1
|
Liu J, Zhu Y, Liu X, Song J, Tang L, Shen L, Dai Z. Morphological development of the endosperm epidermal cells in waxy wheat cultivars. PROTOPLASMA 2025:10.1007/s00709-025-02034-4. [PMID: 39955683 DOI: 10.1007/s00709-025-02034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025]
Abstract
Endosperm epidermal cells (EECs) accumulate large quantities of nutrients; they also play key roles in facilitating solute transport. Comprehensive knowledge about the dynamic development of EECs is needed to understand the relationship between their dual functions. In this study, the developmental characteristics of EECs in wheat grains of two near-isogenic lines (Shimai19-P and Shimai19-N) and in the parent wheat cultivar Shimai19 were compared using light and scanning electron microscopy. The intermediate EECs located adjacent to the nucellar projection (NP) on the ventral surface of wheat grains rapidly differentiated. Eight days after pollination (8 DAP), these EECs were larger in Shimai19-N than in the other wheat cultivars; they had differentiated into endosperm transfer cells (ETCs). At 14 DAP, the number of ETCs reached a maximum and then gradually decreased in all three wheat varieties. The lateral ETCs and the ETCs on both sides of the crease were longer than ACs; they reached their maximum length at 16 DAP, becoming gradually shorter thereafter. The dorsal ACs became increasingly thicker during wheat grain development. Overall, these results suggested that EECs near the EC and crease are important for efficient nutrient transport, whereas EECs in other regions of wheat grains mainly play a role in nutrient storage.
Collapse
Affiliation(s)
- Juan Liu
- Dezhou University, Dezhou, 253023, Shandong, P. R. China
| | - Yuangang Zhu
- Dezhou University, Dezhou, 253023, Shandong, P. R. China
| | - Xinyue Liu
- Dezhou University, Dezhou, 253023, Shandong, P. R. China
| | - Jian Song
- Dezhou University, Dezhou, 253023, Shandong, P. R. China
| | - Ligang Tang
- Dezhou University, Dezhou, 253023, Shandong, P. R. China
| | - Liang Shen
- Dezhou University, Dezhou, 253023, Shandong, P. R. China
| | - Zhongmin Dai
- Dezhou University, Dezhou, 253023, Shandong, P. R. China.
| |
Collapse
|
2
|
Pankaj R, Lima RB, Figueiredo DD. Hormonal regulation and crosstalk during early endosperm and seed coat development. PLANT REPRODUCTION 2024; 38:5. [PMID: 39724433 PMCID: PMC11671439 DOI: 10.1007/s00497-024-00516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
KEY MESSAGE This review covers the latest developments on the regulation of early seed development by phytohormones. The development of seeds in flowering plants starts with the fertilization of the maternal gametes by two paternal sperm cells. This leads to the formation of two products, embryo and endosperm, which are surrounded by a tissue of maternal sporophytic origin, called the seed coat. The development of each of these structures is under tight genetic control. Moreover, several phytohormones have been shown to modulate the development of all three seed compartments and have been implicated in the communication between them. This is particularly relevant, as embryo, endosperm, and seed coat have to coordinate their development for successful seed formation. Here, we review the latest advances on the hormonal regulation of early seed development in the model plant species Arabidopsis thaliana, with a focus on the endosperm and the seed coat. Moreover, we highlight how phytohormones serve as mechanisms of non-cell autonomous communication between these two compartments and how they are determinant in shaping seed formation.
Collapse
Affiliation(s)
- R Pankaj
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - R B Lima
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - D D Figueiredo
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
3
|
Wang W, Xiong H, Sun MX. Gamete activation for fertilization and seed development in flowering plants. Curr Top Dev Biol 2024; 162:1-31. [PMID: 40180506 DOI: 10.1016/bs.ctdb.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Double fertilization is a defining feature of flowering plants, in which two male gametes (sperm cells) fuse with two female gametes (egg and central cell) to trigger embryogenesis and endosperm development. Gamete activation before fertilization is essential for the success of fertilization, while gamete activation after fertilization is the prerequisite for embryo and endosperm development. The two phases of activation are an associated and continuous process. In this review, we focus on current understanding of gamete activation both before and after fertilization in flowering plants, summarize and discuss the detailed cellular and molecular mechanisms underlying gamete activation for fertilization or initiation of embryogenesis and endosperm development.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, P.R. China
| | - Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, P.R. China.
| |
Collapse
|
4
|
Pal AK, Gandhivel VHS, Nambiar AB, Shivaprasad PV. Upstream regulator of genomic imprinting in rice endosperm is a small RNA-associated chromatin remodeler. Nat Commun 2024; 15:7807. [PMID: 39242590 PMCID: PMC11379814 DOI: 10.1038/s41467-024-52239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Genomic imprinting is observed in endosperm, a placenta-like seed tissue, where transposable elements (TEs) and repeat-derived small RNAs (sRNAs) mediate epigenetic changes in plants. In imprinting, uniparental gene expression arises due to parent-specific epigenetic marks on one allele but not on the other. The importance of sRNAs and their regulation in endosperm development or in imprinting is poorly understood in crops. Here we show that a previously uncharacterized CLASSY (CLSY)-family chromatin remodeler named OsCLSY3 is essential for rice endosperm development and imprinting, acting as an upstream player in the sRNA pathway. Comparative transcriptome and genetic analysis indicated its endosperm-preferred expression and its likely paternal imprinted nature. These important features are modulated by RNA-directed DNA methylation (RdDM) of tandemly arranged TEs in its promoter. Upon perturbation of OsCLSY3 in transgenic lines, we observe defects in endosperm development and a loss of around 70% of all sRNAs. Interestingly, well-conserved endosperm-specific sRNAs (siren) that are vital for reproductive fitness in angiosperms are also dependent on OsCLSY3. We observed that many imprinted genes and seed development-associated genes are under the control of OsCLSY3. These results support an essential role of OsCLSY3 in rice endosperm development and imprinting, and propose similar regulatory strategies involving CLSY3 homologs among other cereals.
Collapse
Affiliation(s)
- Avik Kumar Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Vivek Hari-Sundar Gandhivel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Amruta B Nambiar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India.
| |
Collapse
|
5
|
Song T, Huo Q, Li C, Wang Q, Cheng L, Qi W, Ma Z, Song R. The biosynthesis of storage reserves and auxin is coordinated by a hierarchical regulatory network in maize endosperm. THE NEW PHYTOLOGIST 2024; 243:1855-1869. [PMID: 38962989 DOI: 10.1111/nph.19949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Grain filling in maize (Zea mays) is intricately linked to cell development, involving the regulation of genes responsible for the biosynthesis of storage reserves (starch, proteins, and lipids) and phytohormones. However, the regulatory network coordinating these biological functions remains unclear. In this study, we identified 1744 high-confidence target genes co-regulated by the transcription factors (TFs) ZmNAC128 and ZmNAC130 (ZmNAC128/130) through chromatin immunoprecipitation sequencing coupled with RNA-seq analysis in the zmnac128/130 loss-of-function mutants. We further constructed a hierarchical regulatory network using DNA affinity purification sequencing analysis of downstream TFs regulated by ZmNAC128/130. In addition to target genes involved in the biosynthesis of starch and zeins, we discovered novel target genes of ZmNAC128/130 involved in the biosynthesis of lipids and indole-3-acetic acid (IAA). Consistently, the number of oil bodies, as well as the contents of triacylglycerol, and IAA were significantly reduced in zmnac128/130. The hierarchical regulatory network centered by ZmNAC128/130 revealed a significant overlap between the direct target genes of ZmNAC128/130 and their downstream TFs, particularly in regulating the biosynthesis of storage reserves and IAA. Our results indicated that the biosynthesis of storage reserves and IAA is coordinated by a multi-TFs hierarchical regulatory network in maize endosperm.
Collapse
Affiliation(s)
- Teng Song
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qiang Huo
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chaobin Li
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qun Wang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Lijun Cheng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Tonosaki K, Susaki D, Morinaka H, Ono A, Nagata H, Furuumi H, Nonomura KI, Sato Y, Sugimoto K, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Multilayered epigenetic control of persistent and stage-specific imprinted genes in rice endosperm. NATURE PLANTS 2024; 10:1231-1245. [PMID: 39080502 DOI: 10.1038/s41477-024-01754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
In angiosperms, epigenetic profiles for genomic imprinting are established before fertilization. However, the causal relationships between epigenetic modifications and imprinted expression are not fully understood. In this study, we classified 'persistent' and 'stage-specific' imprinted genes on the basis of time-course transcriptome analysis in rice (Oryza sativa) endosperm and compared them to epigenetic modifications at a single time point. While the levels of epigenetic modifications are relatively low in stage-specific imprinted genes, they are considerably higher in persistent imprinted genes. Overall trends revealed that the maternal alleles of maternally expressed imprinted genes are activated by DNA demethylation, while the maternal alleles of paternally expressed imprinted genes with gene body methylation (gbM) are silenced by DNA demethylation and H3K27me3 deposition, and these regions are associated with an enriched motif related to Tc/Mar-Stowaway. Our findings provide insight into the stability of genomic imprinting and the potential variations associated with endosperm development, different cell types and parental genotypes.
Collapse
Grants
- 20K15504 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K15145 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04749 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04756 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K23585 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H05175 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H02170 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H02320 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
- Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan.
| | - Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hatsune Morinaka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroyasu Furuumi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yutaka Sato
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | | | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
7
|
Yang K, Tang Y, Li Y, Guo W, Hu Z, Wang X, Berger F, Li J. Two imprinted genes primed by DEMETER in the central cell and activated by WRKY10 in the endosperm. J Genet Genomics 2024; 51:855-865. [PMID: 38599515 DOI: 10.1016/j.jgg.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
The early development of the endosperm is crucial for balancing the allocation of maternal nutrients to offspring. This process is believed to be evolutionarily associated with genomic imprinting, resulting in parentally biased allelic gene expression. Beyond FertilizationIndependentSeed (FIS) genes, the number of imprinted genes involved in early endosperm development and seed size determination remains limited. This study introduces early endosperm-expressed HAIKU (IKU) downstream Candidate F-box 1 (ICF1) and ICF2 as maternally expressed imprinted genes (MEGs) in Arabidopsis thaliana. Although these genes are also demethylated by DEMETER (DME) in the central cell, their activation differs from the direct DME-mediated activation seen in classical MEGs such as the FIS genes. Instead, ICF maternal alleles carry pre-established hypomethylation in their promoters, priming them for activation by the WRKY10 transcription factor in the endosperm. On the contrary, paternal alleles are predominantly suppressed by CG methylation. Furthermore, we find that ICF genes partially contribute to the small seed size observed in iku mutants. Our discovery reveals a two-step regulatory mechanism that highlights the important role of conventional transcription factors in the activation of imprinted genes, which was previously not fully recognized. Therefore, the mechanism provides a new dimension to understand the transcriptional regulation of imprinting in plant reproduction and development.
Collapse
Affiliation(s)
- Ke Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yuling Tang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yue Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenbin Guo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhengdao Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xuanpeng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Jing Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, Hainan 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China.
| |
Collapse
|
8
|
Yu Y, Zhu R, Xu H, Enugutti B, Schneitz K, Wang X, Li J. Twin Embryos in Arabidopsis thaliana KATANIN 1 Mutants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1824. [PMID: 38999664 PMCID: PMC11244573 DOI: 10.3390/plants13131824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Regulation of microtubule dynamics is crucial during key developmental transitions such as gametogenesis, fertilization, embryogenesis, and seed formation, where cells undergo rapid changes in shape and function. In plants, katanin plays an essential role in microtubule dynamics. This study investigates two seed developmental mutants in Arabidopsis thaliana, named elk5-1D (erecta-like 5, ELK5) and loo1 (lollipop 1), which are characterized by round seeds, dwarfism, and fertility defects. Notably, elk5-1D exhibits a dominant inheritance pattern, whereas loo1 is recessive. Through positional cloning, we identified both mutants as new alleles of the KATANIN 1 (KTN1) gene, which encodes a microtubule-severing enzyme critical for cell division and morphology. Mutations in KTN1 disrupt embryo cell division and lead to the emergence of a twin embryo phenotype. Our findings underscore the essential role of KTN1 in fertility and early embryonic development, potentially influencing the fate of reproductive cells.
Collapse
Affiliation(s)
- Youfeng Yu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Rui Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Xu
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Balaji Enugutti
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Kay Schneitz
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Xuanpeng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jing Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Bente H, Köhler C. Molecular basis and evolutionary drivers of endosperm-based hybridization barriers. PLANT PHYSIOLOGY 2024; 195:155-169. [PMID: 38298124 PMCID: PMC11060687 DOI: 10.1093/plphys/kiae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
The endosperm, a transient seed tissue, plays a pivotal role in supporting embryo growth and germination. This unique feature sets flowering plants apart from gymnosperms, marking an evolutionary innovation in the world of seed-bearing plants. Nevertheless, the importance of the endosperm extends beyond its role in providing nutrients to the developing embryo by acting as a versatile protector, preventing hybridization events between distinct species and between individuals with different ploidy. This phenomenon centers on growth and differentiation of the endosperm and the speed at which both processes unfold. Emerging studies underscore the important role played by type I MADS-box transcription factors, including the paternally expressed gene PHERES1. These factors, along with downstream signaling pathways involving auxin and abscisic acid, are instrumental in regulating endosperm development and, consequently, the establishment of hybridization barriers. Moreover, mutations in various epigenetic regulators mitigate these barriers, unveiling a complex interplay of pathways involved in their formation. In this review, we discuss the molecular underpinnings of endosperm-based hybridization barriers and their evolutionary drivers.
Collapse
Affiliation(s)
- Heinrich Bente
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
10
|
Han B, Li Y, Wu D, Li DZ, Liu A, Xu W. Dynamics of imprinted genes and their epigenetic mechanisms in castor bean seed with persistent endosperm. THE NEW PHYTOLOGIST 2023; 240:1868-1882. [PMID: 37717216 DOI: 10.1111/nph.19265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
Genomic imprinting refers to parent-of-origin-dependent gene expression and primarily occurs in the endosperm of flowering plants, but its functions and epigenetic mechanisms remain to be elucidated in eudicots. Castor bean, a eudicot with large and persistent endosperm, provides an excellent system for studying the imprinting. Here, we identified 131 imprinted genes in developing endosperms and endosperm at seed germination phase of castor bean, involving into the endosperm development, accumulation of storage compounds and specially seed germination. Our results showed that the transcriptional repression of maternal allele of DNA METHYLTRANSFERASE 1 (MET1) may be required for maternal genome demethylation in the endosperm. DNA methylation analysis showed that only a small fraction of imprinted genes was associated with allele-specific DNA methylation, and most of them were closely associated with constitutively unmethylated regions (UMRs), suggesting a limited role for DNA methylation in controlling genomic imprinting. Instead, histone modifications can be asymmetrically deposited in maternal and paternal genomes in a DNA methylation-independent manner to control expression of most imprinted genes. These results expanded our understanding of the occurrence and biological functions of imprinted genes and showed the evolutionary flexibility of the imprinting machinery and mechanisms in plants.
Collapse
Affiliation(s)
- Bing Han
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yelan Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Di Wu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Wei Xu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
11
|
Yoon J, Min CW, Kim J, Baek G, Kim D, Jang JW, Gupta R, Kim ST, Cho LH. Quantitative Proteomic Analysis Deciphers the Molecular Mechanism for Endosperm Nuclear Division in Early Rice Seed Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:3715. [PMID: 37960070 PMCID: PMC10650807 DOI: 10.3390/plants12213715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Understanding the molecular mechanisms underlying early seed development is important in improving the grain yield and quality of crop plants. We performed a comparative label-free quantitative proteomic analysis of developing rice seeds for the WT and osctps1-2 mutant, encoding a cytidine triphosphate synthase previously reported as the endospermless 2 (enl2) mutant in rice, harvested at 0 and 1 d after pollination (DAP) to understand the molecular mechanism of early seed development. In total, 5231 proteins were identified, of which 902 changed in abundance between 0 and 1 DAP seeds. Proteins that preferentially accumulated at 1 DAP were involved in DNA replication and pyrimidine biosynthetic pathways. Notably, an increased abundance of OsCTPS1 was observed at 1 DAP; however, no such changes were observed at the transcriptional level. We further observed that the inhibition of phosphorylation increased the stability of this protein. Furthermore, in osctps1-2, minichromosome maintenance (MCM) proteins were significantly reduced compared with those in the WT at 1 DAP, and mutations in OsMCM5 caused defects in seed development. These results highlight the molecular mechanisms underlying early seed development in rice at the post-transcriptional level.
Collapse
Affiliation(s)
- Jinmi Yoon
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea;
- Department of Biological Sciences and Bioengineering, Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon 22212, Republic of Korea
| | - Cheol Woo Min
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
| | - Jiyoung Kim
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (J.K.); (G.B.); (D.K.); (J.W.J.)
| | - Gibeom Baek
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (J.K.); (G.B.); (D.K.); (J.W.J.)
| | - Dohyeon Kim
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (J.K.); (G.B.); (D.K.); (J.W.J.)
| | - Jeong Woo Jang
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (J.K.); (G.B.); (D.K.); (J.W.J.)
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea;
| | - Sun Tae Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (J.K.); (G.B.); (D.K.); (J.W.J.)
| | - Lae-Hyeon Cho
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (J.K.); (G.B.); (D.K.); (J.W.J.)
| |
Collapse
|
12
|
Rojek J, Ohad N. The phenomenon of autonomous endosperm in sexual and apomictic plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4324-4348. [PMID: 37155961 PMCID: PMC10433939 DOI: 10.1093/jxb/erad168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Endosperm is a key nutritive tissue that supports the developing embryo or seedling, and serves as a major nutritional source for human and livestock feed. In sexually-reproducing flowering plants, it generally develops after fertilization. However, autonomous endosperm (AE) formation (i.e. independent of fertilization) is also possible. Recent findings of AE loci/ genes and aberrant imprinting in native apomicts, together with a successful initiation of parthenogenesis in rice and lettuce, have enhanced our understanding of the mechanisms bridging sexual and apomictic seed formation. However, the mechanisms driving AE development are not well understood. This review presents novel aspects related to AE development in sexual and asexual plants underlying stress conditions as the primary trigger for AE. Both application of hormones to unfertilized ovules and mutations that impair epigenetic regulation lead to AE development in sexual Arabidopsis thaliana, which may point to a common pathway for both phenomena. Apomictic-like AE development under experimental conditions can take place due to auxin-dependent gene expression and/or DNA methylation.
Collapse
Affiliation(s)
- Joanna Rojek
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Nir Ohad
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
van Ekelenburg YS, Hornslien KS, Van Hautegem T, Fendrych M, Van Isterdael G, Bjerkan KN, Miller JR, Nowack MK, Grini PE. Spatial and temporal regulation of parent-of-origin allelic expression in the endosperm. PLANT PHYSIOLOGY 2023; 191:986-1001. [PMID: 36437711 PMCID: PMC9922421 DOI: 10.1093/plphys/kiac520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Genomic imprinting promotes differential expression of parental alleles in the endosperm of flowering plants and is regulated by epigenetic modification such as DNA methylation and histone tail modifications in chromatin. After fertilization, the endosperm develops through a syncytial stage before it cellularizes and becomes a nutrient source for the growing embryo. Regional compartmentalization has been shown both in early and late endosperm development, and different transcriptional domains suggest divergent spatial and temporal regional functions. The analysis of the role of parent-of-origin allelic expression in the endosperm as a whole and the investigation of domain-specific functions have been hampered by the inaccessibility of the tissue for high-throughput transcriptome analyses and contamination from surrounding tissue. Here, we used fluorescence-activated nuclear sorting (FANS) of nuclear targeted GFP fluorescent genetic markers to capture parental-specific allelic expression from different developmental stages and specific endosperm domains. This approach allowed us to successfully identify differential genomic imprinting with temporal and spatial resolution. We used a systematic approach to report temporal regulation of imprinted genes in the endosperm, as well as region-specific imprinting in endosperm domains. Analysis of our data identified loci that are spatially differentially imprinted in one domain of the endosperm, while biparentally expressed in other domains. These findings suggest that the regulation of genomic imprinting is dynamic and challenge the canonical mechanisms for genomic imprinting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paul E Grini
- Authors for correspondence: E-mail: (P.E.G.), (K.S.H.)
| |
Collapse
|
14
|
Galindo-Trigo S. Parents, time, and space: The three dimensions of endosperm gene expression. PLANT PHYSIOLOGY 2023; 191:828-830. [PMID: 36493390 PMCID: PMC9922413 DOI: 10.1093/plphys/kiac566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
|
15
|
Ibañez VN, Quadrana L. Shaping inheritance: how distinct reproductive strategies influence DNA methylation memory in plants. Curr Opin Genet Dev 2023; 78:102018. [PMID: 36525825 DOI: 10.1016/j.gde.2022.102018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
DNA methylation is a major epigenetic mark involved in the silencing of genes and transposable elements (TEs). DNA methylation varies significantly across the plant life cycle, but is efficiently reinforced during reproduction, ensuring stable silencing of TEs. Plants are remarkably flexible in their mode of reproduction and numerous species, including crops, can propagate asexually, skipping one or more of these critical reinforcement steps. In this review, we summarize recent advances in the characterization of DNA methylation inheritance in sexual and asexual plants. We argue that because most epigenetic reinforcement appears to occur during seed formation, methylomes of asexual seeds should resemble that of their sexual counterparts. Conversely, clonally propagated plants are expected to be hypomethylated and undergo frequent stochastic epigenetic changes. Last, we provide insights on how the use of nonmodel organisms will advance our understanding of epigenetic inheritance in plants.
Collapse
Affiliation(s)
- Verónica Noé Ibañez
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Diderot, 91190 Gif sur Yvette, France. https://twitter.com/veronik_noe
| | - Leandro Quadrana
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Diderot, 91190 Gif sur Yvette, France.
| |
Collapse
|
16
|
Li T, Yin L, Stoll CE, Lisch D, Zhao M. Conserved noncoding sequences and de novo Mutator insertion alleles are imprinted in maize. PLANT PHYSIOLOGY 2023; 191:299-316. [PMID: 36173333 PMCID: PMC9806621 DOI: 10.1093/plphys/kiac459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 05/20/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon in which differential allele expression occurs in a parent-of-origin-dependent manner. Imprinting in plants is tightly linked to transposable elements (TEs), and it has been hypothesized that genomic imprinting may be a consequence of demethylation of TEs. Here, we performed high-throughput sequencing of ribonucleic acids from four maize (Zea mays) endosperms that segregated newly silenced Mutator (Mu) transposons and identified 110 paternally expressed imprinted genes (PEGs) and 139 maternally expressed imprinted genes (MEGs). Additionally, two potentially novel paternally suppressed MEGs are associated with de novo Mu insertions. In addition, we find evidence for parent-of-origin effects on expression of 407 conserved noncoding sequences (CNSs) in maize endosperm. The imprinted CNSs are largely localized within genic regions and near genes, but the imprinting status of the CNSs are largely independent of their associated genes. Both imprinted CNSs and PEGs have been subject to relaxed selection. However, our data suggest that although MEGs were already subject to a higher mutation rate prior to their being imprinted, imprinting may be the cause of the relaxed selection of PEGs. In addition, although DNA methylation is lower in the maternal alleles of both the maternally and paternally expressed CNSs (mat and pat CNSs), the difference between the two alleles in H3K27me3 levels was only observed in pat CNSs. Together, our findings point to the importance of both transposons and CNSs in genomic imprinting in maize.
Collapse
Affiliation(s)
- Tong Li
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Liangwei Yin
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
| | - Claire E Stoll
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
17
|
Zhao L, Li M, Ma X, Luo D, Zhou Q, Liu W, Liu Z. Transcriptome analysis and identification of abscisic acid and gibberellin-related genes during seed development of alfalfa (Medicago sativa L.). BMC Genomics 2022; 23:651. [PMID: 36100883 PMCID: PMC9472388 DOI: 10.1186/s12864-022-08875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alfalfa (Medicago sativa) is a widely cultivated plant. Unlike many crops, the main goal of breeding alfalfa is to increase its aboveground biomass rather than the biomass of its seeds. However, the low yield of alfalfa seeds limits alfalfa production. Many studies have explored the factors affecting seed development, in which phytohormones, especially ABA and GAs, play an important role in seed development. RESULTS Here, we performed a transcriptome analysis of alfalfa seeds at five development stages. A total of 16,899 differentially expressed genes (DEGs) were identified and classified into 10 clusters, and the enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were determined. The contents of ABA, GA1, GA3, GA4 and GA7 in alfalfa seeds at five development stages were determined. In addition, 14 ABA-related DEGs and 20 GA-related DEGs were identified and analysed. These DEGs are involved in plant hormone pathways and play an important role in seed development. Moreover, morphological and physiological analyses revealed the dynamic changes during the development of alfalfa seeds. CONCLUSION Overall, our study is the first to analyse the transcriptome across various stages of seed development in alfalfa. The results of our study could be used to improve alfalfa seed yield. The key ABA and GA related-genes are potential targets for improving alfalfa seed yield via genetic engineering in the future.
Collapse
Affiliation(s)
- Lu Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Mingyu Li
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Xiaomei Ma
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Dong Luo
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Qiang Zhou
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Wenxian Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Zhipeng Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| |
Collapse
|
18
|
Zhang M, Zheng H, Jin L, Xing L, Zou J, Zhang L, Liu C, Chu J, Xu M, Wang L. miR169o and ZmNF-YA13 act in concert to coordinate the expression of ZmYUC1 that determines seed size and weight in maize kernels. THE NEW PHYTOLOGIST 2022; 235:2270-2284. [PMID: 35713356 DOI: 10.1111/nph.18317] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) play key regulatory roles in seed development and emerge as new key targets for engineering grain size and yield. The Zma-miRNA169 family is highly expressed during maize seed development, but its functional roles in seed development remain elusive. Here, we generated zma-miR169o and ZmNF-YA13 transgenic plants. Phenotypic and genetic analyses were performed on these lines. Seed development and auxins contents were investigated. Overexpression of maize miRNA zma-miR169o increases seed size and weight, whereas the opposite is true when its expression is suppressed. Further studies revealed that zma-miR169 acts by negatively regulating its target gene, a transcription factor ZmNF-YA13 that also plays a key role in determining seed size. We demonstrate that ZmNF-YA13 regulates the expression of the auxin biosynthetic gene ZmYUC1, which modulates auxin levels in the early developing seeds and determines the number of endosperm cells, thereby governing maize seed size and ultimately yield. Overall, our present study has identified zma-miR169o and ZmNF-YA13 that form a functional module regulating auxin accumulation in maize seeds and playing an important role in determining maize seed size and yield, providing a set of novel molecular tools for yield improvement in molecular breeding and genetic engineering.
Collapse
Affiliation(s)
- Min Zhang
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Hongyan Zheng
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
- National Nanfan Research Institute (Sanya), 572022, Sanya, Hainan, China
| | - Lian Jin
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Lijuan Xing
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Junjie Zou
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Lan Zhang
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Miaoyun Xu
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Lei Wang
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
- National Nanfan Research Institute (Sanya), 572022, Sanya, Hainan, China
| |
Collapse
|
19
|
Liu J, Wu MW, Liu CM. Cereal Endosperms: Development and Storage Product Accumulation. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:255-291. [PMID: 35226815 DOI: 10.1146/annurev-arplant-070221-024405] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The persistent triploid endosperms of cereal crops are the most important source of human food and animal feed. The development of cereal endosperms progresses through coenocytic nuclear division, cellularization, aleurone and starchy endosperm differentiation, and storage product accumulation. In the past few decades, the cell biological processes involved in endosperm formation in most cereals have been described. Molecular genetic studies performed in recent years led to the identification of the genes underlying endosperm differentiation, regulatory network governing storage product accumulation, and epigenetic mechanism underlying imprinted gene expression. In this article, we outline recent progress in this area and propose hypothetical models to illustrate machineries that control aleurone and starchy endosperm differentiation, sugar loading, and storage product accumulations. A future challenge in this area is to decipher the molecular mechanisms underlying coenocytic nuclear division, endosperm cellularization, and programmed cell death.
Collapse
Affiliation(s)
- Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Ming-Wei Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| |
Collapse
|
20
|
Guo F, Zhang P, Wu Y, Lian G, Yang Z, Liu W, Buerte B, Zhou C, Zhang W, Li D, Han N, Tong Z, Zhu M, Xu L, Chen M, Bian H. Rice LEAFY COTYLEDON1 Hinders Embryo Greening During the Seed Development. FRONTIERS IN PLANT SCIENCE 2022; 13:887980. [PMID: 35620685 PMCID: PMC9128838 DOI: 10.3389/fpls.2022.887980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
LEAFY COTYLEDON1 (LEC1) is the central regulator of seed development in Arabidopsis, while its function in monocots is largely elusive. We generated Oslec1 mutants using CRISPR/Cas9 technology. Oslec1 mutant seeds lost desiccation tolerance and triggered embryo greening at the early development stage. Transcriptome analysis demonstrated that Oslec1 mutation altered diverse hormonal pathways and stress response in seed maturation, and promoted a series of photosynthesis-related genes. Further, genome-wide identification of OsLEC1-binding sites demonstrated that OsLEC1 bound to genes involved in photosynthesis, photomorphogenesis, as well as abscisic acid (ABA) and gibberellin (GA) pathways, involved in seed maturation. We illustrated an OsLEC1-regulating gene network during seed development, including the interconnection between photosynthesis and ABA/GA biosynthesis/signaling. Our findings suggested that OsLEC1 acts as not only a central regulator of seed maturation but also an inhibitor of embryo greening during rice seed development. This study would provide new understanding for the OsLEC1 regulatory mechanisms on photosynthesis in the monocot seed development.
Collapse
Affiliation(s)
- Fu Guo
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Peijing Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Centre, Hangzhou, China
| | - Yan Wu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Guiwei Lian
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhengfei Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - B. Buerte
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chun Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wenqian Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Dandan Li
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Ning Han
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, China
| | - Muyuan Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hongwu Bian
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Wen S, Neuhaus HE, Cheng J, Bie Z. Contributions of sugar transporters to crop yield and fruit quality. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2275-2289. [PMID: 35139196 DOI: 10.1093/jxb/erac043] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/04/2022] [Indexed: 05/09/2023]
Abstract
The flux, distribution, and storage of soluble sugars regulate crop yield in terms of starch, oil, protein, and total carbohydrates, and affect the quality of many horticultural products. Sugar transporters contribute to phloem loading and unloading. The mechanisms of phloem loading have been studied in detail, but the complex and diverse mechanisms of phloem unloading and sugar storage in sink organs are less explored. Unloading and subsequent transport mechanisms for carbohydrates vary in different sink organs. Analyzing the transport and storage mechanisms of carbohydrates in important storage organs, such as cereal seeds, fruits, or stems of sugarcane, will provide information for genetic improvements to increase crop yield and fruit quality. This review discusses current research progress on sugar transporters involved in carbohydrate unloading and storage in sink organs. The roles of sugar transporters in crop yield and the accumulation of sugars are also discussed to highlight their contribution to efficient breeding.
Collapse
Affiliation(s)
- Suying Wen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany
| | - Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| |
Collapse
|
22
|
RNA Pol IV induces antagonistic parent-of-origin effects on Arabidopsis endosperm. PLoS Biol 2022; 20:e3001602. [PMID: 35389984 PMCID: PMC9017945 DOI: 10.1371/journal.pbio.3001602] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/19/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
Gene expression in endosperm-a seed tissue that mediates transfer of maternal resources to offspring-is under complex epigenetic control. We show here that plant-specific RNA polymerase IV (Pol IV) mediates parental control of endosperm gene expression. Pol IV is required for the production of small interfering RNAs that typically direct DNA methylation. We compared small RNAs (sRNAs), DNA methylation, and mRNAs in Arabidopsis thaliana endosperm from heterozygotes produced by reciprocally crossing wild-type (WT) plants to Pol IV mutants. We find that maternally and paternally acting Pol IV induce distinct effects on endosperm. Loss of maternal or paternal Pol IV impacts sRNAs and DNA methylation at different genomic sites. Strikingly, maternally and paternally acting Pol IV have antagonistic impacts on gene expression at some loci, divergently promoting or repressing endosperm gene expression. Antagonistic parent-of-origin effects have only rarely been described and are consistent with a gene regulatory system evolving under parental conflict.
Collapse
|
23
|
Verma S, Attuluri VPS, Robert HS. Transcriptional control of Arabidopsis seed development. PLANTA 2022; 255:90. [PMID: 35318532 PMCID: PMC8940821 DOI: 10.1007/s00425-022-03870-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
The entire process of embryo development is under the tight control of various transcription factors. Together with other proteins, they act in a combinatorial manner and control distinct events during embryo development. Seed development is a complex process that proceeds through sequences of events regulated by the interplay of various genes, prominent among them being the transcription factors (TFs). The members of WOX, HD-ZIP III, ARF, and CUC families have a preferential role in embryonic patterning. While WOX TFs are required for initiating body axis, HD-ZIP III TFs and CUCs establish bilateral symmetry and SAM. And ARF5 performs a major role during embryonic root, ground tissue, and vasculature development. TFs such as LEC1, ABI3, FUS3, and LEC2 (LAFL) are considered the master regulators of seed maturation. Furthermore, several new TFs involved in seed storage reserves and dormancy have been identified in the last few years. Their association with those master regulators has been established in the model plant Arabidopsis. Also, using chromatin immunoprecipitation (ChIP) assay coupled with transcriptomics, genome-wide target genes of these master regulators have recently been proposed. Many seed-specific genes, including those encoding oleosins and albumins, have appeared as the direct target of LAFL. Also, several other TFs act downstream of LAFL TFs and perform their function during maturation. In this review, the function of different TFs in different phases of early embryogenesis and maturation is discussed in detail, including information about their genetic and molecular interactors and target genes. Such knowledge can further be leveraged to understand and manipulate the regulatory mechanisms involved in seed development. In addition, the genomics approaches and their utilization to identify TFs aiming to study embryo development are discussed.
Collapse
Affiliation(s)
- Subodh Verma
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Venkata Pardha Saradhi Attuluri
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hélène S. Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
24
|
Wang Q, Wang M, Chen J, Qi W, Lai J, Ma Z, Song R. ENB1 encodes a cellulose synthase 5 that directs synthesis of cell wall ingrowths in maize basal endosperm transfer cells. THE PLANT CELL 2022; 34:1054-1074. [PMID: 34935984 PMCID: PMC8894971 DOI: 10.1093/plcell/koab312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/27/2021] [Indexed: 05/12/2023]
Abstract
Development of the endosperm is strikingly different in monocots and dicots: it often manifests as a persistent tissue in the former and transient tissue in the latter. Little is known about the controlling mechanisms responsible for these different outcomes. Here we characterized a maize (Zea mays) mutant, endosperm breakdown1 (enb1), in which the typically persistent endosperm (PE) was drastically degraded during kernel development. ENB1 encodes a cellulose synthase 5 that is predominantly expressed in the basal endosperm transfer layer (BETL) of endosperm cells. Loss of ENB1 function caused a drastic reduction in formation of flange cell wall ingrowths (ingrowths) in BETL cells. Defective ingrowths impair nutrient uptake, leading to premature utilization of endosperm starch to nourish the embryo. Similarly, developing wild-type kernels cultured in vitro with a low level of sucrose manifested early endosperm breakdown. ENB1 expression is induced by sucrose via the BETL-specific Myb-Related Protein1 transcription factor. Overexpression of ENB1 enhanced development of flange ingrowths, facilitating sucrose transport into BETL cells and increasing kernel weight. The results demonstrated that ENB1 enhances sucrose supply to the endosperm and contributes to a PE in the kernel.
Collapse
Affiliation(s)
- Qun Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Mingmin Wang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jian Chen
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
25
|
Wang W, Xiong H, Sun K, Zhang B, Sun MX. New insights into cell-cell communications during seed development in flowering plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:215-229. [PMID: 34473416 DOI: 10.1111/jipb.13170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The evolution of seeds is a major reason why flowering plants are a dominant life form on Earth. The developing seed is composed of two fertilization products, the embryo and endosperm, which are surrounded by a maternally derived seed coat. Accumulating evidence indicates that efficient communication among all three seed components is required to ensure coordinated seed development. Cell communication within plant seeds has drawn much attention in recent years. In this study, we review current knowledge of cross-talk among the endosperm, embryo, and seed coat during seed development, and highlight recent advances in this field.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hanxian Xiong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Kaiting Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
26
|
Xiong W, Devkota L, Zhang B, Muir J, Dhital S. Intact cells: “Nutritional capsules” in plant foods. Compr Rev Food Sci Food Saf 2022; 21:1198-1217. [DOI: 10.1111/1541-4337.12904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Weiyan Xiong
- Department of Chemical and Biological Engineering Monash University Clayton Campus, VIC 3800 Australia
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou Guangdong P. R. China
| | - Lavaraj Devkota
- Department of Chemical and Biological Engineering Monash University Clayton Campus, VIC 3800 Australia
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou Guangdong P. R. China
| | - Jane Muir
- Department of Gastroenterology Central Clinical School, Monash University Melbourne Victoria Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering Monash University Clayton Campus, VIC 3800 Australia
| |
Collapse
|
27
|
Govindaraju I, Zhuo GY, Chakraborty I, Melanthota SK, Mal SS, Sarmah B, Baruah VJ, Mahato KK, Mazumder N. Investigation of structural and physico-chemical properties of rice starch with varied amylose content: A combined microscopy, spectroscopy, and thermal study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107093] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Song J, Xie X, Cui Y, Zou J. Endosperm-Embryo Communications: Recent Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112511. [PMID: 34834874 PMCID: PMC8625250 DOI: 10.3390/plants10112511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 05/22/2023]
Abstract
Seed maturation depends on well-coordinated communications between the processes of endosperm and embryo development. The endosperm is considered to be destined to support embryo development and the timing of endosperm cellularization is critical for embryo growth. Recent findings suggest that the endosperm development and the onset of embryo maturation are two independent processes during seed development. Meanwhile, it is lately reported that several mobile regulators originating from the endosperm are needed to ensure proper embryo growth and seed maturation. In this opinion article, we highlight processes on how endosperm communicates with embryo during seed development and discuss some intriguing questions in light of the latest advancements.
Collapse
Affiliation(s)
- Jingpu Song
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada;
- Correspondence:
| | - Xin Xie
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (X.X.); (Y.C.)
- Department of Biology, Western University, London, ON N6A 3K7, Canada
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (X.X.); (Y.C.)
- Department of Biology, Western University, London, ON N6A 3K7, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada;
| |
Collapse
|
29
|
Rolletschek H, Mayer S, Boughton B, Wagner S, Ortleb S, Kiel C, Roessner U, Borisjuk L. The metabolic environment of the developing embryo: A multidisciplinary approach on oilseed rapeseed. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153505. [PMID: 34481359 DOI: 10.1016/j.jplph.2021.153505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Brassicaceae seeds consist of three genetically distinct structures: the embryo, endosperm and seed coat, all of which are involved in assimilate allocation during seed development. The complexity of their metabolic interrelations remains unresolved to date. In the present study, we apply state-of-the-art imaging and analytical approaches to assess the metabolic environment of the Brassica napus embryo. Nuclear magnetic resonance imaging (MRI) provided volumetric data on the living embryo and endosperm, revealing how the endosperm envelops the embryo, determining endosperm's priority in assimilate uptake from the seed coat during early development. MRI analysis showed higher levels of sugars in the peripheral endosperm facing the seed coat, but a lower sugar content within the central vacuole and the region surrounding the embryo. Feeding intact siliques with 13C-labeled sucrose allowed tracing of the post-phloem route of sucrose transfer within the seed at the heart stage of embryogenesis, by means of mass spectrometry imaging. Quantification of over 70 organic and inorganic compounds in the endosperm revealed shifts in their abundance over different stages of development, while sugars and potassium were the main determinants of osmolality throughout these stages. Our multidisciplinary approach allows access to the hidden aspects of endosperm metabolism, a task which remains unattainable for the small-seeded model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Simon Mayer
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Berin Boughton
- Australian National Phenome Centre, Murdoch University, Western Australia, 6150, Australia.
| | - Steffen Wagner
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Stefan Ortleb
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Christina Kiel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia.
| | - Ljudmilla Borisjuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| |
Collapse
|
30
|
Evolution of CG Methylation Maintenance Machinery in Plants. EPIGENOMES 2021; 5:epigenomes5030019. [PMID: 34968368 PMCID: PMC8594673 DOI: 10.3390/epigenomes5030019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Cytosine methylation is an epigenetic mark present in most eukaryotic genomes that contributes to the regulation of gene expression and the maintenance of genome stability. DNA methylation mostly occurs at CG sequences, where it is initially deposited by de novo DNA methyltransferases and propagated by maintenance DNA methyltransferases (DNMT) during DNA replication. In this review, we first summarize the mechanisms maintaining CG methylation in mammals that involve the DNA Methyltransferase 1 (DNMT1) enzyme and its cofactor, UHRF1 (Ubiquitin-like with PHD and RING Finger domain 1). We then discuss the evolutionary conservation and diversification of these two core factors in the plant kingdom and speculate on potential functions of novel homologues typically observed in land plants but not in mammals.
Collapse
|
31
|
Song J, Xie X, Chen C, Shu J, Thapa RK, Nguyen V, Bian S, Kohalmi SE, Marsolais F, Zou J, Cui Y. LEAFY COTYLEDON1 expression in the endosperm enables embryo maturation in Arabidopsis. Nat Commun 2021; 12:3963. [PMID: 34172749 PMCID: PMC8233312 DOI: 10.1038/s41467-021-24234-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
The endosperm provides nutrients and growth regulators to the embryo during seed development. LEAFY COTYLEDON1 (LEC1) has long been known to be essential for embryo maturation. LEC1 is expressed in both the embryo and the endosperm; however, the functional relevance of the endosperm-expressed LEC1 for seed development is unclear. Here, we provide genetic and transgenic evidence demonstrating that endosperm-expressed LEC1 is necessary and sufficient for embryo maturation. We show that endosperm-synthesized LEC1 is capable of orchestrating full seed maturation in the absence of embryo-expressed LEC1. Inversely, without LEC1 expression in the endosperm, embryo development arrests even in the presence of functional LEC1 alleles in the embryo. We further reveal that LEC1 expression in the endosperm begins at the zygote stage and the LEC1 protein is then trafficked to the embryo to activate processes of seed maturation. Our findings thus establish a key role for endosperm in regulating embryo development.
Collapse
Affiliation(s)
- Jingpu Song
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada. .,Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada. .,Department of Biology, Western University, London, ON, Canada.
| | - Xin Xie
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada
| | - Chen Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada.,Molecular Analysis and Genetic Improvement Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jie Shu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada.,Molecular Analysis and Genetic Improvement Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Raj K Thapa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada
| | - Vi Nguyen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Shaomin Bian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,College of Plant Science, Jilin University, Changchun, China
| | | | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada.
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada. .,Department of Biology, Western University, London, ON, Canada.
| |
Collapse
|
32
|
Picard CL, Povilus RA, Williams BP, Gehring M. Transcriptional and imprinting complexity in Arabidopsis seeds at single-nucleus resolution. NATURE PLANTS 2021; 7:730-738. [PMID: 34059805 PMCID: PMC8217372 DOI: 10.1038/s41477-021-00922-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/15/2021] [Indexed: 05/06/2023]
Abstract
Seeds are a key life cycle stage for many plants. Seeds are also the basis of agriculture and the primary source of calories consumed by humans1. Here, we employ single-nucleus RNA-sequencing to generate a transcriptional atlas of developing Arabidopsis thaliana seeds, with a focus on endosperm. Endosperm, the primary site of gene imprinting in flowering plants, mediates the relationship between the maternal parent and the embryo2. We identify transcriptionally uncharacterized nuclei types in the chalazal endosperm, which interfaces with maternal tissue for nutrient unloading3,4. We demonstrate that the extent of parental bias of maternally expressed imprinted genes varies with cell-cycle phase, and that imprinting of paternally expressed imprinted genes is strongest in chalazal endosperm. Thus, imprinting is spatially and temporally heterogeneous. Increased paternal expression in the chalazal region suggests that parental conflict, which is proposed to drive imprinting evolution, is fiercest at the boundary between filial and maternal tissues.
Collapse
Affiliation(s)
- Colette L Picard
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ben P Williams
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
33
|
Xiong H, Wang W, Sun MX. Endosperm development is an autonomously programmed process independent of embryogenesis. THE PLANT CELL 2021; 33:1151-1160. [PMID: 33793916 DOI: 10.1093/plcell/koab007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The seeds of flowering plants contain three genetically distinct structures: the embryo, endosperm, and seed coat. The embryo and endosperm need to interact and exchange signals to ensure coordinated growth. Accumulating evidence has confirmed that embryo growth is supported by the nourishing endosperm and regulated by signals originating from the endosperm. Available data also support that endosperm development requires communication with the embryo. Here, using single-fertilization mutants, Arabidopsis thaliana dmp8 dmp9 and gex2, we demonstrate that in the absence of a zygote and embryo, endosperm initiation, syncytium formation, free nuclear cellularization, and endosperm degeneration occur as in the wild type in terms of the cytological process and time course. Although rapid embryo expansion accelerates endosperm breakdown, our findings strongly suggest that endosperm development is an autonomously organized process, independent of egg cell fertilization and embryo-endosperm communication. This work confirms both the altruistic and self-directed nature of the endosperm during coordinated embryo-endosperm development. Our findings provide insights into the intricate interaction between the two fertilization products and will help to distinguish the physiological roles of the signaling between endosperm and embryo. These findings also open new avenues in agro-biotechnology for crop improvement.
Collapse
Affiliation(s)
- Hanxian Xiong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
34
|
Wang Z, Butel N, Santos-González J, Simon L, Wärdig C, Köhler C. Transgenerational effect of mutants in the RNA-directed DNA methylation pathway on the triploid block in Arabidopsis. Genome Biol 2021; 22:141. [PMID: 33957942 PMCID: PMC8101200 DOI: 10.1186/s13059-021-02359-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/22/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Hybridization of plants that differ in number of chromosome sets (ploidy) frequently causes endosperm failure and seed arrest, a phenomenon referred to as triploid block. In Arabidopsis, loss of function of NRPD1, encoding the largest subunit of the plant-specific RNA polymerase IV (Pol IV), can suppress the triploid block. Pol IV generates short RNAs required to guide de novo methylation in the RNA-directed DNA methylation (RdDM) pathway. Recent work suggests that suppression of the triploid block by mutants in RdDM components differs, depending on whether the diploid pollen is derived from tetraploid plants or from the omission in second division 1 (osd1) mutant. This study aims to understand this difference. RESULTS In this study, we find that the ability of mutants in the RdDM pathway to suppress the triploid block depends on their degree of inbreeding. While first homozygous generation mutants in RdDM components NRPD1, RDR2, NRPE1, and DRM2 have weak or no ability to rescue the triploid block, they are able to suppress the triploid block with successive generations of inbreeding. Inbreeding of nrpd1 was connected with a transgenerational loss of non-CG DNA methylation on sites jointly regulated by CHROMOMETHYLASES 2 and 3. CONCLUSIONS Our data reveal that loss of RdDM function differs in its effect in early and late generations, which has important implications when interpreting the effect of RdDM mutants.
Collapse
Affiliation(s)
- Zhenxing Wang
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
- Present address: College of Horticulture, Nanjing Agricultural University and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, 210095 China
| | - Nicolas Butel
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Lauriane Simon
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Cecilia Wärdig
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
35
|
Xi X, Hu Z, Nie X, Meng M, Xu H, Li J. Cross Inhibition of MPK10 and WRKY10 Participating in the Growth of Endosperm in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:640346. [PMID: 33897728 PMCID: PMC8062763 DOI: 10.3389/fpls.2021.640346] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/08/2021] [Indexed: 05/26/2023]
Abstract
The product of double fertilization produces seed, which contains three components: triploid endosperm, diploid embryo, and maternal seed coat. Amongst them, the endosperm plays a crucial role in coordinating seed growth. Mitogen-activated protein kinase (MAPK) cascades are conserved in eukaryotes and involved in signal transduction of plant development. MPK3, MPK6, and MPK10 form a small group of MPKs family in Arabidopsis thaliana. MPK3 and MPK6 are extensively studied and were found to be involved in diverse processes including plant reproduction. However, less is known about the function of MPK10. Here, we found WRKY10/MINI3, a member of HAIKU (IKU) pathway engaging in endosperm development, and MPK10 is high-specifically expressed in the early developmental endosperm but with opposite gradients. We further proved that MPK10 and WRKY10 cross-inhibit the expression of each other. The inhibition effect of MPK10 on gene expression of WRKY10 and the downstream targets is supported by the fact that MPK10 interacts with WRKY10 and suppresses the transcriptional activity of WRKY10. Constantly, mpk10 mutants produce big seeds while WRKY10/MINI3 positively regulate seed growth. Altogether, our data provides a model of WRKY10 and MPK10 regulating endosperm development with a unique cross inhibitory mechanism.
Collapse
Affiliation(s)
- Xiaoyuan Xi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhengdao Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuerui Nie
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingming Meng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Li
- College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
36
|
Rong H, Yang W, Zhu H, Jiang B, Jiang J, Wang Y. Genomic imprinted genes in reciprocal hybrid endosperm of Brassica napus. BMC PLANT BIOLOGY 2021; 21:140. [PMID: 33726676 PMCID: PMC7968328 DOI: 10.1186/s12870-021-02908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 02/28/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Genomic imprinting results in the expression of parent-of-origin-specific alleles in the offspring. Brassica napus is an oil crop with research values in polyploidization. Identification of imprinted genes in B. napus will enrich the knowledge of genomic imprinting in dicotyledon plants. RESULTS In this study, we performed reciprocal crosses between B. napus L. cultivars Yangyou 6 (Y6) and Zhongshuang 11 (ZS11) to collect endosperm at 20 and 25 days after pollination (DAP) for RNA-seq. In total, we identified 297 imprinted genes, including 283 maternal expressed genes (MEGs) and 14 paternal expressed genes (PEGs) according to the SNPs between Y6 and ZS11. Only 36 genes (35 MEGs and 1 PEG) were continuously imprinted in 20 and 25 DAP endosperm. We found 15, 2, 5, 3, 10, and 25 imprinted genes in this study were also imprinted in Arabidopsis, rice, castor bean, maize, B. rapa, and other B. napus lines, respectively. Only 26 imprinted genes were specifically expressed in endosperm, while other genes were also expressed in root, stem, leaf and flower bud of B. napus. A total of 109 imprinted genes were clustered on rapeseed chromosomes. We found the LTR/Copia transposable elements (TEs) were most enriched in both upstream and downstream of the imprinted genes, and the TEs enriched around imprinted genes were more than non-imprinted genes. Moreover, the expression of 5 AGLs and 6 pectin-related genes in hybrid endosperm were significantly changed comparing with that in parent endosperm. CONCLUSION This research provided a comprehensive identification of imprinted genes in B. napus, and enriched the gene imprinting in dicotyledon plants, which would be useful in further researches on how gene imprinting regulates seed development.
Collapse
Affiliation(s)
- Hao Rong
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Wenjing Yang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Haotian Zhu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Bo Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 China
| |
Collapse
|
37
|
Dziasek K, Simon L, Lafon-Placette C, Laenen B, Wärdig C, Santos-González J, Slotte T, Köhler C. Hybrid seed incompatibility in Capsella is connected to chromatin condensation defects in the endosperm. PLoS Genet 2021; 17:e1009370. [PMID: 33571184 PMCID: PMC7904229 DOI: 10.1371/journal.pgen.1009370] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/24/2021] [Accepted: 01/15/2021] [Indexed: 11/18/2022] Open
Abstract
Hybridization of closely related plant species is frequently connected to endosperm arrest and seed failure, for reasons that remain to be identified. In this study, we investigated the molecular events accompanying seed failure in hybrids of the closely related species pair Capsella rubella and C. grandiflora. Mapping of QTL for the underlying cause of hybrid incompatibility in Capsella identified three QTL that were close to pericentromeric regions. We investigated whether there are specific changes in heterochromatin associated with interspecific hybridizations and found a strong reduction of chromatin condensation in the endosperm, connected with a strong loss of CHG and CHH methylation and random loss of a single chromosome. Consistent with reduced DNA methylation in the hybrid endosperm, we found a disproportionate deregulation of genes located close to pericentromeric regions, suggesting that reduced DNA methylation allows access of transcription factors to targets located in heterochromatic regions. Since the identified QTL were also associated with pericentromeric regions, we propose that relaxation of heterochromatin in response to interspecies hybridization exposes and activates loci leading to hybrid seed failure.
Collapse
Affiliation(s)
- Katarzyna Dziasek
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala, Sweden
| | - Lauriane Simon
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala, Sweden
| | - Clément Lafon-Placette
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala, Sweden
- Present address: Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Cecilia Wärdig
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
38
|
Tian R, Paul P, Joshi S, Perry SE. Genetic activity during early plant embryogenesis. Biochem J 2020; 477:3743-3767. [PMID: 33045058 PMCID: PMC7557148 DOI: 10.1042/bcj20190161] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Seeds are essential for human civilization, so understanding the molecular events underpinning seed development and the zygotic embryo it contains is important. In addition, the approach of somatic embryogenesis is a critical propagation and regeneration strategy to increase desirable genotypes, to develop new genetically modified plants to meet agricultural challenges, and at a basic science level, to test gene function. We briefly review some of the transcription factors (TFs) involved in establishing primary and apical meristems during zygotic embryogenesis, as well as TFs necessary and/or sufficient to drive somatic embryo programs. We focus on the model plant Arabidopsis for which many tools are available, and review as well as speculate about comparisons and contrasts between zygotic and somatic embryo processes.
Collapse
Affiliation(s)
- Ran Tian
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Priyanka Paul
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| |
Collapse
|
39
|
Kordyum EL, Mosyakin SL. Endosperm of Angiosperms and Genomic Imprinting. Life (Basel) 2020; 10:E104. [PMID: 32635326 PMCID: PMC7400472 DOI: 10.3390/life10070104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Modern ideas about the role of epigenetic systems in the regulation of gene expression allow us to understand the mechanisms of vital activities in plants, such as genomic imprinting. It is important that genomic imprinting is known first and foremost for the endosperm, which not only provides an embryo with necessary nutrients, but also plays a special biological role in the formation of seeds and fruits. Available data on genomic imprinting in the endosperm have been obtained only for the triploid endosperm in model plants, which develops after double fertilization in a Polygonum-type embryo sac, the most common type among angiosperms. Here we provide a brief overview of a wide diversity of embryo sacs and endosperm types and ploidy levels, as well as their distribution in the angiosperm families, positioned according to the Angiosperm Phylogeny Group IV (APG IV) phylogenetic classification. Addition of the new, non-model taxa to study gene imprinting in seed development will extend our knowledge about the epigenetic mechanisms underlying angiosperm fertility.
Collapse
Affiliation(s)
- Elizabeth L. Kordyum
- Institute of Botany, National Academy of Sciences of Ukraine, 01004 Kyiv, Ukraine; or
| | | |
Collapse
|
40
|
Olsen OA. The Modular Control of Cereal Endosperm Development. TRENDS IN PLANT SCIENCE 2020; 25:279-290. [PMID: 31956036 DOI: 10.1016/j.tplants.2019.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 05/05/2023]
Abstract
Expansion of the human population demands a significant increase in cereal production. The main component of cereal grains is endosperm, a body of starchy endosperm (SE) cells surrounded by aleurone (AL) cells with transfer cells (TC) at the base and embryo surrounding (ESR) cells adjacent to the embryo. The data reviewed here emphasize the modular nature of endosperm by first suggesting that sucrose promotes development of the fertilized triploid endosperm cell. Next, that the basal syncytial endosperm responds to glucose by turning on TC development. The default endosperm cell fate is SE and ESR differentiation is likely activated by signaling from the embryo. Cells on the exterior surface of the endosperm are specified as AL cells.
Collapse
Affiliation(s)
- Odd-Arne Olsen
- Department of Plant Science, Norwegian University of Life Sciences, 1434, Ås, Norway.
| |
Collapse
|
41
|
The plastidial pentose phosphate pathway is essential for postglobular embryo development in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:15297-15306. [PMID: 31296566 PMCID: PMC6660741 DOI: 10.1073/pnas.1908556116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many mutations that affect plastidial metabolism are embryo-lethal, as expected if the disrupted genes encode enzymes with essential housekeeping functions. However, some mutations that disrupt the plastidial oxidative pentose phosphate pathway (OPPP) cause developmental defects, as well as embryo arrest at the globular stage of development. We show that the OPPP provides the substrate for the pathway of purine synthesis, ribose-5-phosphate, and is thus essential for the generation of nucleic acids during the very early stages of embryo development. Inadequate purine synthesis leads to abnormal patterns of cell division in the embryo and blocks development beyond the globular stage. Therefore, defects in primary metabolic pathways can have profound consequences for development as well as simply reducing growth. Large numbers of genes essential for embryogenesis in Arabidopsis encode enzymes of plastidial metabolism. Disruption of many of these genes results in embryo arrest at the globular stage of development. However, the cause of lethality is obscure. We examined the role of the plastidial oxidative pentose phosphate pathway (OPPP) in embryo development. In nonphotosynthetic plastids the OPPP produces reductant and metabolic intermediates for central biosynthetic processes. Embryos with defects in various steps in the oxidative part of the OPPP had cell division defects and arrested at the globular stage, revealing an absolute requirement for the production via these steps of ribulose-5-phosphate. In the nonoxidative part of the OPPP, ribulose-5-phosphate is converted to ribose-5-phosphate (R5P)—required for purine nucleotide and histidine synthesis—and subsequently to erythrose-4-phosphate, which is required for synthesis of aromatic amino acids. We show that embryo development through the globular stage specifically requires synthesis of R5P rather than erythrose-4-phosphate. Either a failure to convert ribulose-5-phosphate to R5P or a block in purine nucleotide biosynthesis beyond R5P perturbs normal patterning of the embryo, disrupts endosperm development, and causes early developmental arrest. We suggest that seed abortion in mutants unable to synthesize R5P via the oxidative part of the OPPP stems from a lack of substrate for synthesis of purine nucleotides, and hence nucleic acids. Our results show that the plastidial OPPP is essential for normal developmental progression as well as for growth in the embryo.
Collapse
|
42
|
Jo L, Pelletier JM, Harada JJ. Central role of the LEAFY COTYLEDON1 transcription factor in seed development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:564-580. [PMID: 30916433 DOI: 10.1111/jipb.12806] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/16/2019] [Indexed: 05/04/2023]
Abstract
Seed development is a complex period of the flowering plant life cycle. After fertilization, the three main regions of the seed, embryo, endosperm and seed coat, undergo a series of developmental processes that result in the production of a mature seed that is developmentally arrested, desiccated, and metabolically quiescent. These processes are highly coordinated, both temporally and spatially, to ensure the proper growth and development of the seed. The transcription factor, LEAFY COTYLEDON1 (LEC1), is a central regulator that controls several aspects of embryo and endosperm development, including embryo morphogenesis, photosynthesis, and storage reserve accumulation. Thus, LEC1 regulates distinct sets of genes at different stages of seed development. Despite its critical importance for seed development, an understanding of the mechanisms underlying LEC1's multifunctionality is only beginning to be obtained. Recent studies describe the roles of specific transcription factors and the hormones, gibberellic acid and abscisic acid, in controlling the activity and transcriptional specificity of LEC1 across seed development. Moreover, studies indicate that LEC1 acts as a pioneer transcription factor to promote epigenetic reprogramming during embryogenesis. In this review, we discuss the mechanisms that enable LEC1 to serve as a central regulator of seed development.
Collapse
Affiliation(s)
- Leonardo Jo
- Department of Plant Biology and Plant Biology Graduate Group, University of California, Davis, USA
| | - Julie M Pelletier
- Department of Plant Biology and Plant Biology Graduate Group, University of California, Davis, USA
| | - John J Harada
- Department of Plant Biology and Plant Biology Graduate Group, University of California, Davis, USA
| |
Collapse
|
43
|
Abstract
Evolutionary conflict can drive rapid adaptive evolution, sometimes called an arms race, because each party needs to respond continually to the adaptations of the other. Evidence for such arms races can sometimes be seen in morphology, in behavior, or in the genes underlying sexual interactions of host-pathogen interactions, but is rarely predicted a priori. Kin selection theory predicts that conflicts of interest should usually be reduced but not eliminated among genetic relatives, but there is little evidence as to whether conflict within families can drive rapid adaptation. Here we test multiple predictions about how conflict over the amount of resources an offspring receives from its parent would drive rapid molecular evolution in seed tissues of the flowering plant Arabidopsis As predicted, there is more adaptive evolution in genes expressed in Arabidopsis seeds than in other specialized organs, more in endosperms and maternal tissues than in embryos, and more in the specific subtissues involved in nutrient transfer. In the absence of credible alternative hypotheses, these results suggest that kin selection and conflict are important in plants, that the conflict includes not just the mother and offspring but also the triploid endosperm, and that, despite the conflict-reducing role of kinship, family members can engage in slow but steady tortoise-like arms races.
Collapse
|
44
|
Liu J, Li J, Liu HF, Fan SH, Singh S, Zhou XR, Hu ZY, Wang HZ, Hua W. Genome-wide screening and analysis of imprinted genes in rapeseed (Brassica napus L.) endosperm. DNA Res 2019; 25:629-640. [PMID: 30272113 PMCID: PMC6289790 DOI: 10.1093/dnares/dsy030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/09/2018] [Indexed: 12/28/2022] Open
Abstract
Species-specific genomic imprinting is an epigenetic phenomenon leading to parent-of-origin-specific differential expression of maternally and paternally inherited alleles. To date, no studies of imprinting have been reported in rapeseed, a tetraploid species. Here, we analysed global patterns of allelic gene expression in developing rapeseed endosperms from reciprocal crosses between inbred lines YN171 and 93275. A total of 183 imprinted genes, consisting of 167 maternal expressed genes (MEGs) and 16 paternal expressed genes (PEGs), were identified from 14,394 genes found to harbour diagnostic SNPs between the parental lines. Some imprinted genes were validated in different endosperm stages and other parental combinations by RT-PCR analysis. A clear clustering of imprinted genes throughout the rapeseed genome was identified, which was different from most other plants. Methylation analysis of 104 out of the 183 imprinted genes showed that 11 genes (7 MEGs and 4 PEGs) harboured differentially methylated regions (DMRs). Unexpectedly, only 1 MEG out of these 11 genes had a DMR that exhibited high CG methylation rate in paternal allele and had big difference between parent alleles. These results extend our understanding of gene imprinting in plants and provide potential avenues for further research in imprinted genes.
Collapse
Affiliation(s)
- Jing Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Jun Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Hong-Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Shi-Hang Fan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Surinder Singh
- Agriculture and Food Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia
| | - Xue-Rong Zhou
- Agriculture and Food Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia
| | - Zhi-Yong Hu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Han-Zhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| |
Collapse
|
45
|
Batista RA, Figueiredo DD, Santos-González J, Köhler C. Auxin regulates endosperm cellularization in Arabidopsis. Genes Dev 2019; 33:466-476. [PMID: 30819818 PMCID: PMC6446538 DOI: 10.1101/gad.316554.118] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 01/24/2019] [Indexed: 12/25/2022]
Abstract
Batista et al. show that increased auxin biosynthesis in the endosperm prevents its cellularization, leading to seed arrest. The endosperm is an ephemeral tissue that nourishes the developing embryo, similar to the placenta in mammals. In most angiosperms, endosperm development starts as a syncytium, in which nuclear divisions are not followed by cytokinesis. The timing of endosperm cellularization largely varies between species, and the event triggering this transition remains unknown. Here we show that increased auxin biosynthesis in the endosperm prevents its cellularization, leading to seed arrest. Auxin-overproducing seeds phenocopy paternal-excess triploid seeds derived from hybridizations of diploid maternal plants with tetraploid fathers. Concurrently, auxin-related genes are strongly overexpressed in triploid seeds, correlating with increased auxin activity. Reducing auxin biosynthesis and signaling reestablishes endosperm cellularization in triploid seeds and restores their viability, highlighting a causal role of increased auxin in preventing endosperm cellularization. We propose that auxin determines the time of endosperm cellularization, and thereby uncovered a central role of auxin in establishing hybridization barriers in plants.
Collapse
Affiliation(s)
- Rita A Batista
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 7080 Uppsala, Sweden
| | - Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 7080 Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 7080 Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 7080 Uppsala, Sweden
| |
Collapse
|
46
|
Moreno-Romero J, Del Toro-De León G, Yadav VK, Santos-González J, Köhler C. Epigenetic signatures associated with imprinted paternally expressed genes in the Arabidopsis endosperm. Genome Biol 2019; 20:41. [PMID: 30791924 PMCID: PMC6385439 DOI: 10.1186/s13059-019-1652-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Imprinted genes are epigenetically modified during gametogenesis and maintain the established epigenetic signatures after fertilization, causing parental-specific gene expression. RESULTS In this study, we show that imprinted paternally expressed genes (PEGs) in the Arabidopsis endosperm are marked by an epigenetic signature of Polycomb Repressive Complex2 (PRC2)-mediated H3K27me3 together with heterochromatic H3K9me2 and CHG methylation, which specifically mark the silenced maternal alleles of PEGs. The co-occurrence of H3K27me3 and H3K9me2 on defined loci in the endosperm drastically differs from the strict separation of both pathways in vegetative tissues, revealing tissue-specific employment of repressive epigenetic pathways in plants. Based on the presence of this epigenetic signature on maternal alleles, we are able to predict known PEGs at high accuracy and identify several new PEGs that we confirm using INTACT-based transcriptomes generated in this study. CONCLUSIONS The presence of the three repressive epigenetic marks, H3K27me3, H3K9me2, and CHG methylation on the maternal alleles in the endosperm serves as a specific epigenetic signature that allows prediction of genes with parental-specific gene expression. Our study reveals that there are substantially more PEGs than previously identified, indicating that paternal-specific gene expression is of higher functional relevance than currently estimated. The combined activity of PRC2-mediated H3K27me3 together with the heterochromatic H3K9me3 has also been reported to silence the maternal Xist locus in mammalian preimplantation embryos, suggesting convergent employment of both pathways during the evolution of genomic imprinting.
Collapse
Affiliation(s)
- Jordi Moreno-Romero
- Present Address: Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Gerardo Del Toro-De León
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Vikash Kumar Yadav
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| |
Collapse
|
47
|
Zheng L, Zhang X, Zhang H, Gu Y, Huang X, Huang H, Liu H, Zhang J, Hu Y, Li Y, Yu G, Liu Y, Lawson SS, Huang Y. The miR164-dependent regulatory pathway in developing maize seed. Mol Genet Genomics 2019; 294:501-517. [DOI: 10.1007/s00438-018-1524-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
|
48
|
Sechet J, Marion-Poll A, North HM. Emerging Functions for Cell Wall Polysaccharides Accumulated during Eudicot Seed Development. PLANTS (BASEL, SWITZERLAND) 2018; 7:E81. [PMID: 30274256 PMCID: PMC6313846 DOI: 10.3390/plants7040081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 01/17/2023]
Abstract
The formation of seeds is a reproductive strategy in higher plants that enables the dispersal of offspring through time and space. Eudicot seeds comprise three main components, the embryo, the endosperm and the seed coat, where the coordinated development of each is important for the correct formation of the mature seed. In addition, the seed coat protects the quiescent progeny and can provide transport mechanisms. A key underlying process in the production of seed tissues is the formation of an extracellular matrix termed the cell wall, which is well known for its essential function in cytokinesis, directional growth and morphogenesis. The cell wall is composed of a macromolecular network of polymers where the major component is polysaccharides. The attributes of polysaccharides differ with their composition and charge, which enables dynamic remodeling of the mechanical and physical properties of the matrix by adjusting their production, modification or turnover. Accordingly, the importance of specific polysaccharides or modifications is increasingly being associated with specialized functions within seed tissues, often through the spatio-temporal accumulation or remodeling of particular polymers. Here, we review the evolution and accumulation of polysaccharides during eudicot seed development, what is known of their impact on wall architecture and the diverse roles associated with these in different seed tissues.
Collapse
Affiliation(s)
- Julien Sechet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Annie Marion-Poll
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
49
|
Wang G, Jiang H, Del Toro de León G, Martinez G, Köhler C. Sequestration of a Transposon-Derived siRNA by a Target Mimic Imprinted Gene Induces Postzygotic Reproductive Isolation in Arabidopsis. Dev Cell 2018; 46:696-705.e4. [PMID: 30122632 DOI: 10.1016/j.devcel.2018.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/08/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
Genomic imprinting is an epigenetic phenomenon occurring in mammals and flowering plants, causing genes to be expressed depending on their parent of origin. In plants, genomic imprinting is mainly confined to the endosperm, a nutritive tissue supporting embryo growth, similar to the placenta in mammals. Here, we show that the paternally expressed imprinted gene PEG2 transcript sequesters the transposable element (TE)-derived small interfering RNA (siRNA) siRNA854 in the endosperm. siRNA854 is present in the vegetative cell of pollen and transferred to the central cell of the female gametophyte after fertilization, where it is captured by PEG2. Depletion of siRNA854 as a consequence of increased PEG2 transcript levels establishes a reproductive barrier and prevents successful hybridizations between plants differing in chromosome number (ploidy). Thus, the balance of a male gamete accumulating TE-derived siRNA and a paternally expressed imprinted gene regulate triploid seed viability, revealing a transgenerational speciation mechanism.
Collapse
Affiliation(s)
- Guifeng Wang
- Department of Plant Biology, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala 75007, Sweden; Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hua Jiang
- Department of Plant Biology, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Gerardo Del Toro de León
- Department of Plant Biology, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - German Martinez
- Department of Plant Biology, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala 75007, Sweden.
| |
Collapse
|
50
|
Zhang M, Lv R, Yang W, Fu T, Liu B. Imprinted gene expression in maize starchy endosperm and aleurone tissues of reciprocal F1 hybrids at a defined developmental stage. Genes Genomics 2018; 40:99-107. [PMID: 29892900 DOI: 10.1007/s13258-017-0613-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
Imprinted gene expression in flowering plants predominantly occurs in the triploid endosperm of developing seed. However, endosperm is composed of distinct tissue types. For example, the maize (Zea mays) endosperm is constituted by two major tissues, starchy endosperm and aleurone. Previous studies in imprinted gene expression have generally assumed that the different tissues constituting endosperm would behavior the same, and hence have not examined them separately. Here, to examine parental-specific expression of imprinted genes in different parts of the seed, eight previously reported maize protein-coding imprinted genes were selected, and analyzed by cleaved amplified polymorphic sequence (CAPS) coupled with Sanger sequencing for transcripts from the various seed tissues collected at 18 days after pollination (DAP). The studied tissues included seed coat, embryo, starchy endosperm and aleurone, which were collected from a pair of reciprocal F1 hybrids produced by crossing inbred lines B73 and Mo17. Six of these eight analyzed imprinted genes showed the same imprinted expression pattern between the starchy endosperm and aleurone, but two showed imprinted expression only in the starchy endosperm. Comparison of the expression pattern of 20 selected imprinted genes in multiple seed tissues and vegetative tissues indicated that the majority (~ 75%) of these imprinted genes exhibited seed-specific or endosperm-specific expression. Our results also uncovered that imprinted genes have a high propensity to be alternatively spliced via intron retention in the developing embryo compared with the other tissues.
Collapse
Affiliation(s)
- Meishan Zhang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Wei Yang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Tiansi Fu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|