1
|
Ziakova K, Kovalska M, Pilchova I, Dibdiakova K, Brodnanova M, Pokusa M, Kalenska D, Racay P. Involvement of Proteasomal and Endoplasmic Reticulum Stress in Neurodegeneration After Global Brain Ischemia. Mol Neurobiol 2023; 60:6316-6329. [PMID: 37452223 PMCID: PMC10533597 DOI: 10.1007/s12035-023-03479-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
A brief period of transient global brain ischemia leads to selective ischemic neurodegeneration associated with death of hippocampal CA1 pyramidal neurons days after reperfusion. The mechanism of such selective and delayed neurodegeneration is still uncertain. Our work aimed to study the involvement of proteasomal and endoplasmic reticulum (ER) stress in ischemic neurodegeneration. We have performed laser scanning confocal microscopy analysis of brain slices from control and experimental animals that underwent global brain ischemia for 15 min and varying times of reperfusion. We have focused on ubiquitin, PUMA, a proapoptotic protein of the Bcl-2 family overexpressed in response to both proteasomal and ER stress, and p53, which controls expression of PUMA. We have also examined the expression of HRD1, an E3 ubiquitin ligase that was shown to be overexpressed after ER stress. We have also examined potential crosstalk between proteasomal and ER stress using cellular models of both proteasomal and ER stress. We demonstrate that global brain ischemia is associated with an appearance of distinct immunoreactivity of ubiquitin, PUMA and p53 in pyramidal neurons of the CA1 layer of the hippocampus 72 h after ischemic insults. Such changes correlate with a delay and selectivity of ischemic neurodegeneration. Immunoreactivity of HRD1 observed in all investigated regions of rat brain was transiently absent in both CA1 and CA3 pyramidal neurones 24 h after ischemia in the hippocampus, which does not correlate with a delay and selectivity of ischemic neurodegeneration. We do not document significant crosstalk between proteasomal and ER stress. Our results favour dysfunction of the ubiquitin proteasome system and consequent p53-induced expression of PUMA as the main mechanisms responsible for selective and delayed degeneration of pyramidal neurons of the hippocampal CA1 layer in response to global brain ischemia.
Collapse
Affiliation(s)
- Katarina Ziakova
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ivana Pilchova
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Katarina Dibdiakova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, SK-03601, Martin, Slovak Republic
| | - Maria Brodnanova
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Pokusa
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Racay
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, SK-03601, Martin, Slovak Republic.
| |
Collapse
|
2
|
Burda R, Burda J, Morochovič R. Ischemic Tolerance—A Way to Reduce the Extent of Ischemia–Reperfusion Damage. Cells 2023; 12:cells12060884. [PMID: 36980225 PMCID: PMC10047660 DOI: 10.3390/cells12060884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Individual tissues have significantly different resistance to ischemia–reperfusion damage. There is still no adequate treatment for the consequences of ischemia–reperfusion damage. By utilizing ischemic tolerance, it is possible to achieve a significant reduction in the extent of the cell damage due to ischemia–reperfusion injury. Since ischemia–reperfusion damage usually occurs unexpectedly, the use of preconditioning is extremely limited. In contrast, postconditioning has wider possibilities for use in practice. In both cases, the activation of ischemic tolerance can also be achieved by the application of sublethal stress on a remote organ. Despite very encouraging and successful results in animal experiments, the clinical results have been disappointing so far. To avoid the factors that prevent the activation of ischemic tolerance, the solution has been to use blood plasma containing tolerance effectors. This plasma is taken from healthy donors in which, after exposure to two sublethal stresses within 48 h, effectors of ischemic tolerance occur in the plasma. Application of this activated plasma to recipient animals after the end of lethal ischemia prevents cell death and significantly reduces the consequences of ischemia–reperfusion damage. Until there is a clear chemical identification of the end products of ischemic tolerance, the simplest way of enhancing ischemic tolerance will be the preparation of activated plasma from young healthy donors with the possibility of its immediate use in recipients during the initial treatment.
Collapse
Affiliation(s)
- Rastislav Burda
- Department of Trauma Surgery, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Rastislavova 43, 040 01 Košice, Slovakia
- Department of Trauma Surgery, Louis Pasteur University Hospital, Rastislavova 43, 040 01 Košice, Slovakia
- Correspondence:
| | - Jozef Burda
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Radoslav Morochovič
- Department of Trauma Surgery, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Rastislavova 43, 040 01 Košice, Slovakia
- Department of Trauma Surgery, Louis Pasteur University Hospital, Rastislavova 43, 040 01 Košice, Slovakia
| |
Collapse
|
3
|
Phosphorylation of Eukaryotic Initiation Factor 4G1 (eIF4G1) at Ser1147 Is Specific for eIF4G1 Bound to eIF4E in Delayed Neuronal Death after Ischemia. Int J Mol Sci 2022; 23:ijms23031830. [PMID: 35163752 PMCID: PMC8836865 DOI: 10.3390/ijms23031830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/26/2022] Open
Abstract
Ischemic strokes are caused by a reduction in cerebral blood flow and both the ischemic period and subsequent reperfusion induce brain injury, with different tissue damage depending on the severity of the ischemic insult, its duration, and the particular areas of the brain affected. In those areas vulnerable to cerebral ischemia, the inhibition of protein translation is an essential process of the cellular response leading to delayed neuronal death. In particular, translation initiation is rate-limiting for protein synthesis and the eukaryotic initiation factor (eIF) 4F complex is indispensable for cap-dependent protein translation. In the eIF4F complex, eIF4G is a scaffolding protein that provides docking sites for the assembly of eIF4A and eIF4E, binding to the cap structure of the mRNA and stabilizing all proteins of the complex. The eIF4F complex constituents, eIF4A, eIF4E, and eIF4G, participate in translation regulation by their phosphorylation at specific sites under cellular stress conditions, modulating the activity of the cap-binding complex and protein translation. This work investigates the phosphorylation of eIF4G1 involved in the eIF4E/eIF4G1 association complex, and their regulation in ischemia-reperfusion (IR) as a stress-inducing condition. IR was induced in an animal model of transient cerebral ischemia and the results were studied in the resistant cortical region and in the vulnerable hippocampal CA1 region. The presented data demonstrate the phosphorylation of eIF4G1 at Ser1147, Ser1185, and Ser1231 in both brain regions and in control and ischemic conditions, being the phosphorylation of eIF4G1 at Ser1147 the only one found in the eIF4E/eIF4G association complex from the cap-containing matrix (m7GTP-Sepharose). In addition, our work reveals the specific modulation of the phosphorylation of eIF4G1 at Ser1147 in the vulnerable region, with increased levels and colocalization with eIF4E in response to IR. These findings contribute to elucidate the molecular mechanism of protein translation regulation that underlies in the balance of cell survival/death during pathophysiological stress, such as cerebral ischemia.
Collapse
|
4
|
Liu Y, Xue Q, Li A, Li K, Qin X. Mechanisms exploration of herbal pair of HuangQi-DanShen on cerebral ischemia based on metabonomics and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112688. [PMID: 32101772 DOI: 10.1016/j.jep.2020.112688] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/04/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The herbal pair of HuangQi-DanShen (HD) is frequently used for treating brain injury caused by cerebral ischemia (CI) in traditional Chinese medicine (TCM). AIM OF THE STUDY The present work was designed to reveal the active mechanism of HD against CI. MATERIALS AND METHODS In our work, an integrated approach combined 1H-NMR based metabonomics and network pharmacology was applied to decipher the protection of HD against MCAO (middle cerebral artery occlusion)-induced CI rats. Meanwhile, the indicator of neurological deficit and TTC staining were used to estimate the efficacy of HD. RESULTS The results of neurological deficit test and TTC staining suggested HD could improve the brain injury in CI rats. The metabonomic result indicated that HD could significantly ameliorate 8 serum metabolites in CI rats, which were linked 71 corresponding targeted proteins obtained by Metscape. In addition, 84 targets related HD against CI were obtained by network pharmacology. At last, 5 important targets were screened as hopeful targets for the treatment of CI through integrating them. CONCLUSION The integrated method coupled 1H-NMR based metabonomics with network pharmacology provided the insights into the mechanisms of TCM in treating CI.
Collapse
Affiliation(s)
- YueTao Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| | - QianQian Xue
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - AiPing Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - XueMei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| |
Collapse
|
5
|
Ingles J, Simpson A, Kyathanahalli C, Anamthathmakula P, Hassan S, Jeyasuria P, Condon JC. Preconditioning the uterine unfolded protein response maintains non-apoptotic Caspase 3-dependent quiescence during pregnancy. Cell Death Dis 2018; 9:933. [PMID: 30224704 PMCID: PMC6141493 DOI: 10.1038/s41419-018-1000-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
The prevention of apoptotic caspase 3 activation through biological preconditioning, mediated through the modulation of the unfolded protein response has been demonstrated to ameliorate multiple pathophysiologies. The maintenance of non-apoptotic caspase 3 activity by the unfolded protein response within the pregnant uterus has previously been proven to be critical in inhibiting uterine myocyte contractility during pregnancy. Here we report that the pregnant uterus utilizes an unfolded protein response-preconditioning paradigm to conserve myometrial caspase 3 in a non-apoptotic state in order to effectively inhibit uterine contractility thereby preventing the onset of preterm labor. In the absence of appropriate endogenous preconditioning during pregnancy, uterine caspase 3 is transformed from a non-apoptotic to an apoptotic phenotype. Apoptotic caspase 3 activation results in the precocious triggering of local uterine inflammatory signaling and prostaglandin production, consequently resulting in an increased incidence of preterm birth. These findings represent a paradigm shift in our understanding of how preconditioning promotes the maintenance of uterine non-apoptotic caspase 3 action during pregnancy preventing the onset of premature uterine contraction and therefore defining the timing of the onset of labor.
Collapse
Affiliation(s)
- Judith Ingles
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Arren Simpson
- Department of Biology, University of Detroit Mercy, Detroit, MI, USA
| | | | | | - Sonia Hassan
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.,Perinatal Research Initiative in support of the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda and Detroit, MD and MI, USA
| | - Pancharatnam Jeyasuria
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.,Perinatal Research Initiative in support of the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda and Detroit, MD and MI, USA
| | - Jennifer C Condon
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA. .,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA. .,Perinatal Research Initiative in support of the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda and Detroit, MD and MI, USA.
| |
Collapse
|
6
|
Kim YS, Yoo A, Son JW, Kim HY, Lee YJ, Hwang S, Lee KY, Lee YJ, Ayata C, Kim HH, Koh SH. Early Activation of Phosphatidylinositol 3-Kinase after Ischemic Stroke Reduces Infarct Volume and Improves Long-Term Behavior. Mol Neurobiol 2016; 54:5375-5384. [DOI: 10.1007/s12035-016-0063-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
7
|
Xu N, Xiao Z, Zou T, Huang Z. Induction of GADD34 Regulates the Neurotoxicity of Amyloid β. Am J Alzheimers Dis Other Demen 2015; 30:313-9. [PMID: 25204313 PMCID: PMC10852579 DOI: 10.1177/1533317514545616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The possible roles played by growth arrest and DNA damage-inducible gene 34 (GADD34) in Alzheimer's disease (AD) are so far less understood. In this study, we found that GADD34 was increased in the brains of AD transgenic J20 mice. The deposition of β-amyloid (Aβ) peptide is the main component of neurotic plaques in AD brain. Thus, we examined the effect of Aβ in the expression of GADD34 in human SH-SY5Y cells in vitro. Amyloid β (Aβ1-42) treatment led to increased expression of GADD34. Pretreatment with 50 nmol/L of c-Jun N-terminal kinases (JNK) inhibitor SP600125 abolished the upregulation of GADD34. c-Jun silencing by transfection with c-Jun small-interfering RNA abolished the effects of Aβ1-42 on the expression of GADD34. Importantly, chromatin immunoprecipitation studies verified the ability of c-Jun to bind to the GADD34 promoter, and this ability was increased more than 3-fold by Aβ1-42. These data suggest that the induction of GADD34 by Aβ is mediated by JNK/c-Jun pathway. Finally, depletion of GADD34 significantly rescued Aβ-induced cell apoptosis as evidenced by a marked decrease in the number of terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling (TUNEL)-positive cells. Consistently, knockdown of GADD34 attenuated caspase 3 activation induced by Aβ1-42.
Collapse
Affiliation(s)
- Niangui Xu
- Department of Neurology, The Second Xiangya Hospital of the Central South University, Changsha, China
| | - Zhijie Xiao
- Department of Neurology, The Second Xiangya Hospital of the Central South University, Changsha, China
| | - Ting Zou
- Department of Neurology, The Second Xiangya Hospital of the Central South University, Changsha, China
| | - Zhiling Huang
- Department of Neurology, The Second Xiangya Hospital of the Central South University, Changsha, China
| |
Collapse
|
8
|
Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol 2015; 35:23-31. [PMID: 25187358 PMCID: PMC11486285 DOI: 10.1007/s10571-014-0104-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 08/23/2014] [Indexed: 01/08/2023]
Abstract
Proteins of Bcl-2 family are crucial regulators of intrinsic (mitochondrial) pathway of apoptosis that is implicated among the mechanisms of ischemic neuronal death. Initiation of mitochondrial apoptosis depends on changes of equilibrium between anti-apoptotic and pro-apoptotic proteins of Bcl-2 family as well as on translocation of pro-apoptotic proteins of Bcl-2 family to mitochondria. The aim of this work was to study the effect of transient global brain ischemia on expression and intracellular distribution of proteins of Bcl-2 family in relation to the ischemia-induced changes of ERK and Akt kinase pathways as well as disturbances in ubiquitin proteasome system. Using four vessel occlusion model of transient global brain ischemia, we have shown that both ischemia in duration of 15 min and the same ischemia followed by 1, 3, 24, and 72 h of reperfusion did not affect the levels of either pro-apoptotic (Bad, PUMA, Bim, Bax, Noxa) or anti-apoptotic (Bcl-2, Bcl-xl, Mcl-1) proteins of Bcl-2 family in total cell extracts from rat hippocampus. However, significantly elevated level of Bad protein in the mitochondria isolated from rat hippocampus was observed already 1 h after ischemia and remained elevated 3 and 24 h after ischemia. We did not observe significant changes of the levels of Puma, Bax, Bcl-2, and Bcl-xl in the mitochondria after ischemia and ischemia followed by reperfusion. Our results might indicate possible involvement of Bad translocation to mitochondria in the mechanisms of neuronal death following transient global brain ischemia.
Collapse
Affiliation(s)
- Ivana Pilchova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Katarina Klacanova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Maria Chomova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
- Present Address: Faculty of Medicine, Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovak Republic
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Dusan Dobrota
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Peter Racay
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovak Republic
| |
Collapse
|
9
|
Wang W, Wu XM, Jiang B, Wang CY, Zhang HN, Shen XM. Influence of edaravone on growth arrest and DNA damage-inducible protein 34 expression following focal cerebral ischemia-reperfusion in rats. Asian Pac J Trop Biomed 2014. [DOI: 10.12980/apjtb.4.201414b291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
10
|
Abstract
Although the protective mechanisms of delayed ischemic preconditioning have received extensive studies, few have addressed the mechanisms associated with rapid ischemic postconditioning. We investigated whether ischemic tolerance induced by rapid preconditioning is regulated by the Akt survival signaling pathway. Stroke was generated by permanent occlusion of the left distal middle cerebral artery (MCA) plus 30 min or 1 h occlusion of the bilateral common carotid artery (CCA) in male rats. Rapid preconditioning performed 1h before stroke onset reduced infarct size by 69% in rats with 30 min CCA occlusion, but by only 19% with 1 h occlusion. After control ischemia with 30 min CCA occlusion, Western Blot showed that P-Akt was transiently increased while Akt kinase assay showed that Akt activity was decreased. Although preconditioning did not change P-Akt levels at 1h and 5h compared with control ischemia, it attenuated reduction in Akt activity at 5h in the penumbra. However, preconditioning did not change the levels of P-PDK1, P-PTEN, and P-GSK3β in the Akt pathway, all of which were decreased after stroke. At last, the PI3K kinase inhibitor, LY294002, completely reversed the protection from ischemic preconditioning. In conclusion, Akt contributes to the protection of rapid preconditionin against stroke.
Collapse
|
11
|
Racay P. Ischaemia-induced protein ubiquitinylation is differentially accompanied with heat-shock protein 70 expression after naïve and preconditioned ischaemia. Cell Mol Neurobiol 2012; 32:107-19. [PMID: 21789629 PMCID: PMC11498578 DOI: 10.1007/s10571-011-9740-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/08/2011] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the effect of transient global brain ischaemia, both naïve and preconditioned, on accumulation of ubiquitinylated proteins and induction of stress/chaperone proteins specific to cytoplasm and endoplasmic reticulum. In addition, possible correlation between stress response and ischaemia/induced translocation of p53 to mitochondria was investigated. Rats were subjected to 15-min forebrain ischaemia followed by 1, 3, 24 and 72 h of reperfusion. Transient cerebral ischaemia induced a massive increase in protein ubiquitinylation in the hippocampus as well as in both cerebral and cerebellar cortex. Enhanced ubiquitinylation of proteins was paralleled with transcriptional activation of hsp70.1 gene but not hsp70.3 gene. However, HSP70 protein level was significantly elevated 24 and 72 h after ischaemia. Neither ischaemia nor ischaemia followed by reperfusion was associated with significant changes of GRP78, GADD34 and GADD153 levels. Ubiquitinylated protein level was elevated 1 and 48 h after sub-lethal 5 min ischaemia. Preconditioned ischaemia (15 min ischaemia followed 48 h after sub-lethal ischaemia) was associated with even enhanced accumulation of ubiquitinylated proteins of molecular mass higher than 110 kDa. HSP70 protein was significantly elevated 48 h after sub-lethal ischaemia as well as after preconditioned ischaemia and all investigated time intervals of reperfusion. The elevated level of HSP70 might represent plausible explanation of inhibition of both translocation of p53 to mitochondria and ischaemia-induced apoptosis observed after preconditioned ischaemia.
Collapse
Affiliation(s)
- Peter Racay
- Jessenius Faculty of Medicine, Institute of Medical Biochemistry, Comenius University, Martin, Slovakia.
| |
Collapse
|
12
|
Hyrskyluoto A, Reijonen S, Kivinen J, Lindholm D, Korhonen L. GADD34 mediates cytoprotective autophagy in mutant huntingtin expressing cells via the mTOR pathway. Exp Cell Res 2012; 318:33-42. [DOI: 10.1016/j.yexcr.2011.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/28/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022]
|
13
|
Ischemia-induced calpain activation causes eukaryotic (translation) initiation factor 4G1 (eIF4GI) degradation, protein synthesis inhibition, and neuronal death. Proc Natl Acad Sci U S A 2011; 108:18102-7. [PMID: 22006312 DOI: 10.1073/pnas.1112635108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Persistent protein synthesis inhibition (PSI) is a robust predictor of eventual neuronal death following cerebral ischemia. We thus tested the hypothesis that persistent PSI inhibition and neuronal death are causally linked. Neuronal viability strongly correlated with both protein synthesis and levels of eukaryotic (translation) initiation factor 4G1 (eIF4G1). We determined that in vitro ischemia activated calpain, which degraded eIF4G1. Overexpression of the calpain inhibitor calpastatin or eIF4G1 resulted in increased protein synthesis and increased neuronal viability compared with controls. The neuroprotective effect of eIF4G1 overexpression was due to restoration of cap-dependent protein synthesis, as well as protein synthesis-independent mechanisms, as inhibition of protein synthesis with cycloheximide did not completely prevent the protective effect of eIF4G1 overexpression. In contrast, shRNA-mediated silencing of eIF4G1 exacerbated ischemia-induced neuronal injury, suggesting eIF4G1 is necessary for maintenance of neuronal viability. Finally, calpain inhibition following global ischemia in vivo blocked decreases in eIF4G1, facilitated protein synthesis, and increased neuronal viability in ischemia-vulnerable hippocampal CA1 neurons. Collectively, these data demonstrate that calpain-mediated degradation of a translation initiation factor, eIF4G1, is a cause of both persistent PSI and neuronal death.
Collapse
|
14
|
Lee CH, Yoo KY, Choi JH, Park JH, Kim DH, Park JH, Hwang IK, Cho JH, Kim YM, Won MH. Comparison of phosphorylated extracellular signal-regulated kinase 1/2 immunoreactivity in the hippocampal Ca1 region induced by transient cerebral ischemia between adult and aged gerbils. Cell Mol Neurobiol 2011; 31:449-57. [PMID: 21191646 PMCID: PMC11498589 DOI: 10.1007/s10571-010-9638-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/02/2010] [Indexed: 01/26/2023]
Abstract
In this study, the authors examined the difference of phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) in the hippocampal CA1 region (CA1) between adult and aged gerbils after 5 min of transient cerebral ischemia. Delayed neuronal death in the CA1 of the aged group was much slower than that in the adult group after ischemia/reperfusion (I/R). pERK1/2 immunoreaction was observed in the CA1 region of the sham-operated adult gerbil. pERK1/2 immunoreactivity and protein levels in the ischemic CA1 region of the adult group were markedly increased 4 days after I/R, and then reduced up to 10 days after I/R. In contrast, pERK1/2 immunoreaction was hardly detected in the CA1 region of sham-operated aged gerbils, and the immunoreactivity increased from 1 day after the ischemic insult, and still observed until 10 days post-ischemia. In addition, pERK1/2-immunoreaction was expressed in astrocytes in the ischemic CA1 region: The expression in the ischemia-operated aged gerbils was later than that in the ischemia-operated adult gerbils. These results indicate that different patterns of ERK1/2 immunoreactivity may be associated with different processes of delayed neuronal death in adult and aged animals.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul, 151-742 South Korea
| | - Ki-Yeon Yoo
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Do-Hoon Kim
- Department of Psychiatry, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, 200-704 South Korea
| | - Jeong Ho Park
- Division of Applied Chemistry and Biotechnology, Hanbat National University, Daejeon, 305-719 South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742 South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, College of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
- Department of Neuroscience, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Young-Myeong Kim
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
- Department of Neuroscience, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
- Department of Neuroscience, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| |
Collapse
|
15
|
Abstract
As one member of 70 kDa heat shock proteins, glucose-regulated protein 78 (GRP78) participates in protein folding, transportation and degradation. This sort of capacity can be enhanced by stresses under which GRP78 is induced rapidly. Unlike its homologues, GRP78 presents multifaceted subcellular position: When ER retention, it serves as the switch of unfolded protein response; When mitochondrial binding, it directly interacts with apoptotic executors; When cell surface residing, it recognizes extracellular ligands, transducing proliferative signals, especially in certain tumors. The close correlation between GRP78 and neoplasm provides us further insight into the event of carcinogenesis and cancer cell chemoresistance, indicating its prognostic predicting significance and validating potential therapeutics for clinical usage, especially because its small molecular inhibitors are emerging quickly these years. What's more, GRP78-related signaling may be helpful for clearer understanding of its biological mechanisms.
Collapse
Affiliation(s)
- Lu-Hua Zhang
- Neurosurgical Institute of PLA, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | | |
Collapse
|
16
|
Assessment of Protein Expression Levels After Transient Global Cerebral Ischemia Using an Antibody Microarray Analysis. Neurochem Res 2010; 35:1239-47. [DOI: 10.1007/s11064-010-0180-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2010] [Indexed: 01/08/2023]
|
17
|
Duan SR, Wang JX, Wang J, Xu R, Zhao JK, Wang DS. Ischemia induces endoplasmic reticulum stress and cell apoptosis in human brain. Neurosci Lett 2010; 475:132-5. [PMID: 20347937 DOI: 10.1016/j.neulet.2010.03.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 03/19/2010] [Accepted: 03/20/2010] [Indexed: 01/23/2023]
Abstract
In animal models, endoplasmic reticulum (ER) stress and apoptosis take place around cerebral infarction areas during ischemia, which presumably protect tissues from necroses-induced injury as well as promote cells toward death. We examined whether these pathological changes, especially temporal occurrence, were present in patients who suffered from cerebral ischemia. The studies by immunohistochemistry show that ER chaperone glucose-regulated protein (GRP78) and caspase-9 elevate around infarction areas. The experiments by terminal deoxynucleotidy transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick-end labeling (TUNEL) illustrate that TUNEL-positive cells are higher around infarction tissues than controls. Moreover, GRP78, caspase-9 and TUNEL cells emerge one after another during ischemia. In conclusion, ER stress, apoptosis initiation and DNA fragment develop sequentially in ischemic human brain. ER stress during excessive ischemia stimulates apoptotic cell death beyond activating a defense for nerve cells being away from injury.
Collapse
Affiliation(s)
- Shu-Rong Duan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Qi SH, Guan QH, Wang M, Zhang GY. Action of ERK5 in ischemic tolerance suggests its probable participation in the signaling mechanism. J Recept Signal Transduct Res 2009; 29:38-43. [PMID: 19519168 DOI: 10.1080/10799890802675767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Here we examined the effects of ischemia preconditioning and ketamine, an NMDA receptor antagonist, on the activation and its nucleus translocation of ERK5 in hippocampal CA1 region. Our results showed ERK5 was not activated in rat hippocampus CA1 region. But in cytosol extracts preconditioned with 3 min of sublethal ischaemia, ERK5 activation was enhanced significantly, with two peaks occurring at 3 hr and 3 days, respectively. This activation returned to base level 3 days later. The results lead us to conclude that preconditioning increased the activations of ERK5 during reperfusion after lethal ischemia through NMDA receptor. Preconditioning increased the activation and nucleus translocation of ERK5 during reperfusion after lethal ischemia through the NMDA receptor. These findings might provide some clues to understanding the mechanism underlying ischemia tolerance and to finding clinical therapies for stroke using the endogenous neuroprotection.
Collapse
Affiliation(s)
- Su-Hua Qi
- School of Life Science and Biotechnology, China Pharmaceutical University, 24 Tongjia Street, Nanjing, PR China
| | | | | | | |
Collapse
|
20
|
Lehotský J, Urban P, Pavlíková M, Tatarková Z, Kaminska B, Kaplán P. Molecular mechanisms leading to neuroprotection/ischemic tolerance: effect of preconditioning on the stress reaction of endoplasmic reticulum. Cell Mol Neurobiol 2009; 29:917-25. [PMID: 19283468 PMCID: PMC11506296 DOI: 10.1007/s10571-009-9376-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 02/23/2009] [Indexed: 01/22/2023]
Abstract
Ischemic tolerance can be developed by prior ischemic non-injurious stimulus preconditioning. The molecular mechanisms underlying ischemic tolerance are not yet fully understood. The purpose of this study is to evaluate the effect of preconditioning/preischemia on ischemic brain injury. We examined the endoplasmic reticulum stress response (unfolded protein response (UPR)) by measuring the mRNA and protein levels of specific genes such as ATF6, GRP78, and XBP1 after 15 min 4-VO ischemia and different times of reperfusion (1, 3, and 24 h). The data from the group of naïve ischemic rats were compared with data from the group of preconditioned animals. The results of the experiments showed significant changes in the gene expression at the mRNA level in the all ischemic/reperfusion phases. The influence of preischemia on protein level of XBP was significant in later ischemic times and at 3 h, the reperfusion reached 230% of the controls. The protein levels of GRP78 in preischemic animals showed a significant increase in ischemic and reperfusion times. They exceeded to 50% levels of corresponding naïve ischemic/reperfusion groups. Preconditioning also induced remarkable changes in the levels of ATF6 protein in the ischemic phase (about 170%). The levels of ATF6 remained elevated in earlier reperfusion times (37 and 62%, respectively) and persisted significantly elevated after 24 h of reperfusion. This data suggest that preconditioning paradigm (preischemia) underlies its neuroprotective effect by the attenuation of ER stress response after acute ischemic/reperfusion insult.
Collapse
Affiliation(s)
- J Lehotský
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, 036 01 Martin, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
21
|
Du Y, Li C, Hu WW, Song YJ, Zhang GY. Neuroprotection of preconditioning against ischemic brain injury in rat hippocampus through inhibition of the assembly of GluR6-PSD95-mixed lineage kinase 3 signaling module via nuclear and non-nuclear pathways. Neuroscience 2009; 161:370-80. [PMID: 19328223 DOI: 10.1016/j.neuroscience.2009.03.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 11/29/2022]
Abstract
Our previous studies showed that the assembly of the GluR6-PSD95-mixed lineage kinase 3 (MLK3) signaling module played an important role in rat ischemic brain injury. In this study, we aimed to elucidate whether ischemic preconditioning could downregulate the assembly of the GluR6-PSD95-MLK3 signaling module and suppress the activation of MLK3, MKK4/7, and c-Jun N-terminal kinase (JNK). As a result, ischemic preconditioning could not only inhibit the assembly of the GluR6-PSD95-MLK3 signaling module, diminish the phosphorylation of the transcription factor c-Jun, downregulate Fas ligand expression, attenuate the phosphorylation of 14-3-3 and Bcl-2 and the translocation of Bax to mitochondria, but also increase the release of cytochrome c and the activation of caspase-3. In contrast, both GluR6 antisense ODNs (oligodeoxynucleotides) and 6,7,8,9-tetrahydro-5-nitro-1 H-benz[g]indole-2,3-dione-3-oxime (NS102), an antagonist of GluR6 receptor, prevented the above effects of preconditioning, which shows that suppressing the expression of GluR6 or inhibiting GluR6 activity contributes negatively to preconditioning-induced ischemia tolerance. Taken together, our results indicate that preconditioning can inhibit the over-assembly of the GluR6-PSD95-MLK3 signaling module and the JNK3 activation. GluR6 subunit-containing kainite receptors play an important role in the preconditioning-induced neuronal survival and provide new insight into stroke therapy.
Collapse
Affiliation(s)
- Y Du
- Research Center for Biochemistry and Molecular Biochemistry and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, PR China
| | | | | | | | | |
Collapse
|
22
|
Urban P, Pavlíková M, Sivonová M, Kaplán P, Tatarková Z, Kaminska B, Lehotský J. Molecular analysis of endoplasmic reticulum stress response after global forebrain ischemia/reperfusion in rats: effect of neuroprotectant simvastatin. Cell Mol Neurobiol 2009; 29:181-92. [PMID: 18807172 PMCID: PMC11505799 DOI: 10.1007/s10571-008-9309-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 08/21/2008] [Indexed: 12/14/2022]
Abstract
Simvastatin is a cholesterol-lowering agent whose functional significance and neuroprotective mechanism in ischemic brain injury is not yet solved. The purpose of this study is to evaluate the effect of simvastatin on ischemic brain injury. We examined the endoplasmic reticulum stress response (UPR/unfolded protein response), by measuring the mRNA and protein levels of specific genes such as ATF6, GRP78, and XBP1 after 15 min 4-VO ischemia and different times of reperfusion (1, 3, and 24 h). The results from the group of naïve ischemic rats were compared with results from the group of pre-treated animals with simvastatin. The results of the experiments showed significant increase in all genes at the mRNA level in ischemic phase (about 43% for XBP1, 58% for GRP78, and 39% for ATF6 more than control). The protein level of XBP1 was decreased in pre-treated animals at ischemic phase and first hour of reperfusion (about 15% less), and did not reach control levels. The protein levels of GRP78 were maximal at third hour of reperfusion in statin group with a small decrease at 24 h of reperfusion in both groups. The levels of ATF6 mRNA in statin-treated animals was higher in comparison to non-statin animals at the ischemic phase and the third hour of reperfusion (about 35% higher), which was also translated into the higher protein level. This could indicate that one of the main proteins targeted to enhance neuroprotective effect to ER during the first two hours of reperfusion was ATF6 protein, the levels of which were 60% higher than in non-treated animals. These data suggest that simvastatin, in addition to the proposed neuroprotective effect, exerts a neuroprotective role in the attenuation of ER stress response after acute ischemic/reperfusion insult.
Collapse
Affiliation(s)
- P. Urban
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Malá Hora 4, 036 01 Martin Slovak Republic
| | - M. Pavlíková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Malá Hora 4, 036 01 Martin Slovak Republic
| | - M. Sivonová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Malá Hora 4, 036 01 Martin Slovak Republic
| | - P. Kaplán
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Malá Hora 4, 036 01 Martin Slovak Republic
| | - Z. Tatarková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Malá Hora 4, 036 01 Martin Slovak Republic
| | - B. Kaminska
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - J. Lehotský
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Malá Hora 4, 036 01 Martin Slovak Republic
| |
Collapse
|
23
|
STETLER RANNE, ZHANG FENG, LIU COLLIN, CHEN JUN. Ischemic tolerance as an active and intrinsic neuroprotective mechanism. HANDBOOK OF CLINICAL NEUROLOGY 2009; 92:171-95. [PMID: 18790275 PMCID: PMC2710312 DOI: 10.1016/s0072-9752(08)01909-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - FENG ZHANG
- University of Pittsburgh, Pittsburgh, PA, USA
| | - COLLIN LIU
- University of Pittsburgh, Pittsburgh, PA, USA
| | - JUN CHEN
- University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Cerebral ischemic preconditioning induces lasting effects on CA1 neuronal survival, prevents memory impairments but not ischemia-induced hyperactivity. Behav Brain Res 2008; 189:145-51. [DOI: 10.1016/j.bbr.2007.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/20/2007] [Accepted: 12/26/2007] [Indexed: 01/19/2023]
|
25
|
Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis. Biochem J 2008; 411:667-77. [DOI: 10.1042/bj20071060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cerebral ischaemia causes long-lasting protein synthesis inhibition that is believed to contribute to brain damage. Energy depletion promotes translation inhibition during ischaemia, and the phosphorylation of eIF (eukaryotic initiation factor) 2α is involved in the translation inhibition induced by early ischaemia/reperfusion. However, the molecular mechanisms underlying prolonged translation down-regulation remain elusive. NMDA (N-methyl-D-aspartate) excitotoxicity is also involved in ischaemic damage, as exposure to NMDA impairs translation and promotes the synthesis of NO (nitric oxide), which can also inhibit translation. In the present study, we investigated whether NO was involved in NMDA-induced protein synthesis inhibition in neurons and studied the underlying molecular mechanisms. NMDA and the NO donor DEA/NO (diethylamine–nitric oxide sodium complex) both inhibited protein synthesis and this effect persisted after a 30 min exposure. Treatments with NMDA or NO promoted calpain-dependent eIF4G cleavage and 4E-BP1 (eIF4E-binding protein 1) dephosphorylation and also abolished the formation of eIF4E–eIF4G complexes; however, they did not induce eIF2α phosphorylation. Although NOS (NO synthase) inhibitors did not prevent protein synthesis inhibition during 30 min of NMDA exposure, they did abrogate the persistent inhibition of translation observed after NMDA removal. NOS inhibitors also prevented NMDA-induced eIF4G degradation, 4E-BP1 dephosphorylation, decreased eIF4E–eIF4G-binding and cell death. Although the calpain inhibitor calpeptin blocked NMDA-induced eIF4G degradation, it did not prevent 4E-BP1 dephosphorylation, which precludes eIF4E availability, and thus translation inhibition was maintained. The present study suggests that eIF4G integrity and hyperphosphorylated 4E-BP1 are needed to ensure appropriate translation in neurons. In conclusion, our data show that NO mediates NMDA-induced persistent translation inhibition and suggest that deficient eIF4F activity contributes to this process.
Collapse
|
26
|
Abstract
GADD34 is expressed in the ischaemic brain and reverses protein synthesis shutdown. Consequently, GADD34 could have neuroprotective potential in stroke. BHK medium, a replication-deficient HSV viral vector (HSV1716) with no insert or containing full-length GADD34, the N terminal or a conserved portion of the gene, was injected into mouse brain before stroke. Infarct size was 1.0+/-0.26, 1.19+/-0.36, 1.5+/-0.36, 1.3+/-0.36, and 1.1+/-0.28 mm3, respectively. The increase in infarct size with full-length GADD34 was statistically significant (P<0.05). Immunohistochemistry confirmed viral protein expression. Tissue culture studies revealed GADD34 gene restored virulence in HSV1716, suggesting that HSV virulence, rather than increased GADD34, exacerbated ischaemic damage.
Collapse
|
27
|
Wang L, Traystman RJ, Murphy SJ. Inhalational anesthetics as preconditioning agents in ischemic brain. Curr Opin Pharmacol 2008; 8:104-10. [PMID: 17962069 PMCID: PMC2254937 DOI: 10.1016/j.coph.2007.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
While many pharmacological agents have been shown to protect the brain from cerebral ischemia in animal models, none have translated successfully to human patients. One potential clinical neuroprotective strategy in humans may involve increasing the brain's tolerance to ischemia by preischemic conditioning (preconditioning). There are many methods to induce tolerance via preconditioning such as ischemia itself, pharmacological, hypoxia, endotoxin, and others. Inhalational anesthetic agents have also been shown to result in brain preconditioning. Mechanisms responsible for brain preconditioning are many, complex, and unclear and may involve Akt activation, ATP-sensitive potassium channels, and nitric oxide, amongst many others. Anesthetics, however, may play an important and unique role as preconditioning agents, particularly during the perioperative period.
Collapse
Affiliation(s)
| | - Richard J. Traystman
- Oregon Health and Science University, Department of Anesthesiology and Peri-Operative Medicine, 3181 SW Sam Jackson Road, Mail Code: UHS-2, Portland, OR 97239-3098
| | - Stephanie J. Murphy
- Oregon Health and Science University, Department of Anesthesiology and Peri-Operative Medicine, 3181 SW Sam Jackson Road, Mail Code: UHS-2, Portland, OR 97239-3098
| |
Collapse
|
28
|
Sawe N, Steinberg G, Zhao H. Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res 2008; 86:1659-69. [DOI: 10.1002/jnr.21604] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Roberts GG, Di Loreto MJ, Marshall M, Wang J, DeGracia DJ. Hippocampal cellular stress responses after global brain ischemia and reperfusion. Antioxid Redox Signal 2007; 9:2265-75. [PMID: 17715997 DOI: 10.1089/ars.2007.1786] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Brain ischemia and reperfusion (I/R) induce neuronal intracellular stress responses, including the heat-shock response (HSR) and the unfolded protein response (UPR), but the roles of each in neuronal survival or death are not well understood. We assessed the relative expression of UPR (ATF4, CHOP, GRP78, XBP-1) and HSR-related (HSP70 and HSC70) mRNAs and proteins after brain I/R. We evaluated these in hippocampal CA1 and CA3 after normothermic, transient global forebrain ischemia and up to 42 h of reperfusion. In CA1, chop and xbp-1 mRNA showed maximal 14- and 12-fold increases, and the only protein increase observed was for 30-kDa XBP-1. CA3 showed induction of only xbp-1. GRP78 protein declined in CA1, but increased twofold and then declined in CA3. Transcription of hsp70 was an order of magnitude greater than that of any UPR-induced transcript in either CA1 or CA3. HSP70 translation in CA1 lagged CA3 by approximately 24 h. We conclude that (a) in terms of functional end products, the ER stress response after brain ischemia and reperfusion more closely resembles the integrated stress response than the UPR; and (b) the HSR leads to quantitatively greater mRNA production in postischemic neurons, suggesting that cytoplasmic stress predominates over ER stress in reperfused neurons.
Collapse
Affiliation(s)
- George G Roberts
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|
30
|
Piñeiro D, González VM, Hernández-Jiménez M, Salinas M, Martín ME. Translation regulation after taxol treatment in NIH3T3 cells involves the elongation factor (eEF)2. Exp Cell Res 2007; 313:3694-3706. [PMID: 17825817 DOI: 10.1016/j.yexcr.2007.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 07/24/2007] [Accepted: 07/24/2007] [Indexed: 02/08/2023]
Abstract
Changes to the translational machinery that occur during apoptosis have been described in the last few years. The two principal ways in which translational factors are modified during apoptosis are: (i) changes in protein phosphorylation and (ii) specific proteolytic cleavages. Taxol, a member of a new class of anti-tubulin drugs, is currently used in chemotherapeutic treatments of different types of cancers. We have previously demonstrated that taxol induces calpain-mediated apoptosis in NIH3T3 cells [Piñeiro et al., Exp. Cell Res., 2007, 313:369-379]. In this study we found that translation was significantly inhibited during taxol-induced apoptosis in these cells. We have studied the phosphorylation status and expression levels of eIF2a, eIF4E, eIF4G and the regulatory protein 4E-BP1, all of which are implicated in translation regulation. We found that taxol treatment did not induce changes in eIF2alpha phosphorylation, but strongly decreased eIF4G, eIF4E and 4E-BP1 expression levels. MDL28170, a specific inhibitor of calpain, prevented reduction of eIF4G, but not of eIF4E or 4E-BP1 levels. Moreover, the calpain inhibitor did not block taxol-induced translation inhibition. All together these findings demonstrated that none of these factors are responsible for the taxol-induced protein synthesis inhibition. On the contrary, taxol treatment increased elongation factor eEF2 phosphorylation in a calpain-independent manner, supporting a role for eEF2 in taxol-induced translation inhibition.
Collapse
Affiliation(s)
- David Piñeiro
- Departamento de Bioquímica-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | | | | | | | | |
Collapse
|
31
|
Cid C, Garcia-Bonilla L, Camafeita E, Burda J, Salinas M, Alcazar A. Proteomic characterization of protein phosphatase 1 complexes in ischemia-reperfusion and ischemic tolerance. Proteomics 2007; 7:3207-18. [PMID: 17683050 DOI: 10.1002/pmic.200700214] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Serine/threonine protein phosphatase 1 (PP1) regulates multiple cellular processes. Protein phosphorylation-dephosphorylation is largely altered during ischemia and subsequent reperfusion. The brain is particularly vulnerable to stress resulting from ischemia-reperfusion (IR), however, the acquisition of ischemic tolerance (IT) protects against IR stress. We studied PP1 complexes in response to IR stress and IT in brain using proteomic characterization of PP1 complexes in animal models of IR and IT. PP1alpha and PP1gamma were immunoprecipitated and resolved by 2-D. DIGE analysis detected 14 different PP1-interacting proteins that exhibited significant changes in their association with PP1alpha or PP1gamma. These proteins were identified by MALDI-TOF MS. Seven had the PP1-binding RVxF motif. IR altered the interaction of heat shock cognate 71 kDa-protein, creatine kinase B, and dopamine- and cAMP-regulated phosphoprotein 32 kDa (DARPP32) with both PP1alpha and PP1gamma, and the interaction of phosphodiesterase-6B, transitional ER ATPase, lamin-A, glucose-regulated 78 kDa-protein, dihydropyrimidinase-related protein-2, gamma-enolase, neurofilament-L, and ubiquitin ligase SIAH2 with PP1gamma. IT prevented most of the IR-induced effects. This study identifies novel PP1alpha- and PP1gamma-interacting proteins and reveals an in vivo modularity of PP1 holoenzymes in response to physiological ischemic stress. It supports a potential role of PP1 in IR stress and as a target of the endogenous protective mechanisms induced by IT.
Collapse
Affiliation(s)
- Cristina Cid
- Department of Investigation, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
32
|
García-Bonilla L, Cid C, Alcázar A, Burda J, Ayuso I, Salinas M. Regulatory proteins of eukaryotic initiation factor 2-alpha subunit (eIF2 alpha) phosphatase, under ischemic reperfusion and tolerance. J Neurochem 2007; 103:1368-80. [PMID: 17760864 DOI: 10.1111/j.1471-4159.2007.04844.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha), which is one of the substrates of protein phosphatase 1 (PP1), occurs rapidly during the first minutes of post-ischemic reperfusion after an episode of cerebral ischemia. In the present work, two experimental models of transient global ischemia and ischemic tolerance (IT) were used to study PP1 interacting/regulatory proteins following ischemic reperfusion. For that purpose we utilized PP1 purified by microcystin chromatography, as well as 2D DIGE of PP1alpha and PP1gamma immunoprecipitates. The highest levels of phosphorylated eIF2alpha found after 30 min reperfusion in rats without IT, correlated with increased levels in PP1 immunoprecipitates of the inhibitor DARPP32 as well as GRP78 and HSC70 proteins. After 4 h reperfusion, the levels of these proteins in PP1c complexes had returned to control values, in parallel to a significant decrease in eIF2alpha phosphorylated levels. IT that promoted a decrease in eIF2alpha phosphorylated levels after 30 min reperfusion induced the association of GADD34 with PP1c, while prevented that of DARPP32, GRP78, and HSC70. Different levels of HSC70 and DARPP32 associated with PP1alpha and PP1gamma isoforms, whereas GRP78 was only detected in PP1gamma immunoprecipitates. Here we suggest that PP1, through different signaling complexes with their interacting proteins, may modulate the eIF2alpha phosphorylation/dephosphorylation during reperfusion after a transient global ischemia in the rat brain. Of particular interest is the potential role of GADD34/PP1c complexes after tolerance acquisition.
Collapse
|
33
|
Zhang M, Li WB, Geng JX, Li QJ, Sun XC, Xian XH, Qi J, Li SQ. The upregulation of glial glutamate transporter-1 participates in the induction of brain ischemic tolerance in rats. J Cereb Blood Flow Metab 2007; 27:1352-68. [PMID: 17228332 DOI: 10.1038/sj.jcbfm.9600441] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glial glutamate transporter-1 (GLT-1) plays an essential role in removing glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. To explore whether GLT-1 plays a role in the acquisition of brain ischemic tolerance (BIT) induced by cerebral ischemic preconditioning (CIP), the present study was undertaken to observe in vivo changes in the expression of GLT-1 and glial fibrillary acidic protein (GFAP) in the CA1 hippocampus during the induction of BIT, and the effect of dihydrokainate (DHK), an inhibitor of GLT-1, on the acquisition of BIT in rats. Immunohistochemistry for GFAP showed that the processes of astrocytes were prolonged after a CIP 2 days before the lethal ischemic insult, which could protect pyramidal neurons in the CA1 hippocampus against delayed neuronal death induced normally by lethal ischemic insult. The prolonged processes extended into the area between the pyramidal neurons and tightly surrounded them. These changes made the pyramidal layer look like a 'shape grid'. Simultaneously, the prolonged and extended processes showed a great deal of GLT-1. Western blotting analysis showed significant upregulation of GLT-1 expression after the CIP, especially when it was administered 2 days before the subsequent lethal ischemic insult. Neuropathological evaluation by thionin staining showed that DHK dose-dependently blocked the protective role of CIP against delayed neuronal death induced normally by lethal brain ischemia. It might be concluded that the surrounding of pyramidal neurons by astrocytes and upregulation of GLT-1 induced by CIP played an important role in the acquisition of the BIT induced by CIP.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kitano H, Young JM, Cheng J, Wang L, Hurn PD, Murphy SJ. Gender-specific response to isoflurane preconditioning in focal cerebral ischemia. J Cereb Blood Flow Metab 2007; 27:1377-86. [PMID: 17264860 PMCID: PMC2266686 DOI: 10.1038/sj.jcbfm.9600444] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inhalation anesthetics are effective chemical preconditioning agents in experimental cerebral ischemia. However, previous work has been performed exclusively in male animals. We determined if there is a gender difference in ischemic outcome after isoflurane preconditioning (IsoPC), and if this sex-specific response is linked to differences in Akt phosphorylation or expression of neuronal inducible cell-death putative kinase (NIPK), a negative modulator of Akt activation. Young and middle-aged male and female mice were preconditioned for 4 h with air (sham PC) or 1.0% IsoPC and recovered for 24 h. Cortices were subdissected from preconditioned young male and female mice for measurement of Akt phosphorylation (Western blot) and NIPK mRNA (quantitative polymerase chain reaction). Additional cohorts underwent 2 h of reversible middle cerebral artery occlusion. Lastly, male and female Akt1(+/+) and Akt1(-/-) mice were studied to determine if gender differences in ischemic outcome after IsoPC is Akt1-dependent. Infarction volume was determined at 22 h reperfusion (2,3,5-triphenyltetrazolium chloride). As expected, IsoPC decreased ischemic damage as compared with sham PC in young and middle-aged male mice. In contrast, IsoPC markedly increased infarction in young female mice and had no effect in middle-aged female mice. Cortical phospho-Akt was increased by IsoPC versus sham PC only in male mice. No increase was observed in IsoPC female mice. NIPK mRNA was higher in female mice than in male mice regardless of preconditioning status. Male IsoPC neuroprotection was lost in Akt1-deficient male mice. We conclude that IsoPC is beneficial only in ischemic male brain and that sex differences in IsoPC are mediated through Akt activation and basal NIPK expression.
Collapse
Affiliation(s)
- Hideto Kitano
- Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Irreversible translation arrest occurs in reperfused neurons that will die by delayed neuronal death. It is now recognized that suppression of protein synthesis is a general response of eukaryotic cells to exogenous stressors. Indeed, stress-induced translation arrest can be viewed as a component of cell stress responses, and consists of initiation, maintenance, and termination phases that work in concert with stress-induced transcriptional mechanisms. Within this framework, we review translation arrest in reperfused neurons. This framework provides a basis to recognize that phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is the initiator of translation arrest, and a key marker indicating activation of neuronal stress responses. However, eIF2 alpha phosphorylation is reversible. Other phases of stress-induced translation arrest appear to contribute to irreversible translation arrest specifically in ischemic vulnerable neuron populations. We detail two lines of evidence supporting this view. First, ischemia, as a stress stimulus, induces irreversible co-translational protein misfolding and aggregation after 4 to 6 h of reperfusion, trapping protein synthesis machinery into functionally inactive protein aggregates. Second, ischemia and reperfusion leads to modifications of stress granules (SGs) that sequester functionally inactive 48S preinitiation complexes to maintain translation arrest. At later reperfusion durations, these mechanisms may converge such that SGs become sequestered in protein aggregates. These mechanisms result in elimination of functionally active ribosomes and preclude recovery of protein synthesis in selectively vulnerable neurons. Thus, recognizing translation arrest as a component of endogenous cellular stress response pathways will aid in making sense of the complexities of postischemic translation arrest.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology and the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
36
|
García-Bonilla L, Burda J, Piñeiro D, Ayuso I, Gómez-Calcerrada M, Salinas M. Calpain-induced proteolysis after transient global cerebral ischemia and ischemic tolerance in a rat model. Neurochem Res 2006; 31:1433-41. [PMID: 17089194 DOI: 10.1007/s11064-006-9195-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 10/05/2006] [Indexed: 12/16/2022]
Abstract
The activation of the [Ca(2+)]-dependent cysteine protease calpain plays an important role in ischemic injury. Here, the levels of two calpain-specific substrates, p35 protein and eukaryotic initiation factor 4G (eIF4G), as well as its physiological regulator calpastatin, were investigated in a rat model of transient global cerebral ischemia with or without ischemic tolerance (IT). Extracts of the cerebral cortex, whole hippocampus and hippocampal subregions after 30 min of ischemia and different reperfusion times (30 min and 4 h) were used. In rats without IT, the p35 levels slightly decreased after ischemia or reperfusion, whereas the levels of p25 (the truncated form of p35) were much higher than those in sham control rats after ischemia and remained elevated during reperfusion. The eIF4G levels deeply diminished after reperfusion and the decrease was significantly greater in CA1 and the rest of the hippocampus than in the cortex. By contrast, the calpastatin levels did not significantly decrease during ischemia or early reperfusion, but were upregulated after 4 h of reperfusion in the cortex. Although IT did not promote significant changes in p35 and p25 levels, it induced a slight increase in calpastatin and eIF4G levels in the hippocampal subregions after 4 h of reperfusion.
Collapse
Affiliation(s)
- L García-Bonilla
- Servicio de Bioquímica, Departamento de Investigación, Hospital Ramón y Cajal, Ctra Colmenar Km 9, 28034, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Liu HQ, Li WB, Li QJ, Zhang M, Sun XC, Feng RF, Xian XH, Li SQ, Qi J, Zhao HG. Nitric Oxide Participates in the Induction of Brain Ischemic Tolerance via Activating ERK1/2 Signaling Pathways. Neurochem Res 2006; 31:967-74. [PMID: 16847593 DOI: 10.1007/s11064-006-9102-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2006] [Indexed: 10/24/2022]
Abstract
The present study was undertaken to observe in vivo changes of expression and phosphorylation of ERK1/2 proteins during brain ischemic preconditioning and effects of inhibiting generation of nitric oxide (NO) on the changes to determine the role of ERKs in the involvement of NO participating in the acquired tolerance. Fifty-five Wistar rats were used. Brain ischemic preconditioning was performed with four-vessel occlusion for 3 min. Total ERK1/2 proteins and phospho-ERK1/2 in the CA1 hippocampus were assayed with Western immunoblot. Total ERK1/2 proteins did not change in period from 5 min to 5 days of reperfusion after preconditioning stimulus. While the level of phospho-ERK1/2 increased obviously to 223, 237, 300, 385 and 254% of sham level at times of 5 min, 2 h, 1, 3 and 5 days after preconditioning stimulus, respectively (P < 0.01). Administration of L-NAME, an inhibitor of NO synthase, 30 min prior to preconditioning stimulus failed to induce change in total ERK1/2 proteins (P > 0.05). However, phospho-ERK1/2 increased only to 138 and 176% of sham level at 2 h and 3 days after preconditioning stimulus, respectively, when animals were pretreated with L-NAME. The magnitudes of the increase were obviously low compared with those (237 and 385%) in animals untreated with L-NAME at corresponding time points (P < 0.01), which indicated that phosphorylation of ERK1/2 normally induced by preconditioning stimulus was blocked apparently by administration of L-NAME. The results suggested that phosphorylation of ERK1/2, rather than synthesis of ERK1/2 proteins, was promoted in brain ischemic preconditioning, and that the promotion was partly mediated by NO signal pathway.
Collapse
Affiliation(s)
- Hui-Qing Liu
- Department of Neurology, Ren Min Hospital of Hebei province, Shijiazhuang 050000, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang RM, Yang F, Zhang YX. Preconditioning-induced activation of ERK5 is dependent on moderate Ca2+ influx via NMDA receptors and contributes to ischemic tolerance in the hippocampal CA1 region of rats. Life Sci 2006; 79:1839-46. [PMID: 16859717 DOI: 10.1016/j.lfs.2006.06.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 05/23/2006] [Accepted: 06/13/2006] [Indexed: 11/15/2022]
Abstract
Accumulating evidence implicates activation (phosphorylation) of mitogen-activated protein kinases (MAPK) during nonlethal ischemic preconditioning in the protection of hippocampal CA1 neuron against subsequent ischemic events. In this paper, we undertook to identify the role of extracellular signal regulated kinase (ERK) 5 in cerebral ischemic preconditioning (CIP). Three minutes of ischemia was induced as preconditioning stimulus. Three days later, 6 min of ischemia was induced. The levels of ERK5 protein expression and its activation were detected with or without the CIP in hippocampal CA1 and the dentate gyrus (DG) regions. Our results showed that ERK5 was activated selectively in hippocampal CA1 region with, but not without, the ischemic preconditioning. Notably, during the later phase of reperfusion, the rise in ERK5 activation was strong and persistent with a peak occurring at the third day. The activation peak was effectively prevented and ERK5 protein expression was significantly decreased by intracerebroventricular infusion of ERK5 antisense oligonucleotide (every 24 h for 3 days before the preconditioning), but not by sense oligonucleotide or vehicle. Subsequently, the CA1 neuronal loss was largely elevated. Moreover, both MK801 (10 microM), an antagonist of NMDA receptor, and EGTA (100 mM, but neither 50 nor 150 mM), an extracellular Ca2+ chelator, not only effectively inhibited the ERK5 activation but also markedly abolished CIP-induced survival of the CA1 neurons. These results suggested that activation of the ERK5 pathway by CIP was at least partly dependent on moderate Ca2+ influx via NMDA receptor, which might contribute to ischemic tolerance in hippocampal CA1 region of rats.
Collapse
Affiliation(s)
- Rui-Min Wang
- Research Center for Molecular Biology, North China Coal Medical College, Tangshan, Hebei, PR China.
| | | | | |
Collapse
|
39
|
Connolly EP, Thuillier V, Rouy D, Bouétard G, Schneider RJ. Inhibition of Cap-initiation complexes linked to a novel mechanism of eIF4G depletion in acute myocardial ischemia. Cell Death Differ 2006; 13:1586-94. [PMID: 16439989 DOI: 10.1038/sj.cdd.4401854] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Translational control in the rat heart was characterized during acute myocardial ischemia introduced by left coronary artery ligature. Within 10 min of ischemia, eukaryotic (eIF)4E binds to its negative regulator, eIF4E-binding protein-1 (4E-BP1), but the levels of 4E-BP1 are insufficient to disrupt cap-dependent mRNA initiation complexes. However, by 1 h of ischemia, the abundance of the cap-initiation complex protein eIF4G is reduced by relocalization into TIAR protein complexes, triggering 4E-BP1 sequestration of eIF4E and disruption of cap-dependent mRNA initiation complexes. As the heart begins to fail at 6 h, proteolysis of eIF4G is observed, resulting in its depletion and accompanied by limited destruction of 4E-BP1 and eIF4E. eIF4G proteolysis and modest loss of 4E-BP1 are associated with caspase-3 activation and induction of cardiomyocyte apoptotic and necrotic death. Acute heart ischemia therefore downregulates cap-dependent translation through eIF4E sequestration triggered by eIF4G depletion.
Collapse
Affiliation(s)
- E P Connolly
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
40
|
DeGracia DJ, Rafols JA, Morley SJ, Kayali F. Immunohistochemical mapping of total and phosphorylated eukaryotic initiation factor 4G in rat hippocampus following global brain ischemia and reperfusion. Neuroscience 2006; 139:1235-48. [PMID: 16530975 DOI: 10.1016/j.neuroscience.2006.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/24/2006] [Accepted: 01/26/2006] [Indexed: 02/07/2023]
Abstract
Partial proteolysis and phosphorylation of the translation initiation factor eukaryotic initiation factor 4G (eIF4G) occur in reperfused brain, but the contribution of eIF4G alterations to brain injury has not been established. A component of the complex delivering mRNA to the small ribosomal subunit, eIF4G is also found in stress granules. Stress granules sequester inactive 48S preinitiation complexes during stress-induced translation arrest. We performed double-labeling immunofluorescence histochemistry for total or ser 1108 phosphorylated eIF4G and the stress granule component T-cell internal antigen following normothermic, 10 min cardiac arrest-induced global brain ischemia and up to 4 h reperfusion in the rat. In cornu ammonis (Ammon's horn; CA) 1 at 90 min and 4 h reperfusion, eIF4G staining transformed from a homogeneous to an aggregated distribution. The number of eIF4G-containing stress granules differed between CA1 and CA3 during reperfusion. In hippocampal pyramidal neurons, phosphorylated eIF4G appeared exclusively in stress granules. Supragranular interneurons of the dentate gyrus showed a large increase in cytoplasmic eIF4G(P) following reperfusion. Immunoblot analysis with antisera against different portions of eIF4G showed a large increase in phosphorylated C-terminal eIF4G fragments, suggesting these accumulate in the cytoplasm of dentate gyrus interneurons. Thus, altered eIF4G subcellular compartmentalization may contribute to prolonged translation arrest in CA1 pyramidal neurons. Accumulation of phosphorylated eIF4G fragments may contribute to the vulnerability of dentate interneurons. Ischemia and reperfusion invoke different translational control responses in distinct hippocampal neuron populations, which may contribute to the differential ischemic vulnerabilities of these cells.
Collapse
Affiliation(s)
- D J DeGracia
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
41
|
Liu C, Chen S, Kamme F, Hu B. Ischemic preconditioning prevents protein aggregation after transient cerebral ischemia. Neuroscience 2005; 134:69-80. [PMID: 15939539 PMCID: PMC3518067 DOI: 10.1016/j.neuroscience.2005.03.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 02/28/2005] [Accepted: 03/11/2005] [Indexed: 12/11/2022]
Abstract
Transient cerebral ischemia leads to protein aggregation mainly in neurons destined to undergo delayed neuronal death after ischemia. This study utilized a rat transient cerebral ischemia model to investigate whether ischemic preconditioning is able to alleviate neuronal protein aggregation, thereby protecting neurons from ischemic neuronal damage. Ischemic preconditioning was introduced by a sublethal 3 min period of ischemia followed by 48 h of recovery. Brains from rats with either ischemic preconditioning or sham-surgery were then subjected to a subsequent 7 min period of ischemia followed by 30 min, 4, 24, 48 and 72 h of reperfusion. Protein aggregation and neuronal death were studied by electron and confocal microscopy, as well as by biochemical analyses. Seven minutes of cerebral ischemia alone induced severe protein aggregation after 4 h of reperfusion mainly in CA1 neurons destined to undergo delayed neuronal death (which took place after 72 h of reperfusion). Ischemic preconditioning reduced significantly protein aggregation and virtually eliminated neuronal death in CA1 neurons. Biochemical analyses revealed that ischemic preconditioning decreased accumulation of ubiquitin-conjugated proteins (ubi-proteins) and reduced free ubiquitin depletion after brain ischemia. Furthermore, ischemic preconditioning also reduced redistribution of heat shock cognate protein 70 and Hdj1 from cytosolic fraction to protein aggregate-containing fraction after brain ischemia. These results suggest that ischemic preconditioning decreases protein aggregation after brain ischemia.
Collapse
Affiliation(s)
| | | | | | - B.R. Hu
- Corresponding author. Tel: +1-305-243-4854. (B. Hu)
| |
Collapse
|
42
|
McCaig D, Imai H, Gallagher L, Graham DI, Harland J, Moira Brown S, Mhairi Macrae I. Evolution of GADD34 expression after focal cerebral ischaemia. Brain Res 2005; 1034:51-61. [PMID: 15713259 DOI: 10.1016/j.brainres.2004.11.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2004] [Indexed: 11/20/2022]
Abstract
GADD34, a stress response protein associated with cell rescue, DNA repair and apoptosis, is expressed in the ischaemic brain. The C-terminal region of GADD34 has homology with the Herpes Simplex Virus protein, ICP34.5, which overcomes the protein synthesis block after viral infection by actively dephosphorylating eukaryotic translation initiation factor 2alpha (eIF2alpha). The carboxy terminus of GADD34 is also capable of dephosphorylating eIF2alpha and therefore has the capacity to restore the protein synthesis shutoff associated with ischaemia. This study examines the distribution and time course of GADD34 expression after focal cerebral ischaemia. Focal ischaemia or sham procedure was carried out on Sprague-Dawley rats with survival times of 4, 12, 24 h, 7 and 30 days. Brains were processed for histology and immunohistochemistry. Ischaemic damage was mapped onto line diagrams and GADD34 positive cells counted in selected regions of cortex and caudate. GADD34 immunopositive cells (mainly neurones), expressed as cells/mm2, were present in ischaemic brains at 4 h (e.g., peri-infarct cortex 20 +/- 5; contralateral cortex 3 +/- 1, P < 0.05). Of the time points examined, numbers of GADD34 positive cells were highest 24 h after ischaemia (peri-infarct cortex 31 +/- 7.3, contralateral cortex 0.1 +/- 0.1, P < 0.05). Immunopositive cells, following a similar time course, were identified within the peri-infarct zone in the caudate nucleus and in ipsilateral cingulate cortex (possibly as a consequence of cortical spreading depression). GADD34 positive cells did not co-localise with a marker of irreversible cell death (TUNEL). Taken together, GADD34 positive cells in key neuroanatomical locations pertinent to the evolving ischaemic lesion, the lack of co-localisation with TUNEL and the protein's known effects on restoring protein synthesis, repairing DNA and involvement in ischaemic pre-conditioning suggests that it has the potential to influence cell survival in ischaemically compromised tissue.
Collapse
Affiliation(s)
- David McCaig
- Wellcome Surgical Institute, Division of Clinical Neuroscience, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow G61 1QH, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Yin XH, Zhang QG, Miao B, Zhang GY. Neuroprotective effects of preconditioning ischaemia on ischaemic brain injury through inhibition of mixed-lineage kinase 3 via NMDA receptor-mediated Akt1 activation. J Neurochem 2005; 93:1021-9. [PMID: 15857405 DOI: 10.1111/j.1471-4159.2005.03096.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A number of works show that the mitogen-activated protein kinase (MAPK) signalling pathway responds actively in cerebral ischaemia and reperfusion. We undertook our present studies to clarify the role of mixed-lineage kinase 3 (MLK3), a MAPK kinase kinase (MAPKKK) in MAPK cascades, in global ischaemia and ischaemic tolerance. The mechanism concerning NMDA receptor-mediated Akt1 activation underlying ischaemic tolerance, was also investigated. Sprague-Dawley rats were subjected to 6 min of ischaemia and differing times of reperfusion. Our results showed MLK3 was activated in the hippocampal CA1 region with two peaks occurring at 30 min and 6 h, respectively. This activation returned to base level 3 days later. Both preconditioning with 3 min of sublethal ischaemia and NMDA pretreatment inhibited the 6-h peak of activation. However, pretreatment of ketamine before preconditioning reversed the inhibiting effect of preconditioning on MLK3 activation at 6 h of reperfusion. In the case of Akt1, however, preconditioning and NMDA pretreatment enhanced Akt1 activation at 10 min of reperfusion. Furthermore, ketamine pretreatment reversed preconditioning-induced increase of Akt1 activation. We also noted that pretreatment of LY294002 before preconditioning reversed both the inhibition of MLK3 activation at 6 h of reperfusion and the increase in Akt1 activation at 10 min of reperfusion. The above-mentioned results lead us to conclude that, in the hippocampal CA1 region, preconditioning inhibits MLK3 activation after lethal ischaemia and reperfusion and, furthermore, this effect is mediated by Akt1 activation through NMDA receptor stimulation.
Collapse
Affiliation(s)
- Xiao-Hui Yin
- Research Centre for Biochemistry and Molecular Biology, Xuzhou Medical College, Jiangsu, China
| | | | | | | |
Collapse
|
44
|
Abstract
We review studies of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) following cerebral ischemia and reperfusion (I/R). The UPR is a cell stress program activated when misfolded proteins accumulate in the ER lumen. UPR activation causes: (i) a PERK-mediated phosphorylation of eIF2alpha, inhibiting protein synthesis to prevent further accumulation of unfolded proteins in the ER and (ii) upregulation of genes coding for ER-resident enzymes and chaperones and others, via eIF2alpha(p), and ATF6 and IRE1 activation. UPR-induced transcription increases capacity of the ER to process misfolded proteins. If ER stress and the UPR are prolonged, apoptosis ensues. Multiple forms of ER stress have been observed following brain I/R. The UPR following brain I/R is not isomorphic between in vivo I/R models and in vitro cell culture systems with pharmacological UPR induction. Although PERK and IRE1 are activated in the initial hours of reperfusion, total PERK decreases, ATF6 is not activated, and there is delayed appearance of UPR-induced mRNAs. Thus, multiple damage mechanisms associated with brain I/R alter UPR expression and contribute to a pro-apoptotic phenotype in neurons. Insights resulting from these studies will be important for the development of therapies to halt neuronal death following brain I/R.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
45
|
Shenberger JS, Myers JL, Zimmer SG, Powell RJ, Barchowsky A. Hyperoxia alters the expression and phosphorylation of multiple factors regulating translation initiation. Am J Physiol Lung Cell Mol Physiol 2004; 288:L442-9. [PMID: 15542544 PMCID: PMC2675186 DOI: 10.1152/ajplung.00127.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperoxia is cytotoxic and depresses many cellular metabolic functions including protein synthesis. Translational control is exerted primarily during initiation by two mechanisms: 1) through inhibition of translation initiation complex formation via sequestration of the cap-binding protein, eukaryotic initiation factor (eIF) 4E, with inhibitory 4E-binding proteins (4E-BP); and 2) by prevention of eIF2-GTP-tRNA(i)(Met) formation and eIF2B activity by phosphorylated eIF2alpha. In this report, exposure of human lung fibroblasts to 95% O2 decreased the incorporation of thymidine into DNA at 6 h and the incorporation of leucine into protein beginning at 12 h. The reductions in DNA and protein synthesis were accompanied by increased phosphorylation of eIF4E protein and reduced phosphorylation of 4E-BP1. At 24 h, hyperoxia shifted 4E-BP1 phosphorylation to lesser-phosphorylated isoforms, increased eIF4E expression, and increased the association of eIF4E with 4E-BP1. Although hyperoxia did not change eIF2alpha expression, it increased its phosphorylation at Ser51, but not until 48 h. In addition, the activation of eIF2alpha was not accompanied by the formation of stress granules. These findings suggest that hyperoxia diminishes protein synthesis by increasing eIF4E phosphorylation and enhancing the affinity of 4E-BP1 for eIF4E.
Collapse
Affiliation(s)
- Jeffrey S Shenberger
- Department of Pediatrics, Dartmouth Medical School, Hanover, New Hampshire, USA.
| | | | | | | | | |
Collapse
|
46
|
DeGracia DJ. Acute and persistent protein synthesis inhibition following cerebral reperfusion. J Neurosci Res 2004; 77:771-6. [PMID: 15334596 DOI: 10.1002/jnr.20225] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lack of recovery from protein synthesis inhibition (PSI) closely correlates with neuronal death following brain ischemia and reperfusion. It has therefore been suggested that understanding the mechanisms of PSI will shed light on the mechanisms of selective neuronal death following ischemia and reperfusion. It is now known that the PKR-like ER kinase (PERK)-mediated phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) causes translation inhibition at initial reperfusion. Activation of PERK, in turn, indicates endoplasmic reticulum stress and activation of the unfolded protein response. However, phosphorylation of eIF2alpha is a transient event and can account for PSI only in the initial hours of reperfusion. Although a number of other regulators of protein synthesis, such as eIF4F, 4EBP-1, eEF-2, and S6 kinase, have been assessed following cerebral ischemia and reperfusion, the causes of prolonged PSI have yet to be fully elucidated. The purpose of the present article is to bring together the evidence indicating that, at minimum, postischemic PSI should be conceptualized as consisting of two components: an acute, transient component mediated by unfolded protein response-induced eIF2alpha phosphorylation and a longer term component that correlates with neuronal death. Ischemic tolerance appears to separate the acute and persistent components of reperfusion-induced translation inhibition. Specific models of the relationship among acute PSI, persistent PSI, and neuronal death are presented to clarify issues that have emerged from ongoing work in this area.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology, and the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA.
| |
Collapse
|
47
|
García L, O'Loghlen A, Martín ME, Burda J, Salinas M. Does phosphorylation of eukaryotic elongation factor eEF2 regulate protein synthesis in ischemic preconditioning? J Neurosci Res 2004; 77:292-8. [PMID: 15211596 DOI: 10.1002/jnr.20140] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ischemia/reperfusion-associated translation inhibition in the hippocampus is attenuated significantly at reinitiation and elongation steps by ischemic preconditioning (Burda et al. [2003] Neurochem. Res. 28:1237-1243). To address potential regulation of the elongation step by changes in eukaryotic elongation factor 2 (eEF2) phosphorylation with and without acquired ischemic tolerance (IT), Wistar rats were preconditioned by 5-min sublethal ischemia and 2 days later, 30-min lethal ischemia was induced. Given the important role that oxidative stress plays in the ischemic process, eEF2 phosphorylation was also studied in a model of oxidative stress in vitro. Three blocks of our results support a lack of correlation between eEF2 phosphorylation status and protein synthesis rate. First, eEF2 was dephosphorylated significantly (activated) after transient cerebral ischemia in rats with and without IT or H2O2-treated cells; however, protein synthesis was significantly inhibited under these three conditions. Second, after 30-min reperfusion, the protein synthesis rate was maintained below control levels in cortex and hippocampus of rats without IT. Eukaryotic EF2 phosphorylated levels were notably low only in the cortex, whereas levels in the hippocampus were close to that of sham controls. In rats with IT, protein synthesis was virtually restored in both brain regions, but phosphorylated eEF2 levels were even higher than in rats without IT. Third, after 4-hr reperfusion, the protein synthesis rate in cortex and hippocampus was observed to be below sham control values in rats with and without IT. Conversely, phosphorylated eEF2 levels were below sham control in rats with IT and reached sham control values in rats without IT.
Collapse
Affiliation(s)
- L García
- Hospital Ramón y Cajal, Servicio de Bioquímica, Madrid, Spain
| | | | | | | | | |
Collapse
|