1
|
Petzold A. Proteolysis-Based Biomarker Repertoire of the Neurofilament Proteome. J Neurochem 2025; 169:e70023. [PMID: 40066701 PMCID: PMC11894590 DOI: 10.1111/jnc.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 03/15/2025]
Abstract
Neurodegeneration presents a significant challenge in ageing populations, often being detected too late for effective intervention. Biomarkers have shown great potential in addressing this issue, with neurofilament (Nf) proteins emerging as validated biomarkers presently transitioning from research to routine laboratory use. Whilst advances in large-scale quantitative analyses have enabled the targeted study of proteolytic Nf fragments in blood, the complete landscape of the Nf proteolytic breakdown remains unknown. This study presents a comprehensive atlas of the human Nf isoform (Z) degradome, based on the number of known cleavage sites (x). The full scale of the Nf degradome is described by the formula: Z = ((x + 1) × (x + 2)/2) - 1. The resulting neurofilament degradome atlas (NDA) was validated through a triple-layer approach using in vitro data (open access at: https://doi.org/10.5522/04/25689378.v1). The NDA offers valuable applications in biomarker detection, targeted antibody development, exploration of autoimmunity and understanding Nf aggregate formation. Analysis of the Nf degradome reveals novel insights into neurodegenerative diseases by investigating peptide pools affected by genetic mutations in the Nf genome and alterations in proteolytic pathways. The annotated NDA is publicly available as a database resource, supporting advancements in affinity-based biomarker tests through informed peptide selection and minimising biases in label-free approaches. In conclusion, this study highlights the biological significance of a dynamic pool of coexisting proteolytic Nf peptides, providing a framework that can be applied to other proteins.
Collapse
Affiliation(s)
- Axel Petzold
- Queen Square Institute of Neurology, UCL and The National Hospital for Neurology and NeurosurgeryLondonUK
| |
Collapse
|
2
|
Petzold A, Lu CH, Groves M, Gobom J, Zetterberg H, Shaw G, O’Connor S. Protein aggregate formation permits millennium-old brain preservation. J R Soc Interface 2020; 17:20190775. [PMID: 31910770 PMCID: PMC7014809 DOI: 10.1098/rsif.2019.0775] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023] Open
Abstract
Human proteins have not been reported to survive in free nature, at ambient temperature, for long periods. Particularly, the human brain rapidly dissolves after death due to auto-proteolysis and putrefaction. The here presented discovery of 2600-year-old brain proteins from a radiocarbon dated human brain provides new evidence for extraordinary long-term stability of non-amyloid protein aggregates. Immunoelectron microscopy confirmed the preservation of neurocytoarchitecture in the ancient brain, which appeared shrunken and compact compared to a modern brain. Resolution of intermediate filaments (IFs) from protein aggregates took 2-12 months. Immunoassays on micro-dissected brain tissue homogenates revealed the preservation of the known protein topography for grey and white matter for type III (glial fibrillary acidic protein, GFAP) and IV (neurofilaments, Nfs) IFs. Mass spectrometry data could be matched to a number of peptide sequences, notably for GFAP and Nfs. Preserved immunogenicity of the prehistoric human brain proteins was demonstrated by antibody generation (GFAP, Nfs, myelin basic protein). Unlike brain proteins, DNA was of poor quality preventing reliable sequencing. These long-term data from a unique ancient human brain demonstrate that aggregate formation permits for the preservation of brain proteins for millennia.
Collapse
Affiliation(s)
- Axel Petzold
- Department of Neuroinflammation and National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, UCLH, Queen Square, London WC1N 3BG, UK
- Moorfields Eye Hospital, City Road, London EC1V 2PD, UK
- Department of Neurology, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Ching-Hua Lu
- Neurology, School of Medicine, China Medical University and Hospital, Taichung City, Taiwan
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mike Groves
- Division of Neuropathology, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg and Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg and Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Gerry Shaw
- EnCor Biotechnology Inc., 4949 SW 41st Boulevard, Ste 40., Gainesville, FL 32608, USA
| | - Sonia O’Connor
- Archaeological and Forensic Sciences, University of Bradford, Richmond Road, Bradford, West Yorkshire BD7 1DP, UK
| |
Collapse
|
3
|
|
4
|
Kushkuley J, Metkar S, Chan WKH, Lee S, Shea TB. Aluminum induces neurofilament aggregation by stabilizing cross-bridging of phosphorylated c-terminal sidearms. Brain Res 2010; 1322:118-23. [PMID: 20132798 DOI: 10.1016/j.brainres.2010.01.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/24/2010] [Accepted: 01/27/2010] [Indexed: 01/08/2023]
Abstract
Exposure to neurotoxin aluminum neurotoxicity is accompanied by the perikaryal accumulation of tangles of phosphorylated neurofilaments (NFs). We examined their formation and reversibility under cell-free conditions. AlCl3 induced dose-dependent formation of NF aggregates, ultimately incorporating 100% of detectable NFs. The same concentration of CaCl2 induced approximately 25% of NFs to form longitudinal dimers and did not induce aggregation. AlCl3 induced similar percentages of aggregates in the presence or absence of CaCl2, and CaCl2 could not reduce pre-formed aggregates. CaCl(2)-induced dimers and AlCl(3)-induced aggregates were prevented by prior NF dephosphorylation. While CaCl(2)-induced dimers were dissociated by phosphatase treatment, AlCl(3)-induced aggregates were only reduced by approximately 50%, suggesting that aggregates may sequester phosphorylation sites. Since phosphatases regulate NF phosphorylation within perikarya, inhibition of NF dephosphorylation by aluminum would promote perikaryal NF phosphorylation and foster precocious phospho-dependent NF-NF associations. These findings are consistent with the notion that prolonged interactions induced among phospho-NFs by the trivalent aluminum impairs axonal transport and promotes perikaryal aggregation.
Collapse
Affiliation(s)
- Jacob Kushkuley
- Center for Cellular Neurobiology and Neurodegeneration Research, Departments of Biological Sciences and Biochemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | | | | | | | | |
Collapse
|
5
|
Perrot R, Eyer J. Neuronal intermediate filaments and neurodegenerative disorders. Brain Res Bull 2009; 80:282-95. [PMID: 19539727 DOI: 10.1016/j.brainresbull.2009.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 12/12/2022]
Abstract
Intermediate filaments represent the most abundant cytoskeletal element in mature neurons. Mutations and/or accumulations of neuronal intermediate filament proteins are frequently observed in several human neurodegenerative disorders. Although it is now admitted that disorganization of the neurofilament network may be directly involved in neurodegeneration, certain type of perikaryal intermediate filament aggregates confer protection in motor neuron disease. The use of various mouse models provided a better knowledge of the role played by the disorganization of intermediate filaments in the pathogenesis of neurodegenerative disorders, but the mechanisms leading to the formation of these aggregates remain elusive. Here, we will review some neurodegenerative diseases involving intermediate filaments abnormalities and possible mechanisms susceptible to provoke them.
Collapse
Affiliation(s)
- Rodolphe Perrot
- Department of Anatomy and Physiology of Laval University, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | | |
Collapse
|
6
|
Perrot R, Berges R, Bocquet A, Eyer J. Review of the Multiple Aspects of Neurofilament Functions, and their Possible Contribution to Neurodegeneration. Mol Neurobiol 2008; 38:27-65. [DOI: 10.1007/s12035-008-8033-0] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/14/2008] [Indexed: 10/21/2022]
|
7
|
Kimura N, Kumamoto T, Ueyama H, Horinouchi H, Ohama E. Role of proteasomes in the formation of neurofilamentous inclusions in spinal motor neurons of aluminum-treated rabbits. Neuropathology 2007; 27:522-30. [DOI: 10.1111/j.1440-1789.2007.00822.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Jope RS, Johnson GV. Neurotoxic effects of dietary aluminium. CIBA FOUNDATION SYMPOSIUM 2007; 169:254-62; discussion 262-7. [PMID: 1337035 DOI: 10.1002/9780470514306.ch15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurochemical responses to chronic oral aluminium administration have been studied in rats. Aluminium (0.3%) was added to drinking water of adult rats for four weeks or longer and weanling rats were given aluminium for eight weeks. Selective cognitive impairment was demonstrated in the adult rats. Aluminium inhibited calcium flux and phosphoinositide metabolism, one product of which (inositol 1,4,5-trisphosphate) modulates intracellular calcium levels. In weanling rats aluminium decreased the in vivo concentration of inositol 1,4,5-trisphosphate in the hippocampus. An increase in cyclic AMP concentrations by 30-70% in various brain regions in adult and weanling rats was found. Aluminium enhanced agonist-stimulated but not basal cyclic AMP production in vitro. It was postulated that aluminium inhibits the GTPase activity of the stimulatory G protein, Gs, leading to prolonged activation of Gs after receptor stimulation and increased cyclic AMP production. Aluminium treatment also increased the phosphorylation of microtubule-associated protein 2 (MAP-2) and the 200 kDa neurofilament protein (NF-H) but several other phosphoproteins were unaffected. Concentrations of seven structural proteins--MAP-2, tau, NF-H, NF-M (150 kDa), NF-L (68 kDa), tubulin and spectrin--were measured in rat brain regions by immunoblot methods. MAP-2 was most consistently decreased. These studies show that chronic oral aluminium administration to rats has significant neurochemical consequences. Three sites of action are implicated: altered calcium homeostasis, enhanced cyclic AMP production, and changes in cytoskeletal protein phosphorylation states and concentrations.
Collapse
Affiliation(s)
- R S Jope
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham 35294-0017
| | | |
Collapse
|
9
|
Sakamoto T, Saito H, Ishii K, Takahashi H, Tanabe S, Ogasawara Y. Aluminum inhibits proteolytic degradation of amyloid beta peptide by cathepsin D: a potential link between aluminum accumulation and neuritic plaque deposition. FEBS Lett 2006; 580:6543-9. [PMID: 17112520 DOI: 10.1016/j.febslet.2006.10.075] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 10/20/2006] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
Neuritic plaques are the key pathological feature of Alzheimer's disease, and amyloid beta (Abeta) peptides are major component of these plaques. In this study, we demonstrated the influence of aluminum (Al) on the Abeta peptide degradation by cathepsin D. Al did not directly affect the cathepsin D activity using small synthetic substrate. However, when Abeta peptides were used as substrate, the apparent inhibitory effect of Al on cathepsin D activity was observed. This inhibitory effect disappeared by treatment of desferrioxamine. These results indicate that Al has the potential to interact and disrupt Abeta peptide catabolism via the inhibition of proteolytic degradation.
Collapse
Affiliation(s)
- Takashi Sakamoto
- Department of Environmental Biology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Fernyhough P, Schmidt RE. Neurofilaments in diabetic neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 50:115-44. [PMID: 12198808 DOI: 10.1016/s0074-7742(02)50075-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review discusses the role of abnormal neurofilament (NF) expression, processing, and structure as an etiological factor in diabetic neuropathy. Diabetic sensory and autonomic neuropathy in humans is associated with a spectrum of structural changes in peripheral nerve that includes axonal degeneration, paranodal demyelination, and loss of myelinated fibers-- the latter is probably the result of a dying-back of distal axons. NF filaments are composed of three subunit proteins, NFL, NFM, and NFH, and are major constituents of the axonal cylinder. It is clear that any abnormality in synthesis, delivery, or processing of these critical proteins could lead to severe impairments in axon structure and function. This article describes mechanisms of synthesis, phosphorylation, and delivery of NF and discusses how these processes may be abnormal in diabetics. The pathological alterations in the ganglion and preipheral nerve that occur in sensory and autonomic neuropath will be outlined and related to possible abnormal processing of NF. A major focus is the role or aberrant NF phosphorylation and its possible involvement in the imparied delivery of NF to the distal axon. Identification of stress-activated protein kinases (SAPKs) as NF kinases is discussed in detail and it is proposed that hyperglycemia-induced activation of SAPKs may be a primary etiological event in diabetic neuropathy.
Collapse
Affiliation(s)
- Paul Fernyhough
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
11
|
Lupidi G, Angeletti M, Eleuteri AM, Fioretti E, Marini S, Gioia M, Coletta M. Aluminum modulation of proteolytic activities. Coord Chem Rev 2002. [DOI: 10.1016/s0010-8545(02)00075-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Crebelli R, Carta P, Andreoli C, Aru G, Dobrowolny G, Rossi S, Zijno A. Biomonitoring of primary aluminium industry workers: detection of micronuclei and repairable DNA lesions by alkaline SCGE. Mutat Res 2002; 516:63-70. [PMID: 11943612 DOI: 10.1016/s1383-5718(02)00028-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The genetic effects of occupational exposure to low polycyclic aromatic hydrocarbon (PAH) concentrations were investigated in primary aluminium industry workers. The study subjects were employed in a plant that uses pre-baked anode cells, and has relatively low PAH contamination. Forty-two male workers belonging to different job categories (anode fabrication, baking, rodding, electrolysis, maintenance), together with 16 male local residents with no occupational exposure to PAHs were selected for the analysis of micronuclei and DNA lesions in peripheral lymphocytes. The incidence of micronuclei determined in 1000 cytokinesis-blocked cells in each subject was not significantly different between workers and controls (8.5+/-5.4 per thousand versus 9.7+/-4.9 per thousand, respectively), nor between smokers and non-smokers (8.3+/-5.8 per thousand versus 9.2+/-5.1 per thousand), but was significantly (P<0.05) related to the subjects' age. Also the analysis of DNA damage in unstimulated and mitogen-stimulated lymphocytes by single cell gel electrophoresis (SCGE) did not show significant differences between the studied groups (average tail moment values were 0.53+/-0.53 and 0.49+/-0.45 microm in exposed subjects and controls, respectively). However, when lymphocytes were cultured in the presence of cytosine arabinoside (Ara-C, 1 microg/ml for 16h) the SCGE analysis revealed a significant (P=0.018) difference in tail moment values between aluminium workers and controls (1.73+/-1.05 microm versus 0.93+/-0.88 microm, respectively). This difference may highlight an excess of relatively stable DNA lesions, that do not affect strand integrity, and are expressed as intermediates of excision repair in stimulated cells, when gap refilling is inhibited by cytosine arabinoside (Ara-C).
Collapse
Affiliation(s)
- Riccardo Crebelli
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanita', Viale Regina Elena 299, I-00161 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Lévesque L, Mizzen CA, McLachlan DR, Fraser PE. Ligand specific effects on aluminum incorporation and toxicity in neurons and astrocytes. Brain Res 2000; 877:191-202. [PMID: 10986332 DOI: 10.1016/s0006-8993(00)02637-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aluminum is present in many manufactured foods and medicines and is added to drinking water for purification purposes. It has been proposed that aluminum is a contributing factors to several neurodegenerative disorders such as Alzheimer's disease. However, this remains controversial primarily due to the unusual properties of aluminum and a lack of information on its cellular sites of action. To resolve some of these questions, we have examined aluminum uptake in both neuronal and astroglial cells as well as the role of metal speciation. The relative accumulation of four aluminum salts, aluminum maltolate, aluminum lactate, aluminum chloride and aluminum fluoride, was investigated and correlated with cell viability and intracellular distribution as determined by morin staining. Significant differences in aluminum incorporation and toxicity were observed in both neuronal and glia cells with the largest effects exhibited by the maltol species. This was accompanied by a nuclear accumulation in the neuronal cell line that was contrasted by the perinuclear, vesicular distribution in astrocytes that partially co-localized with cathepsin D, a lysosomal marker. These findings demonstrate differences in aluminum species and highlights the importance of these factors in modulating the toxic effect of aluminum.
Collapse
Affiliation(s)
- L Lévesque
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5S 3H2.
| | | | | | | |
Collapse
|
14
|
Guo-Ross SX, Yang EY, Walsh TJ, Bondy SC. Decrease of glial fibrillary acidic protein in rat frontal cortex following aluminum treatment. J Neurochem 1999; 73:1609-14. [PMID: 10501207 DOI: 10.1046/j.1471-4159.1999.0731609.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aluminum lactate was injected either intraperitoneally or stereotactically into the lateral cerebral ventricles of rats. Rats were killed at various times after treatment, and frontal cortex, hippocampus, and striatum were dissected out. Microtiter plate-based sandwich ELISA and immunohistochemistry were used to measure the glial fibrillary acidic protein (GFAP) concentration. GFAP levels were significantly decreased in frontal cortex 7 days after a single lateral ventricular injection of aluminum lactate and 14 days following systemic treatment. In contrast, neither hippocampus nor striatum exhibited any significant changes in the content of this astrocytic intermediate filament protein after aluminum treatment. Levels of a predominantly astroglial enzyme, glutamine synthetase, were also selectively reduced in the frontal cortex following intraventricular injection of aluminum. This depression exhibited a regional and temporal specificity similar to that found for GFAP. These results suggest a selective and progressive diminution of astrocytic responsivity in frontal cortex following either systemic or intraventricular aluminum dosing. The depression of GFAP levels reported here, which was found in the rat cerebral cortex 7-14 days after aluminum treatment in a species that does not form neurofilamentous aggregates, may reflect extended impairment of astrocytic function and suggests that these cells may be the primary targets of aluminum neurotoxicity.
Collapse
Affiliation(s)
- S X Guo-Ross
- Department of Community and Environmental Medicine, Center for Occupational and Environmental Health, University of California, Irvine 92697-1820, USA
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- A Y Louie
- Department of Biology, Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
16
|
Howard MJ, David G, Barrett JN. Resealing of transected myelinated mammalian axons in vivo: evidence for involvement of calpain. Neuroscience 1999; 93:807-15. [PMID: 10465464 DOI: 10.1016/s0306-4522(99)00195-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The mechanisms underlying resealing of transected myelinated rat dorsal root axons were investigated in vivo using an assay based on exclusion of a hydrophilic dye (Lucifer Yellow-biocytin conjugate). Smaller caliber axons (<5 microm outer diameter) resealed faster than larger axons. Resealing was Ca2+ dependent, requiring micromolar levels of extracellular [Ca2+] to proceed, and further accelerated in 1 mM Ca2+. Two hours after transection, 84% of axons had resealed in saline containing 2 mM Ca2+, 28% had resealed in saline containing no added Ca2+ and only 3% had resealed in the Ca2+ buffer BAPTA (3 mM). The enhancing effect of Ca2+ could be overcome by both non-specific cysteine protease inhibitors (e.g., leupeptin) and inhibitors specific for the calpain family of Ca2+ -activated proteases. Resealing in 2 mM Ca2+ was not inhibited by an inhibitor of phospholipase A2. Resealing in low [Ca2+] was not enhanced by agents which disrupt microtubules, but was enhanced by dimethylsulfoxide (0.5-5%). These results suggest that activation of endogenous calpain-like proteases by elevated intra-axonal [Ca2+] contributes importantly to membrane resealing in transected myelinated mammalian axons in vivo.
Collapse
Affiliation(s)
- M J Howard
- Department of Physiology and Biophysics, University of Miami School of Medicine, FL 33101, USA
| | | | | |
Collapse
|
17
|
Abstract
The molecular mechanism of pathological aggregation of microtubule-associated protein tau during neurodegeneration is unclear. In the present study, the in vitro effect of various metal ions on the aggregation of tau was examined using paired helical filament tau (PHF-tau) obtained from corticobasal degeneration (CBD) and Alzheimer's disease (AD) brains as well as normal human tau proteins isolated from fetal and adult brains and a recombinant system. Among the metal ions tested, Ca2+ and Mg2+ effectively induced formation of approximately 340 kD aggregates of PHF-tau but not normal tau proteins as determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and immunoblotting. Al3+ and Fe2+ precipitated both PHF-tau and normal tau protein as SDS-insoluble pellets. The other metal ions examined (Cu2+, Zn2+, and Li+) were inactive and caused neither aggregation nor precipitation of any tau protein. Intermixing experiments using PHF-tau and various normal tau preparations showed that the 340-kD aggregates induced by Ca2+ contained PHF-tau but not normal tau regardless whether unmodified (recombinant) or highly phosphorylated (fetal brain) tau proteins were used. The present results suggest that post-translational modifications other than the fetal-type phosphorylation are required for Ca2+- and Mg2+-dependent aggregation of PHF-tau and that the regional elevation of these ions may trigger pathological deposition of PHF-tau in certain neurodegenerative disorders.
Collapse
Affiliation(s)
- L S Yang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
18
|
Guo-Ross S, Yang E, Bondy SC. Elevation of cerebral proteases after systemic administration of aluminum. Neurochem Int 1998; 33:277-82. [PMID: 9759924 DOI: 10.1016/s0197-0186(98)00032-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The levels of three proteases in the cerebral cortex of rats following a three week exposure to aluminum, were measured. The activity of apopain (CPP32), an interleukin 1beta converting enzyme (ICE)-like cysteine protease specifically associated with apoptosis, was increased following dosing with aluminum. The activity of calcium-activated neutral protease, calpain, was also increased. However, the enzyme activity of trypsin-like serine protease, known to be elevated by oxidative events, was unchanged. Since aluminum is suspected as a possible factor in the pathogenesis of Alzheimer's disease and other neurological diseases, it is speculated that changed levels in proteolytic enzymes may relate to the neurotoxicity of aluminum.
Collapse
Affiliation(s)
- S Guo-Ross
- Center for Occupational and Environmental Health, Department of Community and Environmental Medicine, University of California, Irvine 92697-1825, USA.
| | | | | |
Collapse
|
19
|
Blancaflor EB, Jones DL, Gilroy S. Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. PLANT PHYSIOLOGY 1998; 118:159-72. [PMID: 9733535 PMCID: PMC34852 DOI: 10.1104/pp.118.1.159] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/1998] [Accepted: 05/31/1998] [Indexed: 05/18/2023]
Abstract
Although Al is one of the major factors limiting crop production, the mechanisms of toxicity remain unknown. The growth inhibition and swelling of roots associated with Al exposure suggest that the cytoskeleton may be a target of Al toxicity. Using indirect immunofluorescence microscopy, microtubules and microfilaments in maize (Zea mays L.) roots were visualized and changes in their organization and stability correlated with the symptoms of Al toxicity. Growth studies showed that the site of Al toxicity was associated with the elongation zone. Within this region, Al resulted in a reorganization of microtubules in the inner cortex. However, the orientation of microtubules in the outer cortex and epidermis remained unchanged even after chronic symptoms of toxicity were manifest. Auxin-induced reorientation and cold-induced depolymerization of microtubules in the outer cortex were blocked by Al pretreatment. These results suggest that Al increased the stability of microtubules in these cells. The stabilizing effect of Al in the outer cortex coincided with growth inhibition. Reoriented microfilaments were also observed in Al-treated roots, and Al pretreatment minimized cytochalasin B-induced microfilament fragmentation. These data show that reorganization and stabilization of the cytoskeleton are closely associated with Al toxicity in maize roots.
Collapse
Affiliation(s)
- EB Blancaflor
- Biology Department, 208 Mueller Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802 (E.B.B., S.G.)
| | | | | |
Collapse
|
20
|
Varner JA, Jensen KF, Horvath W, Isaacson RL. Chronic administration of aluminum-fluoride or sodium-fluoride to rats in drinking water: alterations in neuronal and cerebrovascular integrity. Brain Res 1998; 784:284-98. [PMID: 9518651 DOI: 10.1016/s0006-8993(97)01336-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study describes alterations in the nervous system resulting from chronic administration of the fluoroaluminum complex (AlF3) or equivalent levels of fluoride (F) in the form of sodium-fluoride (NaF). Twenty seven adult male Long-Evans rats were administered one of three treatments for 52 weeks: the control group was administered double distilled deionized drinking water (ddw). The aluminum-treated group received ddw with 0.5 ppm AlF3 and the NaF group received ddw with 2.1 ppm NaF containing the equivalent amount of F as in the AlF3 ddw. Tissue aluminum (Al) levels of brain, liver and kidney were assessed with the Direct Current Plasma (DCP) technique and its distribution assessed with Morin histochemistry. Histological sections of brain were stained with hematoxylin & eosin (H&E), Cresyl violet, Bielschowsky silver stain, or immunohistochemically for beta-amyloid, amyloid A, and IgM. No differences were found between the body weights of rats in the different treatment groups although more rats died in the AlF3 group than in the control group. The Al levels in samples of brain and kidney were higher in both the AlF3 and NaF groups relative to controls. The effects of the two treatments on cerebrovascular and neuronal integrity were qualitatively and quantitatively different. These alterations were greater in animals in the AlF3 group than in the NaF group and greater in the NaF group than in controls.
Collapse
Affiliation(s)
- J A Varner
- Psychology Department, Binghamton University, Binghamton, NY, USA
| | | | | | | |
Collapse
|
21
|
Itzhaki RF. The aetiology of Alzheimer's disease. MOLECULAR AND CELL BIOLOGY OF HUMAN DISEASES SERIES 1998; 4:55-91. [PMID: 9439744 DOI: 10.1007/978-94-011-0709-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R F Itzhaki
- Department of Optometry and Vision Sciences, UMIST, Manchester, UK
| |
Collapse
|
22
|
Li J, Nixon R, Messer A, Berman S, Bursztajn S. Altered gene expression for calpain/calpastatin system in motor neuron degeneration (Mnd) mutant mouse brain and spinal cord. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 53:174-86. [PMID: 9473662 DOI: 10.1016/s0169-328x(97)00295-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The calcium-activated neutral proteases (CANP, calpains) have been implicated in both acute and chronic neurodegenerative processes. In the present study, we analyzed the in situ mRNA expression of calpain I and II and their endogenous inhibitor, calpastatin, in the motor neuron degeneration (Mnd) mutant mouse, which exhibits progressive dysfunction of the spinal cord and brain. As the disease progresses, the mutants show increasingly pronounced motor abnormalities which coincide with swelling of the spinal motor neurons, neocortex, hippocampal CA regions and cerebellar Purkinje cells. In situ hybridization studies show that the Mnd mice have a significantly higher level of calpain I, calpain II and calpastatin than the congenic controls in the following brain regions and cell types: hippocampal CA3 region, pyramidal cells, cerebellar Purkinje cells and spinal cord motor neurons. However, no differences in calpain or calpastatin mRNA levels are observed in glial and cerebellar granule cells of Mnd and control mice. Western blots and competitive RT-PCR analyses of brain and spinal cord homogenates are confirmative. Such altered gene expression in specific cell types of brain and spinal cord suggests the involvement of the calpain/calpastatin system.
Collapse
Affiliation(s)
- J Li
- Mailman Research Center, McLean Hospital, Belmont, MA 02178, USA
| | | | | | | | | |
Collapse
|
23
|
Shea TB, Wheeler E, Jung C. Aluminum inhibits neurofilament assembly, cytoskeletal incorporation, and axonal transport. Dynamic nature of aluminum-induced perikaryal neurofilament accumulations as revealed by subunit turnover. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1997; 32:17-39. [PMID: 9437656 DOI: 10.1007/bf02815165] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanism by which aluminum induces formation of perikaryal neurofilament (NF) inclusions remains unclear. Aluminum treatment inhibits: 1. The incorporation of newly synthesized NF subunits into Triton-insoluble cytoskeleton of axonal neurites; 2. Their degradation and dephosphorylation; 3. Their translocation into axonal neurites. It also fosters the accumulation of phosphorylated NFs within perikarya. In the present study, we addressed the relationship among these effects. Aluminum reduced the assembly of newly synthesized NF subunits into NFs. During examination of those subunits that did assemble in the presence of aluminum, it was revealed that aluminum also interfered with transport of newly assembled NFs into axonal neurites. Similarly, a delay in axonal transport of microinjected biotinylated NF-H was observed in aluminum-treated cells. Aluminum also inhibited the incorporation of newly synthesized and microinjected subunits into the Triton-insoluble cytoskeleton within both perikarya and neurites. Once incorporated into Triton-insoluble cytoskeletons, however, biotinylated subunits were retained within perikarya of aluminum-treated cells to a greater extent than within untreated cells. Notably, these subunits were depleted in the presence and absence of aluminum within 48 h, despite the persistence of the aluminum-induced perikaryal accumulation itself, suggesting that individual NF subunits undergo turnover even within aluminum-induced perikaryal accumulations. These findings demonstrate that aluminum interferes with multiple aspects of neurofilament dynamics and furthermore leaves open the possibility that aluminum-induced perikaryal NF whorls may not represent permanent structures, but rather may require continued recruitment of cytoskeletal constituents.
Collapse
Affiliation(s)
- T B Shea
- Department of Biological Sciences, University of Massachusetts at Lowell, MA 01854, USA.
| | | | | |
Collapse
|
24
|
Newcomb JK, Kampfl A, Posmantur RM, Zhao X, Pike BR, Liu SJ, Clifton GL, Hayes RL. Immunohistochemical study of calpain-mediated breakdown products to alpha-spectrin following controlled cortical impact injury in the rat. J Neurotrauma 1997; 14:369-83. [PMID: 9219852 DOI: 10.1089/neu.1997.14.369] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study examined the effect of unilateral controlled cortical impact on the appearance of calpain-mediated alpha-spectrin breakdown products (BDPs) in the rat cortex and hippocampus at various times following injury. Coronal sections were taken from animals at 15 min, 1 h, 3 h, 6 h, and 24 h after injury and immunolabeled with an antibody that recognizes calpain-mediated BDPs to alpha-spectrin (Roberts-Lewis et al., 1994). Sections from a separate group of rats were also taken at the same times and stained with hematoxylin and eosin. Analyses of early time points (15 min, 1 h, 3 h, and 6 h following injury) revealed alpha-spectrin BDPs in structurally intact neuronal soma and dendrites in cortex ipsilateral to site of injury that was not present in tissue from sham-injured control rats. By 24 h after injury labeling was not restricted to clearly defined neuronal structures in ipsilateral cortex, although there was an increased extent of diffuse labeling. BDPs to alpha-spectrin in axons were not detected until 24 h after injury, in contrast to the more rapid accumulation of BDPs observed in neuronal soma and dendrites. The presence of BDPs to alpha-spectrin in the cortex at the site of impact, and in the rostral and contralateral cortex, coincided with morphopathology detected by hematoxylin and eosin. alpha-Spectrin BDPs were also observed in the hippocampus ipsilateral to the injury in the absence of overt cell death. This investigation provides further evidence that calpain is activated after controlled cortical impact and could contribute to necrosis at the site of injury. The appearance of calpain-mediated BDPs at sites distal to the contusion site and in the hippocampus also suggests that calpain activation may precede and/or occur in the absence of extensive morphopathological changes.
Collapse
Affiliation(s)
- J K Newcomb
- Vivian L. Smith Center for Neurologic Research, Department of Neurosurgery, University of Texas Houston Health Science Center, Houston 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Posmantur R, Kampfl A, Siman R, Liu J, Zhao X, Clifton GL, Hayes RL. A calpain inhibitor attenuates cortical cytoskeletal protein loss after experimental traumatic brain injury in the rat. Neuroscience 1997; 77:875-88. [PMID: 9070759 DOI: 10.1016/s0306-4522(96)00483-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The capacity of a calpain inhibitor to reduce losses of neurofilament 200-, neurofilament 68- and calpain 1-mediated spectrin breakdown products was examined following traumatic brain injury in the rat. Twenty-four hours after unilateral cortical impact injury, western blot analyses detected neurofilament 200 losses of 65% (ipsilateral) and 36% (contralateral) of levels observed in naive, uninjured rat cortices. Neurofilament 68 protein levels decreased only in the ipsilateral cortex by 35% relative to naive protein levels. Calpain inhibitor 2, administered 10 min after injury via continuous arterial infusion into the right external carotid artery for 24 h, significantly reduced neurofilament 200 losses to 17% and 3% relative to naive neurofilament 200 protein levels in the ipsilateral and contralateral cortices, respectively. Calpain inhibitor administration abolished neurofilament 68 loss in the ipsilateral cortex and was accompanied by a reduction of putative calpain-mediated neurofilament 68 breakdown products. Spectrin breakdown products mediated by calpain 1 activation were detectable in both hemispheres 24 h after traumatic brain injury and were substantially reduced in animals treated with calpain inhibitor 2 both ipsilaterally and contralaterally to the site of injury. Qualitative immunofluorescence studies of neurofilament 200 and neurofilament 68 confirmed western blot data, demonstrating morphological protection of neuronal structure throughout cortical regions of the traumatically injured brain. Morphological protection included preservation of dendritic structure and reduction of axonal retraction balls. In addition, histopathological studies employing hematoxylin and eosin staining indicated reduced extent of contusion at the injury site. These data indicate that calpain inhibitors could represent a viable strategy for preserving the cytoskeletal structure of injured neurons after experimental traumatic brain injury in vivo.
Collapse
Affiliation(s)
- R Posmantur
- Department of Neurosurgery, University of Texas Houston Health Science Center, 77030, U.S.A
| | | | | | | | | | | | | |
Collapse
|
26
|
Wakayama I, Song KJ, Nerurkar VR, Yoshida S, Garruto RM. Slow dendritic transport of dissociated mouse hippocampal neurons exposed to aluminum. Brain Res 1997; 748:237-40. [PMID: 9067468 DOI: 10.1016/s0006-8993(96)01314-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We determined the influence of aluminum on dendritic transport, using an in vitro system of dissociated mouse hippocampal neurons. Newly synthesized RNA from dissociated mouse hippocampal neurons was more slowly transported into dendrites in the presence of aluminum chloride when compared to those without the addition of aluminum chloride to the culture medium. Suppression of dendritic transport of newly synthesized RNA may be responsible for the dendritic degeneration observed in aluminum neurotoxicity, eventually leading to neuronal degeneration.
Collapse
Affiliation(s)
- I Wakayama
- Research Center of Neurological Diseases, Kansai College of Oriental Medicine, Kumatori, Osaka, Japan
| | | | | | | | | |
Collapse
|
27
|
|
28
|
|
29
|
Camargo-De-Morais M, De Freitas M, De Mattos AG, Schröder N, Zilles AC, Lisboa CS, Arteni N, Barlem A, Schierholt R, Zwetsch G, Souza CA, Pessoa-Pureur R, Netto CA. Effects of brain ischemia on intermediate filaments of rat hippocampus. Neurochem Res 1996; 21:595-602. [PMID: 8726968 DOI: 10.1007/bf02527758] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neurofilaments subunits (NF-H, NF-M, NF-L) and glial fibrillary acidic protein (GFAP) were investigated in the hippocampus of rats after distinct periods of reperfusion (1 to 15 days) following 20 min of transient global forebrain ischemia in the rat. In vitro [14Ca]leucine incorporation was not altered until 48 h after the ischemic insult, however concentration of intermediate filament subunits significantly decreased in this period. Three days after the insult, leucine incorporation significantly increased while the concentration NF-H, NF-M, and NF-L were still diminished after 15 days of reperfusion. In vitro incorporation of 32P into NF-M and NF-L suffered immediately after ischemia, but returned to control values after two days of reperfusion. GFAP levels decreased immediately after ischemia but quickly recovered and significantly peaked from 7 to 10 days after the insult. These results suggest that transient ischemia followed by reperfusion causes proteolysis of intermediate filaments in the hippocampus, and the proteolysis could be facilitated by diminished phosphorylation levels of NF-M and NF-L.
Collapse
Affiliation(s)
- M Camargo-De-Morais
- Departamento de Bioquímica, IB--UFRGS (Campus Central), Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gaytan-Garcia S, Kim H, Strong MJ. Spinal motor neuron neuroaxonal spheroids in chronic aluminum neurotoxicity contain phosphatase-resistant high molecular weight neurofilament (NFH). Toxicology 1996; 108:17-24. [PMID: 8644113 DOI: 10.1016/s0300-483x(95)03266-i] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has previously been shown that a single intracisternal inoculum of AlCl3 in young adult New Zealand white rabbits will induce a dose-dependent phosphatase resistance of high molecular weight neurofilament protein (NFH) that is proportionate to the extent of neurofilamentous inclusion formation (Strong and Jakowec, 1994). To determine if the potential for dissolution of aluminum-induced neurofilamentous inclusions was dependent on the degree of NFH phosphatase resistance, we have examined NFH phosphatase sensitivity in a reversible chronic model of aluminum neurotoxicity. Rabbits receiving repeated intracisternal inoculums of 100 microgram AlCl3 at 28 day intervals until day 267 develop spinal motor neuron perikaryal and neuroaxonal neurofilamentous aggregates in a stereotypic, dose-dependent fashion. In the rabbits receiving inoculums until day 156 with survival until day 267 without further aluminum exposure, neuroaxonal spheroids remained prominent while perikaryal inclusions largely resolved. Immunoreactivity to a monoclonal antibody recognizing phosphorylated NFH (SMI 31) was abolished in perikaryal aggregates at each time interval by dephosphorylation with bovine alkaline phosphatase. However, neuroaxonal spheroids maintained their immunoreactivity. Using time-course dephosphorylation studies of spinal cord homogenates, we observed a significant reduction in the rate of dephosphorylation of NFH following 267 days of AlCl3 exposure (P < 0.05). These observations suggest that neuroaxonal spheroids contain phosphatase-resistant NFH isoforms and that the potential for resolution of intraneuronal neurofilamentous inclusions correlates with the susceptibility of NF within these inclusions to enzymatic dephosphorylation.
Collapse
Affiliation(s)
- S Gaytan-Garcia
- The John P. Robart Research Institute, London, Ontario, Canada
| | | | | |
Collapse
|
31
|
Shea TB, Husain T. Inhibition of proteolysis enhances aluminum-induced perikaryal neurofilament accumulation but does not enhance tau accumulation. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1995; 26:195-212. [PMID: 8748924 DOI: 10.1007/bf02815138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As observed for neurons in situ, phosphorylated neurofilament (NF) epitopes are normally segregated within the axonal cytoskeleton of NB2a/d1 cells. However, accumulations of phosphorylated NFs develop in NB2a/d1 perikarya following exposure to aluminum salts and following inhibition of proteolysis. In the present study, we observed that perikarya of cells exposed to both aluminum and the protease inhibitor C1 (also known as "AllNal") were more intensely labeled by monoclonal antibodies directed against both nonphosphorylated and phosphorylated epitopes than were cells treated with either aluminum or protease inhibitor alone. Since these monoclonal antibodies crossreact with tau, we also immunostained cells treated under these conditions with monoclonal antibodies directed against phosphate-insensitive (5E2) and phosphorylated (PHF-1) epitopes of tau. Aluminum treatment, but not C1 treatment, induced accumulation of total tau isoforms as judged by an increase in 5E2 immunoreactivity. Neither treatment, either separately or in combination, induced an increase in PHF-1 immunoreactivity. These findings suggest that alterations in immunoreactivity with SMI antibodies reflected increases in NF epitopes. This was confirmed by immunoblot analyses. Since proteolysis is apparently instrumental in maintaining the normal distribution patterns of phosphorylated NF epitopes, these findings implicate deficiencies in proteolytic mechanisms in the development of neurofibrillary pathology, and underscore the possibility of a multiple etiology in human neuropathological conditions.
Collapse
Affiliation(s)
- T B Shea
- Department of Biological Sciences, University of Massachusetts at Lowell 01854, USA
| | | |
Collapse
|
32
|
Shea TB, Beermann ML, Nixon RA. Aluminum treatment of intact neuroblastoma cells alters neurofilament subunit phosphorylation, solubility, and proteolysis. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1995; 26:1-14. [PMID: 8588820 DOI: 10.1007/bf02814937] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Addition of 400 microM AlCl3 to the culture medium for 72 h has been previously shown to induce perikaryal whorls of intermediate-sized filaments in intact mouse NB2a/d1 neuroblastoma cells. Immunoblot analyses demonstrated that in vivo treatment of cells with aluminum induced the de novo appearance of extensively phosphorylated NF-H isoforms in cytoskeletons of undifferentiated cells and increased levels of these isoforms in differentiated cells. Neurofilament subunits isolated from intact cells treated with aluminum were resistant to dephosphorylation in vitro by alkaline phosphatase and to in vitro degradation by endogenous calcium-dependent protease(s). These alterations were accompanied by a greater tendency of neurofilaments to form insoluble aggregates after isolation. These findings demonstrate direct effects of aluminum on neurofilament subunits within intact neuronal cells similar to those previously demonstrated following in vitro exposure of isolated neurofilaments to aluminum.
Collapse
Affiliation(s)
- T B Shea
- Department of Biological Sciences, University of Massachusetts at Lowell 01854, USA
| | | | | |
Collapse
|
33
|
Falkous G, Harris JB, Mantle D. Effect of neurotoxic metal ions in vitro on proteolytic enzyme activities in human cerebral cortex. Clin Chim Acta 1995; 238:125-35. [PMID: 7586572 DOI: 10.1016/0009-8981(95)06081-n] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to develop a clearer understanding of the role of aberrant protein turnover in the pathogenesis of neurodegenerative disorders, the effect of a series of potentially neurotoxic metal ions on a wide range of proteases (lysosomal and cytoplasmic proteinases and peptidases) from human cerebral cortex was determined in vitro. The response of lysosomal and cytoplasmic proteases to inhibition by metal ion species (0.05-5 mmol/l) was broadly similar; Sr2+, Mg2+, Ba2+ or Ca2+ showed little inhibitory effect at any concentration for most protease types, whilst Cu2+, Cd2+, Pb2+, Mg2+ or Zn2+ showed a substantial degree of inhibition, depending on metal ion concentration and enzyme type. Ca2+ activated neutral proteinases were no more susceptible to general metal ion inhibition than most other protease types. Some proteases showed marked activation of activity in the presence of several metal ion species. Both lysosomal and cytoplasmic proteases were relatively insensitive to inhibition by Al3+, compared with that obtained with other metal ion species. It is of note that cathepsin D was particularly resistant to inhibition by most metal ion species, whilst pyroglutamyl aminopeptidase was particularly susceptible to inhibition by low concentrations of many metal ions. The above data suggest that in considering the potential role of neurotoxic metal ions in the pathogenesis of neurodegenerative disorders of the CNS (via protease inhibition in the intracellular protein degradation pathway), attention should be focused on the interactions between a wide range of metal ion species and protease types, rather than be restricted to the Al3+/calpain system (as is presently the case in Alzheimer's disease research). In particular, the potential role of pyroglutamyl aminopeptidase in intracellular protein degradation (in addition to more specialized functions such as neurotransmitter processing) and the pathological consequences of the susceptibility of this enzyme to inhibition by neurotoxic metal ions requires further investigation.
Collapse
Affiliation(s)
- G Falkous
- Muscular Dystrophy Group Research Laboratories, Regional Neurosciences Centre, Newcastle General Hospital, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
34
|
Abstract
The hypterphosphorylation of tau proteins is a well-established step in the expression of the pathological features in Alzheimer's disease (AD). While a primary event that links aluminum and AD, the so-called 'aluminum hypotheses', is far from being demonstrated, however, the metal ion could be an important etiological factor, most likely not the only one, of AD etiopathogenesis acting as an aggregating agent of the cytoskeletal elements forming very stable bridges between phosphate groups of the hyperphosphorylated tau elements.
Collapse
Affiliation(s)
- P F Zatta
- Centro CNR-Metalloproteine, Dipartimento di Biologia, Universita' di Padova, Italy
| |
Collapse
|
35
|
Shea TB. Calcium modulates aluminum neurotoxicity and interaction with neurofilaments. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1995; 24:151-63. [PMID: 7632319 DOI: 10.1007/bf02962140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We examined the influence of calcium on neurotoxicity of AlCl3 and Al-lactate toward differentiated NB2a/d1 cells. Apart from induction of perikaryal neurofibrillary inclusions, AlCl3 at 1 mM induced no obvious additional signs of toxicity when added to culture medium in the presence of the normal medium CaCl2 content of 1.8 mM, nor when extracellular calcium was decreased by the addition to the medium of 0.9 mM EDTA. Increasing the extracellular CaCl2 concentration by fivefold was only marginally toxic, but in the presence of AlCl3, reduced viable cell numbers by well over 50% as compared to control cultures, and by approximately 50% vs fivefold CaCl2 alone. A twofold increase in extracellular CaCl2 did not increase the percentage of cells exhibiting Bielschowsky-positive perikarya, but induced a near doubling in the percentage of cells exhibiting accumulations in the presence of 1 mM Al-lactate. AlCl3 (1 mM) retards the electrophoretic migration of NF subunits on SDS-gels. This effect was eliminated by withholding CaCl2 from the incubation mixture and including 5 mM EDTA during incubation of cytoskeletons with AlCl3. The presence of CaCl2 alone did not alter NF migration. These findings underscore the possibility that multiple factors, including those that compromise general neuronal homeostasis, may contribute to neurofibrillary pathology.
Collapse
Affiliation(s)
- T B Shea
- Department of Biological Sciences, University of Massachusetts at Lowell 01854, USA
| |
Collapse
|
36
|
Shea TB, Beermann ML, Wang FS. Relative susceptibility of cytoskeleton-associated and soluble neurofilament subunits to aluminum exposure in intact cells. A possible mechanism for reduction of neurofilament axonal transport during aluminum neurotoxicity. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1995; 24:203-19. [PMID: 7543268 DOI: 10.1007/bf02962144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous studies have demonstrated the appearance of phosphorylated neurofilament (NF) subunits within perikaryal cytoskeletons following aluminum exposure. In order to examine the mechanisms leading to this altered distribution of NF subunits, we carried out biochemical analyses of NF subunits in Triton-insoluble and -soluble fractions derived from aluminum-treated NB2a/d1 cells. In addition to increases in the Triton-insoluble cytoskeleton, increases in all three NF subunits were also detected within the Triton-soluble fraction of aluminum-treated cells. To address the nature of this increase in Triton-soluble subunits, aluminum-treated and untreated cultures were harvested in the absence of Triton and fractionated by established procedures to yield fractions greatly enriched for perikarya and neurites, respectively. Each of these subcellular fractions was then subjected to further homogenization in the presence of 1% Triton and centrifugation to yield Triton-insoluble cytoskeletons and Triton-soluble material derived from perikarya and axonal neurites, respectively. Resulting Triton-soluble fractions were "clarified" by high-speed centrifugation to eliminate oligomeric assemblies or soluble neurofilaments. Immunoblot analysis demonstrated quantitative recovery of the aluminum-induced increase in Triton-soluble NF subunits in the perikaryal fraction. Additional aluminum-treated and untreated cultures were pulse-chase radiolabeled with [35S]methionine and fractionated into Triton-insoluble and soluble fractions from isolated perikarya and axonal neurites. Autoradiographic analysis of immunoprecipitated NF subunits revealed that aluminum treatment delayed the translocation of newly synthesized subunits into neurites and resulted in the accumulation of radiolabeled subunits within the Triton-soluble fraction of perikarya. These findings suggest that aluminum may exert a relatively greater effect on NF subunits that have not yet undergone axonal transport and/or incorporation into Triton-insoluble structures vs those that have already deposited into axons. This possibility was supported by the observation that a higher concentration of aluminum was required to alter the electrophoretic migration of in vitro reassembled neurofilaments vs that required for unassembled NF subunits. These findings provide possible mechanisms for the accumulation of NF subunits in perikarya during aluminum intoxication.
Collapse
Affiliation(s)
- T B Shea
- Laboratories for Molecular Neuroscience, McLean Hospital, Belmont, MA, USA
| | | | | |
Collapse
|
37
|
Gotow T, Tanaka J, Takeda M. The organization of neurofilaments accumulated in perikaryon following aluminum administration: relationship between structure and phosphorylation of neurofilaments. Neuroscience 1995; 64:553-69. [PMID: 7700539 DOI: 10.1016/0306-4522(94)00394-k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurofilaments accumulated in perikarya and dendrites of anterior horn cells and Purkinje cells of rabbit treated by aluminum chloride were analysed with a variety of techniques. Four different monoclonal antibodies against phosphorylated and nonphosphorylated epitopes on neurofilament H subunit were used to compare phosphorylation state of these accumulated neurofilaments with that of axonal neurofilaments. Although immunoblotting revealed no significant difference in phosphorylation between control and aluminum-treated brains, accumulated neurofilaments were immunocytochemically more phosphorylated than control perikaryal or dendritic neurofilaments. With detailed analysis of cryothin-section immunogold labeling, accumulated neurofilaments were, however, significantly less phosphorylated than axonal neurofilaments. With quick-freeze deep etching, core filaments of accumulated neurofilaments are as dense as axonal neurofilaments but much less regularly aligned. Cross-bridges of accumulated neurofilaments were less frequent and more branched than those of axonal neurofilaments, and when examined with combined immunocytochemistry and deep etching, were less phosphorylated. These results suggest that there is a relationship between the phosphorylation and the structural organization of neurofilaments. The phosphorylation of neurofilament H subunit may be necessary for formation of frequent and straight cross-bridges and resulting regular alignment of core filaments.
Collapse
Affiliation(s)
- T Gotow
- Department of Anatomy, Osaka University Medical School, Japan
| | | | | |
Collapse
|
38
|
Nixon RA, Saito KI, Grynspan F, Griffin WR, Katayama S, Honda T, Mohan PS, Shea TB, Beermann M. Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer's disease. Ann N Y Acad Sci 1994; 747:77-91. [PMID: 7847693 DOI: 10.1111/j.1749-6632.1994.tb44402.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Calpains (CANPs) are a family of calcium-dependent cysteine proteases under complex cellular regulation. By making selective limited proteolytic cleavages, they activate or alter the regulation of certain enzymes, including key protein kinases and phosphatases, and induce specific cytoskeletal rearrangements, accounting for their suspected involvement in intracellular signaling, vesicular trafficking, and structural stabilization. Calpain activity has been implicated in various aging phenomena, including cataract formation and erythrocyte senescence. Abnormal activation of the large stores of latent calpain in neurons induces cell injury and is believed to underlie neurodegeneration in excitotoxicity, Wallerian degeneration, and certain other neuropathologic states involving abnormal calcium influx. In Alzheimer's disease, we found the ratio of activated calpain I to its latent precursor isoform in neocortex to be threefold higher than that in normal individuals and those with Huntington's or Parkinson's disease. Immunoreactivity toward calpastatin, the endogenous inhibitor of calpain, was also markedly reduced in layers II-V of the neocortex in Alzheimer's disease. The excessive calpain system activation suggested by these findings represents a potential molecular basis for synaptic loss and neuronal cell death in the brain in Alzheimer's disease given the known destructive actions of calpain I and its preferential neuronal and synaptic localization. In surviving cells, persistent calpain activation may also contribute to neurofibrillary pathology and abnormal amyloid precursor protein trafficking/processing through its known actions on protein kinases and the membrane skeleton. The degree of abnormal calpain activation in the brain in Alzheimer's disease strongly correlated with the extent of decline in levels of secreted amyloid precursor protein in brain. Cytoskeletal proteins that are normally good calpain substrates become relatively calpain resistant when they are hyperphosphorylated, which may contribute to their accumulation in neurofibrillary tangles. As a major effector of calcium signals, calpain activity may mirror disturbances in calcium homeostasis and mediate important pathologic consequences of such disturbances.
Collapse
Affiliation(s)
- R A Nixon
- Laboratories for Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts 02178
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Müller JP, Bruinink A. Neurotoxic effects of aluminium on embryonic chick brain cultures. Acta Neuropathol 1994; 88:359-66. [PMID: 7839829 DOI: 10.1007/bf00310380] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Toxic damage of brain cells by aluminium (Al) is discussed as a possible factor in the development of neurodegenerative disorders in humans. To investigate neurotoxic effects of Al, serum-free cultures of mechanically dissociated embryonic chick (stage 28-29) forebrain, brain stem and optic tectum, and for comparison meningeal cells, were treated with Al (0-1000 microM) for 7 days. Effects of Al on cell viability (lysosomal and mitochondrial activity) and differentiation (synthesis of cell-specific proteins) were found to the brain area specific with the highest sensitivity observed in optic tectum. No inhibiting effects on cell viability could be observed in cultures of forebrain and meninges in the concentration range tested. In all three brain tissue cultures, threshold levels for the reduction of cell differentiation parameters were found at lower concentrations [concentration resulting in a 50% decrease (IC50) > 180 microM] than for the inhibition of cell viability (IC50 > 280 microM), indicating a specific toxic potential of Al for cytoskeletal alterations. The culture levels of nerve cell-specific markers microtubule-associated protein type 2 (the most sensitive parameter) and the 68-kDa neurofilament were inhibited at lower concentrations (IC50 180-630 microM) than the astrocyte-specific glial fibrillary acidic protein (IC50 700-approximately 1000 microM), demonstrating a particularly high sensitivity of neurons in comparison to astrocytes. Based on these differences in Al sensitivity observed for different cell markers in the various brain tissue cultures, the in vitro system used in the present study proved to be a suitable model to assess brain area and cell type-specific neurotoxic effects of Al.
Collapse
Affiliation(s)
- J P Müller
- Institute of Toxicology, ETH and University of Zürich, Switzerland
| | | |
Collapse
|
40
|
Abstract
Inherited cases of Alzheimer's disease (AD) comprise only a very small proportion of the total. The remainder are of unknown etiopathogenesis, but they are very probably multifactorial in origin. This article describes studies on four possible factors: aluminum; viruses--in particular, herpes simplex type I virus (HSV1); defective DNA repair; and head trauma. Specific problems associated with aluminum, such as inadvertent contamination and its insolubility, have led to some controversy over its usage. Nonetheless, the effects of aluminum on animals and neuronal cells in culture have been studied intensively. Changes in protein structure and location in the cell are described, including the finding in this laboratory of a change in tau resembling that in AD neurofibrillary tangles, and also the lack of appreciable binding of aluminum to DNA. As for HSV1, there has previously been uncertainty about whether HSV1 DNA is present in human brain. Work in this laboratory using polymerase chain reaction has shown that HSV1 DNA is present in many normal aged brains and AD brains, but is absent in brains from younger people. Studies on DNA damage and repair in AD and normal cells are described, and finally, the possible involvement of head trauma is discussed.
Collapse
Affiliation(s)
- R F Itzhaki
- Department of Optometry and Vision Sciences, University of Manchester Institute of Science and Technology, UK
| |
Collapse
|
41
|
Strong MJ. Aluminum neurotoxicity: an experimental approach to the induction of neurofilamentous inclusions. J Neurol Sci 1994; 124 Suppl:20-6. [PMID: 7807137 DOI: 10.1016/0022-510x(94)90172-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acute or chronic aluminum neurotoxicity experiments in the rabbit suggest that aluminum can induce phosphorylation of neurofilamentous proteins. This may result in abnormal resistance to degradation or transport of neurofilament protein and so to the accumulation of neurofilaments in abnormal cells. The possible importance of this process in ALS is considered in relation to the neurofilamentous abnormalities characteristic of intraneuronal inclusions in ALS and in other neurodegenerative disorders.
Collapse
Affiliation(s)
- M J Strong
- Department of Clinical Neurological Sciences, University of Western Ontario, University Hospital, London, Canada
| |
Collapse
|
42
|
Shea TB, Beermann ML. Multiple interactions of aluminum with neurofilament subunits: regulation by phosphate-dependent interactions between C-terminal extensions of the high and middle molecular weight subunits. J Neurosci Res 1994; 38:160-6. [PMID: 8078101 DOI: 10.1002/jnr.490380206] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Exposure of individual purified neurofilament (NF) proteins to AlCl3 alters their electrophoretic properties in a time- and concentration-dependent manner, as visualized by their failure to migrate into SDS gels. Co-incubation of purified high (NF-H) and middle (NF-M) but not low (NF-L) molecular weight NF subunits prevents this AlCl3-induced alteration in electrophoretic migration. This latter finding suggested that specific interactions between NF-H and NF-M other than filament formation influenced their interaction with AlCl3. Co-incubation of the 160 kDa alpha-chymotryptic cleavage product of NF-H (corresponding to the highly phosphorylated C-terminal sidearm domain) with native NF-M prevented alteration in subunit electrophoretic migration by AlCl3. By contrast, intact, dephosphorylated NF-H subunits were unable to prevent AlCl3-induced alteration of native NF-M electrophoretic migration. Taken together, these findings suggest that phosphate-dependent interactions between the sidearm extensions of NF-H and NF-M diminish the ability of AlCl3 to associate with either subunit in a manner that alters their electrophoretic migration. This interaction of NF-H and NF-M sidearms is SDS-sensitive, while AlCl3-induced alteration in electrophoretic migration of individual subunits is SDS-resistant. Addition of SDS to mixtures of NF-H and NF-M subunits disrupted the protective effect, and promoted AlCl3-induced alterations in subunit electrophoretic migration. These findings support and extend the current hypothesis that the ability of aluminum to interact with NF subunits is a function of subunit phosphorylation, assembly, and extent of neurofilament-neurofilament cross-linking.
Collapse
Affiliation(s)
- T B Shea
- Laboratory for Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts 02178
| | | |
Collapse
|
43
|
Hollósi M, Shen ZM, Perczel A, Fasman GD. Stable intrachain and interchain complexes of neurofilament peptides: a putative link between Al3+ and Alzheimer disease. Proc Natl Acad Sci U S A 1994; 91:4902-6. [PMID: 8197154 PMCID: PMC43897 DOI: 10.1073/pnas.91.11.4902] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The etiologic role of Al3+ in Alzheimer disease has been controversial. Circular dichroism (CD) spectroscopic studies on two synthetic fragments of human neurofilament protein mid-sized subunit (NF-M), NF-M13 (KSPVPKSPVEEKG) and NF-M17 (EEKGKSPVPKSPVEEKG), and their alanine-substituted and/or serine-phosphorylated derivatives were carried out in an attempt to find a molecular mechanism for the effect of Al3+ to induce aggregation of neuronal proteins or their catabolic fragments. Al3+ and Ca2+ ions were found to induce beta-pleated sheet formation in the phosphorylated fragments. The cation sensitivity depended on the length and charge distribution of the sequence and site of phosphorylation. Al3+-induced conformational changes were irreversible to citric acid chelation, whereas Ca(2+)-induced conformational changes were reversible with citric acid. Studies of the alanine derivatives demonstrated which residues affected Al3+ or Ca2+ binding. Peptides containing at least one free (nonphosphorylated) serine residue were shown to form an intramolecular Al3+ complex, rather than an intermolecular one. In the intramolecular (intrachain) complex, the ligand function of the deprotonated serine hydroxyl was delineated [(Al.pepH-1)-type complex]. Ca2+ ions did not show a tendency for intramolecular complexing. The potential role of Al3+ in Alzheimer disease tangle and plaque formation is strongly suggested.
Collapse
Affiliation(s)
- M Hollósi
- Department of Organic Chemistry, Eötvös University Budapest, Hungary
| | | | | | | |
Collapse
|
44
|
Haug A, Shi B, Vitorello V. Aluminum interaction with phosphoinositide-associated signal transduction. Arch Toxicol 1994; 68:1-7. [PMID: 8166600 DOI: 10.1007/s002040050023] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Concerning molecular and cellular mechanisms of aluminum toxicity, recent studies support the hypothesis that interactions of aluminum ions with elements of signal transduction pathways are apparently primary events in cells. In the case of the phosphoinositide-associated signalling pathway of neuroblastoma cells, guanine nucleotide-binding proteins (G proteins) and a phosphatidylinositol-4,5-diphosphate (PIP2)-specific phospholipase C are probable interaction sites for inhibitory actions of aluminum ions. Following interiorization of aluminum by the cell, metal interactions decrease the accumulation of inositol phosphates, especially that of inositol-1,4,5-triphosphate (IP3), concomitant with derangements of intracellular Ca2+ homeostasis. In the presence of high concentrations of Ca2+, formation of IP3 is also diminished in aluminum-pretreated cells, presumably involving a process not requiring Mg(2+)-dependent G proteins. At higher aluminum doses, metal-induced changes in the lipid milieu of the membrane-bound phospholipase may play a role. These types of primary interactions of aluminum ions with elements of cellular communication channels are probably crucial in the manifestation of the multifacetted aluminum toxicity syndrome. If present as a phosphate-like fluoro-aluminate, a stimulatory role of aluminum ions is displayed in G protein-coupled transmembrane signalling.
Collapse
Affiliation(s)
- A Haug
- Department of Microbiology, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
45
|
Abstract
Aluminum has been detected in Alzheimer neurofibrillary tangles, but the significance of its presence is unknown. The principal component of tangles is the paired helical filament (PHF), comprised of tau protein. We investigated whether aluminum could induce tau protein to form filaments or aggregate. When 10 microM bovine tau or non-phosphorylated recombinant human tau was combined with 400 microM or more aluminum, tau protein appeared to aggregate, observed as a dose-dependent decrease in electrophoretic mobility on SDS-PAGE. Tau appeared as a smear above the region of the expected tau bands and, at higher aluminum doses, failed to enter the gel. A tau fragment encompassing the microtubule binding domains did not show decreased mobility in the presence of aluminum, but did form aggregates that failed to electrophorese. However no fibrillar structures were observed in the aluminum-treated tau samples when observed by electron microscopy. The effect of aluminum on tau mobility was reversed by incubating with 1 mM deferoxamine. In contrast, the morphology of PHF fibrils was unaffected by deferoxamine treatment and the characteristic abnormal mobility of PHF-tau was not reduced by deferoxamine. This suggests that aluminum is not, by itself, a significant factor in maintaining the assembly of PHF-tau as fibrils or in its abnormal mobility on SDS gels. Aluminum treatment of 3T3 fibroblasts transfected with human tau resulted in toxicity, but did not change tau expression levels or induce tau aggregation. In conclusion, aluminum appears to induce isolated tau protein to aggregate in a phosphate-independent way, without the formation of fibrils.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C W Scott
- Pharmacology Department, ICI Americas, Wilmington, DE 19897
| | | | | | | |
Collapse
|
46
|
Abstract
The prominent death of central neurons in Alzheimer's and Parkinson's is reflected by changes in cell shape and by the formation of characteristic cytoskeletal inclusions (neurofibrillary tangles, Lewy bodies). This review focuses on the biology of neurofilaments and microtubule-associated proteins and identifies changes that can occur to these elements from basic and clinical research perspectives. Attention is directed at certain advances in neurobiology that have been especially integral to the identification of epitope domains, protein isoforms, and posttranslational (phosphorylation) events related to the composition, development, and structure of the common cytoskeletal modifications. Recently, a number of experimental strategies have emerged to simulate the aberrant changes in neurodegenerative disorders and gain insight into possible molecular events that contribute to alterations of the cytoskeleton. Descriptions of specific systems used to induce modifications are presented. In particular, unique neural transplantation methods in animals have been used to probe possible molecular and cellular conditions concerned with abnormal cytoskeletal changes in neurons.
Collapse
Affiliation(s)
- L C Doering
- Division of Anatomy, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
47
|
Shi B, Chou K, Haug A. Aluminium impacts elements of the phosphoinositide signalling pathway in neuroblastoma cells. Mol Cell Biochem 1993; 121:109-18. [PMID: 8391123 DOI: 10.1007/bf00925969] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Inositol phosphate formation was examined in aluminium-treated murine neuroblastoma cells labelled with [3H]-myoinositol. Employing fluoride-stimulated intact cells, aluminium (0.2 microM to 1 mM) reduced inositol phosphate formation in a dose-dependent manner. In digitonin-permeabilized cells, stimulated with nonhydrolyzable GTP[S], inositol phosphate formation was also inhibited by increasing aluminium doses; the IC50 value was about 20 microM aluminium, while the inositol phosphate level was reduced 2.5 to 3 fold by 50 microM aluminium. The inhibitory effect of aluminium (50 microM) could not be reversed by increasing GTP[S] concentrations up to 500 microM. Prechelation of aluminium to citrate or EGTA completely abolished the aluminium-triggered inhibition of fluoride-stimulated inositol phosphate formation in intact cells, but had little effect on the inhibition of permeabilized cells stimulated with GTP[S]. In neuroblastoma cells phosphoinositide hydrolysis could be evoked either through a pathway involving the Mg2+/guanine nucleotide binding (Gp) protein, or via a pathway operative in the presence of high intracellular Ca2+ concentrations. In the Mg2+/Gp protein-mediated pathway, formation of inositol triphosphate, IP3, inositol diphosphate, IP2, and inositol monophosphate, IP, was apparently inhibited by aluminium in an interdependent manner. As to the Ca(2+)-mediated pathway, aluminium application mainly diminished the release of IP3. Following interiorization, aluminium thus acts upon elements critical for phosphoinositide-associated signal transduction. An aluminium target apparently resides on the Gp protein. Phosphatidylinositol-4,5-diphosphate-specific phospholipase C probably harbours a second aluminium target.
Collapse
Affiliation(s)
- B Shi
- Department of Microbiology, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
48
|
Mellor GW, Sreedharan SK, Kowlessur D, Thomas EW, Brocklehurst K. Catalytic-site characteristics of the porcine calpain II 80 kDa/18 kDa heterodimer revealed by selective reaction of its essential thiol group with two-hydronic-state time-dependent inhibitors: evidence for a catalytic site Cys/His interactive system and an ionizing modulatory group. Biochem J 1993; 290 ( Pt 1):75-83. [PMID: 8439300 PMCID: PMC1132384 DOI: 10.1042/bj2900075] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. Four calpain II heterodimers (80 kDa/30 kDa, 80 kDa/29 kDa, 80 kDa/26 kDa and 80 kDa/18 kDa) were isolated from fresh porcine kidney by (NH4)2SO4 precipitation, chromatography on DEAE-Sepharose CL-6B and subsequently on Reactive Red 120/agarose followed by f.p.l.c. on a Q-Sepharose Hi-Load 16/10 column. 2. The major component (80 kDa/30 kDa) was used to provide the catalytically active calpain II 80 kDa/18 kDa heterodimer by treatment with CaCl2; titration with trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E64) in the presence of monothioglycerol showed the preparation to have 1.0 +/- 0.05 catalytic sites per molecule of heterodimer. 3. The 80 kDa/30 kDa heterodimer was separated from monothioglycerol and other low-molecular-mass material by gel filtration on Sephadex G-25 without loss of catalytic activity towards sulphanilic acid/azocasein in the presence of added Ca2+. On storage overnight at a concentration of 3 microM in KCl at 4 degrees C in the absence of Ca2+ the activator-free preparation still produced fully active 80 kDa/18 kDa heterodimer on addition of Ca2+. 4. Activator-free 80 kDa/30 kDa heterodimer (in the absence of Ca2+) reacts relatively slowly with ethyl 2-pyridyl disulphide at pH 5.9; over 5000 s five thiol groups per molecule react, all at similar rates. In the presence of 8 mM CaCl2 under otherwise identical conditions (and also in the pH range 3.8-10.4) an initial faster phase of reaction corresponding to approx. one thiol group per molecule of heterodimer is generated, but it is not cleanly separated from the subsequent slower reactions on the stopped-flow trace. This fast phase of reaction does not occur when E64-inactivated calpain II is substituted for active 80 kDa/18 kDa heterodimer. 5. Greatly improved resolution of the fast phase of reaction involving the catalytic-site thiol group was achieved by using 2,2'-dipyridyl disulphide (2-Py-S-S-2-Py) instead of ethyl 2-pyridyl disulphide. 6. The pH-dependence of the second-order rate constant (k) for the reaction of the catalytically active activator-free 80 kDa/18 kDa calpain II heterodimer with 2-Py-S-S-2-Py was studied by stopped-flow spectral analysis in the pH range approx. 3-8 without interference from reactions of other thiol groups. 7. The form of the pH-k profile establishes for the first time the existence of an interactive catalytic site system [probably containing a (Cys)-S-/(His)-Im+H ion pair] analogous to those present in monomeric non-Ca(2+)-activated cysteine proteinases.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G W Mellor
- Department of Biochemistry, Queen Mary & Westfield College, University of London, U.K
| | | | | | | | | |
Collapse
|
49
|
Leterrier JF, Langui D, Probst A, Ulrich J. REPLY FROM J. F. LETERRIER, D. LANGUI, A. PROBST, AND J. ULRICH. J Neurochem 1993. [DOI: 10.1111/j.1471-4159.1993.tb05867.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Nixon RA. The regulation of neurofilament protein dynamics by phosphorylation: clues to neurofibrillary pathobiology. Brain Pathol 1993; 3:29-38. [PMID: 7505700 DOI: 10.1111/j.1750-3639.1993.tb00723.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neurofilament proteins are continuously modified during their lifetime by a succession of protein kinases and phosphatases. Site-specific phosphorylation or dephosphorylation within different polypeptide domains of each neurofilament subunit is now believed to regulate such behaviors of neurofilaments as subunit polymerization and exchange, axonal transport, interactions with other cytoskeletal proteins and degradation. Local regulation of phosphorylation events could account for variations in the size, morphology and dynamics of the neurofilament network in different regions of the neuron. The apparent greater plasticity of the neurofilament network in regions like the perikaryon, initial segment and nodes along the axon may provide some insight into the vulnerability of these regions in neurofibrillary disease.
Collapse
Affiliation(s)
- R A Nixon
- Laboratories for Molecular Neuroscience, McLean Hospital, Belmont, MA 02178
| |
Collapse
|