexed: 01/08/2023]
Abstract
γ-Aminobutyric acid type A receptors that contain the δ subunit (δGABAA receptors) are expressed in multiple types of neurons throughout the central nervous system, where they generate a tonic conductance that shapes neuronal excitability and synaptic plasticity. These receptors regulate a variety of important behavioral functions, including memory, nociception and anxiety, and may also modulate neurogenesis. Given their functional significance, δGABAA receptors are considered to be novel therapeutic targets for the treatment of memory dysfunction, pain, insomnia and mood disorders. These receptors are highly responsive to sedative-hypnotic drugs, general anesthetics and neuroactive steroids. A further remarkable feature of δGABAA receptors is that their expression levels are highly dynamic and fluctuate substantially during development and in response to physiological changes including stress and the reproductive cycle. Furthermore, the expression of these receptors varies in pathological conditions such as alcoholism, fragile X syndrome, epilepsy, depression, schizophrenia, mood disorders and traumatic brain injury. Such fluctuations in receptor expression have significant consequences for behavior and may alter responsiveness to therapeutic drugs. This review considers the alterations in the expression of δGABAA receptors associated with various states of health and disease and the implications of these changes.
Collapse
|
13
|
Behr C, D'Antuono M, Hamidi S, Herrington R, Lévesque M, Salami P, Shiri Z, Köhling R, Avoli M. Limbic networks and epileptiform synchronization: the view from the experimental side. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 114:63-87. [PMID: 25078499 DOI: 10.1016/b978-0-12-418693-4.00004-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review, we summarize findings obtained in acute and chronic epilepsy models and in particular experiments that have revealed how neuronal networks in the limbic system-which is closely involved in the pathophysiogenesis of mesial temporal lobe epilepsy (MTLE)-produce hypersynchronous discharges. MTLE is often associated with a typical pattern of brain damage known as mesial temporal sclerosis, and it is one of the most refractory forms of partial epilepsy in adults. Specifically, we will address the cellular and pharmacological features of abnormal electrographic events that, as in MTLE patients, can occur in in vivo and in vitro animal models; these include interictal and ictal discharges along with high-frequency oscillations. In addition, we will consider how different limbic structures made hyperexcitable by acute pharmacological manipulations interact during epileptiform discharge generation. We will also review the electrographic characteristics of two types of seizure onsets that are most commonly seen in human and experimental MTLE as well as in in vitro models of epileptiform synchronization. Finally, we will address the role played by neurosteroids in reducing epileptiform synchronization and in modulating epileptogenesis.
Collapse
Affiliation(s)
- Charles Behr
- Department of Neurology, Neurosurgery and Physiology, Montréal Neurological Institute, Montréal, Québec, Canada
| | - Margherita D'Antuono
- Department of Neurology, Neurosurgery and Physiology, Montréal Neurological Institute, Montréal, Québec, Canada
| | - Shabnam Hamidi
- Department of Neurology, Neurosurgery and Physiology, Montréal Neurological Institute, Montréal, Québec, Canada
| | - Rochelle Herrington
- Department of Neurology, Neurosurgery and Physiology, Montréal Neurological Institute, Montréal, Québec, Canada
| | - Maxime Lévesque
- Department of Neurology, Neurosurgery and Physiology, Montréal Neurological Institute, Montréal, Québec, Canada
| | - Pariya Salami
- Department of Neurology, Neurosurgery and Physiology, Montréal Neurological Institute, Montréal, Québec, Canada
| | - Zahra Shiri
- Department of Neurology, Neurosurgery and Physiology, Montréal Neurological Institute, Montréal, Québec, Canada
| | - Rüdiger Köhling
- Institute of Physiology, University of Rostock, Rostock, Germany
| | - Massimo Avoli
- Department of Neurology, Neurosurgery and Physiology, Montréal Neurological Institute, Montréal, Québec, Canada; Department of Experimental Medicine, Facoltà di Medicina e Odontoiatria, Sapienza Università di Roma, Roma, Italy.
| |
Collapse
|
14
|
Li ZX, Yu HM, Jiang KW. Tonic GABA inhibition in hippocampal dentate granule cells: its regulation and function in temporal lobe epilepsies. Acta Physiol (Oxf) 2013; 209:199-211. [PMID: 23865761 DOI: 10.1111/apha.12148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/06/2013] [Accepted: 07/12/2013] [Indexed: 01/06/2023]
Abstract
Both human and experimental evidence strongly supports the view of brain region- and cell-specific changes in tonic GABA inhibition in temporal lobe epilepsies (TLE). This 'tonic' form of signalling is not time-locked to presynaptic action potentials, which depends upon detection of ambient GABA by extrasynaptic GABAA receptors (GABAA Rs). Extrasynaptic GABAA Rs have distinct physiological and pharmacological features, including high GABA-binding affinity and low desensitization and a variety of the specific subunit combinations (α4δ-,α6δ-,α5γ-,ε-containing receptors). These features closely contribute to the function of tonic GABA current, which is preserved properly or increased in dentate gyrus in models of TLE, even in the face of a loss of synaptic inhibition and inhibitory interneurones. Markedly reduced tonic GABA inhibition may facilitate an episode of epilepsy, while persistent elevated tonic inhibition may contribute to the onset of spontaneous recurrent seizures. In dentate granule cells, tonic GABA inhibition is positively modulated by endogenous neurosteroids and other factors, which undergo changes related to hormonal status after TLE. Tonic inhibition regulates neuronal excitability through its effects on membrane potential by both offsetting the threshold and reducing the frequency of action potentials and input resistance. Therefore, extrasynaptic GABAA Rs are expected to be the most important pharmacological targets in TLE. It is likely that both elevate the ambient GABA concentration and potentiate the tonic currents, contributing to the antiepileptic effects.
Collapse
Affiliation(s)
- Z.-X. Li
- Department of Neurology; The Children's Hospital Zhejiang University School of Medicine; Hangzhou; China
| | - H.-M. Yu
- Department of Neonatology; The Children's Hospital Zhejiang University School of Medicine; Hangzhou; China
| | | |
Collapse
|
15
|
Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013; 7:115. [PMID: 23914154 PMCID: PMC3728472 DOI: 10.3389/fncel.2013.00115] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/01/2013] [Indexed: 12/03/2022] Open
Abstract
This article describes the emerging evidence of hormonal influence on epileptogenesis, which is a process whereby a brain becomes progressively epileptic due to an initial precipitating event of diverse origin such as brain injury, stroke, infection, or prolonged seizures. The molecular mechanisms underlying the development of epilepsy are poorly understood. Neuroinflammation and neurodegeneration appear to trigger epileptogenesis. There is an intense search for drugs that truly prevent the development of epilepsy in people at risk. Hormones play an important role in children and adults with epilepsy. Corticosteroids, progesterone, estrogens, and neurosteroids have been shown to affect seizure activity in animal models and in clinical studies. However, the impact of hormones on epileptogenesis has not been investigated widely. There is emerging new evidence that progesterone, neurosteroids, and endogenous hormones may play a role in regulating the epileptogenesis. Corticosterone has excitatory effects and triggers epileptogenesis in animal models. Progesterone has disease-modifying activity in epileptogenic models. The antiepileptogenic effect of progesterone has been attributed to its conversion to neurosteroids, which binds to GABA-A receptors and enhances phasic and tonic inhibition in the brain. Neurosteroids are robust anticonvulsants. There is pilot evidence that neurosteroids may have antiepileptogenic properties. Future studies may generate new insight on the disease-modifying potential of hormonal agents and neurosteroids in epileptogenesis.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center Bryan, TX, USA
| |
Collapse
|
16
|
Joshi S, Kapur J. N-methyl-D-aspartic acid receptor activation downregulates expression of δ subunit-containing GABAA receptors in cultured hippocampal neurons. Mol Pharmacol 2013; 84:1-11. [PMID: 23585058 PMCID: PMC3684822 DOI: 10.1124/mol.112.084715] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/09/2013] [Indexed: 01/26/2023] Open
Abstract
Neurosteroids are endogenous allosteric modulators of GABAA receptors (GABARs), and they enhance GABAR-mediated inhibition. However, GABARs expressed on hippocampal dentate granule neurons of epileptic animals are modified such that their neurosteroid sensitivity is reduced and δ subunit expression is diminished. We explored the molecular mechanisms triggering this GABAR plasticity. In the cultured hippocampal neurons, treatment with N-methyl-D-aspartic acid (NMDA) (10 μM) for 48 hours reduced the surface expression of δ and α4 subunits but did not increase the expression of γ2 subunits. The tonic current recorded from neurons in NMDA-treated cultures was reduced, and its neurosteroid modulation was also diminished. In contrast, synaptic inhibition and its modulation by neurosteroids were preserved in these neurons. The time course of NMDA's effects on surface and total δ subunit expression was distinct; shorter (6 hours) treatment decreased surface expression, whereas longer treatment reduced both surface and total expression. Dl-2-amino-5-phosphonopentanoic acid (APV) blocked NMDA's effects on δ subunit expression. Chelation of calcium ions by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM) or blockade of extracellular signal-regulated kinase (ERK) 1/2 activation by UO126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene) also prevented the effects of NMDA. Thus, prolonged activation of NMDA receptors in hippocampal neurons reduced GABAR δ subunit expression through Ca(2+) entry and at least in part by ERK1/2 activation.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, Box 800394, University of Virginia-HSC, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
17
|
Joshi S, Rajasekaran K, Kapur J. GABAergic transmission in temporal lobe epilepsy: the role of neurosteroids. Exp Neurol 2013; 244:36-42. [PMID: 22101060 PMCID: PMC3319002 DOI: 10.1016/j.expneurol.2011.10.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/21/2011] [Accepted: 10/28/2011] [Indexed: 01/21/2023]
Abstract
Modification of GABAergic inhibition is an intensely investigated hypothesis guiding research into mechanisms underlying temporal lobe epilepsy (TLE). Seizures can be initiated by blocking γ amino butyric acid type A (GABAA receptors, GABARs), which mediate fast synaptic inhibition in the brain, and controlled by drugs that enhance their function. Derivatives of steroid hormones called neurosteroids are natural substances that physiologically enhance GABAR function and suppress seizures. GABAR structure, function, expression, assembly, and pharmacological properties are changed in the hippocampus of epileptic animals. These alterations render GABARs less sensitive to neurosteroid modulation, which may contribute to seizure susceptibility. Plasticity of GABARs could play a role in periodic exacerbation of seizures experienced by women with epilepsy, commonly referred to as catamenial epilepsy.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia Health Sciences Center, Box 800394, Charlottesville, VA 22908-0394, USA
| | | | | |
Collapse
|
18
|
Scharfman HE, Myers CE. Hilar mossy cells of the dentate gyrus: a historical perspective. Front Neural Circuits 2013; 6:106. [PMID: 23420672 PMCID: PMC3572871 DOI: 10.3389/fncir.2012.00106] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/02/2012] [Indexed: 11/24/2022] Open
Abstract
The circuitry of the dentate gyrus (DG) of the hippocampus is unique compared to other hippocampal subfields because there are two glutamatergic principal cells instead of one: granule cells, which are the vast majority of the cells in the DG, and the so-called “mossy cells.” The distinctive appearance of mossy cells, the extensive divergence of their axons, and their vulnerability to excitotoxicity relative to granule cells has led to a great deal of interest in mossy cells. Nevertheless, there is no consensus about the normal functions of mossy cells and the implications of their vulnerability. There even seems to be some ambiguity about exactly what mossy cells are. Here we review initial studies of mossy cells, characteristics that define them, and suggest a practical definition to allow investigators to distinguish mossy cells from other hilar neurons even if all morphological and physiological information is unavailable due to technical limitations of their experiments. In addition, hypotheses are discussed about the role of mossy cells in the DG network, reasons for their vulnerability and their implications for disease.
Collapse
Affiliation(s)
- Helen E Scharfman
- New York University Langone Medical Center New York, NY, USA ; Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research Orangeburg, NY, USA
| | | |
Collapse
|
19
|
Reddy DS, Gould J, Gangisetty O. A mouse kindling model of perimenstrual catamenial epilepsy. J Pharmacol Exp Ther 2012; 341:784-93. [PMID: 22434675 PMCID: PMC3362885 DOI: 10.1124/jpet.112.192377] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/19/2012] [Indexed: 11/22/2022] Open
Abstract
Catamenial epilepsy is caused by fluctuations in progesterone-derived GABA(A) receptor-modulating anticonvulsant neurosteroids, such as allopregnanolone, that play a significant role in the pathophysiology of epilepsy. However, there is no specific mouse model of catamenial epilepsy. In this study, we developed and characterized a mouse model of catamenial epilepsy by using the neurosteroid-withdrawal paradigm. It is hypothesized that seizure susceptibility decreases when neurosteroid levels are high (midluteal phase) and increases during their withdrawal (perimenstrual periods) in close association with GABA(A) receptor plasticity. A chronic seizure condition was created by using the hippocampus kindling model in female mice. Elevated neurosteroid levels were induced by sequential gonadotropin treatment, and withdrawal was induced by the neurosteroid synthesis inhibitor finasteride. Elevated neurosteroid exposure reduced seizure expression in fully kindled mice. Fully kindled mice subjected to neurosteroid withdrawal showed increased generalized seizure frequency and intensity and enhanced seizure susceptibility. They also showed reduced benzodiazepine sensitivity and enhanced neurosteroid potency, similar to the clinical catamenial seizure phenotype. The increased susceptibility to seizures and alterations in antiseizure drug responses are associated with increased abundance of the α4 and δ subunits of GABA(A) receptors in the hippocampus. These findings demonstrate that endogenous neurosteroids protect against seizure susceptibility and their withdrawal, such as that which occurs during menstruation, leads to exacerbation of seizure activity. This is possibly caused by specific changes in GABA(A) receptor-subunit plasticity and function, therefore providing a novel mouse model of human perimenstrual catamenial epilepsy that can be used for the investigation of disease mechanisms and new therapeutic approaches.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, 8447 State Highway 47, MREB Building Room 1005, Bryan, TX 77807-3260, USA.
| | | | | |
Collapse
|
20
|
|
21
|
Pack AM, Reddy DS, Duncan S, Herzog A. Neuroendocrinological aspects of epilepsy: important issues and trends in future research. Epilepsy Behav 2011; 22:94-102. [PMID: 21454133 DOI: 10.1016/j.yebeh.2011.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 02/10/2011] [Indexed: 01/10/2023]
Abstract
Neuroendocrine research in epilepsy focuses on the interface among neurology, endocrinology, gynecology/andrology and psychiatry as it pertains to epilepsy. There are clinically important reciprocal interactions between hormones and the brain such that neuroactive hormones can modulate neuronal excitability and seizure occurrence while epileptiform discharges can disrupt hormonal secretion and promote the development of reproductive disorders. An understanding of these interactions and their mechanisms is important to the comprehensive management of individuals with epilepsy. The interactions are relevant not only to the management of seizure disorder but also epilepsy comorbidities such as reproductive dysfunction, hyposexuality and emotional disorders. This review focuses on some of the established biological underpinnings of the relationship and their clinical relevance. It identifies gaps in our knowledge and areas of promising research. The research has led to ongoing clinical trials to develop hormonal therapies for the treatment of epilepsy. The review also focuses on complications of epilepsy treatment with antiepileptic drugs. Although antiepileptic drugs have been the mainstay of epilepsy treatment, they can also have some adverse effects on sexual and reproductive function as well as bone density. As longevity increases, the prevention, diagnosis and treatment of osteoporosis becomes an increasingly more important topic, especially for individuals with epilepsy. The differential effects of antiepileptic drugs on bone density and their various mechanisms of action are reviewed and some guidelines and future directions for prevention of osteoporosis and treatment are presented.
Collapse
Affiliation(s)
- Alison M Pack
- Columbia Comprehensive Epilepsy Center, Columbia University Medical Center, New York, NY, USA
| | | | | | | |
Collapse
|
22
|
Rajasekaran K, Joshi S, Sun C, Mtchedlishvilli Z, Kapur J. Receptors with low affinity for neurosteroids and GABA contribute to tonic inhibition of granule cells in epileptic animals. Neurobiol Dis 2010; 40:490-501. [PMID: 20682339 DOI: 10.1016/j.nbd.2010.07.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/22/2010] [Accepted: 07/26/2010] [Indexed: 01/24/2023] Open
Abstract
Neurosteroid sensitivity of GABA(A) receptor mediated inhibition of the hippocampal dentate granule cells (DGCs) is reduced in animal models of temporal lobe epilepsy. However, the properties and subunit composition of GABA(A) receptors mediating tonic inhibition in DGCs of epileptic animals have not been described. In the DGCs of epileptic animals, allopregnanolone and L-655708 sensitivity of holding current was diminished and δ subunit was retained in the endoplasmic reticulum and its surface expression was decreased the in the hippocampus. Ro15-4513 and lanthanum had distinct effects on holding current recorded from DGCs of control and epileptic animals suggesting that the pharmacological properties of GABA(A) receptors maintaining tonic inhibition in DGCs of epileptic animals were similar to those containing the α4βxγ2 subunits. Furthermore, surface expression of the α4 subunit increased and a larger fraction of the subunit co-immunoprecipitated with theγ2 subunit in hippocampi of epileptic animals. Together, these studies revealed that functional α4βxδ and α5βxγ2 receptors were reduced in the hippocampi of epileptic animals and that novel α4bxγ2 receptors contributed to the maintenance of tonic inhibition. The presence of α4βxγ2 receptors resulted in low GABA affinity and neurosteroid sensitivity of tonic currents in the DGCs of epileptic animals that could potentially increase seizure vulnerability. These receptors may represent a novel therapeutic target for anticonvulsant drugs without sedative actions.
Collapse
Affiliation(s)
- Karthik Rajasekaran
- Department of Neurology, University of Virginia, Health Sciences Center, Charlottesville, VA 22908-0394, USA
| | | | | | | | | |
Collapse
|
23
|
Kim GH, Lee HW, Park H, Lee SK, Lee SA, Kim YI, Song HK, Shin DJ, Hong SB. Seizure exacerbation and hormonal cycles in women with epilepsy. Epilepsy Res 2010; 90:214-20. [PMID: 20542664 DOI: 10.1016/j.eplepsyres.2010.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 04/25/2010] [Accepted: 05/02/2010] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate seizure frequency in relation to menstrual cycles and seizure exacerbations with respect to various clinical factors in women with epilepsy. METHODS The authors prospectively evaluated premenopausal women with epilepsy aged 15-44. Catamenial epilepsy was defined as seizure frequency during the perimenstrual (C1), periovulatory (C2) or non-menstrual phase (C3) at least twice that during other phases. RESULTS In total 255 menstrual cycles, 231 ovulatory and 24 anovulatory cycles were registered in 79 patients (29.7+/-7.8 years old). Average seizure frequency was 0.13+/-0.29/day during the menstrual phase, 0.14+/-0.24 during the follicular, 0.18+/-0.61 in the ovulatory, and 0.14+/-0.33 during the luteal phases. Catamenial seizure exacerbation was observed in 37/79 (46.8%) patients and 108/255 (42.4%) cycles, more frequently during anovulatory (17/24, 70.8%) than ovulatory (91/231, 39.4%) cycles (p=0.003). During ovulatory cycles, seizure exacerbation was primarily C1 (42.9%) or C2 (45.1%) pattern. Myoclonic seizures were more frequently associated with the C1 pattern. CONCLUSIONS Overall, 46.8% of women had catamenial epilepsy. Seizure frequencies were greater during menstrual and ovulatory phases for ovulatory cycles, and during non-menstrual phases for anovulatory cycles.
Collapse
Affiliation(s)
- Geon Ha Kim
- Department of Neurology, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The GABAA-receptor γ2 Subunit R43Q Mutation Linked to Childhood Absence Epilepsy and Febrile Seizures Causes Retention of α1 β2γ2S Receptors in the Endoplasmic Reticulum Kang J, Macdonald RL J Neurosci 2004;24:8672–8677 The GABAA-receptor γ2 subunit mutation R43Q is an autosomal dominant mutation associated with childhood absence epilepsy and febrile seizures. Previously, we demonstrated that homozygous α1 β3 γ2L(R43Q)-receptor whole-cell currents had reduced amplitude with unaltered time course, suggesting reduced cell-surface expression of functional receptors. In human embryonic kidney 293-T cells, we demonstrate that both heterozygous and homozygous α1 β2 γ2S(R43Q) GABAA-receptor current amplitudes were reduced when receptors were assembled from coexpressed α1, β2, and γ2S subunits and from β2- α1 tandem subunits coexpressed with the γ2L subunit. By using fluorescence confocal microscopy, we demonstrated that mutant receptors containing enhanced yellow fluorescent protein-tagged γ2S subunits had reduced surface expression and were retained in the endoplasmic reticulum. In addition, by using biotinylation of surface receptors and immunoblotting, we confirmed that α1 β2 γ2S(R43Q)-receptors had reduced surface expression. These results provide evidence that the γ2S(R43Q) mutation impaired GABAA-receptor function by compromising receptor trafficking and reducing surface expression. Altered Expression of the δ Subunit of the GABAA Receptor in a Mouse Model of Temporal Lobe Epilepsy Peng Z, Huang CS, Stell BM, Mody I, Houser CR J Neurosci 2004;24:8629–8639 δ Subunit–containing GABAA receptors are located predominantly at nonsynaptic sites in the dentate gyrus, where they may play important roles in controlling neuronal excitability through tonic inhibition and responses to GABA spillover. Immunohistochemical methods were used to determine whether δ subunit expression was altered after pilocarpine-induced status epilepticus in C57BL/6 mice in ways that could increase excitability of the dentate gyrus. In pilocarpine-treated animals, the normal diffuse labeling of the δ subunit in the dentate molecular layer was decreased by 4 days after status epilepticus (latent period) and remained low throughout the period of chronic seizures. In contrast, diffuse labeling of α4 and γ2 subunits, potentially interrelated GABAA-receptor subunits, was increased during the chronic period. Interestingly, δ subunit labeling of many interneurons progressively increased after pilocarpine treatment. Consistent with the observed changes in δ subunit labeling, physiological studies revealed increased excitability in the dentate gyrus of slices obtained from the pilocarpine-treated mice and demonstrated that physiologic concentrations of the neurosteroid tetrahydrodeoxycorticosterone were less effective in reducing excitability in the pilocarpine-treated animals than in controls. The findings support the idea that alterations in nonsynaptic δ subunit–containing GABAA receptors in both principal cells and interneurons could contribute to increased seizure susceptibility in the hippocampal formation in a temporal lobe epilepsy model.
Collapse
|
25
|
Lawrence C, Martin BS, Sun C, Williamson J, Kapur J. Endogenous neurosteroid synthesis modulates seizure frequency. Ann Neurol 2010; 67:689-93. [PMID: 20437568 DOI: 10.1002/ana.21989] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Inhibitory neurosteroids, molecules generated in glia from circulating steroid hormones and de novo from cholesterol, keep seizures in check in epileptic animals. They can enhance inhibitory transmission mediated by gamma-aminobutyric acid receptors and have anticonvulsant action.
Collapse
Affiliation(s)
- Courtney Lawrence
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
26
|
Zhan RZ, Nadler JV. Enhanced tonic GABA current in normotopic and hilar ectopic dentate granule cells after pilocarpine-induced status epilepticus. J Neurophysiol 2009; 102:670-81. [PMID: 19474175 DOI: 10.1152/jn.00147.2009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In temporal lobe epilepsy, loss of inhibitory neurons and circuit changes in the dentate gyrus promote hyperexcitability. This hyperexcitability is compensated to the point that dentate granule cells exhibit normal or even subnormal excitability under some conditions. This study explored the possibility that compensation involves enhanced tonic GABA inhibition. Whole cell patch-clamp recordings were made from normotopic granule cells in hippocampal slices from control rats and from both normotopic and hilar ectopic granule cells in slices from rats subjected to pilocarpine-induced status epilepticus. After status epilepticus, tonic GABA current was an order of magnitude greater than control in normotopic granule cells and was significantly greater in hilar ectopic than in normotopic granule cells. These differences could be observed whether or not the extracellular GABA concentration was increased by adding GABA to the superfusion medium or blocking plasma membrane transport. The enhanced tonic GABA current had both action potential-dependent and action potential-independent components. Pharmacological studies suggested that the small tonic GABA current of granule cells in control rats was mediated largely by high-affinity alpha(4)beta(x)delta GABA(A) receptors but that the much larger current recorded after status epilepticus was mediated largely by the lower-affinity alpha(5)beta(x)gamma(2) GABA(A) receptors. A large alpha(5)beta(x)gamma(2)-mediated tonic current could be recorded from controls only when the extracellular GABA concentration was increased. Status epilepticus seemed not to impair the control of extracellular GABA concentration by plasma membrane transport substantially. Upregulated tonic GABA inhibition may account for the unexpectedly modest excitability of the dentate gyrus in epileptic brain.
Collapse
Affiliation(s)
- Ren-Zhi Zhan
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
27
|
Pisu MG, Mostallino MC, Dore R, Mura ML, Maciocco E, Russo E, De Sarro G, Serra M. Neuroactive steroids and GABAA receptor plasticity in the brain of the WAG/Rij rat, a model of absence epilepsy. J Neurochem 2008; 106:2502-14. [PMID: 18624910 DOI: 10.1111/j.1471-4159.2008.05538.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of neuroactive steroids and GABA(A) receptors in the generation of spontaneous spike-and-wave discharges (SWDs) was investigated in the WAG/Rij rat model of absence epilepsy. The plasma, cerebrocortical, and thalamic concentrations of the progesterone metabolite 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG) were increased in the WAG/Rij rat at 2 months of age compared with those in control (Wistar) rats. In contrast, the brain and peripheral levels of 3alpha,5alpha-tetrahydrodeoxycorticosterone (3alpha,5alpha-TH DOC) did not differ between the two rat strains at this age. At 6 months of age, when absence epilepsy worsens in WAG/Rij rats, the plasma concentration of 3alpha,5alpha-TH PROG remained high whereas that of 3alpha,5alpha-TH DOC had increased, the cerebrocortical levels of both 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC had increased, and the thalamic concentrations of these metabolites had decreased. At 6 months of age the expression of the alpha(4) and delta subunits of the GABA(A) receptor in relay nuclei was increased. Finally, chronic stress induced by social isolation elicited a reduction in the amount of 3alpha,5alpha-TH PROG in the thalamus of 2-month-old WAG/Rij rats that was associated with a reduction in the number and overall duration of SWDs at 6 months of age. Absence epilepsy in the WAG/Rij rat is thus associated with changes in the abundance of neuroactive steroids and in the expression of specific GABA(A) receptor subunits in the thalamus, a brain area key to the pathophysiology of this condition.
Collapse
|
28
|
Hu Y, Lund IV, Gravielle MC, Farb DH, Brooks-Kayal AR, Russek SJ. Surface expression of GABAA receptors is transcriptionally controlled by the interplay of cAMP-response element-binding protein and its binding partner inducible cAMP early repressor. J Biol Chem 2008; 283:9328-40. [PMID: 18180303 DOI: 10.1074/jbc.m705110200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulated expression of type A gamma-aminobutyric acid (GABA) receptor (GABA(A)R) subunit genes plays a critical role in neuronal maturation and synaptogenesis. It is also associated with a variety of neurological diseases. Changes in GABA(A) receptor alpha1 subunit gene (GABRA1) expression have been reported in animal models of epilepsy, alcohol abuse, withdrawal, and stress. Understanding the genetic mechanism behind such changes in alpha subunit expression will lead to a better understanding of the role that signal transduction plays in control over GABA(A)R function and brings with it the promise of providing new therapeutic tools for the prevention or cure of a variety of neurological disorders. Here we show that activation of protein kinase C increases alpha1 subunit levels via phosphorylation of CREB (pCREB) that is bound to the GABRA1 promoter (GABRA1p). In contrast, activation of protein kinase A decreases levels of alpha1 even in the presence of pCREB. Decrease of alpha1 is dependent upon the inducible cAMP early repressor (ICER) as directly demonstrated by ICER-induced down-regulation of endogenous alpha1-containing GABA(A)Rs at the cell surface of cortical neurons. Taken together with the fact that there are less alpha1gamma2-containing GABA(A)Rs in neurons after protein kinase A stimulation and that activation of endogenous dopamine receptors down-regulates alpha1 subunit mRNA levels subsequent to induction of ICER, our studies identify a transcriptional mechanism for regulating the cell surface expression of alpha1-containing GABA(A)Rs that is dependent upon the formation of CREB heterodimers.
Collapse
Affiliation(s)
- Yinghui Hu
- Laboratory of Translational Epilepsy, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
29
|
Diminished neurosteroid sensitivity of synaptic inhibition and altered location of the alpha4 subunit of GABA(A) receptors in an animal model of epilepsy. J Neurosci 2007; 27:12641-50. [PMID: 18003843 DOI: 10.1523/jneurosci.4141-07.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In animal models of temporal lobe epilepsy (TLE), neurosteroid sensitivity of GABA(A) receptors on dentate granule cells (DGCs) is diminished; the molecular mechanism underlying this phenomenon remains unclear. The current study investigated a mechanism for loss of neurosteroid sensitivity of synaptic GABA(A) receptors in TLE. Synaptic currents recorded from DGCs of epileptic animals (epileptic DGCs) were less frequent, larger in amplitude, and less sensitive to allopregnanolone modulation than those recorded from DGCs of control animals (control DGCs). Synaptic currents recorded from epileptic DGCs were less sensitive to diazepam and had altered sensitivity to benzodiazepine inverse agonist RO 15-4513 (ethyl-8-azido-6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5alpha][1,4]benzodiazepine-3-carboxylate) and furosemide than those recorded from control DGCs. Properties of synaptic currents recorded from epileptic DGCs appeared similar to those of recombinant receptors containing the alpha4 subunit. Expression of the alpha4 subunit and its colocalization with the synaptic marker GAD65 was increased in epileptic DGCs. Location of the alpha4 subunit in relation to symmetric (inhibitory) synapses on soma and dendrites of control and epileptic DGCs was examined with postembedding immunogold electron microscopy. The alpha4 immunogold labeling was present more commonly within the synapse in epileptic DGCs compared with control DGCs, in which the subunit was extrasynaptic. These studies demonstrate that, in epileptic DGCs, the neurosteroid modulation of synaptic currents is diminished and alpha4 subunit-containing receptors are present at synapses and participate in synaptic transmission. These changes may facilitate seizures in epileptic animals.
Collapse
|
30
|
Rajasekaran K, Kapur J, Bertram EH. Alterations in GABAA Receptor Mediated Inhibition in Adjacent Dorsal Midline Thalamic Nuclei in a Rat Model of Chronic Limbic Epilepsy. J Neurophysiol 2007; 98:2501-8. [PMID: 17855591 DOI: 10.1152/jn.00139.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is evidence that the dorsal midline thalamus is involved in the seizures of limbic epilepsy. However, little is known about the inhibitory synaptic function in this region. In the present study, inhibitory postsynaptic currents (IPSCs) mediated by GABAA receptors were recorded from the mediodorsal (MD) and paraventricular (PV) nuclei from control and epileptic animals. In the MD, the spontaneous (s)IPSCs for epileptic animals had a lower frequency, prolonged rise time, prolonged decay, but unaltered net charge transfer compared with controls. The miniature (m)IPSC parameters were unaltered in the epileptic animals. In contrast, in the PV, both sIPSCs and mIPSCs in the epileptic animals were more frequent with larger amplitudes and there was an increase in the net charge transfer compared with controls. The rise times of the sIPSCs of the PV neurons were significantly prolonged, whereas the weighted decay time of the mIPSC was significantly shortened in epileptic animals. These findings suggest that the changes associated with inhibitory synaptic transmission in limbic epilepsy are not uniform across regions in the thalamus that are part of the seizure circuit.
Collapse
Affiliation(s)
- Karthik Rajasekaran
- Department of Neurology, University of Virginia, Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
31
|
Mellon SH. Neurosteroid regulation of central nervous system development. Pharmacol Ther 2007; 116:107-24. [PMID: 17651807 PMCID: PMC2386997 DOI: 10.1016/j.pharmthera.2007.04.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/25/2007] [Indexed: 12/28/2022]
Abstract
Neurosteroids are a relatively new class of neuroactive compounds brought to prominence in the past 2 decades. Despite knowing of their presence in the nervous system of various species for over 20 years and knowing of their functions as GABA(A) and N-methyl-d-aspartate (NMDA) ligands, new and unexpected functions of these compounds are continuously being identified. Absence or reduced concentrations of neurosteroids during development and in adults may be associated with neurodevelopmental, psychiatric, or behavioral disorders. Treatment with physiologic or pharmacologic concentrations of these compounds may also promote neurogenesis, neuronal survival, myelination, increased memory, and reduced neurotoxicity. This review highlights what is currently known about the neurodevelopmental functions and mechanisms of action of 4 distinct neurosteroids: pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone (DHEA).
Collapse
Affiliation(s)
- Synthia H Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, University of California San Francisco, Box 0556, San Francisco, CA 94143-0556, USA.
| |
Collapse
|
32
|
Vergnano AM, Schlichter R, Poisbeau P. PKC activation sets an upper limit to the functional plasticity of GABAergic transmission induced by endogenous neurosteroids. Eur J Neurosci 2007; 26:1173-82. [PMID: 17767496 DOI: 10.1111/j.1460-9568.2007.05746.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activity of GABAergic inhibitory interneurones located in lamina II of the spinal cord is of fundamental importance for the processing of peripheral nociceptive messages. We have recently shown that 3alpha-hydroxy ring A-reduced pregnane neurosteroids [3alpha5alpha-neurosteroids (3alpha5alphaNS)], potent allosteric modulators of GABA(A) receptors (GABA(A)Rs), are synthesized in the spinal cord and limit thermal hyperalgesia during inflammatory pain. Because changes in the expression of calcium-dependent protein kinases [protein kinase C (PKC)] are observed during pathological pain in the spinal cord, we examined the possible interactions between PKC and 3alpha5alphaNS at synaptic GABA(A)Rs. Using patch-clamp recordings of lamina II interneurones in the spinal cord of 15-20-day-old rats, we showed that synaptic inhibition mediated by GABA(A)Rs and its modulation by 3alpha5alphaNS in lamina II of the spinal cord largely depend on activation of PKC. Our experimental results suggested that activation of PKC locks synaptic GABA(A)Rs in a functional state precluding further positive allosteric modulation by endogenous and exogenous 3alpha5alphaNS. This effect was fully prevented by coadministration of chelerythrin, an inhibitor of PKC. Furthermore, application of chelerythrin alone rendered synaptic GABA(A)Rs hypersensitive to endogenously produced or exogenously applied 3alpha5alphaNS. These findings confirmed that there was a significant production of endogenous 3alpha5alphaNS in lamina II of the spinal cord but also indicated that PKC-dependent phosphorylation processes were tonically activated to control GABA(A)R-mediated inhibition under resting conditions. We therefore can conclude that PKC activation sets an upper limit to the functional plasticity of GABAergic transmission induced by endogenous neurosteroids.
Collapse
Affiliation(s)
- Angela Maria Vergnano
- Institut des Neurosciences Cellulaires et Intégratives, Department of Nociception and Pain, Unité Mixte de Recherche 7168 Centre National de la Recherche Scientifique/Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
33
|
Zhang N, Wei W, Mody I, Houser CR. Altered localization of GABA(A) receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci 2007; 27:7520-31. [PMID: 17626213 PMCID: PMC6672608 DOI: 10.1523/jneurosci.1555-07.2007] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Complex changes in GABA(A) receptors (GABA(A)Rs) in animal models of temporal lobe epilepsy during the chronic period include a decrease in the delta subunit and increases in the alpha4 and gamma2 subunits in the dentate gyrus. We used postembedding immunogold labeling to determine whether the subcellular locations of these subunits were also altered in pilocarpine-treated epileptic mice, and related functional changes were identified electrophysiologically. The ultrastructural studies confirmed a decrease in delta subunit labeling at perisynaptic locations in the molecular layer of the dentate gyrus where these subunits are critical for tonic inhibition. Unexpectedly, tonic inhibition in dentate granule cells was maintained in the epileptic mice, suggesting compensation by other GABA(A)Rs. An insensitivity of the tonic current to the neurosteroid tetrahydrodeoxy-corticosterone was consistent with decreased expression of the delta subunit. In the pilocarpine-treated mice, alpha4 subunit labeling remained at perisynaptic locations, but increased gamma2 subunit labeling was also found at many perisynaptic locations on granule cell dendrites, consistent with a shift of the gamma2 subunit from synaptic to perisynaptic locations and potential partnership of the alpha4 and gamma2 subunits in the epileptic animals. The decreased gamma2 labeling near the center of synaptic contacts was paralleled by a corresponding decrease in the dendritic phasic inhibition of granule cells in the pilocarpine-treated mice. These GABA(A)R subunit changes appear to impair both tonic and phasic inhibition, particularly at granule cell dendrites, and could reduce the adaptive responses of the GABA system in temporal lobe epilepsy.
Collapse
Affiliation(s)
| | | | - Istvan Mody
- Neurology and Physiology, and
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, and
| | - Carolyn R. Houser
- Departments of Neurobiology and
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, and
- Research Service, Veterans Administration Greater Los Angeles Healthcare System, West Los Angeles, Los Angeles, California 90073
| |
Collapse
|
34
|
SUN CHENGSAN, MTCHEDLISHVILI ZAKARIA, BERTRAM EDWARDH, ERISIR ALEV, KAPUR JAIDEEP. Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy. J Comp Neurol 2007; 500:876-93. [PMID: 17177260 PMCID: PMC2844442 DOI: 10.1002/cne.21207] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuropeptide-containing hippocampal interneurons and dentate granule cell inhibition were investigated at different periods following electrical stimulation-induced, self-sustaining status epilepticus (SE) in rats. Immunohistochemistry for somatostatin (SOM), neuropeptide Y (NPY), parvalbumin (PV), cholecystokinin (CCK), and Fluoro-Jade B was performed on sections from hippocampus contralateral to the stimulated side and studied by confocal laser scanning microscopy. Compared to paired age-matched control animals, there were fewer SOM and NPY-immunoreactive (IR) interneurons in the hilus of the dentate gyrus in animals with epilepsy (40-60 days after SE), and 1, 3, and 7 days following SE. In the hilus of animals that had recently undergone SE, some SOM-IR and NPY-IR interneurons also stained for Fluoro-Jade B. Furthermore, there was electron microscopic evidence of the degeneration of SOM-IR interneurons following SE. In contrast, the number of CCK and PV-IR basket cells in epileptic animals was similar to that in controls, although it was transiently diminished following SE; there was no evidence of degeneration of CCK or PV-IR interneurons. Patch-clamp recordings revealed a diminished frequency of inhibitory postsynaptic currents in dentate granule cells (DGCs) recorded from epileptic animals and animals that had recently undergone SE compared with controls. These results confirm the selective vulnerability of a particular subset of dentate hilar interneurons after prolonged SE. This loss may contribute to the reduced GABAergic synaptic inhibition of granule cells in epileptic animals.
Collapse
Affiliation(s)
- CHENGSAN SUN
- Department of Neurology, University of Virginia, Health Sciences Center, Charlottesville, Virginia 22908
| | - ZAKARIA MTCHEDLISHVILI
- Department of Neurology, University of Virginia, Health Sciences Center, Charlottesville, Virginia 22908
| | - EDWARD H. BERTRAM
- Department of Neurology, University of Virginia, Health Sciences Center, Charlottesville, Virginia 22908
| | - ALEV ERISIR
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904
| | - JAIDEEP KAPUR
- Department of Neurology, University of Virginia, Health Sciences Center, Charlottesville, Virginia 22908
- Correspondence to: Jaideep Kapur, MD, PhD, Department of Neurology, Box 800394, University of Virginia-HSC, Charlottesville, VA 22908.
| |
Collapse
|
35
|
Coulter DA, Carlson GC. Functional regulation of the dentate gyrus by GABA-mediated inhibition. PROGRESS IN BRAIN RESEARCH 2007; 163:235-43. [PMID: 17765722 DOI: 10.1016/s0079-6123(07)63014-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dentate granule cells are characterized by their low levels of excitability, an important aspect of hippocampal function, which distinguishes them from other principal cells of the hippocampus. This low excitability derives in large part from the degree and nature of GABAergic inhibition evident in the dentate gyrus. Granule cells express a unique and complex assortment of GABA(A) receptor subunits, found in few areas of the brain. Associated with this receptor complexity, granule cells are endowed with both synaptic and extrasynaptic GABA(A) receptors with distinctive properties. In particular, extrasynaptic GABA(A) receptors in granule cells exhibit high affinity for GABA and do not desensitize. This results in activation of a tonic current by ambient levels of GABA present in the extracellular space. This tonic current contributes significantly to the circuit properties of the dentate gyrus. Both synaptic and extrasynaptic GABA(A) receptors exhibit profound dysregulation in animal models of temporal lobe epilepsy, which may contribute to the hippocampal hyperexcitability that defines this disorder.
Collapse
Affiliation(s)
- Douglas A Coulter
- The Children's Hospital of Philadelphia, Abramson Pediatric Research Center, Philadelphia, PA 19104-4318, USA.
| | | |
Collapse
|
36
|
Biggio F, Gorini G, Caria S, Murru L, Mostallino MC, Sanna E, Follesa P. Plastic neuronal changes in GABA(A) receptor gene expression induced by progesterone metabolites: in vitro molecular and functional studies. Pharmacol Biochem Behav 2006; 84:545-54. [PMID: 16914187 DOI: 10.1016/j.pbb.2006.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/06/2006] [Accepted: 07/07/2006] [Indexed: 11/16/2022]
Abstract
Expression of specific gamma-aminobutyric acid type A (GABA(A)) receptor subunit genes in neurons is affected by endogenous modulators of receptor function such as neuroactive steroids. Neuroactive steroids such as the progesterone metabolite allopregnanolone might thus exert differential effects on GABA(A) receptor plasticity in neurons, likely accounting for some of the physiological actions of these compounds. Here we summarise experimental data obtained in vitro that show how fluctuations in the concentration of progesterone regulate both the expression and function of GABA(A) receptors. The data described in this manuscript are in agreement with the notion that fluctuations in the concentrations of progesterone and its metabolite allopregnanolone play a major role in the temporal pattern of expression of various subunits of the GABA(A) receptor. Thus, rapid and long-lasting increases or decreases in the concentrations of these steroid derivatives observed in physiological and patho-physiological conditions, or induced by pharmacological treatments, might elicit selective changes in GABA(A) receptor gene expression and function in specific neuronal populations. Given both the importance of GABA(A) receptors in the regulation of neuronal excitability and the large fluctuations in the plasma and brain concentrations of neuroactive steroids associated with physiological conditions and the response to environmental stimuli, these compounds are likely among the most relevant endogenous modulators that could affect emotional and affective behaviors.
Collapse
Affiliation(s)
- Francesca Biggio
- Department of Experimental Biology, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Citraro R, Russo E, Di Paola ED, Ibbadu GF, Gratteri S, Marra R, De Sarro G. Effects of some neurosteroids injected into some brain areas of WAG/Rij rats, an animal model of generalized absence epilepsy. Neuropharmacology 2006; 50:1059-71. [PMID: 16631210 DOI: 10.1016/j.neuropharm.2006.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 01/30/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Neurosteroids are synthesized in the brain and have been demonstrated to modulate various cerebral functions. Allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one), a naturally occurring neurosteroid, and ganaxolone (3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20-one), a synthetic derivative, are two neurosteroids acting as positive allosteric modulators of the GABA(A) receptor complex acting on a specific steroid recognition site. Both agents antagonize generalized tonic-clonic seizures in various animal models of epilepsy. Pregnenolone sulphate (3beta-hydroxy-5alpha-pregnen-20-one 3-sulphate; PS) is a negative allosteric modulator of GABA(A) receptors and a positive modulator of the NMDA receptors. We have evaluated the effects of such compounds in a genetic animal model of absence epilepsy, the WAG/Rij rat. Animals were chronically implanted with five frontoparietal cortical electrodes for electrocorticogram (EEG) recordings and bilateral guide cannulae into specific brain areas of the cortico-thalamic circuit in order to evaluate the effects of these compounds on the number and duration of epileptic spike-wave discharges (SWDs). The focal and bilateral microinjection of the two GABA(A) positive modulators into some thalamic nuclei (nucleus ventralis posteromedialis, nucleus reticularis thalami, nucleus ventralis posterolateralis was usually able to significantly worsen the occurrence of SWDs in WAG/Rij rats. Whereas both compounds were able to reduce the number and duration of SWDs when microinjected into the peri-oral region of the primary somatosensory cortex. The effects of PS were more complex depending on both the dose and the site of administration, generally, at low doses in thalamic nuclei and cortex, PS induced an increase of absence activity and a reduction at higher doses. These findings suggest that neurosteroids might play a role in absence epilepsies and that it might depend on the involvement of specific neuronal areas.
Collapse
Affiliation(s)
- Rita Citraro
- Section of Pharmacology, Department of Experimental and Clinical Medicine, Faculty of Medicine and Surgery, University of Catanzaro, Policlinico Mater Domini, Via T. Campanella, 115, 88100 Catanzaro, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Poisbeau P, Patte-Mensah C, Keller AF, Barrot M, Breton JD, Luis-Delgado OE, Freund-Mercier MJ, Mensah-Nyagan AG, Schlichter R. Inflammatory pain upregulates spinal inhibition via endogenous neurosteroid production. J Neurosci 2006; 25:11768-76. [PMID: 16354935 PMCID: PMC6726017 DOI: 10.1523/jneurosci.3841-05.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibitory synaptic transmission in the dorsal horn (DH) of the spinal cord plays an important role in the modulation of nociceptive messages because pharmacological blockade of spinal GABAA receptors leads to thermal and mechanical pain symptoms. Here, we show that during the development of thermal hyperalgesia and mechanical allodynia associated with inflammatory pain, synaptic inhibition mediated by GABAA receptors in lamina II of the DH was in fact markedly increased. This phenomenon was accompanied by an upregulation of the endogenous production of 5alpha-reduced neurosteroids, which, at the spinal level, led to a prolongation of GABAA receptor-mediated synaptic currents and to the appearance of a mixed GABA/glycine cotransmission. This increased inhibition was correlated with a selective limitation of the inflammation-induced thermal hyperalgesia, whereas mechanical allodynia remained unaffected. Our results show that peripheral inflammation activates an endogenous neurosteroid-based antinociceptive control, which discriminates between thermal and mechanical hyperalgesia.
Collapse
Affiliation(s)
- Pierrick Poisbeau
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique/Université Louis Pasteur, F-67084 Strasbourg, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mtchedlishvili Z, Kapur J. High-affinity, slowly desensitizing GABAA receptors mediate tonic inhibition in hippocampal dentate granule cells. Mol Pharmacol 2006; 69:564-75. [PMID: 16282519 DOI: 10.1124/mol.105.016683] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The tonic form of GABA-mediated inhibition requires the presence of slowly desensitizing GABA(A) receptors with high affinity, which has not yet been directly demonstrated in hippocampal neurons. Low concentration of GABA (1 microM) persistently increased baseline noise, increased membrane slope conductance, but did not affect spontaneous inhibitory postsynaptic currents (sIPSCs) in dentate granule cells (DGCs). Higher concentrations of GABA (10-100 microM) desensitized synaptic currents quickly, and there was a large residual current. Saturating concentration of GABA (1 mM) completely desensitized synaptic currents and revealed a slowly desensitizing, persistent current. Penicillin (300 microM) inhibited baseline noise without affecting mean current and inhibited decay time of sIPSCs. GABA(A) receptors mediating baseline noise in DGCs were sensitive to allopregnanolone, furosemide, and loreclezole and insensitive to diazepam and zolpidem. These studies demonstrate persistently open GABA(A) receptors on DGCs with high affinity for GABA, slow desensitization rate, and pharmacological properties similar to those of recombinant receptors containing alpha(4), beta(1), and the delta subunits.
Collapse
Affiliation(s)
- Zakaria Mtchedlishvili
- Department of Neurology, University of Virginia-Health Sciences Center, Charlottesville, 22908, USA.
| | | |
Collapse
|
40
|
Reddy DS. Physiological role of adrenal deoxycorticosterone-derived neuroactive steroids in stress-sensitive conditions. Neuroscience 2005; 138:911-20. [PMID: 16325348 DOI: 10.1016/j.neuroscience.2005.10.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 09/21/2005] [Accepted: 10/09/2005] [Indexed: 11/21/2022]
Abstract
Stress increases plasma and brain concentrations of corticosteroids and neuroactive steroids. Cortisol is the most important stress hormone in the hypothalamic pituitary adrenocortical system. However, significant amounts of the mineralocorticoid deoxycorticosterone are also released during stress. Deoxycorticosterone undergoes biotransformation to allotetrahydrodeoxycorticosterone, a neuroactive steroid with anxiolytic and anticonvulsant properties. Our studies indicate that the anticonvulsant activity of deoxycorticosterone is mediated by its conversion to allotetrahydrodeoxycorticosterone, which is a potent positive allosteric modulator of GABA(A) receptors. Although the role of allotetrahydrodeoxycorticosterone within the brain is undefined, recent studies indicate that stress induces increases in allotetrahydrodeoxycorticosterone to levels that can activate GABA(A) receptors. These results might have significant implications for human stress-sensitive conditions such as epilepsy, panic disorder, post-traumatic stress disorder, and major depression. In epilepsy, a role for adrenal allotetrahydrodeoxycorticosterone in seizure susceptibility has been suggested. Recent preclinical studies indicate a role of neuroactive steroids in ethanol actions. Although these studies provide a better understanding of the role of allotetrahydrodeoxycorticosterone and related neuroactive steroids in acute stress, further studies are clearly warranted to ascertain the specific role of neuroactive steroids in the pathophysiology of chronic stress and related brain conditions.
Collapse
Affiliation(s)
- D S Reddy
- Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, 27606, USA.
| |
Collapse
|
41
|
Zhang DX, Williamson JM, Wu HQ, Schwarcz R, Bertram EH. In Situ-Produced 7-Chlorokynurenate Has Different Effects on Evoked Responses in Rats with Limbic Epilepsy in Comparison to Naive Controls. Epilepsia 2005; 46:1708-15. [PMID: 16302850 DOI: 10.1111/j.1528-1167.2005.00281.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Uncontrolled epilepsy remains a significant health concern and requires new approaches to therapy. N-methyl-d-aspartate (NMDA) receptor blockade has been considered, but the adverse cognitive and behavioral effects of conventional NMDA-receptor antagonists have prevented the development of clinically useful compounds. An alternative approach may be the blockade of the glycine coagonist ("glycine(B)") site of the NMDA receptor. METHODS As a first step in the exploration of this approach, we examined the effect of 4-chloro-kynurenine (4-Cl-KYN), which is converted by astrocytes to the potent NMDA glycine-site antagonist 7-chloro-kynurenic acid (7-Cl-KYNA), on the in vivo epileptiform evoked potentials in the CA1 region of rats with chronic limbic epilepsy (CLE). 4-Cl-KYN (100 mg/kg) was administered intraperitoneally to naive and epileptic rats. Evoked potentials were induced in area CA1 of the hippocampus by electrical stimulation of the midline region of the thalamus. Simultaneous microdialysis was performed in the contralateral hippocampus to determine the extracellular levels of 7-Cl-KYNA over the course of the experiment. RESULTS Administration of 4-Cl-KYN caused a significant reduction in the amplitude of the population spike and in the number of population spikes in epileptic animals (p < 0.01) but had no effect on the evoked response in naive rats. In contrast, 4-Cl-KYN significantly altered the paired response in naive animals (p < 0.01), but had no significant effect on this parameter in epileptic animals. The levels of 7-Cl-KYNA measured achieved known pharmacologically effective concentrations and paralleled the observed physiological effects. CONCLUSIONS The use of glial cells for the neosynthesis and local delivery of neuroactive compounds may be a viable strategy for the treatment of limbic epilepsy. These results also underscore the unique pharmacology of neurons in epilepsy.
Collapse
Affiliation(s)
- De Xing Zhang
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908-0394, USA.
| | | | | | | | | |
Collapse
|
42
|
Grosso S, Luisi S, Berardi R, Mostardini R, Cordelli DM, Morgese G, Petraglia F, Balestri P. Post-ictal circulating levels of allopregnanolone in children with partial or generalized seizures. Epilepsy Res 2005; 63:97-102. [PMID: 15725389 DOI: 10.1016/j.eplepsyres.2004.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/10/2004] [Accepted: 12/12/2004] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one) is a neurosteroid with a potent modulating activity on the gamma-aminobutyric acid (GABA)(a) receptor complex. It plays a key role in the epileptogenesis of partial seizures. Serum allopregnanolone concentrations significantly increase in the postcritical phase. In the present study we investigated the post-ictal serum allopregnanolone levels in children with partial seizures and generalized seizures, respectively. PATIENTS AND METHODS Three groups of subjects were included in the study. Group 1 consisted of 18 children affected by complex partial seizures. Group 2 consisted of 11 children presenting with generalized epilepsy. Group 3 consisted of 20 healthy age-matched subjects. Serum allopregnanolone levels were assayed in the inter-ictal phase and within 30 min after an epileptic event. RESULTS The data we obtained suggest that circulating allopregnanolone level significantly increases in the post-ictal phase. However, we found no significant differences in the post-ictal serum allopregnanolone concentrations between patients with partial seizures and those with generalized seizures. CONCLUSIONS Further studies are needed to establish if allopregnanolone is a reliable circulating marker of epileptic seizures. However, our observations seem to indicate that post-ictal circulating allopregnanolone level is not useful in differentiating focal and generalized epilepsy events.
Collapse
Affiliation(s)
- Salvatore Grosso
- Department of Pediatrics, Obstetrics, and Reproductive Medicine, University of Siena, Viale M. Bracci, Le Scotte, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Peng Z, Huang CS, Stell BM, Mody I, Houser CR. Altered expression of the delta subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J Neurosci 2004; 24:8629-39. [PMID: 15456836 PMCID: PMC6729896 DOI: 10.1523/jneurosci.2877-04.2004] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 08/17/2004] [Accepted: 08/18/2004] [Indexed: 11/21/2022] Open
Abstract
delta Subunit-containing GABA(A) receptors are located predominantly at nonsynaptic sites in the dentate gyrus where they may play important roles in controlling neuronal excitability through tonic inhibition and responses to GABA spillover. Immunohistochemical methods were used to determine whether delta subunit expression was altered after pilocarpine-induced status epilepticus in C57BL/6 mice in ways that could increase excitability of the dentate gyrus. In pilocarpine-treated animals, the normal diffuse labeling of the delta subunit in the dentate molecular layer was decreased by 4 d after status epilepticus (latent period) and remained low throughout the period of chronic seizures. In contrast, diffuse labeling of alpha4 and gamma2 subunits, potentially interrelated GABA(A) receptor subunits, was increased during the chronic period. Interestingly, delta subunit labeling of many interneurons progressively increased after pilocarpine treatment. Consistent with the observed changes in delta subunit labeling, physiological studies revealed increased excitability in the dentate gyrus of slices obtained from the pilocarpine-treated mice and demonstrated that physiological concentrations of the neurosteroid tetrahydrodeoxycorticosterone were less effective in reducing excitability in the pilocarpine-treated animals than in controls. The findings support the idea that alterations in nonsynaptic delta subunit-containing GABA(A) receptors in both principal cells and interneurons could contribute to increased seizure susceptibility in the hippocampal formation in a temporal lobe epilepsy model.
Collapse
Affiliation(s)
- Zechun Peng
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
44
|
Williamson J, Mtchedlishvili Z, Kapur J. Characterization of the convulsant action of pregnenolone sulfate. Neuropharmacology 2004; 46:856-64. [PMID: 15033345 PMCID: PMC2885607 DOI: 10.1016/j.neuropharm.2003.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 10/06/2003] [Accepted: 11/25/2003] [Indexed: 01/01/2023]
Abstract
Pregnenolone sulfate (PS) is an endogenous neurosteroid synthesized by glial cells, which acts as a potent convulsant when injected intracerebroventricularly and intraperitoneally. PS is found in relatively high concentrations in the hippocampus. But its convulsant action in the hippocampus has not been characterized. A range of PS doses were infused directly into the right hippocampus of 42 rats, which were subsequently monitored for behavioral and electrographic seizures. At the highest dose (4 micromol), PS produced status epilepticus (SE) and severe behavioral convulsions. As the dose of PS was reduced, the fraction of rats having SE diminished (ED50 for SE = 2.7 micromol). At doses lower than 300 nmol, PS infusion produced discrete electrographic seizures (ED50 = 68 nmol) associated with mild behavioral seizures. Both the behavioral seizure score (BSS) and the total number of seizures during the observation period changed in a dose-dependent manner. In separate experiments in cultured hippocampal neurons, PS enhanced NMDA-evoked whole-cell currents (EC50 = 16 microM). The results demonstrate that the hippocampus is highly sensitive to the convulsant effects of PS and that the enhancement of NMDA currents could contribute to the convulsant action of PS.
Collapse
Affiliation(s)
| | | | - Jaideep Kapur
- Corresponding author. Tel.: +1-434-924-5312; fax: +1-434-982-1726. (J. Kapur)
| |
Collapse
|
45
|
Leroy C, Poisbeau P, Keller AF, Nehlig A. Pharmacological plasticity of GABA(A) receptors at dentate gyrus synapses in a rat model of temporal lobe epilepsy. J Physiol 2004; 557:473-87. [PMID: 15034126 PMCID: PMC1665087 DOI: 10.1113/jphysiol.2003.059246] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the lithium-pilocarpine model (Li-pilocarpine) of temporal lobe epilepsy, GABA(A) receptor-mediated inhibitory postsynaptic currents (GABA(A) IPSCs) were recorded in dentate gyrus granule cells (GCs) from adult rat hippocampal slices. The properties of GABA(A) IPSCs were compared before and after superfusion of modulators in control conditions (Li-saline rats) and in Li-pilocarpine rats 24-48 h and 3-5 months (epileptic rats) after status epilepticus (SE). The mean peak amplitude of GABA(A) IPSCs increased by about 40% over Li-saline values in GCs 24-48 h after SE and remained higher in epileptic rats. In Li-pilocarpine rats, studied at 24-48 h after SE, diazepam (1 microm) lost 65% of its effectiveness at increasing the half-decay time (T(50%)) of GABA(A) miniature IPSCs (mIPSCs). Diazepam had no effects on mIPSC T(50%) in epileptic rats. The benzodiazepine ligand flumazenil (1 microm), acting as an antagonist in Li-saline rats, exhibited a potent inverse agonistic effect on GABA(A) mIPSCs of GCs from Li-pilocarpine rats 24-48 h and 3-5 months after SE. The neurosteroid allopregnanolone (100 nm), which considerably prolonged GABA(A) mIPSCs in Li-saline rats, totally lost its effect in rats studied 24-48 h after SE. However, this decrease in effectiveness was transient and was totally restored in epileptic rats. In addition to the up-regulation in the number of receptors at individual GC synapses, we propose that these 'epileptic' GABA(A) receptors possess benzodiazepine binding sites with altered allosteric properties. The failure of benzodiazepine and neurosteroid to potentiate inhibition early after SE may be a critical factor in the development of epileptogenesis and occurrence of seizures.
Collapse
Affiliation(s)
- Claire Leroy
- Psychopathologie et Pharmacologie de la cognition, INSERM U405, Strasbourg, France
| | | | | | | |
Collapse
|
46
|
Kretschmannova K, Svobodova I, Zemkova H. Day–night variations in zinc sensitivity of GABAA receptor-channels in rat suprachiasmatic nucleus. ACTA ACUST UNITED AC 2003; 120:46-51. [PMID: 14667576 DOI: 10.1016/j.molbrainres.2003.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the suprachiasmatic nucleus (SCN), electrical activity, secretion, and other cellular functions undergo profound rhythm during day-night cycle due to oscillatory expression of clock gene constituents. Although SCN is enriched with gamma-aminobutyric acid (GABA)-ergic neurons, it is unknown whether there are circadian changes in the GABAA receptor expression and/or function. Here we investigated the possible daily variations in zinc sensitivity of GABAA channels in rat SCN neurons maintained in brain slices. Extracellular zinc inhibited GABA-induced currents in all ventrolateral (VL) and dorsomedial (DM) SCN neurons studied, as well as in neurons of non-SCN regions. In SCN neurons, the currents evoked by 30 microM GABA were inhibited by Zn2+ with an IC50 of 50.3+/-3.2 microM, whereas currents evoked by 100 microM GABA were inhibited with an IC50 of 181.6+/-32.0 microM. The antagonist action of zinc saturated at 97.4+/-0.7% for 30 microM GABA and 91.6+/-2.7% for 100 microM GABA. These observations indicate that Zn2+ inhibits SCN GABAA receptor competitively and in part non-competitively. In SCN neurons, but not in other neurons, the zinc sensitivity varied with daily time. During the day, the calculated IC50 for zinc was significantly lower than during the night (43.9+/-4.7 microM vs. 58.6+/-3.8, respectively). These results indicate that native GABAA receptors in SCN neurons display pharmacological properties of receptors having and not having gamma subunit and that the proportionality of these receptors could change during the day and night.
Collapse
Affiliation(s)
- Karla Kretschmannova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic
| | | | | |
Collapse
|
47
|
Zhang DX, Bertram EH. Different reactions of control and epileptic rats to administration of APV or muscimol on thalamic or CA3-induced CA1 responses. J Neurophysiol 2003; 90:2875-83. [PMID: 12917381 DOI: 10.1152/jn.00040.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The physiology and pharmacology of CA1 is changed in epilepsy. There is evidence that the thalamic input to CA1 has a somewhat different physiological effect compared with the CA3 input. In this study we sought to determine whether this difference in physiology persists in epilepsy, and whether there are changes in the pharmacologic profile of these responses. Under urethane two stimulating electrodes were placed in mid to ventral CA3 and in the midline thalamus of control or epileptic rats. One glass micropipette electrode was placed into CA1 for recording. After the baseline acquisition of CA1-evoked responses to single- or paired-pulse stimulation, the stimuli were repeated with local application of either the GABAA agonist muscimol or the NMDA antagonist dl-2-amino-5-phosphonovalerate (APV). The CA1 response of epileptic rats had a smaller population postsynaptic potential (PSP) and spike amplitudes, longer PSP duration, multiple spikes, and the paired-pulse (at 20-ms intervals) facilitation in contrast to the paired-pulse depression seen in control and kindled rats. The duration of the PSP as well as the amplitude and number of spikes were reduced by administration of APV or muscimol into CA1 in both control and epileptic rats. In control rats, APV enhanced the depression induced by maximal paired thalamic or CA3 stimulation at 20-ms intervals and reduced the facilitation of threshold stimulation into no change. In contrast, muscimol in control rats reversed the depression induced by paired maximal stimulation into a mild facilitation and reduced the facilitation of threshold stimulation. In epileptic rats neither APV nor muscimol had a significant effect on the changes of the CA1 responses induced by maximal or threshold paired stimulation. This initial in vivo study demonstrated that the physiology and pharmacology of CA1 in epileptic rats are different from control rats. Although there are physiological differences in the evoked responses that are linked to the site of stimulation in the control and epileptic group, the pharmacology in each condition is independent of the site of stimulation.
Collapse
Affiliation(s)
- De Xing Zhang
- Department of Neurology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
48
|
Harney SC, Frenguelli BG, Lambert JJ. Phosphorylation influences neurosteroid modulation of synaptic GABAA receptors in rat CA1 and dentate gyrus neurones. Neuropharmacology 2003; 45:873-83. [PMID: 14529725 DOI: 10.1016/s0028-3908(03)00251-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neurosteroid 5beta-pregnan-3alpha-ol-20-one (5beta3alpha) is a potent, endogenous, positive allosteric modulator of the GABA(A) receptor. Relatively low concentrations of 5beta3alpha (10-100 nM), thought to occur physiologically, caused a concentration-dependent slowing of the decay of GABA-mediated miniature inhibitory postsynaptic currents (mIPSCs) recorded from hippocampal CA1 pyramidal neurones. However, much greater concentrations of this neurosteroid (> or =300 nM) were required to similarly influence dentate granule cell mIPSCs. By contrast, the allosteric modulators pentobarbitone and flunitrazepam were equi-effective in prolonging mIPSCs in both neuronal types. Hence, the neurosteroid selectively differentiates between the synaptic GABA(A) receptors of these hippocampal neurones. Inhibition of either protein kinase A, or C, greatly reduced the sensitivity of CA1 synaptic GABA(A) receptors to 5beta3alpha, but not pentobarbitone, whereas stimulation of PKC had no effect on steroid sensitivity. However, in dentate gyrus granule cells, activation of PKC made mIPSCs sensitive to a previously ineffective concentration of 5beta3alpha. Collectively, these results suggest that the GABA-modulatory effects of physiological levels of the neurosteroid will not be uniformly experienced throughout the central nervous system, or even within the same brain region such as the hippocampus, but will be neurone-specific and will be dependent on the phosphorylation status of the GABA(A) receptor, or associated proteins.
Collapse
Affiliation(s)
- Sarah C Harney
- Department of Pharmacology and Neuroscience, The Neurosciences Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK
| | | | | |
Collapse
|
49
|
Sullivan SD, Moenter SM. Neurosteroids alter gamma-aminobutyric acid postsynaptic currents in gonadotropin-releasing hormone neurons: a possible mechanism for direct steroidal control. Endocrinology 2003; 144:4366-75. [PMID: 12960018 DOI: 10.1210/en.2003-0634] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulsatile GnRH release is required for fertility and is regulated by steroid feedback. Whether or not steroids or their metabolites act directly on GnRH neurons is not well established. In some neurons, steroid metabolites known as neurosteroids modulate the function of the GABAA receptor. Specifically, the progesterone derivative allopregnanolone is an allosteric agonist at this receptor, whereas the androgen dehydroepiandrosterone sulfate (DHEAS) is an allosteric antagonist. We hypothesized these metabolites act similarly on GnRH neurons to modify the response to GABA. Whole-cell voltage-clamp recordings of GABAergic miniature postsynaptic currents (mPSCs) were made from green fluorescent protein-identified GnRH neurons in brain slices from diestrous mice. Glutamatergic currents were blocked with antagonists and action potentials blocked with tetrodotoxin, minimizing presynaptic effects of treatments. Allopregnanolone (5 microm) increased mPSC rate of rise, amplitude and decay time by 15.9 +/- 6.1%, 16.5 +/- 6.3%, and 58.3 +/- 18.6%, respectively (n = 7 cells). DHEAS (5 microm) reduced mPSC rate of rise (32.1 +/- 5.7%) and amplitude (27.6 +/- 4.3%) but did not alter decay time (n = 8). Effects of both neurosteroids were dose dependent between 0.1 and 10 microm. In addition to independent actions, DHEAS also reversed effects of allopregnanolone on rate of rise and amplitude so that these parameters were returned to pretreatment baseline values (n = 6). These data indicate allopregnanolone increases and DHEAS decreases responsiveness of GnRH neurons to activation of GABAA receptors by differentially modulating current flow through GABAA receptor chloride channels. This provides one mechanism for direct steroid feedback to GnRH neurons.
Collapse
Affiliation(s)
- Shannon D Sullivan
- Department of Internal Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
50
|
Herzog AG, Coleman AE, Jacobs AR, Klein P, Friedman MN, Drislane FW, Schomer DL. Relationship of sexual dysfunction to epilepsy laterality and reproductive hormone levels in women. Epilepsy Behav 2003; 4:407-13. [PMID: 12899861 DOI: 10.1016/s1525-5050(03)00121-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sexual dysfunction has been reported to be common among women with epilepsy. Controlled studies, quantitative data, and investigations of potentially contributory factors, however, have been few. The purpose of this investigation was to determine if (1) sexual dysfunction is unusually common among women with partial seizures of temporal lobe origin (TLE), and (2) sexual dysfunction varies in relation to the laterality of EEG epileptiform discharges, antiepileptic drug use, and serum gonadal steroid levels. This controlled prospective investigation used a quantitative sexual rating scale and reproductive hormone measures to compare sexual dysfunction in women with left and right unilateral temporolimbic epilepsy and controls. Sexual dysfunction scores were significantly higher in women with TLE, and sexual dysfunction affected substantially more women with epilepsy than controls. Women with right-sided foci were affected more than women with left-sided foci. There was a significant inverse correlation between sexual dysfunction and bioactive testosterone levels in women with epilepsy as well as in controls. Serum estradiol was lower in women with TLE but did not correlate significantly with overall sexual dysfunction. The findings suggest that sexual dysfunction is significantly more common in women with right-sided epileptiform discharges than in controls and is inversely correlated with bioactive testosterone levels. The value of hormonal replacement or supplementation remains to be explored.
Collapse
Affiliation(s)
- Andrew G Herzog
- Harvard Neuroendocrine Unit, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|