1
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
2
|
Retinal exposure to high glucose condition modifies the GABAergic system: Regulation by nitric oxide. Exp Eye Res 2017; 162:116-125. [PMID: 28734674 DOI: 10.1016/j.exer.2017.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/16/2017] [Accepted: 07/18/2017] [Indexed: 11/20/2022]
Abstract
Diabetic retinopathy is a severe retinal complication that diabetic patients are susceptible to present. Although this disease is currently characterized as a microvascular disease, there is growing evidence that neural changes occur and maybe precede vascular impairments. Using chicken retina, an avascular tissue with no direct contact with blood vessels and neural retina, this study aimed to evaluate the influence of acute exposure to high glucose concentration in the retinal GABAergic system, and the role of nitric oxide (NO) in this modulation. Therefore, in ex vivo experiments, retinas were incubated in control (10 mM glucose) or high glucose condition (35 mM) for 30 min. By using DAF-FM to evaluate NO production, it was possible to show that high glucose (HG) significantly increased NO levels in the outer nuclear layer, inner nuclear layer (outer and inner portion), and inner plexiform layer. It was also observed that HG increased GABA immunoreactivity (IR) in amacrine and horizontal cells. HG did not change glutamic acid decarboxylase-IR, whereas it decreased GABA Transporter (GAT) 1-IR and increased GAT-3-IR. The co-treatment with 7-NI, an inhibitor of neuronal nitric oxide synthase (nNOS), blocked all changes stimulated by HG exposure. The concomitant exposure with SNAP-5114, a GAT-2/3 inhibitor, blocked the increase in GABA-IR caused by HG incubation. Therefore, our data suggest that hyperglycemia induces GABA accumulation in the cytosol by modulating GABA transporters. This response is dependent on NO production and signaling.
Collapse
|
3
|
Eskandari S, Willford SL, Anderson CM. Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters. ADVANCES IN NEUROBIOLOGY 2017; 16:85-116. [PMID: 28828607 DOI: 10.1007/978-3-319-55769-4_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this review is to highlight recent evidence in support of a 3 Na+: 1 Cl-: 1 GABA coupling stoichiometry for plasma membrane GABA transporters (SLC6A1 , SLC6A11 , SLC6A12 , SLC6A13 ) and how the revised stoichiometry impacts our understanding of the contribution of GABA transporters to GABA homeostasis in synaptic and extrasynaptic regions in the brain under physiological and pathophysiological states. Recently, our laboratory probed the GABA transporter stoichiometry by analyzing the results of six independent measurements, which included the shifts in the thermodynamic transporter reversal potential caused by changes in the extracellular Na+, Cl-, and GABA concentrations, as well as the ratio of charge flux to substrate flux for Na+, Cl-, and GABA under voltage-clamp conditions. The shifts in the transporter reversal potential for a tenfold change in the external concentration of Na+, Cl-, and GABA were 84 ± 4, 30 ± 1, and 29 ± 1 mV, respectively. Charge flux to substrate flux ratios were 0.7 ± 0.1 charges/Na+, 2.0 ± 0.2 charges/Cl-, and 2.1 ± 0.1 charges/GABA. We then compared these experimental results with the predictions of 150 different transporter stoichiometry models, which included 1-5 Na+, 0-5 Cl-, and 1-5 GABA per transport cycle. Only the 3 Na+: 1 Cl-: 1 GABA stoichiometry model correctly predicts the results of all six experimental measurements. Using the revised 3 Na+: 1 Cl-: 1 GABA stoichiometry, we propose that the GABA transporters mediate GABA uptake under most physiological conditions. Transporter-mediated GABA release likely takes place under pathophysiological or extreme physiological conditions.
Collapse
Affiliation(s)
- Sepehr Eskandari
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA.
| | - Samantha L Willford
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA
| | - Cynthia M Anderson
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA
| |
Collapse
|
4
|
Bevilaqua MCDN, Andrade‐da‐Costa BL, Fleming RL, Dias GP, Silveirada Luz ACD, Nardi AE, Mello FG, Gardino PF, Calaza KC. Retinal development impairment and degenerative alterations in adult rats subjected to post‐natal malnutrition. Int J Dev Neurosci 2015; 47:172-82. [DOI: 10.1016/j.ijdevneu.2015.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 02/04/2023] Open
Affiliation(s)
- Mário Cesar do Nascimento Bevilaqua
- Instituto de Biofísica Carlos Chagas Filho (IBCCF)Universidade Federal do Rio de Janeiro (UFRJ) Brasil, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade UniversitáriaRio de JaneiroRJCEP 21941‐902Brazil
- Instituto de Psiquiatria, UFRJLaboratório de Pânico e Respiração. Avenida Venceslau Brás ‐ 71–fundos, Praia VermelhaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroRJCEP 22290‐140Brazil
| | - Belmira Lara Andrade‐da‐Costa
- Departamento de Fisiologia e Farmacologia, Centro de Ciências BiológicasUniversidade Federal de Pernambuco, Cidade UniversitáriaRecifePECEP 50670‐901Brazil
| | - Renata Lopez Fleming
- Instituto de Biofísica Carlos Chagas Filho (IBCCF)Universidade Federal do Rio de Janeiro (UFRJ) Brasil, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade UniversitáriaRio de JaneiroRJCEP 21941‐902Brazil
| | - Gisele Pereira Dias
- Instituto de Biofísica Carlos Chagas Filho (IBCCF)Universidade Federal do Rio de Janeiro (UFRJ) Brasil, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade UniversitáriaRio de JaneiroRJCEP 21941‐902Brazil
- Instituto de Psiquiatria, UFRJLaboratório de Pânico e Respiração. Avenida Venceslau Brás ‐ 71–fundos, Praia VermelhaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroRJCEP 22290‐140Brazil
| | - Anna Claudia Domingos Silveirada Luz
- Instituto de Psiquiatria, UFRJLaboratório de Pânico e Respiração. Avenida Venceslau Brás ‐ 71–fundos, Praia VermelhaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroRJCEP 22290‐140Brazil
| | - Antonio Egidio Nardi
- Instituto de Psiquiatria, UFRJLaboratório de Pânico e Respiração. Avenida Venceslau Brás ‐ 71–fundos, Praia VermelhaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroRJCEP 22290‐140Brazil
| | - Fernando Garcia Mello
- Instituto de Biofísica Carlos Chagas Filho (IBCCF)Universidade Federal do Rio de Janeiro (UFRJ) Brasil, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade UniversitáriaRio de JaneiroRJCEP 21941‐902Brazil
| | - Patricia Franca Gardino
- Instituto de Biofísica Carlos Chagas Filho (IBCCF)Universidade Federal do Rio de Janeiro (UFRJ) Brasil, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade UniversitáriaRio de JaneiroRJCEP 21941‐902Brazil
| | - Karin C. Calaza
- Instituto de Biofísica Carlos Chagas Filho (IBCCF)Universidade Federal do Rio de Janeiro (UFRJ) Brasil, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade UniversitáriaRio de JaneiroRJCEP 21941‐902Brazil
- Departamento de Neurobiologia, Programa de Pós‐graduação em NeurociênciasInstituto de BiologiaUniversidade Federal Fluminense, Brasil – Laboratório de Neurobiologia da Retina. Outeiro de São João Batista, s/n, Campus do Valonguinho, CentroNiteróiRJCEP 24020‐140Brazil
| |
Collapse
|
5
|
Guimarães-Souza EM, Calaza KC. Selective activation of group III metabotropic glutamate receptor subtypes produces different patterns of γ-aminobutyric acid immunoreactivity and glutamate release in the retina. J Neurosci Res 2012; 90:2349-61. [PMID: 22987212 DOI: 10.1002/jnr.23123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/10/2012] [Accepted: 07/16/2012] [Indexed: 11/06/2022]
Affiliation(s)
- E M Guimarães-Souza
- Neurobiology of the Retina Laboratory, Neuroscience Program and Departament of Neurobiology, Biology Institute, Federal Fluminense University, Rio de Janeiro, Brazil
| | | |
Collapse
|
6
|
Stutz B, Yamasaki EN, de Mello MCF, de Mello FG. Exchange of extracellular l-glutamate by intracellular d-aspartate: The main mechanism of d-aspartate release in the avian retina. Neurochem Int 2011; 58:767-75. [DOI: 10.1016/j.neuint.2011.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/18/2011] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
|
7
|
Guimarães-Souza E, Gardino P, De Mello F, Calaza K. A calcium-dependent glutamate release induced by metabotropic glutamate receptors I/II promotes GABA efflux from amacrine cells via a transporter-mediated process. Neuroscience 2011; 179:23-31. [DOI: 10.1016/j.neuroscience.2011.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
8
|
Pohl‐Guimarães F, Calaza KDC, Yamasaki EN, Kubrusly RCC, Melo Reis RA. Ethanol increases GABA release in the embryonic avian retina. Int J Dev Neurosci 2009; 28:189-94. [DOI: 10.1016/j.ijdevneu.2009.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/15/2009] [Accepted: 11/05/2009] [Indexed: 12/24/2022] Open
Affiliation(s)
- Fernanda Pohl‐Guimarães
- Laboratory of Neurochemistry, Program in Neurobiology, Biophysics Institute Carlos Chagas FilhoUFRJRio de JaneiroBrazil
| | - Karin da Costa Calaza
- Laboratory of Neurobiology of the Retina, Program in Neurosciences, Biology Institute, UFF24020140NiteróiRJBrazil
| | - Edna Nanami Yamasaki
- Laboratory of Neurobiology of the Retina, Program in Neurobiology, Biophysics Institute Carlos Chagas FilhoUFRJRio de JaneiroBrazil
| | - Regina Célia Cussa Kubrusly
- Laboratory of Neuropharmacology, Program in NeurosciencesDepartment of Physiology and PharmacologyUFFNiteróiRJBrazil
| | - Ricardo Augusto Melo Reis
- Laboratory of Neurochemistry, Program in Neurobiology, Biophysics Institute Carlos Chagas FilhoUFRJRio de JaneiroBrazil
| |
Collapse
|
9
|
Maggesissi R, Gardino P, Guimarães-Souza E, Paes-de-Carvalho R, Silva R, Calaza K. Modulation of GABA release by nitric oxide in the chick retina: Different effects of nitric oxide depending on the cell population. Vision Res 2009; 49:2494-502. [DOI: 10.1016/j.visres.2009.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 07/30/2009] [Accepted: 08/04/2009] [Indexed: 11/17/2022]
|
10
|
Müller glia as an active compartment modulating nervous activity in the vertebrate retina: neurotransmitters and trophic factors. Neurochem Res 2008; 33:1466-74. [PMID: 18273703 DOI: 10.1007/s11064-008-9604-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 01/23/2008] [Indexed: 01/13/2023]
Abstract
Müller cells represent the main type of glia present in the retina interacting with most, if not all neurons in this tissue. Müller cells have been claimed to function as optic fibers in the retina delivering light to photoreceptors with minimal distortion and low loss [Franze et al (2007) Proc Natl Acad Sci 104:8287-8292]. Most of the mediators found in the brain are also detected in the retinal tissue, and glia cells are active players in the synthesis, release, signaling and uptake of major mediators of synaptic function. Müller glia trophic factors may regulate many different aspects of neuronal circuitry during synaptogenesis, differentiation, neuroprotection and survival of photoreceptors, Retinal Ganglion Cells (RGCs) and other targets in the retina. Here we review the role of several transmitters and trophic factors that participate in the neuron-glia loop in the retina.
Collapse
|
11
|
Calaza KC, Gardino PF, de Mello FG. Transporter mediated GABA release in the retina: Role of excitatory amino acids and dopamine. Neurochem Int 2006; 49:769-77. [PMID: 16956697 DOI: 10.1016/j.neuint.2006.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/05/2006] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
In general, the release of neurotransmitters in the central nervous system is accomplished by a calcium-dependent process which constitutes a common feature of exocytosis, a conserved mechanism for transmitter release in all species. However, neurotransmitters can also be released by the reversal of their transporters. In the retina, a large portion of GABA is released by this mechanism, which is under the control of neuroactive agents, such as excitatory amino acids and dopamine. In this review, we will focus on the transporter mediated GABA release and the role played by excitatory amino acids and dopamine in this process. First, we will discuss the works that used radiolabeled GABA to study the outflow of the neurotransmitter and then the works that took into consideration the endogenous pool of GABA and the topography of GABAergic circuits influenced by excitatory amino acids and dopamine.
Collapse
Affiliation(s)
- K C Calaza
- Departamento de Neurobiologia do Instituto de Biologia da UFF, Brazil.
| | | | | |
Collapse
|
12
|
Calaza KC, Hokoç JN, Gardino PF. GABAergic circuitry in the opossum retina: a GABA release induced by L-aspartate. Exp Brain Res 2006; 172:322-30. [PMID: 16501965 DOI: 10.1007/s00221-005-0338-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 12/13/2005] [Indexed: 11/26/2022]
Abstract
Glutamate and gamma-amino butyric acid (GABA) are the major excitatory and inhibitory neurotransmitters, respectively, in the central nervous system (CNS), including the retina. Although in a number of studies the retinal source of GABA was identified, in several species, as horizontal, amacrine cells and cells in the ganglion cell layer, nothing was described for the opossum retina. Thus, the first goal of this study was to determine the pattern of GABAergic cell expression in the South America opossum retina by using an immunohistochemical approach for GABA and for its synthetic enzyme, glutamic acid decarboxylase (GAD). GABA and GAD immunoreactivity showed a similar cellular pattern by appearing in a few faint horizontal cells, topic and displaced amacrine cells. In an effort to extend the knowledge of the opossum retinal circuitry, the possible influence of glutamatergic inputs in GABAergic cells was also studied. Retinas were stimulated with different glutamatergic agonists and aspartate (Asp), and the GABA remaining in the tissue was detected by immunohistochemical procedures. The exposure of retinas to NMDA and kainate resulted the reduction of the number of GABA immunoreactive topic and displaced amacrine cells. The Asp treatment also resulted in reduction of the number of GABA immunoreactive amacrine cells but, in contrast, the displaced amacrine cells were not affected. Finally, the Asp effect was totally blocked by MK-801. This result suggests that Asp could be indeed a putative neurotransmitter in this non-placental animal by acting on an amacrine cell sub-population of GABA-positive NMDA-sensitive cells.
Collapse
Affiliation(s)
- K C Calaza
- Departamento de Neurobiologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
13
|
Calaza KDC, de Mello MCF, de Mello FG, Gardino PF. Local differences in GABA release induced by excitatory amino acids during retina development: selective activation of NMDA receptors by aspartate in the inner retina. Neurochem Res 2003; 28:1475-85. [PMID: 14570392 DOI: 10.1023/a:1025662106846] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutamate and GABA are the major excitatory and inhibitory neurotransmitters in the CNS. In the retina, it has been shown that glutamate and aspartate and their agonists kainate and NMDA promote the release of GABA. In the chick retina, at embryonic day 14 (E14), glutamate and kainate were able to induce the release of GABA from amacrine and horizontal cells as detected by GABA-immunoreactivity. NMDA also induced GABA release restricted to amacrine cell population and its projections to the inner plexiform layer (E14 and E18). Although aspartate reduced GABA immunoreactivity, specifically in amacrine cells of E18 retinas, it was not efficient to promote GABA release from retinas at E14. As observed in differentiated retinas, dopamine inhibited the GABA release promoted by NMDA and aspartate but not by kainate. Our data show that different retinal sites respond to distinct EAAs via different receptor systems.
Collapse
Affiliation(s)
- Karin da Costa Calaza
- Departamento de Neurobiologia do Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | | | | | | |
Collapse
|
14
|
Duarte CB, Santos PF, Sánchez-Prieto J, Carvalho AP. On-line detection of glutamate release from cultured chick retinospheroids. Vision Res 1996; 36:1867-72. [PMID: 8759425 DOI: 10.1016/0042-6989(95)00309-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A continuous fluorometric assay was adapted to measure the release of endogenous glutamate from cultured chick retinospheroids. The results obtained with this technique are compared with the release of [3H]D-aspartate from monolayer cultures of chick retina cells. It is shown that although excitatory amino acids may be released in a Ca(2+)-dependent manner, most of the neurotransmitter release from cultured retina cells occurs by reversal of the glutamate transporter. The presence of extracellular Ca2+ may actually inhibit glutamate release by the cells present in the retinospheroids, or the [3H]D-aspartate release by cells in monolayers, when veratridine is the depolarizing agent.
Collapse
Affiliation(s)
- C B Duarte
- Center for Neuroscience of Coimbra, Department of Zoology, University of Coimbra, Portugal.
| | | | | | | |
Collapse
|
15
|
Duarte CB, Santos PF, Sánchez-Prieto J, Carvalho AP. Glutamate release evoked by glutamate receptor agonists in cultured chick retina cells: modulation by arachidonic acid. J Neurosci Res 1996; 44:363-73. [PMID: 8739156 DOI: 10.1002/(sici)1097-4547(19960515)44:4<363::aid-jnr8>3.0.co;2-a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We studied the effect of ionotropic glutamate receptor agonists on the release of endogenous glutamate or of [3H]D-aspartate from reaggregate cultures (retinospheroids) or from monolayer cultures of chick retinal cells, respectively. Kainate increased the fluorescence ratio of the Na+ indicator SBFI and stimulated a dose-dependent release of glutamate in low (0.1 mM) Ca2+ medium, as measured using a fluorometric assay. Under the same experimental conditions, the release evoked by N-methyl-D-aspartate (NMDA; 400 microM) was about half of that evoked by the same kainate concentration; alpha-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA; 400 microM) did not trigger a significant response. In the presence of 1 mM CaCl2, all of the agonists increased the [Ca2+]i, as determined with the fluorescence dye Indo-1, but the glutamate release evoked by NMDA and kainate was significantly lower than that measured in 0.1 mM CaCl2 medium. Inhibition by Ca2+ of the kainate-stimulated release of glutamate was partially reversed by the phospholipase A2 inhibitor oleiloxyethyl phosphorylcholine (OPC), suggesting that the effect was mediated by the release of arachidonic acid, which inhibits the glutamate carrier. Accordingly, kainate, NMDA, and AMPA stimulated a Ca(2+)-dependent release of [3H]arachidonic acid, and the direct addition of the exogenous fatty acid to the medium decreased the release of glutamate evoked by kainate in low (0.1 mM) CaCl2 medium. In monolayer cultures, we showed that NMDA, kainate, and AMPA also stimulated the release of [3H]D-aspartate, but in this case release in the presence of 1 mM CaCl2 was significantly higher than that evoked in media with no added Ca2+. The ranking order of efficacy for stimulation of Ca(2+)-dependent release of [3H]D-aspartate was NMDA > > kainate > AMPA.
Collapse
Affiliation(s)
- C B Duarte
- Center for Neurosciences of Coimbra, Department of Zoology, University of Coimbra, Portugal
| | | | | | | |
Collapse
|
16
|
Santos PF, Duarte CB, Carvalho AP. Glutamate receptor agonists evoked Ca(2+)-dependent and Ca(2+)-independent release of [3H]D-aspartate from cultured chick retina cells. Neurochem Res 1996; 21:361-8. [PMID: 9139243 DOI: 10.1007/bf02531653] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We studied the release of [3H]D-aspartate evoked by glutamate receptor agonists from monolayer cultures of chick retina cells, and found that activation of the glutamate receptors can evoke both Ca(2+)-dependent and Ca(2+)-independent release of [3H]D-aspartate. In Ca(2+)-free (no added Ca2+) Na+ medium, the agonists of the glutamate receptors induced the release of [3H]D-aspartate with the following rank order of potency: kainate > alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) approximately N-methyl-D-aspartate (NMDA). In media containing 1 mM CaCl2 the release of [3H]D-aspartate evoked by NMDA, kainate and AMPA was increased by about 112 percent, 20 percent and 39 percent, respectively, as compared to the release evoked by the same agonists in Ca(2+)-free medium. NMDA was the most potent agonist in stimulating the Ca(2+)-dependent release of [3H]D-aspartate, possibly by exocytosis, and AMPA was as potent as kainate. The Ca(2+)-dependent release of [3H]D-aspartate evoked by kainate was dependent on the influx of Ca2+ through the receptor associated channel, as well as through the N-(omega-Conotoxin GVIA-sensitive) and L- (nitrendipine-sensitive) type voltage-sensitive Ca2+ channels (VSCC). The exocytotic release of [3H]D-aspartate evoked by AMPA relied exclusively on Ca2+ entry through the L-type VSCC, whereas the effect of NMDA was partially mediated by the influx of Ca2+ through the receptor-associated channel, but not through L- or N-type VSCC. Thus, activation of these different glutamate receptors under physiological conditions is expected to cause the release of cytosolic and vesicular glutamate, and the routes of Ca2+ entry modulating vesicular release may be selectively recruited.
Collapse
Affiliation(s)
- P F Santos
- Center for Neurosciences of Coimbra, Department of Zoology, University of Coimbra, Portugal
| | | | | |
Collapse
|
17
|
Osborne NN, McCord RJ, Wood J. The effect of kainate on protein kinase C, GABA, and the uptake of serotonin in the rabbit retina in vivo. Neurochem Res 1995; 20:635-41. [PMID: 7566357 DOI: 10.1007/bf01705529] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to investigate the effect of kainate on protein kinase C (PKC), gamma-aminobutyrate (GABA) and serotonin uptake in the rabbit retina. Kainate when injected into the vitreous humour produces a change in the GABA immunoreactivity within 6 hours. After 3 days, remnants of the normal GABA immunoreactivity still persist and additionally astrocyte and microglia-like elements "stain" positively for GABA. After 7 days exposure to kainate none of the normal GABA immunoreactivity is apparent, instead a number of round-shaped elements which may be reactive astrocytes and/or microglia stain positively for GABA. During these stages kainate does not affect the alpha PKC immunoreactivity associated with the on-bipolar cells. Six hours following kainate treatment the ability of certain GABA amacrine cells to take up exogenous serotonin is unaffected. After three days only a few of these cells can still take up exogenous serotonin and then not avidly. After seven days the GABA/serotonin amacrine cells cannot take up exogenous serotonin suggesting that all of these neurons are irreversibly damaged. One hour after treatment with kainate both calcium-dependent and -independent PKC species are translocated from the cytosolic to membrane compartments. After 5 hours and 7 days there was also evidence from the enzyme assay experiments that kainate caused the calcium-dependent and -independent PKC enzymes to be translocated but because the total enzyme activity was reduced due perhaps to down-regulation of the enzyme this was difficult to assess precisely.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N N Osborne
- Nuffield Laboratory of Ophthalmology, Oxford University, U.K
| | | | | |
Collapse
|
18
|
Carvalho AP, Ferreira IL, Carvalho AL, Duarte CB. Glutamate receptor modulation of [3H]GABA release and intracellular calcium in chick retina cells. Ann N Y Acad Sci 1995; 757:439-56. [PMID: 7611702 DOI: 10.1111/j.1749-6632.1995.tb17504.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A P Carvalho
- Department of Zoology, University of Coimbra, Portugal
| | | | | | | |
Collapse
|
19
|
Alfonso M, Duran R, Duarte CB, Ferreira IL, Carvalho AP. Domoic acid induced release of [3H]GABA in cultured chick retina cells. Neurochem Int 1994; 24:267-74. [PMID: 7912974 DOI: 10.1016/0197-0186(94)90084-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of the neurotoxin domoic acid (DOM), a structural analogue of kainic acid, on the release of [3H]gamma-aminobutyric acid (GABA) and on the [Ca2+]i was studied in cultured chick retina cells. DOM stimulated dose-dependently the release of [3H]GABA with an EC50 of 2.5 microM. In Ca(2+)-containing medium (1 mM), DOM (5 microM) increased the [Ca2+]i by about 190 nM and evoked the release of 11.8 +/- 1.3% of the intracellular [3H]GABA, while in the absence of extracellular Ca2+ DOM induced the release of only 7.9 +/- 1.4% of the accumulated [3H]GABA. The Ca(2+)-independent release of [3H]GABA was blocked by the non-competitive inhibitor of the GABA carrier 1-(2-(((diphenylmethylene)amino)oxy)ethyl)-1,2,5,6-tetrahydro-3-py ridine- carboxylic acid hydrochloride (NNC-711), but a component of Ca(2+)-dependent release remains. DOM evoked Ca(2+)-independent release of [3H]GABA was significantly depressed in the absence of external Na+ and completely blocked by the non-selective antagonist of the non-NMDA glutamate receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Similarly, CNQX decreased the [Ca2+]i response to DOM, whereas L(+)-2-amino-3-phosphonopropionic acid (L-AP3), an antagonist of the metabotropic glutamate receptors, was without effect. MK-801 did not affect the release of [3H]GABA stimulated by DOM. Taken together our results indicate that DOM evokes both Ca(2+)-dependent and Ca(2+)-independent release of [3H]GABA, most likely by activating kainate receptors.
Collapse
Affiliation(s)
- M Alfonso
- Department of Fundamental Biology, University of Vigo, Spain
| | | | | | | | | |
Collapse
|
20
|
Watanabe M, Mishina M, Inoue Y. Differential distributions of the NMDA receptor channel subunit mRNAs in the mouse retina. Brain Res 1994; 634:328-32. [PMID: 7510577 DOI: 10.1016/0006-8993(94)91938-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the retina, the epsilon 2 and zeta 1 subunit mRNAs of the NMDA receptor channel were expressed from embryonic stages and found in ganglion cell layer and whole layer of inner nuclear layer at postnatal day 21 (P21). The epsilon 1 subunit mRNA appeared postnatally and was distributed in ganglion cell layer and an inner third of inner nuclear layer at P21. These findings suggest that molecular organization of the NMDA receptor channel may alter during the retinal development.
Collapse
Affiliation(s)
- M Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | |
Collapse
|
21
|
Yaqub A, Eldred WD. Effects of excitatory amino acids on immunocytochemically identified populations of neurons in turtle retina. JOURNAL OF NEUROCYTOLOGY 1993; 22:644-62. [PMID: 8229090 DOI: 10.1007/bf01181490] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Excitatory amino acids play an important role in visual processing in the retinas of many species, but little is known about the identity of the specific postsynaptic cell types and the pharmacology of their receptors. To investigate which specific cell types were affected by excitatory amino acids, we examined the effects of exogenous aspartate, glutamate, kainic acid, N-methyl-D-aspartate, and MK-801 on retinal neurons. Specific populations of neurons were labelled using antibodies directed against glucagon, enkephalin, neurotensin, gamma-aminobutyric acid, glutamic acid decarboxylase, serotonin, glycine, glutamate or aspartate. We analyzed a combination of long-term in vivo injections (seven days following an intraocular injection of kainic acid) and short term in vitro incubations. There were changes in the labelling intensity and sometimes in the relative localization of all of the antigens in the drug treated retinas. Some observations suggested that the drugs were altering neurotransmitter metabolism. Differential responses were seen in specific cell types within the populations of neurons with neurotensin-, glutamate-, aspartate-, glycine, gamma-aminobutyric acid-, and glutamic acid decarboxylase-like immunoreactivity. The immunocytochemical approach used in these studies was able to determine specific retinal cell types which were influenced by particular excitatory amino acids. The broad extent of cell types influenced and the potential metabolic effects suggest that excitatory amino acids and their receptors play a complex role in visual processing.
Collapse
Affiliation(s)
- A Yaqub
- Boston University, Department of Biology, MA 02215
| | | |
Collapse
|
22
|
Duarte CB, Ferreira IL, Santos PF, Oliveira CR, Carvalho AP. Glutamate increases the [Ca2+]i but stimulates Ca(2+)-independent release of [3H]GABA in cultured chick retina cells. Brain Res 1993; 611:130-8. [PMID: 8100173 DOI: 10.1016/0006-8993(93)91784-p] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of glutamate on [Ca2+]i and on [3H] gamma-aminobutyric acid (GABA) release was studied on cultured chick embryonic retina cells. It was observed that glutamate (100 microM) increases the [Ca2+]i by Ca2+ influx through Ca2+ channels sensitive to nitrendipine, but not to omega-conotoxin GVIA (omega-Cg Tx) (50%), and by other channels insensitive to either Ca2+ channel blocker. Mobilization of Ca2+ by glutamate required the presence of external Na+, suggesting that Na+ mobilization through the ionotropic glutamate receptors is necessary for the Ca2+ channels to open. The increase in [Ca2+]i was not related to the release of [3H]GABA induced by glutamate, suggesting that the pathway for the entry of Ca2+ triggered by glutamate does not lead to exocytosis. In fact, the glutamate-induced release of [3H]GABA was significantly depressed by Ca(2+)o, but it was dependent on Na(+)o, just as was observed for the [3H]GABA release induced by veratridine (50 microM). The veratridine-induced release could be fully inhibited by TTX, but this toxin had no effect on the glutamate-induced [3H]GABA release. Both veratridine- and glutamate-induced [3H]GABA release were inhibited by 1-(2-(((diphenylmethylene)amino)oxy)ethyl)-1,2,5,6-tetrahydro-3-py ridine- carboxylic acid (NNC-711), a blocker of the GABA carrier. Blockade of the NMDA and non-NMDA glutamate receptors with MK-801 and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), respectively, almost completely blocked the release of [3H]GABA evoked by glutamate.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C B Duarte
- Department of Zoology, University of Coimbra, Portugal
| | | | | | | | | |
Collapse
|
23
|
Duarte CB, Ferreira IL, Santos PF, Oliveira CR, Carvalho AP. Ca(2+)-dependent release of [3H]GABA in cultured chick retina cells. Brain Res 1992; 591:27-32. [PMID: 1446230 DOI: 10.1016/0006-8993(92)90974-e] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Depolarization by K+ (50 mM) of cultured chick retina cells released 1.14 +/- 0.28% of the accumulated [3H] gamma-aminobutyric acid (GABA) in the absence of Ca2+, but when 1.0 mM Ca2+ was present, the internal free calcium ion concentration [Ca2+]i rose by about 750 nM and the [3H]GABA release about doubled to a value of 2.22 +/- 0.2% of the total [3H]GABA. Nitrendipine (0.1 microM), a blocker of the L-type Ca2+ channels, blocked the [Ca2+]i response to K+ depolarization by about 65%, and the omega-Conotoxin GVIA (omega-CgTx) (0.5 microM), a blocker of the N-type of Ca2+ channels, inhibited by 27% the [Ca2+]i rise due to K+ depolarization. Parallel experiments showed that nitrendipine inhibits [3H]GABA release to the level observed in the absence of Ca2+, whereas omega-CgTx did not inhibit significantly the release of [3H]GABA. The results also show that the release of [3H]GABA due to K(+)-depolarization in the absence of Ca2+ can be totally blocked by 1-(2-(((Diphenylmethylene) amino)oxy)ethyl)-1,2,5,6-tetrahydro-3-pyridine-carboxylic acid hydrochloride (NNC-711), an inhibitor of the GABA carrier. However, in the presence of Ca2+, NNC-711 blocks the release only by about 66%, corresponding to the Ca(2+)-independent release. Thus, it is concluded that [3H]GABA is released in chick retina cells by the exocytotic mechanism, which is Ca(2+)-dependent, and by reversal of the carrier, which is Ca(2+)-independent, in much the same way as has been found for other GABAergic neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C B Duarte
- Center for Neurosciences of Coimbra, Department of Zoology, University of Coimbra, Portugal
| | | | | | | | | |
Collapse
|
24
|
Camacho-Arroyo I, Tapia R. Levels, uptake, and release of glycine and glutamate in the rat pontine reticular formation. Neurochem Res 1992; 17:463-7. [PMID: 1356245 DOI: 10.1007/bf00969893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work we have determined the levels of glycine, glutamate, and other amino acids in the rat pontine reticular formation (PRF), in addition to some properties of the uptake and release of labeled glycine and glutamate in slices of this region. Glutamate was the most concentrated amino acid in the PRF, although its content was about half that of the striatum. Surprisingly, glycine levels in the PRF were 3.2-fold higher than in the striatum, whereas GABA content was similar in both regions. The uptake of both glycine and glutamate by PRF slices was strictly Na(+)-dependent. Their release was stimulated by K(+)-depolarization, but only the release of glycine was Ca(2+)-dependent. These findings suggest that glycine is a strong candidate for a neurotransmitter role in the PRF and that glutamate might also play such a role in this region.
Collapse
Affiliation(s)
- I Camacho-Arroyo
- Departamento de Neurociencias, Universidad Nacional Autónoma de México, D.F
| | | |
Collapse
|
25
|
Abstract
In brain slices the mechanisms of release of GABA have been extensively studied, but those of taurine markedly less. The knowledge acquired from studies on GABA is, nevertheless, still fragmentary, not to speak of that obtained from the few studies on taurine, and firm conclusions are difficult, even impossible, to draw. This is mainly due to methodological matters, such as the diversity and pitfalls of the techniques applied. Brain slices are relatively easy to prepare and they represent a preparation that may most closely reflect relations prevailing in vivo, since the tissue structure and cellular integrity are largely preserved. In our opinion the most recommendable method at present is to superfuse freely floating agitated slices in continuously oxygenated medium. Taurine is metabolically rather inert in the brain, whereas the metabolism of GABA must be taken into account in all release studies. The use of inhibitors of GABA catabolism is discouraged, however, since a block in GABA metabolism may distort relations between different releasable pools of GABA in tissue. It is not known for sure how well, and homogeneously, incubation of slices with radioactive taurine labels the releasable pools but at least in the case of GABA there may prevail differences in the behavior of labeled and endogenous GABA. It is suggested therefore that the results obtained with radioactive GABA or taurine should be frequently checked and confirmed by analyzing the release of respective endogenous compounds. The spontaneous efflux of both GABA and taurine from brain slices is very slow. The magnitude of stimulation of GABA release by homoexchange is greater than that of taurine under the same experimental conditions. However, the release of both amino acids is generally enhanced by a great number of structural analogs, the most potent being those which are simultaneously the most potent inhibitors of uptake. This may result in part from inhibition of reuptake of amino acid molecules released from slices but the findings may also signify that the efflux of GABA and taurine is at least partially mediated by the membrane carriers operating in an outward direction. It is thus advisable not to interpret that stimulation of release in the presence of uptake inhibitors solely results from the block of reuptake of exocytotically released molecules, since changes in the carrier-mediated transport are also likely to occur upon stimulation. The electrical and K+ stimulation evoke the release of both GABA and taurine. The evoked release of GABA is several-fold greater than that of taurine in slices from the adult brain.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, Department of Biomedical Sciences, University of Tampere, Finland
| | | |
Collapse
|
26
|
Affiliation(s)
- S Bernath
- University of Pittsburgh, Department of Behavioral Neuroscience, PA 15260
| |
Collapse
|
27
|
Blazynski C, Perez MT. Adenosine in vertebrate retina: localization, receptor characterization, and function. Cell Mol Neurobiol 1991; 11:463-84. [PMID: 1683815 PMCID: PMC11567418 DOI: 10.1007/bf00734810] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/1990] [Accepted: 12/14/1990] [Indexed: 12/28/2022]
Abstract
1. The uptake of [3H] adenosine into specific populations of cells in the inner retina has been demonstrated. In mammalian retina, the exogenous adenosine that is transported into cells is phosphorylated, thereby maintaining a gradient for transport of the purine into the cell. 2. Endogenous stores of adenosine have been demonstrated by localization of cells that are labeled for adenosine-like immunoreactivity. In the rabbit retina, certain of these cells, the displaced cholinergic, GABAergic amacrine cells, are also labeled for adenosine. 3. Purines are tonically released from dark-adapted rabbit retinas and cultured embryonic chick retinal neurons. Release is significantly increased with K+ and neurotransmitters. The evoked release consists of adenosine, ATP, and purine metabolites, and while a portion of this release is Ca2+ dependent, one other component may occur via the bidirectional purine nucleoside transporter. 4. Differential distributions of certain enzymes involved in purine metabolism have also been localized to the inner retina. 5. Heterogeneous distributions of the two subtypes of adenosine receptors, A1 and A2, have been demonstrated in the mammalian retina. Coupling of receptors to adenylate cyclase has also been demonstrated. 6. Adenosine A1 receptor agonists significantly inhibit the K(+)-stimulated release of [3H]-acetylcholine from the rabbit retina, suggesting that endogenous adenosine may modulate the light-evoked or tonic release of ACh.
Collapse
Affiliation(s)
- C Blazynski
- Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
28
|
Hofmann HD, Möckel V. Release of gamma-amino[3H]butyric acid from cultured amacrine-like neurons mediated by different excitatory amino acid receptors. J Neurochem 1991; 56:923-32. [PMID: 1847190 DOI: 10.1111/j.1471-4159.1991.tb02010.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The release of preaccumulated gamma-amino[3H]butyric acid ([3H]GABA) from putative GABAergic amacrine cells was studied in neuronal monolayer cultures made from embryonic chick retina. Release was specifically stimulated by excitatory amino acid agonists. N-Methyl-D-aspartate (NMDA; EC50, 19.1 +/- 5.0 microM), kainic acid (EC50, 15.6 +/- 2.3 microM), and the presumptive endogenous ligand glutamate (EC50, 3.6 +/- 0.5 microM) showed the same efficacy. Quisqualic acid, although the most potent agonist (EC50, 0.56 +/- 0.12 microM), was only half as efficacious. The time course of [3H]GABA release and autoradiographic visualization of responsive GABA-accumulating cells suggest that approximately 50% of the [3H]GABA-accumulating cells possess no or very low responsiveness to quisqualic acid. Depolarization (56 mM KCl)-induced release was fivefold lower than the maximal effect elicited by excitatory amino acids. Release of [3H]GABA and of endogenous GABA was entirely independent of extracellular Ca2+ but was completely abolished after replacement of Na+ by choline or Li+. The effects of NMDA and low concentrations of glutamate (up to 10 microM) were blocked by 2-amino-5-phosphonovaleric acid, by MK 801, and (in a voltage-dependent manner) by Mg2+. The reduction of NMDA responses by kynurenic acid was reversed by D-serine, and quisqualic acid competitively inhibited kainic acid-evoked release. Our results show that the cultured [3H]GABA-accumulating neurons, which probably represent the in vitro counterparts of GABAergic amacrine cells, express at least two types of excitatory amino acid receptors (of the NMDA and non-NMDA type), both of which can mediate a Ca2(+)-independent but Na2(+)-dependent release of GABA.
Collapse
Affiliation(s)
- H D Hofmann
- Department of Neuroanatomy, Max-Planck-Institut für Hirnforschung, Frankfurt, F.R.G
| | | |
Collapse
|
29
|
Yazulla S, Studholme KM, Vitorica J, de Blas AL. Immunocytochemical localization of GABAA receptors in goldfish and chicken retinas. J Comp Neurol 1989; 280:15-26. [PMID: 2537342 DOI: 10.1002/cne.902800103] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A monoclonal antibody (mAb 62-3G1) to the GABAA receptor/benzodiazepine receptor/Cl- channel complex from bovine brain was used with light and electron microscopy in goldfish retina and light microscopy in chicken retina to localize GABAA receptor immunoreactivity (GABAr-IR). GABAr-IR was found in the outer plexiform layer (OPL) in both species, in three broad bands in the inner plexiform layer (IPL) of goldfish, and in seven major bands of the chicken IPL. A small percentage of amacrine cell bodies (composing at least three types) were stained in chicken. In goldfish OPL, GABAr-IR was localized intracellularly and along the plasma membrane of cone pedicles, whereas rod spherules were lightly stained, but always only intracellularly. In chicken, all three sublayers of the OPL were GABAr-IR. The presence of GABAr-IR on photoreceptor terminals is consistent with data indicating feedback from GABAergic horizontal cells to cones. In the goldfish IPL, GABAr-IR was localized to postsynaptic sites of amacrine cell synapses; intracellular staining of processes in the IPL also was observed in presumed "GABAergic" targets. A comparison of GABAr-IR with the distributions of 3H-muscimol uptake/binding, glutamate decarboxylase-IR, GABA-IR, and 3H-GABA uptake in the IPL showed either a reasonable correspondence or mismatch, depending on the marker, species, and lamina within the IPL. The distribution of GABAr-IR in the retina corresponded better with the 3H-muscimol than with 3H-benzodiazepine binding patterns yet overall was in excellent agreement with many other physiological and anatomical indicators of GABAergic function. We suggest that intracellular GABAr-IR represents the biosynthetic and/or degradative pathway of the receptor and we conclude that mAb 62-3G1 is a valid marker of GABAA receptors in these retinas and will serve as a useful probe with which to address the issue of mismatches between the localization of GABAA receptors and indicators of presynaptic GABAergic terminals.
Collapse
Affiliation(s)
- S Yazulla
- Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794
| | | | | | | |
Collapse
|
30
|
Affiliation(s)
- R J Huxtable
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson 85724
| |
Collapse
|
31
|
Pasantes-Morales H, Domínguez L, Montenegro J, Morán J. A chloride-dependent component of the release of labeled GABA and taurine from the chick retina. Brain Res 1988; 459:120-30. [PMID: 3167571 DOI: 10.1016/0006-8993(88)90291-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The characteristics and ionic dependence of the release of [3H]gamma-aminobutyric acid ([3H]GABA) and [3H]taurine from the chick retina, stimulated by kainic acid (KA) and by depolarizing concentrations of potassium was examined and compared to those of [3H]dopamine. KA (100 microM) highly stimulated the release of [3H]GABA (25-fold over resting efflux), induced a moderate increase in [3H]taurine and did not increase the efflux of [3H]dopamine. The efflux of [3H]GABA stimulated by KA was totally calcium-independent but it was markedly sodium and chloride dependent. Chloride dependence was assessed by replacing chloride with the impermeant anion gluconate, or by addition of the anion transport blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Depolarizing concentrations of KCl (56 mM) stimulated the release of [3H]GABA, [3H]taurine and [3H]dopamine to about the same extent. The release of [3H]GABA and [3H]taurine was only partially calcium dependent, in contrast to the highly calcium-dependent efflux of [3H]dopamine. A sodium-free medium increased the resting efflux and decreased the potassium-stimulated release of [3H]GABA and [3H]taurine; the resting efflux of [3H]dopamine was unaffected and the potassium-induced efflux was somewhat increased. The potassium-stimulated efflux of [3H]GABA and [3H]taurine showed a chloride-dependent component which was higher for taurine whereas the resting efflux was not modified. The stimulated release of [3H]dopamine was increased in a chloride-free medium. The ionic dependence of KA and potassium stimulated efflux of [3H]GABA and [3H]taurine showed properties similar to those of the homoexchange-activated efflux of amino acids which was also found sodium and chloride dependent and clearly different from the calcium-coupled neurotransmitter release process. Exposure of retinas to KA and potassium produced retinal cell swelling which is prevented in a chloride-free medium. Results are discussed in terms of a particular efflux mechanism for [3H]GABA and [3H]taurine in the retina in response to stimulation associated with changes in ionic gradients and retinal cell swelling.
Collapse
Affiliation(s)
- H Pasantes-Morales
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, D.F
| | | | | | | |
Collapse
|
32
|
Somohano F, Roberts PJ, López-Colomé AM. Maturational changes in retinal excitatory amino acid receptors. Brain Res 1988; 470:59-67. [PMID: 2900669 DOI: 10.1016/0165-3806(88)90201-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The appearance, kinetics and pharmacological properties of receptors for n-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), kainate (KA), L-glutamate (Glu) and L-aspartate (Asp) was investigated using 3H-ligand binding during the development of chick embryo retina. Receptors for AMPA are maximally concentrated at embryonic day 7 (ED 7) and decline 50% in subsequent days; L-Glu receptors are low until ED 11, and the same is true for Asp and NMDA receptors which increase at ED 14 and 18 respectively. All receptors studied underwent an increase in pharmacological specificity, whereas only AMPA-receptors showed an important change in affinity during ontogeny. Results demonstrate that receptors for excitatory amino acids in the retina suffer maturational changes and suggest that while NMDA and aspartate could interact with the same receptor, AMPA and glutamate seem to bind to different sites.
Collapse
Affiliation(s)
- F Somohano
- Departamento de Neurociencias, Universidad Nacional Autónoma de México
| | | | | |
Collapse
|
33
|
Pierce ME, Besharse JC. Circadian regulation of retinomotor movements: II. The role of GABA in the regulation of cone position. J Comp Neurol 1988; 270:279-87. [PMID: 3379159 DOI: 10.1002/cne.902700208] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cone photoreceptor movements in lower vertebrates are regulated by the interaction of the light-dark cycle and an endogenous circadian clock. We have suggested that melatonin and dopamine interact to regulate dark- and light-adaptive movements, respectively, and that melatonin affects cones indirectly by inhibiting dopamine release. In fact, any factor modulating dopaminergic neurons in the retina may have effects on either cone elongation or contraction. We have utilized an in vitro eyecup preparation from the African clawed frog, Xenopus laevis, to evaluate a possible role of the neurotransmitter GABA, which is thought to tonically suppress dopamine release. GABA agonists mimic the effects of darkness and induce cone elongation; the effects of GABA agonists are blocked by dopamine. Muscimol-induced cone elongation occurs at low light intensity but is inhibited by bright light in eyecups prepared from cyclic-light-maintained animals. Although neither melatonin nor muscimol stimulates cone elongation in bright light, simultaneous application of both drugs induces elongation. The GABA antagonist picrotoxin induces cone contraction which is blocked by the dopamine receptor antagonist spiroperidol, which suggests that GABA may affect cone movement in Xenopus by regulating dopamine neurons. Consistent with this, picrotoxin-induced cone contraction is Ca+2 dependent and is blocked by high Mg+2 or the Ca+2 antagonist nifedipine. Pharmacological analysis suggests that the effects of GABA may result from its action at more than one receptor subtype. Our results support the hypothesis that dopamine is part of the light signal for cone contraction and that its suppression is part of the signal for cone elongation.
Collapse
Affiliation(s)
- M E Pierce
- Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|
34
|
Pocock JM, Murphie HM, Nicholls DG. Kainic acid inhibits the synaptosomal plasma membrane glutamate carrier and allows glutamate leakage from the cytoplasm but does not affect glutamate exocytosis. J Neurochem 1988; 50:745-51. [PMID: 2892890 DOI: 10.1111/j.1471-4159.1988.tb02977.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Kainate inhibits the exchange of D-aspartate into guinea-pig cerebrocortical synaptosomes. Kainate inhibits the Ca2+-independent efflux of endogenous glutamate in the presence of a trapping system for the released amino acid but potentiates a Ca2+-independent net efflux of endogenous and labelled glutamate and aspartate in the absence of the trap. Dihydrokainate has a similar effect. No discrepancy is seen between the release of endogenous and exogenously accumulated amino acid. These results are consistent with the presence of a slow leak of glutamate or aspartate from the cytoplasm independent of the kainate-sensitive Na+-cotransport pathway. In the presence of the trap, glutamate effluxes by both pathways, whereas in the absence of the trap, the Na+-cotransport pathway opposes the leak. Neither in the presence or absence of the glutamate trap does kainate induce, inhibit, or otherwise affect the Ca2+-dependent release of endogenous glutamate. The results enable many of the apparent complexities in the presynaptic actions of kainate to be resolved.
Collapse
Affiliation(s)
- J M Pocock
- Department of Biochemistry, University of Dundee, Scotland
| | | | | |
Collapse
|
35
|
Gallo V, Suergiu R, Giovannini C, Levi G. Glutamate receptor subtypes in cultured cerebellar neurons: modulation of glutamate and gamma-aminobutyric acid release. J Neurochem 1987; 49:1801-9. [PMID: 2890714 DOI: 10.1111/j.1471-4159.1987.tb02439.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Using cerebellar, neuron-enriched primary cultures, we have studied the glutamate receptor subtypes coupled to neurotransmitter amino acid release. Acute exposure of the cultures to micromolar concentrations of kainate and quisqualate stimulated D-[3H]aspartate release, whereas N-methyl-D-aspartate, as well as dihydrokainic acid, were ineffective. The effect of kainic acid was concentration dependent in the concentration range of 20-100 microM. Quisqualic acid was effective at lower concentrations, with maximal releasing activity at about 50 microM. Kainate and dihydrokainate (20-100 microM) inhibited the initial rate of D-[3H]aspartate uptake into cultured granule cells, whereas quisqualate and N-methyl-DL-aspartate were ineffective. D-[3H]Aspartate uptake into confluent cerebellar astrocyte cultures was not affected by kainic acid. The stimulatory effect of kainic acid on D-[3H]aspartate release was Na+ independent, and partly Ca2+ dependent; the effect of quisqualate was Na+ and Ca2+ independent. Kynurenic acid (50-200 microM) and, to a lesser extent, 2,3-cis-piperidine dicarboxylic acid (100-200 microM) antagonized the stimulatory effect of kainate but not that of quisqualate. Kainic and quisqualic acid (20-100 microM) also stimulated gamma-[3H]-aminobutyric acid release from cerebellar cultures, and kynurenic acid antagonized the effect of kainate but not that of quisqualate. In conclusion, kainic acid and quisqualic acid appear to activate two different excitatory amino acid receptor subtypes, both coupled to neurotransmitter amino acid release. Moreover, kainate inhibits D-[3H]aspartate neuronal uptake by interfering with the acidic amino acid high-affinity transport system.
Collapse
Affiliation(s)
- V Gallo
- Department of Organ and System Pathophysiology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | |
Collapse
|
36
|
Morales E, Tapia R. Neurotransmitters of the cerebellar glomeruli: uptake and release of labeled gamma-aminobutyric acid, glycine, serotonin and choline in a purified glomerulus fraction and in granular layer slices. Brain Res 1987; 420:11-21. [PMID: 3676746 DOI: 10.1016/0006-8993(87)90234-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have studied some properties of the uptake and release of labeled gamma-aminobutyric acid (GABA), glycine, serotonin and choline in a purified fraction of glomeruli and in slices of the granular layer of the rat cerebellum. The uptake of both GABA and glycine into the glomerulus particles was dependent on the presence of Na+ in the medium. In contrast, the uptake of both serotonin and choline was Na+-independent. In slices of the granular layer also a slight Na+-dependence was observed for both serotonin and choline uptake; imipramine and hemicholinium partially inhibited the uptake of serotonin and choline, respectively. Choline uptake into the glomerulus particles showed two components, with apparent Km values of 16.8 and 102 microM. GABA release was stimulated by K+-depolarization about 100% (peak stimulation) and this value was reduced to 50% when Ca2+ was omitted. The release of glycine was stimulated more rapidly and notably than GABA (200%) and this stimulation was completely abolished in the absence of Ca2+. Serotonin release from the glomerulus particles was only slightly stimulated by depolarization, but this stimulation was strictly Ca2+-dependent. In slices of the granular layer, this stimulation was considerably larger (about 40%) and it was also almost totally dependent on Ca2+. In contrast, after loading with labeled choline the release of radioactivity from both the glomerulus particles and the cerebellar slices was not stimulated at all by K+-depolarization, either in the presence or in the absence of Ca2+. Most of the radioactivity released spontaneously corresponded to choline, and only a small proportion (8-14%) to acetylcholine. From the results of the release experiments and taking into account the pertinent data from the literature, it is concluded that GABA and glycine are probably the transmitters of different populations of Golgi axon terminals, whereas serotonin might be the transmitter of at least a certain population of the mossy fiber giant terminals, in the rat cerebellar glomeruli. In contrast, acetylcholine does not seem to have any transmitter role in the synaptic structures of the glomeruli.
Collapse
Affiliation(s)
- E Morales
- Departamento de Neurociencias, Universidad Nacional Autónoma de México, D.F
| | | |
Collapse
|
37
|
Arias C, Tapia R. Differential calcium dependence of gamma-aminobutyric acid and acetylcholine release in mouse brain synaptosomes. J Neurochem 1986; 47:396-404. [PMID: 2426398 DOI: 10.1111/j.1471-4159.1986.tb04515.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dependence of gamma-aminobutyric acid (GABA) and acetylcholine (ACh) release on Ca2+ was comparatively studied in synaptosomes from mouse brain, by correlating the influx of 45Ca2+ with the release of the transmitters. It was observed that exposure of synaptosomes to a Na+-free medium notably increases Ca2+ entry, and this condition was used, in addition to K+ depolarization and the Ca2+ ionophore A23187, to stimulate the influx of Ca2+ and the release of labeled GABA and ACh. The effect of ruthenium red (RuR) on these parameters was also investigated. Of the three experimental conditions used, the absence of Na+ in the medium proved to be the most efficient in increasing Ca2+ entry. RuR inhibited by 60-70% the influx of Ca2+ stimulated by K+ depolarization but did not affect its basal influx or its influx stimulated by the absence of Na+ or by A23187. The release of ACh was stimulated by K+ depolarization, absence of Na+ in the medium, and A23187 in a strictly Ca2+-dependent manner, whereas the release of GABA was only partially dependent on the presence of Ca2+ in the medium. The extent of stimulation of ACh release was related to the extent of Ca2+ entry, whereas no such correlation was observed for GABA. In the presence of Na+, RuR did not affect the release of the transmitters induced by A23187. In the absence of Na+, paradoxically RuR notably enhanced the release of both ACh and GABA induced by A23187, in a Ca2+-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
38
|
|
39
|
Poli A, Contestabile A, Migani P, Rossi L, Rondelli C, Virgili M, Bissoli R, Barnabei O. Kainic acid differentially affects the synaptosomal release of endogenous and exogenous amino acidic neurotransmitters. J Neurochem 1985; 45:1677-86. [PMID: 2865332 DOI: 10.1111/j.1471-4159.1985.tb10522.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Presynaptic actions of kainic acid have been tested on uptake and release mechanisms in synaptosome-enriched preparations from rat hippocampus and goldfish brain. Kainic acid increased in a Ca2+-dependent way the basal release of endogenous glutamate and aspartate from both synaptosomal preparations, with the maximum effect (40-80%) being reached at the highest concentration tested (1 mM). In addition, kainic acid potentiated, in an additive or synergic way, the release of excitatory amino acids stimulated by high K+ concentrations. Kainic acid at 1 mM showed a completely opposite effect on the release of exogenously accumulated D-[3H]aspartate. The drug, in fact, caused a marked inhibition of both the basal and the high K+-stimulated release. Kainic acid at 0.1 mM had no clear-cut effect, whereas at 0.01 mM it caused a small stimulation of the basal release. The present results suggest that kainic acid differentially affects two neurotransmitter pools that are not readily miscible in the synaptic terminals. The release from an endogenous, possibly vesiculate, pool of excitatory amino acids is stimulated, whereas the release from an exogenously accumulated, possibly cytoplasmic and carrier-mediated, pool is inhibited or slightly stimulated, depending on the external concentration of kainic acid. Kainic acid, in addition, strongly inhibits the high-affinity uptake of L-glutamate and D-aspartate in synaptic terminals. All these effects appear specific for excitatory amino acids, making it likely that they are mediated through specific recognition sites present on the membranes of glutamatergic and aspartatergic terminals. The relevance of the present findings to the mechanism of excitotoxicity of kainic acid is discussed.
Collapse
|
40
|
do Nascimento JL, de Mello FG. Induced release of gamma-aminobutyric acid by a carrier-mediated, high-affinity uptake of L-glutamate in cultured chick retina cells. J Neurochem 1985; 45:1820-7. [PMID: 2865335 DOI: 10.1111/j.1471-4159.1985.tb10539.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
[3H]gamma-aminobutyric acid (GABA) was taken up by cultured embryonic retina cells during the initial stages of cell differentiation. The accumulated GABA was released in the bathing medium and a transient increase in the efflux of GABA was observed when cultures were pulse-stimulated (2 min) with 0.1 mM L-glutamate but not with D-glutamate. The EC50 for L-glutamate to evoke [3H]GABA release was approximately 15 microM. This value is close to the Km for high-affinity uptake of L-glutamate by retina cells. When Na+ ions were replaced by Li+ ions, L-glutamate-induced release of GABA was abolished. Moreover, L-[14C]glutamate uptake by retina cells was significantly reduced when NaCl was replaced by LiCl in the incubation medium. L-Glutamate elicited release of GABA was Ca2+ independent, and was observed when Ca2+ was replaced by Co2+ or when Mg2+ ions were increased to 10 mM concentration. D-Aspartate, which is taken up by the same high-affinity uptake mechanism as L-glutamate, induced an increase in [3H]GABA efflux comparable to L-glutamate. The addition of unlabeled GABA to the medium also promoted the release of accumulated [3H]GABA. However, GABA was twofold less effective than L-glutamate in eliciting [3H]GABA release. The addition of both GABA and L-glutamate to the incubation medium indicated that [3H]GABA efflux due to L-glutamate and GABA was additive. L-Aspartate also promoted an increase in the efflux of [3H]GABA accumulated by retina cells. However, L-aspartate effect was significantly decreased in the absence of Ca2+ or when Na+ ions were replaced by Li+. Our results indicate that at least three releasable pools of GABA are present in the chick embryo retina cells: (a) a GABA-promoted GABA release-homoexchange, (b) a Ca2+-dependent L-aspartate-promoted release, and (c) a Ca2+-independent, Na+-dependent L-glutamate-evoked release. In addition, our data strongly suggest that the L-glutamate-promoted GABA release is due to a process of exchange of L-glutamate with GABA, which may play a fundamental role in the fine control of the excitability of local circuits in the retina.
Collapse
|
41
|
Abstract
Calcium ions play a fundamental role in the release of transmitters in the nervous system. Therefore, drugs capable of modifying Ca2+ transport are useful tools for studying the mechanisms of such release in vivo and in vitro. In this article the action of some of these drugs on motor behavior, as well as on Ca2+ uptake and neurotransmitter release in synaptosomes, is reviewed. Ruthenium red (RuR) inhibits Ca2+ uptake and transmitter release in synaptosomes, and produces flaccid paralysis when injected intraperitoneally (IP) and convulsions after intracranial administration. Drugs which stimulate the Ca2+-dependent transmitter release in synaptosomes, such as 4-aminopyridine, antagonize the paralysis produced by RuR. Lanthanum ions also inhibit Ca2+ uptake and neurotransmitter release in synaptosomes, but no paralysis was observed after La2+ IP injection. However, this cation blocks the binding of RuR to the presynaptic membrane, and prevents the RuR-induced paralysis. Veratridine and the Ca2+ chelator EGTA were used to demonstrate in synaptosomes that besides the Ca2+-dependent mechanism of release of the central inhibitory transmitter gamma-aminobutyric acid (GABA), there seems to be a strictly Na+-dependent process which is not shared by other transmitters such as acetylcholine or dopamine.
Collapse
|
42
|
Kato S, Negishi K, Teranishi T. Dopamine inhibits calcium-independent gamma-[3H]aminobutyric acid release induced by kainate and high K+ in the fish retina. J Neurochem 1985; 44:893-9. [PMID: 3882885 DOI: 10.1111/j.1471-4159.1985.tb12900.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Kainic acid (KA) at micromolar concentrations stimulated the release of gamma-[3H]aminobutyric acid [( 3H]GABA) from a particulate fraction of the carp (Cyprinus carpio) retina. The KA action was dose-dependent but Ca2+-independent. A similar response was elicited by another glutamate receptor agonist, quisqualic acid, and high K+, but not by an aspartate agonist, N-methyl-D-aspartic acid. The stimulatory action of KA on the [3H]GABA release was selectively blocked by the KA blockers gamma-D-glutamylglycine and cis-2,3-piperidine dicarboxylic acid. Dopamine (DA), which is contained in DA interplexiform cells in the carp retina, inhibited the [3H]GABA release induced by KA and high K+ in a dose-dependent manner. 5-Hydroxytryptamine and two well-known GABA antagonists, bicuculline (Bic) and picrotoxin (Pic), also mimicked the DA effect on the GABA release at a comparable concentration. This inhibitory effect of DA as well as Bic and Pic on the [3H]GABA release evoked by KA was clearly antagonized by a DA blocker, haloperidol. The action of these agents (KA, DA, GABA antagonist) belonging to three different receptor categories on the GABAergic neurons (possibly external horizontal cells; H1 cells) is discussed in relation to other electrophysiological studies on the lateral spread of S-potentials between H1 cells.
Collapse
|
43
|
Campochiaro P, Ferkany JW, Coyle JT. Excitatory amino acid analogs evoke release of endogenous amino acids and acetyl choline from chick retina in vitro. Vision Res 1985; 25:1375-86. [PMID: 2868567 DOI: 10.1016/0042-6989(85)90215-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is mounting evidence that excitatory amino acids may play a role in retinal synaptic neurotransmission. In this study, we demonstrate the release of endogenous amino acids and acetylcholine from isolated chick retina in vitro evoked by three excitatory amino acid analogs, kainic acid (KA), quisqualic acid (Quis), and N-methyl-D,L-aspartic acid (NMDA). The release is dose-dependent and involves putative transmitters from both inner and outer retina. Release from the inner retina is partially Ca2+-dependent, while release from the outer retina is Ca2+-independent and Na+-dependent. Release experiments carried out in the presence of specific excitatory amino acid blocking agents suggest that the release is mediated by two receptors, the kainate receptor and the NMDA receptor. These results are supportive of a role for excitatory amino acids in synaptic neurotransmission in both inner and outer retina.
Collapse
|
44
|
Contestabile A, Migani P, Poli A, Villani L. Recent advances in the use of selective neuron-destroying agents for neurobiological research. EXPERIENTIA 1984; 40:524-34. [PMID: 6144569 DOI: 10.1007/bf01982314] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Ferkany JW, Coyle JT. Evoked release of aspartate and glutamate: disparities between prelabeling and direct measurement. Brain Res 1983; 278:279-82. [PMID: 6640317 DOI: 10.1016/0006-8993(83)90254-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Slices prepared from hippocampus were dual prelabeled with [14C]L-glutamate and [3H]D-aspartate and superfused in the presence or absence of kainic acid (KA; 1 mM) or KCl (40 mM). Drug-evoked release of radioactivity as well as the endogenous amino acids, glutamate and aspartate were determined. Whereas KCl-induced a Ca2+-dependent release of all compounds, only the release of the endogenous amino acids was stimulated by KA. The results of the present study demonstrate that disparities exist between the Ca2+-dependent drug-evoked release of exogenously supplied and endogenous acidic amino acid neurotransmitters.
Collapse
|
46
|
|