1
|
Rezaee N, Hone E, Sohrabi H, Abdulraheem R, Johnson SK, Gunzburg S, Martins RN, Fernando WMADB. Investigating the Impact of Sorghum on Tau Protein Phosphorylation and Mitochondrial Dysfunction Modulation in Alzheimer's Disease: An In Vitro Study. Nutrients 2025; 17:516. [PMID: 39940374 PMCID: PMC11820761 DOI: 10.3390/nu17030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder with poorly understood pathology. Elevated tau, phospho-tau and mitochondrial dysfunction are significantly correlated with an increased risk of AD and are therefore targets for disease-modifying therapy. In this study, we examined the effects of polyphenolic extracts from six different varieties of sorghum: Shawaya short black-1 (Black), IS1311C (Brown), QL33/QL36 (Red), B923296 (Red), QL12 (White), and QL33 (Red) on the attenuation of beta amyloid-induced phospho-tau levels, total tau levels, and mitochondrial dysfunction in neuronal cells. METHOD Tau proteins (231 (pT231), Serine- 199 (pS199), and total tau proteins (T-tau)) were detected and quantified using sandwich ELISA kits, while mitochondrial dysfunction was measured in terms of mitochondrial membrane potential (Δψm) and adenosine triphosphate (ATP) levels. RESULTS Almost all varieties of the sorghum extracts reduced the beta amyloid-induced pS199 and pT231 levels (p ≤ 0.05). The optimum concentration of QL33/QL36 (1000 µg/mL), QL12 (2000 µg/mL), and QL33 (2000 µg/mL) strongly attenuated the phospho-tau level. Sorghum IS1311C (750 µg/mL) showed the highest Δψm reduction (39.8%), whereas QL33 (2000 µg/mL) most strongly improved the ATP level (37.7%) (p ≤ 0.01). For both Δψm and ATP assays, the least activity was observed in sorghum B923296 at 21% and 25.5%, respectively (p ≤ 0.01). CONCLUSIONS The polyphenol extracts from sorghum attenuated the tau toxicity and Aβ-induced mitochondrial dysfunction in a variety- and dose-dependent manner and made a promising disease-modifying agent against AD. However, extensive research is needed to validate the efficacy of the sorghum extracts prior to animal and clinical studies.
Collapse
Affiliation(s)
- Nasim Rezaee
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (N.R.); (E.H.); (H.S.); (R.A.); (R.N.M.)
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (N.R.); (E.H.); (H.S.); (R.A.); (R.N.M.)
| | - Hamid Sohrabi
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (N.R.); (E.H.); (H.S.); (R.A.); (R.N.M.)
- Centre for Ageing, Health Future Institute, Murdoch University, Murdoch, WA 6150, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Rasheed Abdulraheem
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (N.R.); (E.H.); (H.S.); (R.A.); (R.N.M.)
| | | | | | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (N.R.); (E.H.); (H.S.); (R.A.); (R.N.M.)
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - W. M. A. D. Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (N.R.); (E.H.); (H.S.); (R.A.); (R.N.M.)
| |
Collapse
|
2
|
Mondal A, Manivannan V. A naphthyl appended ninhydrin based colorimetric chemosensor for Cu 2+ ion: Detection of cysteine and ATP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124734. [PMID: 38986255 DOI: 10.1016/j.saa.2024.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
A ninhydrin-based colorimetric chemosensor (LH) was synthesized using 3-hydroxy-2-naphthoic hydrazide and 11H-indeno[1,2-b]quinoxalin-11-one. It was characterized by spectroscopic and single crystal X-ray diffraction techniques. In a semi-aqueous (MeOH/HEPES) system, LH displayed a characteristic chromogenic change from colorless to yellow upon adding Cu2+ ion, with the appearance of a new peak at λmax = 460 nm. A 1:1 binding stoichiometry between LH and Cu2+ ion has been found, with LOD = 2.3 μM (145 ppb) and LOQ = 8 μM (504 ppb). Based on experimental results the formula of [Cu(L)Cl(H2O)2] (1) was assigned and this in-situ generated 1 was found to exhibit a discoloration of upon gradual addition of cysteine (LOD = 60 nM) as well as ATP (LOD = 130 nM) having 1:2 and 1:1 stoichiometry respectively. The LH was useful for recognition of Cu2+ ion in real water samples and on filter paper strips. A two-input-two-output logic gate circuitry was also constructed by employing 1 and cysteine. The DFT/TDDFT calculations performed on LH and 1 were consistent with experimental findings. The binding affinity of LH towards HSA and BSA were determined with HSA having greater affinity than BSA, which was also supported by theoretical calculations.
Collapse
Affiliation(s)
- Anisha Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vadivelu Manivannan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
3
|
Kim AY, Al Jerdi S, MacDonald R, Triggle CR. Alzheimer's disease and its treatment-yesterday, today, and tomorrow. Front Pharmacol 2024; 15:1399121. [PMID: 38868666 PMCID: PMC11167451 DOI: 10.3389/fphar.2024.1399121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024] Open
Abstract
Alois Alzheimer described the first patient with Alzheimer's disease (AD) in 1907 and today AD is the most frequently diagnosed of dementias. AD is a multi-factorial neurodegenerative disorder with familial, life style and comorbidity influences impacting a global population of more than 47 million with a projected escalation by 2050 to exceed 130 million. In the USA the AD demographic encompasses approximately six million individuals, expected to increase to surpass 13 million by 2050, and the antecedent phase of AD, recognized as mild cognitive impairment (MCI), involves nearly 12 million individuals. The economic outlay for the management of AD and AD-related cognitive decline is estimated at approximately 355 billion USD. In addition, the intensifying prevalence of AD cases in countries with modest to intermediate income countries further enhances the urgency for more therapeutically and cost-effective treatments and for improving the quality of life for patients and their families. This narrative review evaluates the pathophysiological basis of AD with an initial focus on the therapeutic efficacy and limitations of the existing drugs that provide symptomatic relief: acetylcholinesterase inhibitors (AChEI) donepezil, galantamine, rivastigmine, and the N-methyl-D-aspartate receptor (NMDA) receptor allosteric modulator, memantine. The hypothesis that amyloid-β (Aβ) and tau are appropriate targets for drugs and have the potential to halt the progress of AD is critically analyzed with a particular focus on clinical trial data with anti-Aβ monoclonal antibodies (MABs), namely, aducanumab, lecanemab and donanemab. This review challenges the dogma that targeting Aβ will benefit the majority of subjects with AD that the anti-Aβ MABs are unlikely to be the "magic bullet". A comparison of the benefits and disadvantages of the different classes of drugs forms the basis for determining new directions for research and alternative drug targets that are undergoing pre-clinical and clinical assessments. In addition, we discuss and stress the importance of the treatment of the co-morbidities, including hypertension, diabetes, obesity and depression that are known to increase the risk of developing AD.
Collapse
Affiliation(s)
- A. Y. Kim
- Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| | | | - R. MacDonald
- Health Sciences Library, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - C. R. Triggle
- Department of Pharmacology and Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| |
Collapse
|
4
|
Samanta S, Akhter F, Roy A, Chen D, Turner B, Wang Y, Clemente N, Wang C, Swerdlow RH, Battaile KP, Lovell S, Yan SF, Yan SS. New cyclophilin D inhibitor rescues mitochondrial and cognitive function in Alzheimer's disease. Brain 2024; 147:1710-1725. [PMID: 38146639 PMCID: PMC11484516 DOI: 10.1093/brain/awad432] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023] Open
Abstract
Mitochondrial dysfunction is an early pathological feature of Alzheimer disease and plays a crucial role in the development and progression of Alzheimer's disease. Strategies to rescue mitochondrial function and cognition remain to be explored. Cyclophilin D (CypD), the peptidylprolyl isomerase F (PPIase), is a key component in opening the mitochondrial membrane permeability transition pore, leading to mitochondrial dysfunction and cell death. Blocking membrane permeability transition pore opening by inhibiting CypD activity is a promising therapeutic approach for Alzheimer's disease. However, there is currently no effective CypD inhibitor for Alzheimer's disease, with previous candidates demonstrating high toxicity, poor ability to cross the blood-brain barrier, compromised biocompatibility and low selectivity. Here, we report a new class of non-toxic and biocompatible CypD inhibitor, ebselen, using a conventional PPIase assay to screen a library of ∼2000 FDA-approved drugs with crystallographic analysis of the CypD-ebselen crystal structure (PDB code: 8EJX). More importantly, we assessed the effects of genetic and pharmacological blockade of CypD on Alzheimer's disease mitochondrial and glycolytic bioenergetics in Alzheimer's disease-derived mitochondrial cybrid cells, an ex vivo human sporadic Alzheimer's disease mitochondrial model, and on synaptic function, inflammatory response and learning and memory in Alzheimer's disease mouse models. Inhibition of CypD by ebselen protects against sporadic Alzheimer's disease- and amyloid-β-induced mitochondrial and glycolytic perturbation, synaptic and cognitive dysfunction, together with suppressing neuroinflammation in the brain of Alzheimer's disease mouse models, which is linked to CypD-related membrane permeability transition pore formation. Thus, CypD inhibitors have the potential to slow the progression of neurodegenerative diseases, including Alzheimer's disease, by boosting mitochondrial bioenergetics and improving synaptic and cognitive function.
Collapse
Affiliation(s)
- Sourav Samanta
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
| | - Firoz Akhter
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, Del M. Shankel Structural Biology Center, University of Kansas, Lawrence, KS 66047, USA
| | - Doris Chen
- Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Benjamin Turner
- High Throughput Screening Laboratory, Del M. Shankel Structural Biology Center, University of Kansas, Lawrence, KS 66047, USA
| | - Yongfu Wang
- Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Nicolina Clemente
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, NY 12180-3590, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, NY 12180-3590, USA
| | | | - Kevin P Battaile
- New York Structural Biology Center, NSLS-II, Upton, NY 11973, USA
| | - Scott Lovell
- Protein Structure and X-Ray Crystallography Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Shi Fang Yan
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
| | - Shirley ShiDu Yan
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Fišar Z, Hroudová J. CoQ 10 and Mitochondrial Dysfunction in Alzheimer's Disease. Antioxidants (Basel) 2024; 13:191. [PMID: 38397789 PMCID: PMC10885987 DOI: 10.3390/antiox13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The progress in understanding the pathogenesis and treatment of Alzheimer's disease (AD) is based on the recognition of the primary causes of the disease, which can be deduced from the knowledge of risk factors and biomarkers measurable in the early stages of the disease. Insights into the risk factors and the time course of biomarker abnormalities point to a role for the connection of amyloid beta (Aβ) pathology, tau pathology, mitochondrial dysfunction, and oxidative stress in the onset and development of AD. Coenzyme Q10 (CoQ10) is a lipid antioxidant and electron transporter in the mitochondrial electron transport system. The availability and activity of CoQ10 is crucial for proper mitochondrial function and cellular bioenergetics. Based on the mitochondrial hypothesis of AD and the hypothesis of oxidative stress, the regulation of the efficiency of the oxidative phosphorylation system by means of CoQ10 can be considered promising in restoring the mitochondrial function impaired in AD, or in preventing the onset of mitochondrial dysfunction and the development of amyloid and tau pathology in AD. This review summarizes the knowledge on the pathophysiology of AD, in which CoQ10 may play a significant role, with the aim of evaluating the perspective of the pharmacotherapy of AD with CoQ10 and its analogues.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic;
| | | |
Collapse
|
6
|
Tewari M, Michalski S, Egan TM. Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human. Cells 2024; 13:161. [PMID: 38247852 PMCID: PMC10814008 DOI: 10.3390/cells13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in a variety of cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to fully activate in humans. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated levels of extracellular ATP that accompany inflammation and tissue damage. In this review, we focus on microglia because they are the primary immune cells of the central nervous system, and they activate in response to ATP or its synthetic analog, BzATP. We start by introducing purinergic receptors and then briefly consider the roles that microglia play in neurodevelopment and disease by referencing both original works and relevant reviews. Next, we move to the role of extracellular ATP and P2X receptors in initiating and/or modulating innate immunity in the central nervous system. While most of the data that we review involve work on mice and rats, we highlight human studies of P2X7R whenever possible.
Collapse
|
7
|
Casagrande S, Dzialo M, Trost L, Malkoc K, Sadowska ET, Hau M, Pierce B, McWilliams S, Bauchinger U. Mitochondrial metabolism in blood more reliably predicts whole-animal energy needs compared to other tissues. iScience 2023; 26:108321. [PMID: 38025793 PMCID: PMC10679813 DOI: 10.1016/j.isci.2023.108321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Understanding energy metabolism in free-ranging animals is crucial for ecological studies. In birds, red blood cells (RBCs) offer a minimally invasive method to estimate metabolic rate (MR). In this study with European starlings Sturnus vulgaris, we examined how RBC oxygen consumption relates to oxygen use in key tissues (brain, liver, heart, and pectoral muscle) and versus the whole organism measured at basal levels. The pectoral muscle accounted for 34%-42% of organismal MR, while the heart and liver, despite their high mass-specific metabolic rate, each contributed 2.5%-3.0% to organismal MR. Despite its low contribution to organismal MR (0.03%-0.04%), RBC MR best predicted organismal MR (r = 0.70). Oxygen consumption of the brain and pectoralis was also associated with whole-organism MR, unlike that of heart and liver. Overall, our findings demonstrate that the metabolism of a systemic tissue like blood is a superior proxy for organismal energy metabolism than that of other tissues.
Collapse
Affiliation(s)
- Stefania Casagrande
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, 82319 Seewiesen, Germany
| | - Maciej Dzialo
- Jagiellonian University, Institute of Environmental Sciences, 30-387 Kraków, Poland
| | - Lisa Trost
- Max Planck Institute for Biological Intelligence, Department for Behavioral Neurobiology, 82319 Seewiesen, Germany
| | - Kasja Malkoc
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, 82319 Seewiesen, Germany
| | | | - Michaela Hau
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, 82319 Seewiesen, Germany
- University of Konstanz, Department of Biology, 78464 Konstanz, Germany
| | - Barbara Pierce
- Sacred Heart University, Department of Biology, Fairfield, CT 06825, USA
| | - Scott McWilliams
- University of Rhode Island, Department of Natural Resources Science, Kingston, RI 02881, USA
| | - Ulf Bauchinger
- Jagiellonian University, Institute of Environmental Sciences, 30-387 Kraków, Poland
- Nencki Institute of Experimental Biology, PAS, 02-093 Warsaw, Poland
| |
Collapse
|
8
|
Atlante A, Valenti D. Mitochondrial Complex I and β-Amyloid Peptide Interplay in Alzheimer's Disease: A Critical Review of New and Old Little Regarded Findings. Int J Mol Sci 2023; 24:15951. [PMID: 37958934 PMCID: PMC10650435 DOI: 10.3390/ijms242115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and the main cause of dementia which is characterized by a progressive cognitive decline that severely interferes with daily activities of personal life. At a pathological level, it is characterized by the accumulation of abnormal protein structures in the brain-β-amyloid (Aβ) plaques and Tau tangles-which interfere with communication between neurons and lead to their dysfunction and death. In recent years, research on AD has highlighted the critical involvement of mitochondria-the primary energy suppliers for our cells-in the onset and progression of the disease, since mitochondrial bioenergetic deficits precede the beginning of the disease and mitochondria are very sensitive to Aβ toxicity. On the other hand, if it is true that the accumulation of Aβ in the mitochondria leads to mitochondrial malfunctions, it is otherwise proven that mitochondrial dysfunction, through the generation of reactive oxygen species, causes an increase in Aβ production, by initiating a vicious cycle: there is therefore a bidirectional relationship between Aβ aggregation and mitochondrial dysfunction. Here, we focus on the latest news-but also on neglected evidence from the past-concerning the interplay between dysfunctional mitochondrial complex I, oxidative stress, and Aβ, in order to understand how their interplay is implicated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | | |
Collapse
|
9
|
Lacham-Hartman S, Moshe R, Ben-Zichri S, Shmidov Y, Bitton R, Jelinek R, Papo N. APPI-Derived Cyclic Peptide Enhances Aβ42 Aggregation and Reduces Aβ42-Mediated Membrane Destabilization and Cytotoxicity. ACS Chem Neurosci 2023; 14:3385-3397. [PMID: 37579500 DOI: 10.1021/acschemneuro.3c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
An amyloid precursor protein inhibitor (APPI) and amyloid beta 42 (Aβ42) are both subdomains of the human transmembrane amyloid precursor protein (APP). In the brains of patients with Alzheimer's disease (AD), Aβ42 oligomerizes into aggregates of various sizes, with intermediate, low-molecular-weight Aβ42 oligomers currently being held to be the species responsible for the most neurotoxic effects associated with the disease. Strategies to ameliorate the toxicity of these intermediate Aβ42 oligomeric species include the use of short, Aβ42-interacting peptides that either inhibit the formation of the Aβ42 oligomeric species or promote their conversion to high-molecular-weight aggregates. We therefore designed such an Aβ42-interacting peptide that is based on the β-hairpin amino acid sequence of the APPI, which exhibits high similarity to the β-sheet-like aggregation site of Aβ42. Upon tight binding of this 20-mer cyclic peptide to Aβ42 (in a 1:1 molar ratio), the formation of Aβ42 aggregates was enhanced, and consequently, Aβ42-mediated cell toxicity was ameliorated. We showed that in the presence of the cyclic peptide, interactions of Aβ42 with both plasma and mitochondrial membranes and with phospholipid vesicles that mimic these membranes were inhibited. Specifically, the cyclic peptide inhibited Aβ42-mediated mitochondrial membrane depolarization and reduced Aβ42-mediated apoptosis and cell death. We suggest that the cyclic peptide modulates Aβ42 aggregation by enhancing the formation of large aggregates─as opposed to low-molecular-weight intermediates─and as such has the potential for further development as an AD therapeutic.
Collapse
Affiliation(s)
- Shiran Lacham-Hartman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Reut Moshe
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Shani Ben-Zichri
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Yulia Shmidov
- Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Ronit Bitton
- Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science &Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science &Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
10
|
Zimbone S, Di Rosa MC, Chiechio S, Giuffrida ML. Exploring the Role of Hsp60 in Alzheimer's Disease and Type 2 Diabetes: Suggestion for Common Drug Targeting. Int J Mol Sci 2023; 24:12456. [PMID: 37569831 PMCID: PMC10419248 DOI: 10.3390/ijms241512456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Heat shock protein 60 (Hsp60) is a member of the chaperonin family of heat shock proteins (HSPs), primarily found in the mitochondrial matrix. As a molecular chaperone, Hsp60 plays an essential role in mediating protein folding and assembly, and together with the co-chaperon Hsp10, it is thought to maintain protein homeostasis. Recently, it has been found to localize in non-canonical, extra-mitochondrial sites such as cell membranes or extracellular fluids, particularly in pathological conditions. Starting from its biological function, this review aims to provide a comprehensive understanding of the potential involvement of Hsp60 in Alzheimer's disease (AD) and Type II Diabetes Mellitus (T2DM), which are known to share impaired key pathways and molecular dysfunctions. Fragmentary data reported in the literature reveal interesting links between the altered expression level or localization of this chaperonin and several disease conditions. The present work offers an overview of the past and more recent knowledge about Hsp60 and its role in the most important cellular processes to shed light on neuronal Hsp60 as a potential common target for both pathologies. The absence of any effective cure for AD patients makes the identification of a new molecular target a promising path by which to move forward in the development of new drugs and/or repositioning of therapies already used for T2DM.
Collapse
Affiliation(s)
- Stefania Zimbone
- Institute of Crystallography, National Research Council (CNR-IC), 95126 Catania, Italy; (S.Z.); (M.C.D.R.)
| | - Maria Carmela Di Rosa
- Institute of Crystallography, National Research Council (CNR-IC), 95126 Catania, Italy; (S.Z.); (M.C.D.R.)
- Cogentech Società Benefit srl Actual Position, 95121 Catania, Italy
| | - Santina Chiechio
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Maria Laura Giuffrida
- Institute of Crystallography, National Research Council (CNR-IC), 95126 Catania, Italy; (S.Z.); (M.C.D.R.)
| |
Collapse
|
11
|
Bhaloo A, Nguyen S, Lee BH, Valimukhametova A, Gonzalez-Rodriguez R, Sottile O, Dorsky A, Naumov AV. Doped Graphene Quantum Dots as Biocompatible Radical Scavenging Agents. Antioxidants (Basel) 2023; 12:1536. [PMID: 37627531 PMCID: PMC10451549 DOI: 10.3390/antiox12081536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress is proven to be a leading factor in a multitude of adverse conditions, from Alzheimer's disease to cancer. Thus, developing effective radical scavenging agents to eliminate reactive oxygen species (ROS) driving many oxidative processes has become critical. In addition to conventional antioxidants, nanoscale structures and metal-organic complexes have recently shown promising potential for radical scavenging. To design an optimal nanoscale ROS scavenging agent, we have synthesized ten types of biocompatible graphene quantum dots (GQDs) augmented with various metal dopants. The radical scavenging abilities of these novel metal-doped GQD structures were, for the first time, assessed via the DPPH, KMnO4, and RHB (Rhodamine B protectant) assays. While all metal-doped GQDs consistently demonstrate antioxidant properties higher than the undoped cores, aluminum-doped GQDs exhibit 60-95% radical scavenging ability of ascorbic acid positive control. Tm-doped GQDs match the radical scavenging properties of ascorbic acid in the KMnO4 assay. All doped GQD structures possess fluorescence imaging capabilities that enable their tracking in vitro, ensuring their successful cellular internalization. Given such multifunctionality, biocompatible doped GQD antioxidants can become prospective candidates for multimodal therapeutics, including the reduction of ROS with concomitant imaging and therapeutic delivery to cancer tumors.
Collapse
Affiliation(s)
- Adam Bhaloo
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Steven Nguyen
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Bong Han Lee
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Alina Valimukhametova
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | | | - Olivia Sottile
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Abby Dorsky
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| | - Anton V. Naumov
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA; (A.B.); (S.N.); (B.H.L.); (A.V.); (O.S.); (A.D.)
| |
Collapse
|
12
|
Barreto GE. Repurposing of Tibolone in Alzheimer's Disease. Biomolecules 2023; 13:1115. [PMID: 37509151 PMCID: PMC10377087 DOI: 10.3390/biom13071115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterised by the accumulation of amyloid-beta and tau in the brain, leading to the progressive loss of memory and cognition. The causes of its pathogenesis are still not fully understood, but some risk factors, such as age, genetics, and hormones, may play a crucial role. Studies show that postmenopausal women have a higher risk of developing AD, possibly due to the decrease in hormone levels, especially oestrogen, which may be directly related to a reduction in the activity of oestrogen receptors, especially beta (ERβ), which favours a more hostile cellular environment, leading to mitochondrial dysfunction, mainly affecting key processes related to transport, metabolism, and oxidative phosphorylation. Given the influence of hormones on biological processes at the mitochondrial level, hormone therapies are of clinical interest to reduce the risk or delay the onset of symptoms associated with AD. One drug with such potential is tibolone, which is used in clinics to treat menopause-related symptoms. It can reduce amyloid burden and have benefits on mitochondrial integrity and dynamics. Many of its protective effects are mediated through steroid receptors and may also be related to neuroglobin, whose elevated levels have been shown to protect against neurological diseases. Its importance has increased exponentially due to its implication in the pathogenesis of AD. In this review, we discuss recent advances in tibolone, focusing on its mitochondrial-protective effects, and highlight how valuable this compound could be as a therapeutic alternative to mitigate the molecular pathways characteristic of AD.
Collapse
Affiliation(s)
- George E Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
13
|
Pang QQ, Lee S, Cho EJ, Kim JH. Protective Effects of Cirsium japonicum var. maackii Flower on Amyloid Beta 25-35-Treated C6 Glial Cells. Life (Basel) 2023; 13:1453. [PMID: 37511827 PMCID: PMC10381248 DOI: 10.3390/life13071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Amyloid beta (Aβ) is a neurotoxic peptide and a key factor causing Alzheimer's disease. Cirsium japonicum var. maackii (CJM) has neuroprotective effects, but the protective effects of the flower from CJM (FCJM) on the neural system remain unclear. This study aimed to identify the fraction of FCJM with the highest neuroprotective potential and investigate its protective mechanisms against Aβ25-35-induced inflammation in C6 glial cells. The cell viability and generation of reactive oxygen species (ROS) were measured to investigate the positive effect of FCJM on oxidative stress. Treatment with the FCJM extract or fractions increased the cell viability to 60-70% compared with 52% in the Aβ25-35-treated control group and decreased ROS production to 84% compared with 100% in the control group. The ethyl acetate fraction of FCJM (EFCJM) was the most effective among all the extracts and fractions. We analyzed the protective mechanisms of EFCJM on Aβ25-35-induced inflammation in C6 glial cells using Western blot. EFCJM downregulated amyloidogenic pathway-related proteins, such as Aβ precursor protein, β-secretase, presenilin 1, and presenilin 2. Moreover, EFCJM attenuated the Bax/Bcl-2 ratio, an index of apoptosis, and upregulated the oxidative stress-related protein, heme oxygenase-1. Therefore, this study demonstrated that FCJM improves cell viability and inhibits ROS in Aβ25-35-treated C6 glial cells. Furthermore, EFCJM exhibits neuroprotective effects in Aβ25-35-induced inflammation in C6 glial cells by modulating oxidative stress and amyloidogenic and apoptosis signaling pathways. FCJM, especially EFCJM, can be a promising agent for neurodegenerative disease prevention.
Collapse
Affiliation(s)
- Qi Qi Pang
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
- Natural Product Institute of Science and Technology, Anseong 17546, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
14
|
Wilkins HM. Interactions between amyloid, amyloid precursor protein, and mitochondria. Biochem Soc Trans 2023; 51:173-182. [PMID: 36688439 PMCID: PMC9987971 DOI: 10.1042/bst20220518] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
Mitochondrial dysfunction and Aβ accumulation are hallmarks of Alzheimer's disease (AD). Decades of research describe a relationship between mitochondrial function and Aβ production. Amyloid precursor protein (APP), of which Aβ is generated from, is found within mitochondria. Studies suggest Aβ can be generated in mitochondria and imported into mitochondria. APP and Aβ alter mitochondrial function, while mitochondrial function alters Aβ production from APP. The role these interactions contribute to AD pathology and progression are unknown. Here, we discuss prior research, the rigor of those studies, and the critical knowledge gaps of relationships between APP, Aβ, and mitochondria.
Collapse
Affiliation(s)
- Heather M. Wilkins
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, U.S.A
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, U.S.A
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, U.S.A
| |
Collapse
|
15
|
Swerdlow RH. The Alzheimer's Disease Mitochondrial Cascade Hypothesis: A Current Overview. J Alzheimers Dis 2023; 92:751-768. [PMID: 36806512 DOI: 10.3233/jad-221286] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Viable Alzheimer's disease (AD) hypotheses must account for its age-dependence; commonality; association with amyloid precursor protein, tau, and apolipoprotein E biology; connection with vascular, inflammation, and insulin signaling changes; and systemic features. Mitochondria and parameters influenced by mitochondria could link these diverse characteristics. Mitochondrial biology can initiate changes in pathways tied to AD and mediate the dysfunction that produces the clinical phenotype. For these reasons, conceptualizing a mitochondrial cascade hypothesis is a straightforward process and data accumulating over decades argue the validity of its principles. Alternative AD hypotheses may yet account for its mitochondria-related phenomena, but absent this happening a primary mitochondrial cascade hypothesis will continue to evolve and attract interest.
Collapse
Affiliation(s)
- Russell H Swerdlow
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA.,Departments of Neurology, Molecular and Integrative Physiology, and Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
16
|
Kelty TJ, Dashek RJ, Arnold WD, Rector RS. Emerging Links between Nonalcoholic Fatty Liver Disease and Neurodegeneration. Semin Liver Dis 2023; 43:77-88. [PMID: 36764305 DOI: 10.1055/s-0043-1762585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The association between liver and brain health has gained attention as biomarkers of liver function have been revealed to predict neurodegeneration. The liver is a central regulator in metabolic homeostasis. However, in nonalcoholic fatty liver disease (NAFLD), homeostasis is disrupted which can result in extrahepatic organ pathologies. Emerging literature provides insight into the mechanisms behind the liver-brain health axis. These include the increased production of liver-derived factors that promote insulin resistance and loss of neuroprotective factors under conditions of NAFLD that increase insulin resistance in the central nervous system. In addition, elevated proinflammatory cytokines linked to NAFLD negatively impact the blood-brain barrier and increase neuroinflammation. Furthermore, exacerbated dyslipidemia associated with NAFLD and hepatic dysfunction can promote altered brain bioenergetics and oxidative stress. In this review, we summarize the current knowledge of the crosstalk between liver and brain as it relates to the pathophysiology between NAFLD and neurodegeneration, with an emphasis on Alzheimer's disease. We also highlight knowledge gaps and future areas for investigation to strengthen the potential link between NAFLD and neurodegeneration.
Collapse
Affiliation(s)
- Taylor J Kelty
- Department of Biomedical Sciences, University of Missouri - Columbia, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri - Columbia, Columbia, Missouri
- NextGen Precision Health, University of Missouri - Columbia, Columbia, Missouri
| | - Ryan J Dashek
- Department of Biomedical Sciences, University of Missouri - Columbia, Columbia, Missouri
- NextGen Precision Health, University of Missouri - Columbia, Columbia, Missouri
- Comparative Medicine Program, University of Missouri - Columbia, Columbia, Missouri
| | - W David Arnold
- NextGen Precision Health, University of Missouri - Columbia, Columbia, Missouri
- Physical Medicine and Rehabilitation, University of Missouri - Columbia, Columbia, Missouri
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri - Columbia, Columbia, Missouri
- NextGen Precision Health, University of Missouri - Columbia, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri - Columbia, Columbia, Missouri
| |
Collapse
|
17
|
Chhimpa N, Singh N, Puri N, Kayath HP. The Novel Role of Mitochondrial Citrate Synthase and Citrate in the Pathophysiology of Alzheimer's Disease. J Alzheimers Dis 2023; 94:S453-S472. [PMID: 37393492 PMCID: PMC10473122 DOI: 10.3233/jad-220514] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Citrate synthase is a key mitochondrial enzyme that utilizes acetyl-CoA and oxaloacetate to form citrate in the mitochondrial membrane, which participates in energy production in the TCA cycle and linked to the electron transport chain. Citrate transports through a citrate malate pump and synthesizes acetyl-CoA and acetylcholine (ACh) in neuronal cytoplasm. In a mature brain, acetyl-CoA is mainly utilized for ACh synthesis and is responsible for memory and cognition. Studies have shown low citrate synthase in different regions of brain in Alzheimer's disease (AD) patients, which reduces mitochondrial citrate, cellular bioenergetics, neurocytoplasmic citrate, acetyl-CoA, and ACh synthesis. Reduced citrate mediated low energy favors amyloid-β (Aβ) aggregation. Citrate inhibits Aβ25-35 and Aβ1-40 aggregation in vitro. Hence, citrate can be a better therapeutic option for AD by improving cellular energy and ACh synthesis, and inhibiting Aβ aggregation, which prevents tau hyperphosphorylation and glycogen synthase kinase-3 beta. Therefore, we need clinical studies if citrate reverses Aβ deposition by balancing mitochondrial energy pathway and neurocytoplasmic ACh production. Furthermore, in AD's silent phase pathophysiology, when neuronal cells are highly active, they shift ATP utilization from oxidative phosphorylation to glycolysis and prevent excessive generation of hydrogen peroxide and reactive oxygen species (oxidative stress) as neuroprotective action, which upregulates glucose transporter-3 (GLUT3) and pyruvate dehydrogenase kinase-3 (PDK3). PDK3 inhibits pyruvate dehydrogenase, which decreases mitochondrial-acetyl-CoA, citrate, and cellular bioenergetics, and decreases neurocytoplasmic citrate, acetyl-CoA, and ACh formation, thus initiating AD pathophysiology. Therefore, GLUT3 and PDK3 can be biomarkers for silent phase of AD.
Collapse
Affiliation(s)
- Neeraj Chhimpa
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Department of Pharmacology, Meharishi Markandeshwar College of Medical Science & Research, Ambala, India
| | - Neha Singh
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Nikkita Puri
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
18
|
Almikhlafi MA, Karami MM, Jana A, Alqurashi TM, Majrashi M, Alghamdi BS, Ashraf GM. Mitochondrial Medicine: A Promising Therapeutic Option Against Various Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:1165-1183. [PMID: 36043795 PMCID: PMC10286591 DOI: 10.2174/1570159x20666220830112408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal mitochondrial morphology and metabolic dysfunction have been observed in many neurodegenerative disorders (NDDs). Mitochondrial dysfunction can be caused by aberrant mitochondrial DNA, mutant nuclear proteins that interact with mitochondria directly or indirectly, or for unknown reasons. Since mitochondria play a significant role in neurodegeneration, mitochondriatargeted therapies represent a prosperous direction for the development of novel drug compounds that can be used to treat NDDs. This review gives a brief description of how mitochondrial abnormalities lead to various NDDs such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We further explore the promising therapeutic effectiveness of mitochondria- directed antioxidants, MitoQ, MitoVitE, MitoPBN, and dimebon. We have also discussed the possibility of mitochondrial gene therapy as a therapeutic option for these NDDs.
Collapse
Affiliation(s)
- Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Mohammed M. Karami
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Thamer M. Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
19
|
Mehta A, Desai A, Rudd D, Siddiqui G, Nowell CJ, Tong Z, Creek DJ, Tayalia P, Gandhi PS, Voelcker NH. Bio-Mimicking Brain Vasculature to Investigate the Role of Heterogeneous Shear Stress in Regulating Barrier Integrity. Adv Biol (Weinh) 2022; 6:e2200152. [PMID: 35999436 DOI: 10.1002/adbi.202200152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Indexed: 01/28/2023]
Abstract
A continuous, sealed endothelial membrane is essential for the blood-brain barrier (BBB) to protect neurons from toxins present in systemic circulation. Endothelial cells are critical sensors of the capillary environment, where factors like fluid shear stress (FSS) and systemic signaling molecules activate intracellular pathways that either promote or disrupt the BBB. The brain vasculature exhibits complex heterogeneity across the bed, which is challenging to recapitulate in BBB microfluidic models with fixed dimensions and rectangular cross-section microchannels. Here, a Cayley-tree pattern, fabricated using lithography-less, fluid shaping technique in a modified Hele-Shaw cell is used to emulate the brain vasculature in a microfluidic chip. This geometry generates an inherent distribution of heterogeneous FSS, due to smooth variations in branch height and width. hCMEC/D3 endothelial cells cultured in the Cayley-tree designed chip generate a 3D monolayer of brain endothelium with branching hierarchy, enabling the study of the effect of heterogeneous FSS on the brain endothelium. The model is employed to study neuroinflammatory conditions by stimulating the brain endothelium with tumor necrosis factor-α under heterogeneous FSS conditions. The model has immense potential for studies involving drug transport across the BBB, which can be misrepresented in fixed dimension models.
Collapse
Affiliation(s)
- Ami Mehta
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.,IITB-Monash Research Academy, Mumbai, 400076, India
| | - Anal Desai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Cameron J Nowell
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Prasanna S Gandhi
- Suman Mashruwala Advanced Microengineering Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia.,Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
20
|
Tian X, Wang Y, Zhou Y, Wu B, Lu Y, Du J, Wang W, Cai W, Xiao Y. Beta-amyloid Deposition in Biliary Atresia Reduces Liver Regeneration by Inhibiting Energy Metabolism and Mammalian Target of Rapamycin Signaling. Clin Transl Gastroenterol 2022; 13:e00536. [PMID: 36137184 PMCID: PMC10476755 DOI: 10.14309/ctg.0000000000000536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/16/2022] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Biliary atresia (BA) is a devastating obstructive bile duct disease found in newborns. This study aims to investigate the roles and involved mechanisms of beta-amyloid (Aβ) in the pathogenesis of BA. METHODS We examined the distribution of Aβ protein and its precursor in the livers of patients with BA. A murine liver organoid and a zebrafish model were established to investigate the exact roles of Aβ in liver regeneration for BA. RESULTS Both Aβ mRNA and protein significantly increased in livers of infants with BA and deposited around the central vein. In the plasma, Aβ elevated significantly in patients with BA and positively correlated with liver injury progression. In vitro , Aβ treatment induced abnormal morphology and caused impaired growth in liver organoids. Energy metabolism analysis demonstrated Aβ increased aerobic glycolysis and reduced ATP synthase in organoids, in which the mammalian target of rapamycin signaling was suppressed. In vivo , Aβ42 exposure caused liver degeneration in zebrafish larvae. DISCUSSION Aβ depositing in livers of infants with BA reduced the liver regeneration through attenuating mitochondrial respiration and mammalian target of rapamycin signaling.
Collapse
Affiliation(s)
- Xinbei Tian
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Zhou
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Wu
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Lu
- Shanghai Institute for Pediatric Research, Shanghai, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Du
- Shanghai Institute for Pediatric Research, Shanghai, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weipeng Wang
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Liu M, Zeng M, Wang S, Cao B, Guo P, Zhang Y, Jia J, Zhang Q, Zhang B, Wang R, Li J, Zheng X, Feng W. Thymidine and 2'-deoxyuridine reduce microglial activation and improve oxidative stress damage by modulating glycolytic metabolism on the Aβ 25-35-induced brain injury. Arch Biochem Biophys 2022; 729:109377. [PMID: 35998686 DOI: 10.1016/j.abb.2022.109377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/24/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) is a progressive disease with a long duration and complicated pathogenesis. Thymidine (Thy) and 2'-deoxyuridine (2'-De) are pyrimidines nucleotides that are associated with nervous system diseases. However, it remains unclear whether Thy and 2'-De exert neuroprotective effects in AD. Therefore, this study was conducted to explore the interventional effects and mechanisms of Thy and 2'-De on the Aβ25-35-induced brain injury. Donepezil (Do, 10 mg/kg/d), Thy (20 mg/kg/d), and 2'-De (20 mg/kg/d) were administered for 4 weeks after the injection of Aβ25-35 peptides (200 μM, i.c.v.) to mice. UPLC-MS/MS method was performed to quantify Thy and 2'-De in the hippocampus of mice brain. The cognition ability, neuronal and mitochondria damage, and levels of Aβ1-42/Aβ1-40, p-Tau, Na+ K+-ATPase, apoptosis, oxidative stress, immune cells, and Iba 1+ were measured in Aβ25-35-induced mice. The oxygen consumption (OCR) and extracellular acidification rate (ECAR) were measured using a seahorse analyzer in Aβ25-35-induced N9 cells. Moreover, 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor, was added to explore the mechanisms underlying the effects of Thy and 2'-De on Aβ25-35-induced N9 cells. The expression of Iba 1+ and levels of CD11b+ and reactive oxygen species (ROS) were measured after treatment with Thy (5 μM) and 2'-De (10 μM) against 2-DG (5 mM) in Aβ25-35-induced N9 cells. The results suggested that Do, Thy, and 2'-De improved the cognition ability, attenuated the damage to hippocampus and mitochondria, downregulated the levels of Aβ1-42/Aβ1-40, p-Tau, Na+ K+-ATPase, apoptosis, oxidative stress, and Iba 1+, and regulated the immune response induced by Aβ25-35 against the brain injury. Furthermore, Do, Thy, and 2'-De increased ATP production and inhibited glycolysis in Aβ25-35-induced N9 cells. Moreover, 2-DG enhanced the effects of drugs, reduced microglial activation, and attenuated oxidative stress to interfere with Aβ25-35-induced N9 cells. In conclusion, Thy and 2'-De reduced microglial activation and improved oxidative stress damage by modulating glycolytic metabolism on the Aβ25-35-induced brain injury.
Collapse
Affiliation(s)
- Meng Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Shengchao Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Bing Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Pengli Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Yuhan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Jufang Jia
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Qinqin Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Beibei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Ru Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Jinyue Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China.
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
22
|
Shimizu S, Kasai S, Yamazaki H, Tatara Y, Mimura J, Engler MJ, Tanji K, Nikaido Y, Inoue T, Suganuma H, Wakabayashi K, Itoh K. Sulforaphane Increase Mitochondrial Biogenesis-Related Gene Expression in the Hippocampus and Suppresses Age-Related Cognitive Decline in Mice. Int J Mol Sci 2022; 23:ijms23158433. [PMID: 35955572 PMCID: PMC9369397 DOI: 10.3390/ijms23158433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Sulforaphane (SFN) is a potent activator of the transcriptional factor, Nuclear Factor Erythroid 2 (NF-E2)-Related factor 2 (NRF2). SFN and its precursor, glucoraphanin (sulforaphane glucosinolate, SGS), have been shown to ameliorate cognitive function in clinical trials and in vivo studies. However, the effects of SGS on age-related cognitive decline in Senescence-Accelerated Mouse Prone 8 (SAMP8) is unknown. In this study, we determined the preventive potential of SGS on age-related cognitive decline. One-month old SAMP8 mice or control SAM resistance 1 (SAMR1) mice were fed an ad libitum diet with or without SGS-containing broccoli sprout powder (0.3% w/w SGS in diet) until 13 months of age. SGS significantly improved long-term memory in SAMP8 at 12 months of age. Interestingly, SGS increased hippocampal mRNA and protein levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) and mitochondrial transcription factor A (TFAM), which are master regulators of mitochondrial biogenesis, both in SAMR1 and SAMP8 at 13 months of age. Furthermore, mRNAs for nuclear respiratory factor-1 (NRF-1) and mitochondrial DNA-encoded respiratory complex enzymes, but not mitochondrial DNA itself, were increased by SGS in SAMP8 mice. These results suggest that SGS prevents age-related cognitive decline by maintaining mitochondrial function in senescence-accelerated mice.
Collapse
Affiliation(s)
- Sunao Shimizu
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan; (S.S.); (T.I.); (H.S.)
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (S.K.); (H.Y.); (Y.T.); (J.M.)
- Department of Stress Response Science, Center for Advanced Medical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| | - Shuya Kasai
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (S.K.); (H.Y.); (Y.T.); (J.M.)
- Department of Stress Response Science, Center for Advanced Medical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| | - Hiromi Yamazaki
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (S.K.); (H.Y.); (Y.T.); (J.M.)
- Department of Stress Response Science, Center for Advanced Medical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| | - Yota Tatara
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (S.K.); (H.Y.); (Y.T.); (J.M.)
- Department of Stress Response Science, Center for Advanced Medical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| | - Junsei Mimura
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (S.K.); (H.Y.); (Y.T.); (J.M.)
- Department of Stress Response Science, Center for Advanced Medical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| | - Máté János Engler
- Department of Stress Response Science, Center for Advanced Medical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (K.T.); (K.W.)
| | - Yoshikazu Nikaido
- Department of Metabolomics Innovation, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Takuro Inoue
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan; (S.S.); (T.I.); (H.S.)
| | - Hiroyuki Suganuma
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan; (S.S.); (T.I.); (H.S.)
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (K.T.); (K.W.)
| | - Ken Itoh
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan; (S.K.); (H.Y.); (Y.T.); (J.M.)
- Department of Stress Response Science, Center for Advanced Medical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
- Correspondence:
| |
Collapse
|
23
|
Zhang T, Wong G. Gene expression data analysis using Hellinger correlation in weighted gene co-expression networks (WGCNA). Comput Struct Biotechnol J 2022; 20:3851-3863. [PMID: 35891798 PMCID: PMC9307959 DOI: 10.1016/j.csbj.2022.07.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 12/24/2022] Open
Abstract
Weighted gene co-expression network analysis (WGCNA) is used to detect clusters with highly correlated genes. Measurements of correlation most typically rely on linear relationships. However, a linear relationship does not always model pairwise functional-related dependence between genes. In this paper, we first compared 6 different correlation methods in their ability to capture complex dependence between genes in three different tissues. Next, we compared their gene-pairwise coefficient results and corresponding WGCNA results. Finally, we applied a recently proposed correlation method, Hellinger correlation, as a more sensitive correlation measurement in WGCNA. To test this method, we constructed gene networks containing co-expression gene modules from RNA-seq data of human frontal cortex from Alzheimer's disease patients. To test the generality, we also used a microarray data set from human frontal cortex, single cell RNA-seq data from human prefrontal cortex, RNA-seq data from human temporal cortex, and GTEx data from heart. The Hellinger correlation method captures essentially similar results as other linear correlations in WGCNA, but provides additional new functional relationships as exemplified by uncovering a link between inflammation and mitochondria function. We validated the network constructed with the microarray and single cell sequencing data sets and a RNA-seq dataset of temporal cortex. We observed that this new correlation method enables the detection of non-linear biologically meaningful relationships among genes robustly and provides a complementary new approach to WGCNA. Thus, the application of Hellinger correlation to WGCNA provides a more flexible correlation approach to modelling networks in gene expression analysis that uncovers novel network relationships.
Collapse
Affiliation(s)
- Tianjiao Zhang
- Cancer Centre, Centre for Reproduction, Development and Aging, Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau Special Administrative Region
| | - Garry Wong
- Cancer Centre, Centre for Reproduction, Development and Aging, Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau Special Administrative Region
| |
Collapse
|
24
|
Taylor MK, Sullivan DK, Keller JE, Burns JM, Swerdlow RH. Potential for Ketotherapies as Amyloid-Regulating Treatment in Individuals at Risk for Alzheimer’s Disease. Front Neurosci 2022; 16:899612. [PMID: 35784855 PMCID: PMC9243383 DOI: 10.3389/fnins.2022.899612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative condition characterized by clinical decline in memory and other cognitive functions. A classic AD neuropathological hallmark includes the accumulation of amyloid-β (Aβ) plaques, which may precede onset of clinical symptoms by over a decade. Efforts to prevent or treat AD frequently emphasize decreasing Aβ through various mechanisms, but such approaches have yet to establish compelling interventions. It is still not understood exactly why Aβ accumulates in AD, but it is hypothesized that Aβ and other downstream pathological events are a result of impaired bioenergetics, which can also manifest prior to cognitive decline. Evidence suggests that individuals with AD and at high risk for AD have functional brain ketone metabolism and ketotherapies (KTs), dietary approaches that produce ketone bodies for energy metabolism, may affect AD pathology by targeting impaired brain bioenergetics. Cognitively normal individuals with elevated brain Aβ, deemed “preclinical AD,” and older adults with peripheral metabolic impairments are ideal candidates to test whether KTs modulate AD biology as they have impaired mitochondrial function, perturbed brain glucose metabolism, and elevated risk for rapid Aβ accumulation and symptomatic AD. Here, we discuss the link between brain bioenergetics and Aβ, as well as the potential for KTs to influence AD risk and progression.
Collapse
Affiliation(s)
- Matthew K. Taylor
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- *Correspondence: Matthew K. Taylor,
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
| | - Jessica E. Keller
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
25
|
Mechanisms of Mitochondrial Malfunction in Alzheimer’s Disease: New Therapeutic Hope. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4759963. [PMID: 35607703 PMCID: PMC9124149 DOI: 10.1155/2022/4759963] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 02/05/2023]
Abstract
Mitochondria play a critical role in neuron viability or death as it regulates energy metabolism and cell death pathways. They are essential for cellular energy metabolism, reactive oxygen species production, apoptosis, Ca++ homeostasis, aging, and regeneration. Mitophagy and mitochondrial dynamics are thus essential processes in the quality control of mitochondria. Improvements in several fundamental features of mitochondrial biology in susceptible neurons of AD brains and the putative underlying mechanisms of such changes have made significant progress. AD's etiology has been reported by mitochondrial malfunction and oxidative damage. According to several recent articles, a continual fusion and fission balance of mitochondria is vital in their normal function maintenance. As a result, the shape and function of mitochondria are inextricably linked. This study examines evidence suggesting that mitochondrial dysfunction plays a significant early impact on AD pathology. Furthermore, the dynamics and roles of mitochondria are discussed with the link between mitochondrial malfunction and autophagy in AD has also been explored. In addition, recent research on mitochondrial dynamics and mitophagy in AD is also discussed in this review. It also goes into how these flaws affect mitochondrial quality control. Furthermore, advanced therapy techniques and lifestyle adjustments that lead to improved management of the dynamics have been demonstrated, hence improving the conditions that contribute to mitochondrial dysfunction in AD.
Collapse
|
26
|
Burtscher J, Romani M, Bernardo G, Popa T, Ziviani E, Hummel FC, Sorrentino V, Millet GP. Boosting mitochondrial health to counteract neurodegeneration. Prog Neurobiol 2022; 215:102289. [DOI: 10.1016/j.pneurobio.2022.102289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022]
|
27
|
Bhat AH, Dar KB, Khan A, Alshahrani S, Alshehri SM, Ghoneim MM, Alam P, Shakeel F. Tricyclodecan-9-yl-Xanthogenate (D609): Mechanism of Action and Pharmacological Applications. Int J Mol Sci 2022; 23:3305. [PMID: 35328726 PMCID: PMC8954530 DOI: 10.3390/ijms23063305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Tricyclodecan-9-yl xanthogenate (D609) is a synthetic tricyclic compound possessing a xanthate group. This xanthogenate compound is known for its diverse pharmacological properties. Over the last three decades, many studies have reported the biological activities of D609, including antioxidant, antiapoptotic, anticholinergic, anti-tumor, anti-inflammatory, anti-viral, anti-proliferative, and neuroprotective activities. Its mechanism of action is extensively attributed to its ability to cause the competitive inhibition of phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) and sphingomyelin synthase (SMS). The inhibition of PCPLC or SMS affects secondary messengers with a lipidic nature, i.e., 1,2-diacylglycerol (DAG) and ceramide. Various in vitro/in vivo studies suggest that PCPLC and SMS inhibition regulate the cell cycle, block cellular proliferation, and induce differentiation. D609 acts as a pro-inflammatory cytokine antagonist and diminishes Aβ-stimulated toxicity. PCPLC enzymatic activity essentially requires Zn2+, and D609 might act as a potential chelator of Zn2+, thereby blocking PCPLC enzymatic activity. D609 also demonstrates promising results in reducing atherosclerotic plaque formation, post-stroke cerebral infarction, and cancer progression. The present compilation provides a comprehensive mechanistic insight into D609, including its chemistry, mechanism of action, and regulation of various pharmacological activities.
Collapse
Affiliation(s)
- Aashiq Hussain Bhat
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India; (A.H.B.); (K.B.D.)
| | - Khalid Bashir Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India; (A.H.B.); (K.B.D.)
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sultan M. Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (F.S.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (F.S.)
| |
Collapse
|
28
|
Zhao Y, Jia M, Chen W, Liu Z. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function. Free Radic Biol Med 2022; 182:206-218. [PMID: 35218914 DOI: 10.1016/j.freeradbiomed.2022.02.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
Abstract
Intermittent fasting (IF) has been studied for its effects on lifespan and the prevention or delay of age-related diseases upon the regulation of metabolic pathways. Mitochondria participate in key metabolic pathways and play important roles in maintaining intracellular signaling networks that modulate various cellular functions. Mitochondrial dysfunction has been described as an early feature of brain aging and neurodegeneration. Although IF has been shown to prevent brain aging and neurodegeneration, the mechanism is still unclear. This review focuses on the mechanisms by which IF improves mitochondrial function, which plays a central role in brain aging and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The cellular and molecular mechanisms of IF in brain aging and neurodegeneration involve activation of adaptive cellular stress responses and signaling- and transcriptional pathways, thereby enhancing mitochondrial function, by promoting energy metabolism and reducing oxidant production.
Collapse
Affiliation(s)
- Yihang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Weixuan Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| |
Collapse
|
29
|
Liang T, Zhang Y, Wu S, Chen Q, Wang L. The Role of NLRP3 Inflammasome in Alzheimer’s Disease and Potential Therapeutic Targets. Front Pharmacol 2022; 13:845185. [PMID: 35250595 PMCID: PMC8889079 DOI: 10.3389/fphar.2022.845185] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. The typical pathological characteristics of AD are extracellular senile plaques composed of amyloid ß (Aβ) protein, intracellular neurofibrillary tangles formed by the hyperphosphorylation of the microtubule-associated protein tau, and neuron loss. In the past hundred years, although human beings have invested a lot of manpower, material and financial resources, there is no widely recognized drug for the effective prevention and clinical cure of AD in the world so far. Therefore, evaluating and exploring new drug targets for AD treatment is an important topic. At present, researchers have not stopped exploring the pathogenesis of AD, and the views on the pathogenic factors of AD are constantly changing. Multiple evidence have confirmed that chronic neuroinflammation plays a crucial role in the pathogenesis of AD. In the field of neuroinflammation, the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a key molecular link in the AD neuroinflammatory pathway. Under the stimulation of Aβ oligomers and tau aggregates, it can lead to the assembly and activation of NLRP3 inflammasome in microglia and astrocytes in the brain, thereby causing caspase-1 activation and the secretion of IL-1β and IL-18, which ultimately triggers the pathophysiological changes and cognitive decline of AD. In this review, we summarize current literatures on the activation of NLRP3 inflammasome and activation-related regulation mechanisms, and discuss its possible roles in the pathogenesis of AD. Moreover, focusing on the NLRP3 inflammasome and combining with the upstream and downstream signaling pathway-related molecules of NLRP3 inflammasome as targets, we review the pharmacologically related targets and various methods to alleviate neuroinflammation by regulating the activation of NLRP3 inflammasome, which provides new ideas for the treatment of AD.
Collapse
Affiliation(s)
- Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suyuan Wu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Lin Wang,
| |
Collapse
|
30
|
Morris JK, Wood LB, Wilkins HM. Editorial: Metabolism in Alzheimer's Disease. Front Neurosci 2022; 15:824145. [PMID: 35058745 PMCID: PMC8763976 DOI: 10.3389/fnins.2021.824145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jill K. Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Alzheimer's Disease Center, Kansas City, KS, United States
- Department of Molecular and Integrative Physiology and Internal Medicine-Division of Endocrinology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Levi B. Wood
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Heather M. Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Alzheimer's Disease Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
31
|
Wilkins HM, Troutwine BR, Menta BW, Manley SJ, Strope TA, Lysaker CR, Swerdlow RH. Mitochondrial Membrane Potential Influences Amyloid-β Protein Precursor Localization and Amyloid-β Secretion. J Alzheimers Dis 2022; 85:381-394. [PMID: 34806611 PMCID: PMC9212216 DOI: 10.3233/jad-215280] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Amyloid-β (Aβ), which derives from the amyloid-β protein precursor (AβPP), forms plaques and serves as a fluid biomarker in Alzheimer's disease (AD). How Aβ forms from AβPP is known, but questions relating to AβPP and Aβ biology remain unanswered. AD patients show mitochondrial dysfunction, and an Aβ/AβPP mitochondria relationship exists. OBJECTIVE We considered how mitochondrial biology may impact AβPP and Aβ biology. METHODS SH-SY5Y cells were transfected with AβPP constructs. After treatment with FCCP (uncoupler), Oligomycin (ATP synthase inhibitor), or starvation Aβ levels were measured. β-secretase (BACE1) expression was measured. Mitochondrial localized full-length AβPP was also measured. All parameters listed were measured in ρ0 cells on an SH-SY5Y background. iPSC derived neurons were also used to verify key results. RESULTS We showed that mitochondrial depolarization routes AβPP to, while hyperpolarization routes AβPP away from, the organelle. Mitochondrial AβPP and cell Aβ secretion inversely correlate, as cells with more mitochondrial AβPP secrete less Aβ, and cells with less mitochondrial AβPP secrete more Aβ. An inverse relationship between secreted/extracellular Aβ and intracellular Aβ was observed. CONCLUSION Our findings indicate mitochondrial function alters AβPP localization and suggest enhanced mitochondrial activity promotes Aβ secretion while depressed mitochondrial activity minimizes Aβ secretion. Our data complement other studies that indicate a mitochondrial, AβPP, and Aβ nexus, and could help explain why cerebrospinal fluid Aβ is lower in those with AD. Our data further suggest Aβ secretion could serve as a biomarker of cell or tissue mitochondrial function.
Collapse
Affiliation(s)
- Heather M. Wilkins
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS USA
| | - Benjamin R. Troutwine
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, USA
| | - Blaise W. Menta
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS USA
| | - Sharon J. Manley
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, USA
| | - Taylor A. Strope
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS USA
| | - Colton R. Lysaker
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS USA
| | - Russell H. Swerdlow
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
32
|
Hassan W, Noreen H, Rehman S, Kamal MA, Teixeira da Rocha JB. Association of Oxidative Stress with Neurological Disorders. Curr Neuropharmacol 2022; 20:1046-1072. [PMID: 34781871 PMCID: PMC9886831 DOI: 10.2174/1570159x19666211111141246] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/05/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGORUND Oxidative stress is one of the main contributing factors involved in cerebral biochemical impairment. The higher susceptibility of the central nervous system to reactive oxygen species mediated damage could be attributed to several factors. For example, neurons use a greater quantity of oxygen, many parts of the brain have higher concentraton of iron, and neuronal mitochondria produce huge content of hydrogen peroxide. In addition, neuronal membranes have polyunsaturated fatty acids, which are predominantly vulnerable to oxidative stress (OS). OS is the imbalance between reactive oxygen species generation and cellular antioxidant potential. This may lead to various pathological conditions and diseases, especially neurodegenerative diseases such as, Parkinson's, Alzheimer's, and Huntington's diseases. OBJECTIVES In this study, we explored the involvement of OS in neurodegenerative diseases. METHODS We used different search terms like "oxidative stress and neurological disorders" "free radicals and neurodegenerative disorders" "oxidative stress, free radicals, and neurological disorders" and "association of oxidative stress with the name of disorders taken from the list of neurological disorders. We tried to summarize the source, biological effects, and physiologic functions of ROS. RESULTS Finally, it was noted that more than 190 neurological disorders are associated with oxidative stress. CONCLUSION More elaborated studies in the future will certainly help in understanding the exact mechanism involved in neurological diseases and provide insight into revelation of therapeutic targets.
Collapse
Affiliation(s)
- Waseem Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Hamsa Noreen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Shakila Rehman
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Joao Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Bioquímica, Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
33
|
Wang Q, Dong X, Zhang R, Zhao C. Flavonoids with Potential Anti-Amyloidogenic Effects as Therapeutic Drugs for Treating Alzheimer's Disease. J Alzheimers Dis 2021; 84:505-533. [PMID: 34569961 DOI: 10.3233/jad-210735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a central neurodegenerative disease generally among the elderly; it accounts for approximately 50-75%of total cases of dementia patients and poses a serious threat to physical and mental health. Currently available treatments for AD mainly relieves its symptoms, and effective therapy is urgently needed. Deposition of amyloid-β protein in the brain is an early and invariant neuropathological feature of AD. Currently the main efforts in developing anti-AD drugs focus on anti-amyloidogenic therapeutics that prevent amyloid-β production or aggregation and decrease the occurrence of neurotoxic events. The results of an increasing number of studies suggest that natural extracts and phytochemicals have a positive impact on brain aging. Flavonoids belong to the broad group of polyphenols and recent data indicate a favorable effect of flavonoids on brain aging. In this review, we collect relevant discoveries from 1999 to 2021, discuss 75 flavonoids that effectively influence AD pathogenesis, and summarize their functional mechanisms in detail. The data we have reviewed show that, these flavonoids belong to various subclasses, including flavone, flavanone, biflavone, etc. Our results provide a reference for further study of the effects of flavonoids on AD and the progress of anti-AD therapy.
Collapse
Affiliation(s)
- Qixin Wang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, China
| | - Xiaofang Dong
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, China
| | - Ran Zhang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, China
| | - Changqi Zhao
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, China
| |
Collapse
|
34
|
Weidling IW, Wilkins HM, Koppel SJ, Hutfles L, Wang X, Kalani A, Menta BW, Ryan B, Perez-Ortiz J, Gamblin TC, Swerdlow RH. Mitochondrial DNA Manipulations Affect Tau Oligomerization. J Alzheimers Dis 2021; 77:149-163. [PMID: 32804126 PMCID: PMC7962146 DOI: 10.3233/jad-200286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Mitochondrial dysfunction and tau aggregation occur in Alzheimer's disease (AD), and exposing cells or rodents to mitochondrial toxins alters their tau. OBJECTIVE To further explore how mitochondria influence tau, we measured tau oligomer levels in human neuronal SH-SY5Y cells with different mitochondrial DNA (mtDNA) manipulations. METHODS Specifically, we analyzed cells undergoing ethidium bromide-induced acute mtDNA depletion, ρ0 cells with chronic mtDNA depletion, and cytoplasmic hybrid (cybrid) cell lines containing mtDNA from AD subjects. RESULTS We found cytochrome oxidase activity was particularly sensitive to acute mtDNA depletion, evidence of metabolic re-programming in the ρ0 cells, and a relatively reduced mtDNA content in cybrids generated through AD subject mitochondrial transfer. In each case tau oligomer levels increased, and acutely depleted and AD cybrid cells also showed a monomer to oligomer shift. CONCLUSION We conclude a cell's mtDNA affects tau oligomerization. Overlapping tau changes across three mtDNA-manipulated models establishes the reproducibility of the phenomenon, and its presence in AD cybrids supports its AD-relevance.
Collapse
Affiliation(s)
- Ian W Weidling
- University of Kansas Alzheimer's Disease Center; the University of Kansas Medical Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Molecular and Integrative Physiology, and University of Kansas Medical Center, Kansas City, KS, USA
| | - Heather M Wilkins
- University of Kansas Alzheimer's Disease Center; the University of Kansas Medical Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Scott J Koppel
- University of Kansas Alzheimer's Disease Center; the University of Kansas Medical Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Molecular and Integrative Physiology, and University of Kansas Medical Center, Kansas City, KS, USA
| | - Lewis Hutfles
- University of Kansas Alzheimer's Disease Center; the University of Kansas Medical Center, Kansas City, KS, USA
| | - Xiaowan Wang
- University of Kansas Alzheimer's Disease Center; the University of Kansas Medical Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anuradha Kalani
- University of Kansas Alzheimer's Disease Center; the University of Kansas Medical Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Blaise W Menta
- University of Kansas Alzheimer's Disease Center; the University of Kansas Medical Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Benjamin Ryan
- University of Kansas Alzheimer's Disease Center; the University of Kansas Medical Center, Kansas City, KS, USA.,Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Judit Perez-Ortiz
- University of Kansas Alzheimer's Disease Center; the University of Kansas Medical Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - T Chris Gamblin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center; the University of Kansas Medical Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Molecular and Integrative Physiology, and University of Kansas Medical Center, Kansas City, KS, USA.,Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
35
|
Morton H, Kshirsagar S, Orlov E, Bunquin LE, Sawant N, Boleng L, George M, Basu T, Ramasubramanian B, Pradeepkiran JA, Kumar S, Vijayan M, Reddy AP, Reddy PH. Defective mitophagy and synaptic degeneration in Alzheimer's disease: Focus on aging, mitochondria and synapse. Free Radic Biol Med 2021; 172:652-667. [PMID: 34246776 DOI: 10.1016/j.freeradbiomed.2021.07.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and multiple cognitive impairments. AD is marked by multiple cellular changes, including deregulation of microRNAs, activation of glia and astrocytes, hormonal imbalance, defective mitophagy, synaptic degeneration, in addition to extracellular neuritic amyloid-beta (Aβ) plaques, phosphorylated tau (P-tau), and intracellular neurofibrillary tangles (NFTs). Recent research in AD revealed that defective synaptic mitophagy leads to synaptic degeneration and cognitive dysfunction in AD neurons. Our critical analyses of mitochondria and Aβ and P-tau revealed that increased levels of Aβ and P-Tau, and abnormal interactions between Aβ and Drp1, P-Tau and Drp1 induced increased mitochondrial fragmentation and proliferation of dysfunctional mitochondria in AD neurons and depleted Parkin and PINK1 levels. These events ultimately lead to impaired clearance of dead and/or dying mitochondria in AD neurons. The purpose of our article is to highlight the recent research on mitochondria and synapses in relation to Aβ and P-tau, focusing on recent developments.
Collapse
Affiliation(s)
- Hallie Morton
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Erika Orlov
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Lloyd E Bunquin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Neha Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Lauren Boleng
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Nutritional Science, College of Human Sciences, Texas Tech University, 1301Akron Ave, Lubbock, TX, 79409, USA
| | - Mathew George
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Tanisha Basu
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | | | - Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Nutritional Science, College of Human Sciences, Texas Tech University, 1301Akron Ave, Lubbock, TX, 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
36
|
Zhao H, Huang X, Tong Z. Formaldehyde-Crosslinked Nontoxic Aβ Monomers to Form Toxic Aβ Dimers and Aggregates: Pathogenicity and Therapeutic Perspectives. ChemMedChem 2021; 16:3376-3390. [PMID: 34396700 DOI: 10.1002/cmdc.202100428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of senile plaques in the brain. However, medicines targeting amyloid-beta (Aβ) have not achieved the expected clinical effects. This review focuses on the formation mechanism of the Aβ dimer (the basic unit of oligomers and fibrils) and its tremendous potential as a drug target. Recently, age-associated formaldehyde and Aβ-derived formaldehyde have been found to crosslink the nontoxic Aβ monomer to form the toxic dimers, oligomers and fibrils. Particularly, Aβ-induced formaldehyde accumulation and formaldehyde-promoted Aβ aggregation form a vicious cycle. Subsequently, formaldehyde initiates Aβ toxicity in both the early-and late-onset AD. These facts also explain why AD drugs targeting only Aβ do not have the desired therapeutic effects. Development of the nanoparticle-based medicines targeting both formaldehyde and Aβ dimer is a promising strategy for improving the drug efficacy by penetrating blood-brain barrier and extracellular space into the cortical neurons in AD patients.
Collapse
Affiliation(s)
- Hang Zhao
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuerong Huang
- Wenzhou Medical University Affiliated Hospital 3, Department of Neurology, Wenzhou, 325200, China
| | - Zhiqian Tong
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
37
|
Arora A, Behl T, Sehgal A, Singh S, Sharma N, Mathew B, Bungau S. Targeting cellular batteries for the therapy of neurological diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41517-41532. [PMID: 34080116 DOI: 10.1007/s11356-021-14665-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The mitochondria, apart from being known as the cell's "powerhouse," are crucial in the viability of nerve cells. Any damage to these cellular organelles can result in their cellular level dysfunction which includes rapidly multiplying reactive oxygen species (ROS) from the mitochondrial membrane, impaired calcium ion homeostasis, and disturbed mitochondrial dynamics by the formation of permeability transition pore in mitochondria. All these impaired biochemical changes lead to various neurological disorders such as progressive supranuclear palsy (PSP), Parkinson's disease (PD), and Alzheimer's disease (AD). Moreover, impaired mitochondrial functions are particularly prone to damage owing to prolonged lifespan and stretched length of the neurons. At the same time, neurons are highly dependent on ATP, and thus, the mitochondria play a central role in the pathogenesis pertaining to neuronal disorders. Dysfunction in the mitochondria is an early pathological hallmark of neurological disorders, and its early detection with the help of suitable biomarkers can lead to promising treatment in this area. Thus, the drugs which are targeting mitochondrial dysfunctions are the emerging area of research in connection with neurological disorders. This can be evidenced by the great opportunities for mitigation, diagnosis, and treatment of numerous human disorders that entail mitochondrial dysfunction at the nexus of their pathogenesis. Here, we throw light at the mitochondrial pathologies and indications of dysfunctional mitochondria in PD, AD, and PSP. There is also an insight into the possible therapeutic strategies highlighting the need for mitochondria-based medicine and made an attempt for claiming the prerequisite for the therapy of neurological diseases.
Collapse
Affiliation(s)
- Arpita Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
38
|
Villavicencio Tejo F, Quintanilla RA. Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer's Disease. Antioxidants (Basel) 2021; 10:1069. [PMID: 34356302 PMCID: PMC8301100 DOI: 10.3390/antiox10071069] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
The increase in human life expectancy has become a challenge to reduce the deleterious consequences of aging. Nowadays, an increasing number of the population suffer from age-associated neurodegenerative diseases including Parkinson's disease (PD) and Alzheimer's disease (AD). These disorders present different signs of neurodegeneration such as mitochondrial dysfunction, inflammation, and oxidative stress. Accumulative evidence suggests that the transcriptional factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays a vital defensive role orchestrating the antioxidant response in the brain. Nrf2 activation promotes the expression of several antioxidant enzymes that exert cytoprotective effects against oxidative damage and mitochondrial impairment. In this context, several studies have proposed a role of Nrf2 in the pathogenesis of PD and AD. Thus, we consider it important to summarize the ongoing literature related to the effects of the Nrf2 pathway in the context of these diseases. Therefore, in this review, we discuss the mechanisms involved in Nrf2 activity and its connection with mitochondria, energy supply, and antioxidant response in the brain. Furthermore, we will lead our discussion to identify the participation of the Nrf2 pathway in mitochondrial impairment and neurodegeneration present in PD and AD. Finally, we will discuss the therapeutic effects that the Nrf2 pathway activation could have on the cognitive impairment, neurodegeneration, and mitochondrial failure present in PD and AD.
Collapse
Affiliation(s)
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
39
|
Pushina M, Farshbaf S, Mochida W, Kanakubo M, Nishiyabu R, Kubo Y, Anzenbacher P. A Fluorescence Sensor Array Based on Zinc(II)-Carboxyamidoquinolines: Toward Quantitative Detection of ATP*. Chemistry 2021; 27:11344-11351. [PMID: 34129701 DOI: 10.1002/chem.202100896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 02/06/2023]
Abstract
The newly prepared fluorescent carboxyamidoquinolines (1-3) and their Zn(II) complexes (Zn@1-Zn@3) were used to bind and sense various phosphate anions utilizing a relay mechanism, in which the Zn(II) ion migrates from the Zn@1-Zn@3 complexes to the phosphate, namely adenosine 5'-triphosphate (ATP) and pyrophosphate (PPi), a process accompanied by a dramatic change in fluorescence. Zn@1-Zn@3 assemblies interact with adenine nucleotide phosphates while displaying an analyte-specific response. This process was investigated using UV-vis, fluorescence, and NMR spectroscopy. It is shown that the different binding selectivity and the corresponding fluorescence response enable differentiation of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), pyrophosphate (PPi), and phosphate (Pi). The cross-reactive nature of the carboxyamidoquinolines-Zn(II) sensors in conjunction with linear discriminant analysis (LDA) was utilized in a simple fluorescence chemosensor array that allows for the identification of ATP, ADP, PPi, and Pi from 8 other anions including adenosine 5'-monophosphate (AMP) with 100 % correct classification. Furthermore, the support vector machine algorithm, a machine learning method, allowed for highly accurate quantitation of ATP in the range of 5-100 μM concentration in unknown samples with error <2.5 %.
Collapse
Affiliation(s)
- Mariia Pushina
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Sepideh Farshbaf
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Wakana Mochida
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Masashi Kanakubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Pavel Anzenbacher
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
40
|
Du F, Yu Q, Yan SS. PINK1 Activation Attenuates Impaired Neuronal-Like Differentiation and Synaptogenesis and Mitochondrial Dysfunction in Alzheimer's Disease Trans-Mitochondrial Cybrid Cells. J Alzheimers Dis 2021; 81:1749-1761. [PMID: 33998543 DOI: 10.3233/jad-210095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mitochondrial dysfunction, bioenergetic deficit, and extensive oxidative stress underlie neuronal perturbation during the early stage of Alzheimer's disease (AD). Previously, we demonstrated that decreased PTEN-induced putative kinase 1 (PINK1) expression is associated with AD pathology in AD-affected human brains and AD mice. OBJECTIVE In the present study, we highlight the essential role of PINK1 in AD-relevant mitochondrial perturbation and neuronal malfunction. METHODS Using trans-mitochondrial "cybrid" (cytoplasmic hybrid) neuronal cells, whose mitochondria are transferred from platelets of patients with sporadic AD, we observed the effect of PINK1 in neuronal-like differentiation and synaptogenesis and mitochondrial functions. RESULTS In AD cybrid cells, the downregulation of PINK1 is correlated to the alterations in mitochondrial morphology and function and deficit in neuronal-like differentiation. Restoring/increasing PINK1 by lentivirus transduction of PINK1 robustly attenuates mitochondrial defects and rescues neurite-like outgrowth. Importantly, defective PINK1 kinase activity fails to reverse these detrimental effects. Mechanistically, AD cybrid cells reveal a significant decrease in PINK1-dependent phosphorylated mitofusin (Mfn) 2, a key mitochondrial membrane protein that participates in mitochondrial fusion, and an insufficient autophagic activity for the clearance of dysfunctional mitochondria. Overexpression of PINK1, but not mutant PINK1 elevates phosphorylation of Mfn2 and autophagy signaling LC3-II. Accordingly, PINK1-overexpressed AD cybrids exhibit increases in mitochondrial length and density and suppressed reactive oxygen species. These results imply that activation of PINK1 protects against AD-affected mitochondrial dysfunction and impairment in neuronal maturation and differentiation. CONCLUSION PINK1-mediated mitophagy is important for maintaining mitochondrial health by clearance of dysfunctional mitochondria and therefore, improves energy homeostasis in AD.
Collapse
Affiliation(s)
- Fang Du
- Department of Surgery, Columbia University New York, NY, USA
| | - Qing Yu
- Department of Surgery, Columbia University New York, NY, USA
| | | |
Collapse
|
41
|
Kocinaj A, Chaudhury T, Uddin MS, Junaid RR, Ramsden DB, Hondhamuni G, Klamt F, Parsons L, Parsons RB. High Expression of Nicotinamide N-Methyltransferase in Patients with Sporadic Alzheimer's Disease. Mol Neurobiol 2021; 58:1769-1781. [PMID: 33387303 PMCID: PMC7932959 DOI: 10.1007/s12035-020-02259-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/10/2020] [Indexed: 01/11/2023]
Abstract
We have previously shown that the expression of nicotinamide N-methyltransferase (NNMT) is significantly increased in the brains of patients who have died of Parkinson's disease (PD). In this study, we have compared the expression of NNMT in post-mortem medial temporal lobe, hippocampus and cerebellum of 10 Alzheimer's disease (AD) and 9 non-disease control subjects using a combination of quantitative Western blotting, immunohistochemistry and dual-label confocal microscopy coupled with quantitative analysis of colocalisation. NNMT was detected as a single protein of 29 kDa in both AD and non-disease control brains, which was significantly increased in AD medial temporal lobe compared to non-disease controls (7.5-fold, P < 0.026). There was no significant difference in expression in the cerebellum (P = 0.91). NNMT expression in AD medial temporal lobe and hippocampus was present in cholinergic neurones with no glial localisation. Cell-type expression was identical in both non-disease control and AD tissues. These results are the first to show, in a proof-of-concept study using a small patient cohort, that NNMT protein expression is increased in the AD brain and is present in neurones which degenerate in AD. These results suggest that the elevation of NNMT may be a common feature of many neurodegenerative diseases. Confirmation of this overexpression using a larger AD patient cohort will drive the future development of NNMT-targetting therapeutics which may slow or stop the disease pathogenesis, in contrast to current therapies which solely address AD symptoms.
Collapse
Affiliation(s)
- Altin Kocinaj
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London, SE1 9NH UK
| | - Tabassum Chaudhury
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London, SE1 9NH UK
| | - Mohammed S. Uddin
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London, SE1 9NH UK
| | - Rashad R. Junaid
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London, SE1 9NH UK
| | - David B. Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TH UK
| | - Geshanthi Hondhamuni
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ UK
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos St., Porto Alegre, RS 90035-003 Brazil
- National Institute of Science and Technology – Translational Medicine (INCT-TM), Porto Alegre, Brazil
| | - Linda Parsons
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ UK
| | - Richard B. Parsons
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London, SE1 9NH UK
| |
Collapse
|
42
|
Nguyen TT, Vo TK, Vo GV. Therapeutic Strategies and Nano-Drug Delivery Applications in Management of Aging Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:183-198. [PMID: 33725354 DOI: 10.1007/978-3-030-55035-6_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline. Existing drugs only suppress symptoms or delay further deterioration but do not address the cause of the disease. In spite of screening numerous drug candidates against various molecular targets of AD, only a few candidates, such as acetylcholinesterase inhibitors, are currently utilized as an effective clinical therapy. Currently, nano-based therapies can make a difference, providing new therapeutic options by helping drugs to cross the blood-brain barrier and enter the brain more effectively. The main aim of this review was to highlight advances in research on the development of nano-based therapeutics for improved treatment of AD.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam
| | - Tuong Kha Vo
- Vietnam Sports Hospital, Ministry of Culture, Sports and Tourism, Hanoi, Vietnam
| | - Giau Van Vo
- Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si, South Korea. .,Department of Bionano Technology, Gachon University, Seongnam-si, South Korea. .,School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
43
|
Swerdlow NS, Wilkins HM. Mitophagy and the Brain. Int J Mol Sci 2020; 21:ijms21249661. [PMID: 33352896 PMCID: PMC7765816 DOI: 10.3390/ijms21249661] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Stress mechanisms have long been associated with neuronal loss and neurodegenerative diseases. The origin of cell stress and neuronal loss likely stems from multiple pathways. These include (but are not limited to) bioenergetic failure, neuroinflammation, and loss of proteostasis. Cells have adapted compensatory mechanisms to overcome stress and circumvent death. One mechanism is mitophagy. Mitophagy is a form of macroautophagy, were mitochondria and their contents are ubiquitinated, engulfed, and removed through lysosome degradation. Recent studies have implicated mitophagy dysregulation in several neurodegenerative diseases and clinical trials are underway which target mitophagy pathways. Here we review mitophagy pathways, the role of mitophagy in neurodegeneration, potential therapeutics, and the need for further study.
Collapse
Affiliation(s)
- Natalie S. Swerdlow
- University of Kansas Alzheimer’s Disease Center, University of Kansas, Kansas City, KS 66160, USA;
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Center, University of Kansas, Kansas City, KS 66160, USA;
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence:
| |
Collapse
|
44
|
Defective mitophagy in Alzheimer's disease. Ageing Res Rev 2020; 64:101191. [PMID: 33022416 DOI: 10.1016/j.arr.2020.101191] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive, mental illness without cure. Several years of intense research on postmortem AD brains, cell and mouse models of AD have revealed that multiple cellular changes are involved in the disease process, including mitochondrial abnormalities, synaptic damage, and glial/astrocytic activation, in addition to age-dependent accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (p-tau). Synaptic damage and mitochondrial dysfunction are early cellular changes in the disease process. Healthy and functionally active mitochondria are essential for cellular functioning. Dysfunctional mitochondria play a central role in aging and AD. Mitophagy is a cellular process whereby damaged mitochondria are selectively removed from cell and mitochondrial quality and biogenesis. Mitophagy impairments cause the progressive accumulation of defective organelle and damaged mitochondria in cells. In AD, increased levels of Aβ and p-tau can induce reactive oxygen species (ROS) production, causing excessive fragmentation of mitochondria and promoting defective mitophagy. The current article discusses the latest developments of mitochondrial research and also highlights multiple types of mitophagy, including Aβ and p-tau-induced mitophagy, stress-induced mitophagy, receptor-mediated mitophagy, ubiquitin mediated mitophagy and basal mitophagy. This article also discusses the physiological states of mitochondria, including fission-fusion balance, Ca2+ transport, and mitochondrial transport in normal and diseased conditions. Our article summarizes current therapeutic interventions, like chemical or natural mitophagy enhancers, that influence mitophagy in AD. Our article discusses whether a partial reduction of Drp1 can be a mitophagy enhancer and a therapeutic target for mitophagy in AD and other neurological diseases.
Collapse
|
45
|
Wong KY, Roy J, Fung ML, Heng BC, Zhang C, Lim LW. Relationships between Mitochondrial Dysfunction and Neurotransmission Failure in Alzheimer's Disease. Aging Dis 2020; 11:1291-1316. [PMID: 33014538 PMCID: PMC7505271 DOI: 10.14336/ad.2019.1125] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Besides extracellular deposition of amyloid beta and formation of phosphorylated tau in the brains of patients with Alzheimer's disease (AD), the pathogenesis of AD is also thought to involve mitochondrial dysfunctions and altered neurotransmission systems. However, none of these components can describe the diverse cognitive, behavioural, and psychiatric symptoms of AD without the pathologies interacting with one another. The purpose of this review is to understand the relationships between mitochondrial and neurotransmission dysfunctions in terms of (1) how mitochondrial alterations affect cholinergic and monoaminergic systems via disruption of energy metabolism, oxidative stress, and apoptosis; and (2) how different neurotransmission systems drive mitochondrial dysfunction via increasing amyloid beta internalisation, oxidative stress, disruption of mitochondrial permeabilisation, and mitochondrial trafficking. All these interactions are separately discussed in terms of neurotransmission systems. The association of mitochondrial dysfunctions with alterations in dopamine, norepinephrine, and histamine is the prospective goal in this research field. By unfolding the complex interactions surrounding mitochondrial dysfunction in AD, we can better develop potential treatments to delay, prevent, or cure this devastating disease.
Collapse
Affiliation(s)
- Kan Yin Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Jaydeep Roy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Boon Chin Heng
- Peking University School of Stomatology, Beijing, China.
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
46
|
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are, respectively, the most prevalent and fastest growing neurodegenerative diseases worldwide. The former is primarily characterized by memory loss and the latter by the motor symptoms of tremor and bradykinesia. Both AD and PD are progressive diseases that share several key underlying mitochondrial, inflammatory, and other metabolic pathologies. This review will detail how these pathologies intersect with ketone body metabolism and signaling, and how ketone bodies, particularly d-β-hydroxybutyrate (βHB), may serve as a potential adjunctive nutritional therapy for two of the world's most devastating conditions.
Collapse
|
47
|
Esteves AR, Cardoso SM. Differential protein expression in diverse brain areas of Parkinson's and Alzheimer's disease patients. Sci Rep 2020; 10:13149. [PMID: 32753661 PMCID: PMC7403590 DOI: 10.1038/s41598-020-70174-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
Many hypotheses have been postulated to define the etiology of sporadic Parkinson's and Alzheimer's disorders (PD and AD) but there is no consensus on what causes these devastating age-related diseases. Braak staging of both pathologies helped researchers to better understand the progression and to identify their prodromal and symptomatic phases. Indeed, it is well accepted that Lewy body pathology and neurofibrillary tangles appearance correlates with disease progression and severity of symptoms in PD and AD, respectively. Additionally, several studies in PD and AD models try to disclose which cellular mechanisms are defaulted and trigger the neurodegenerative process that culminates with neuronal death causing PD and AD classical symptomatology. Herein, we determined expression levels of proteins involved in microtubule assembly, autophagic-lysosomal pathway and unfolded protein response in the cortex, hippocampus and SNpc of PD and AD patients, vascular dementia patients and aged-match controls. The differential expression allowed us to determine which pathways are determinant to synaptic dysfunction and to establish a time line for disease progression. Our results allow us to challenge the hypothesis that both PD and AD pathologies are caused by α-synuclein or Aβ pathology propagation throughout the brain in a prion-like manner.
Collapse
Affiliation(s)
- A R Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - S M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal. .,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal. .,Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
48
|
Weidling IW, Swerdlow RH. Mitochondria in Alzheimer's disease and their potential role in Alzheimer's proteostasis. Exp Neurol 2020; 330:113321. [PMID: 32339611 PMCID: PMC7282957 DOI: 10.1016/j.expneurol.2020.113321] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive brain disorder characterized by memory loss and the accumulation of two insoluble protein aggregates, tau neurofibrillary tangles and beta-amyloid plaques. Widespread mitochondrial dysfunction also occurs and mitochondria from AD patients display changes in number, ultrastructure, and enzyme activities. Mitochondrial dysfunction in AD presumably links in some way to its other disease characteristics, either as a cause or consequence. This review characterizes AD-associated mitochondrial perturbations and considers their position in its pathologic hierarchy. It focuses on the crosstalk that occurs between mitochondria, nuclear gene expression, and cytosolic signaling pathways that serves to maintain cell homeostasis. To this point, recent evidence indicates mitochondria trigger retrograde responses that influence cell proteostasis in general and AD proteostasis specifically. Potentially pertinent retrograde responses include the mitochondrial unfolded protein response (mtUPR), integrated stress response (ISR), autophagy/mitophagy, and proteasome function. A fuller perspective of mitochondrial dysfunction in AD, and its relation to protein aggregation, could enhance our overall understanding of this disease.
Collapse
Affiliation(s)
- Ian W Weidling
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
49
|
Uddin MS, Tewari D, Sharma G, Kabir MT, Barreto GE, Bin-Jumah MN, Perveen A, Abdel-Daim MM, Ashraf GM. Molecular Mechanisms of ER Stress and UPR in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2020; 57:2902-2919. [PMID: 32430843 DOI: 10.1007/s12035-020-01929-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/01/2020] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease involving aggregation of misfolded proteins inside the neuron causing prolonged cellular stress. The neuropathological hallmarks of AD include the formation of senile plaques and neurofibrillary tangles in specific brain regions that lead to synaptic loss and neuronal death. The exact mechanism of neuron dysfunction in AD remains obscure. In recent years, endoplasmic reticulum (ER) dysfunction has been implicated in neuronal degeneration seen in AD. Apart from AD, many other diseases also involve misfolded proteins aggregations in the ER, a condition referred to as ER stress. The response of the cell to ER stress is to activate a group of signaling pathways called unfolded protein response (UPR) that stimulates a particular transcriptional program to restore ER function and ensure cell survival. ER stress also involves the generation of reactive oxygen species (ROS) that, together with mitochondrial ROS and decreased effectiveness of antioxidant mechanisms, producing a condition of chronic oxidative stress. The unfolded proteins may not always produce a response that leads to the restoration of cellular functions, but they may also lead to inflammation by a set of different pathways with deleterious consequences. In this review, we extensively discuss the role of ER stress and how to target it using different pharmacological approaches in AD development and onset.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Sharma
- Department of Physiology, AIIMS Jodhpur, Jodhpur, India
| | | | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
50
|
Wang H, Zhang T, Ge X, Chen J, Zhao Y, Fu J. Parkin overexpression attenuates Aβ-induced mitochondrial dysfunction in HEK293 cells by restoring impaired mitophagy. Life Sci 2020; 244:117322. [PMID: 31958419 DOI: 10.1016/j.lfs.2020.117322] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
AIMS Mitochondrial dysfunction is an early prominent feature of Alzheimer's disease (AD). In the present study, we sought to investigate whether defective mitophagy is tightly related to amyloid-β (Aβ)-induced mitochondrial dysfunction. MAIN METHODS Immunofluorescence, western blot and transmission electron microscopy were used to examine mitophagy. Mitochondrial membrane potential was assessed using the JC-1 dye. Mitochondrial ROS was detected using MitoSOX™ Red staining. KEY FINDINGS Aβ induced mitochondrial dysfunction in HEK293 cells. Moreover, Aβ induced an increase in parkin translocation to mitochondria and led to a drastic reduction in cytosolic parkin. Furthermore, Aβ-treated cells displayed a microtubule-associated protein 1 light chain 3 (LC3) punctate pattern and elevated mitochondrial LC3-II levels, suggesting the upregulation of mitophagy. Notably, Aβ induced the accumulation of mitochondrial p62, which was associated with impaired mitophagy. In addition, Aβ-treated cells exhibited fragmented or swollen mitochondria with severely decreased cristae. We then investigated whether overexpression of parkin could protect cells against Aβ-induced mitochondrial dysfunction. Interestingly, parkin overexpression inhibited Aβ-induced mitochondrial dysfunction. Besides, parkin overexpression increased cytosolic and mitochondrial parkin levels as well as mitochondrial LC3-II levels in Aβ-treated cells. Additionally, parkin overexpression reversed the accumulation of p62 in mitochondria, indicating that parkin overexpression restored impaired mitophagy in Aβ-treated cells. Importantly, parkin overexpression remarkably reversed Aβ-induced mitochondrial fragmentation. SIGNIFICANCE Our data demonstrate that overexpression of parkin ameliorates impaired mitophagy and promotes the removal of damaged mitochondria in Aβ-treated cells, indicating that upregulation of parkin-mediated mitophagy may be a potential strategy for the therapy of AD.
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ting Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xuhua Ge
- Department of General Medicine, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Jingjiong Chen
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|