1
|
Zhang Z, Luo X, Jiang L, Wu H, Tan Z. How do HCN channels play a part in Alzheimer's and Parkinson's disease? Ageing Res Rev 2024; 100:102436. [PMID: 39047878 DOI: 10.1016/j.arr.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Neurodegenerative diseases like Alzheimer's and Parkinson's disease (AD and PD) are well-known, yet their underlying causes remain unclear. Recent studies have suggested that disruption of ion channels contribute to their pathogenesis. Among these channels, the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, encoded by HCN1-4 genes, are of particular interest due to their role in generating hyperpolarization-activated current (Ih), which is crucial in various neural activities impacting memory and motor functions. A growing body of evidence underscores the pivotal role of HCN in Aβ generation, glial cell function, and ischemia-induced dementia; while HCN is expressed in various regions of the basal ganglia, modulating their functions and influencing motor disorders in PD; neuroinflammation triggered by microglial activation represents a shared pathological mechanism in both AD and PD, in which HCN also plays a significant part. This review delves into the neuronal functions governed by HCN, its roles in the aforementioned pathogenesis, its expression patterns in AD and PD, and discusses potential therapeutic drugs targeting HCN for the treatment of these diseases, aiming to offer a novel perspective and inspire future research endeavors.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Xin Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Liping Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Department of Physiology, Basic Medical School, Hengyang Medical College, The Neuroscience Institute, University of South China, Hengyang 421001, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Huilan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China.
| |
Collapse
|
2
|
Ishikuro K, Hattori N, Otomune H, Furuya K, Nakada T, Miyahara K, Shibata T, Noguchi K, Kuroda S, Nakatsuji Y, Nishijo H. Neural Mechanisms of Neuro-Rehabilitation Using Transcranial Direct Current Stimulation (tDCS) over the Front-Polar Area. Brain Sci 2023; 13:1604. [PMID: 38002563 PMCID: PMC10670271 DOI: 10.3390/brainsci13111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation (NIBS) technique that applies a weak current to the scalp to modulate neuronal excitability by stimulating the cerebral cortex. The technique can produce either somatic depolarization (anodal stimulation) or somatic hyperpolarization (cathodal stimulation), based on the polarity of the current used by noninvasively stimulating the cerebral cortex with a weak current from the scalp, making it a NIBS technique that can modulate neuronal excitability. Thus, tDCS has emerged as a hopeful clinical neuro-rehabilitation treatment strategy. This method has a broad range of potential uses in rehabilitation medicine for neurodegenerative diseases, including Parkinson's disease (PD). The present paper reviews the efficacy of tDCS over the front-polar area (FPA) in healthy subjects, as well as patients with PD, where tDCS is mainly applied to the primary motor cortex (M1 area). Multiple evidence lines indicate that the FPA plays a part in motor learning. Furthermore, recent studies have reported that tDCS applied over the FPA can improve motor functions in both healthy adults and PD patients. We argue that the application of tDCS to the FPA promotes motor skill learning through its effects on the M1 area and midbrain dopamine neurons. Additionally, we will review other unique outcomes of tDCS over the FPA, such as effects on persistence and motivation, and discuss their underlying neural mechanisms. These findings support the claim that the FPA could emerge as a new key brain region for tDCS in neuro-rehabilitation.
Collapse
Affiliation(s)
- Koji Ishikuro
- Department of Rehabilitation, Toyama University Hospital, Toyama 930-0194, Japan; (K.I.); (N.H.); (H.O.); (K.F.); (T.N.)
| | - Noriaki Hattori
- Department of Rehabilitation, Toyama University Hospital, Toyama 930-0194, Japan; (K.I.); (N.H.); (H.O.); (K.F.); (T.N.)
| | - Hironori Otomune
- Department of Rehabilitation, Toyama University Hospital, Toyama 930-0194, Japan; (K.I.); (N.H.); (H.O.); (K.F.); (T.N.)
| | - Kohta Furuya
- Department of Rehabilitation, Toyama University Hospital, Toyama 930-0194, Japan; (K.I.); (N.H.); (H.O.); (K.F.); (T.N.)
| | - Takeshi Nakada
- Department of Rehabilitation, Toyama University Hospital, Toyama 930-0194, Japan; (K.I.); (N.H.); (H.O.); (K.F.); (T.N.)
| | - Kenichiro Miyahara
- Department of Physical Therapy, Toyama College of Medical Welfare, Toyama 930-0194, Japan;
| | - Takashi Shibata
- Department of Neurosurgery, Toyama Nishi General Hospital, Toyama 939-2716, Japan;
- Department of Neurosurgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Kyo Noguchi
- Department of Radiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Satoshi Kuroda
- Department of Neurosurgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Yuji Nakatsuji
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Hisao Nishijo
- Faculty of Human Sciences, University of East Asia, Shimonoseki 751-8503, Japan
| |
Collapse
|
3
|
Neuropathology of the Basal Ganglia in SNCA Transgenic Rat Model of Parkinson's Disease: Involvement of Parvalbuminergic Interneurons and Glial-Derived Neurotropic Factor. Int J Mol Sci 2022; 23:ijms231710126. [PMID: 36077524 PMCID: PMC9456397 DOI: 10.3390/ijms231710126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by the accumulation of alpha-synuclein, encoded by the SNCA gene. The main neuropathological hallmark of PD is the degeneration of dopaminergic neurons leading to striatal dopamine depletion. Trophic support by a neurotrophin called glial-derived neurotrophic factor (GDNF) is also lacking in PD. We performed immunohistochemical studies to investigate neuropathological changes in the basal ganglia of a rat transgenic model of PD overexpressing alfa-synuclein. We observed that neuronal loss also occurs in the dorsolateral part of the striatum in the advanced stages of the disease. Moreover, along with the degeneration of the medium spiny projection neurons, we found a dramatic loss of parvalbumin interneurons. A marked decrease in GDNF, which is produced by parvalbumin interneurons, was observed in the striatum and in the substantia nigra of these animals. This confirmed the involvement of the striatum in the pathophysiology of PD and the importance of GDNF in maintaining the health of the substantia nigra.
Collapse
|
4
|
6-Benzyloxyphthalides as selective and reversible monoamine oxidase B inhibitors with antioxidant and anti-neuroinflammatory activities for Parkinson’s disease treatment. Bioorg Chem 2022; 120:105623. [DOI: 10.1016/j.bioorg.2022.105623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 01/05/2023]
|
5
|
Ishikuro K, Hattori N, Imanishi R, Furuya K, Nakata T, Dougu N, Yamamoto M, Konishi H, Nukui T, Hayashi T, Anada R, Matsuda N, Hirosawa H, Tanaka R, Shibata T, Mori K, Noguchi K, Kuroda S, Nakatsuji Y, Nishijo H. A Parkinson's disease patient displaying increased neuromelanin-sensitive areas in the substantia nigra after rehabilitation with tDCS: a case report. Neurocase 2021; 27:407-414. [PMID: 34503372 DOI: 10.1080/13554794.2021.1975768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous studies have reported that transcranial direct current stimulation (tDCS) of the frontal polar area (FPA) ameliorated motor disability in patients with Parkinson's disease (PD). Here we report changes in neuromelanin (NM) imaging of dopaminergic neurons before and after rehabilitation combined with anodal tDCS over the FPA for 2 weeks in a PD patient. After the intervention, the patient showed clinically meaningful improvements while the NM-sensitive area in the SN increased by 18.8%. This case study is the first report of NM imaging of the SN in a PD patient who received tDCS.Abbreviations FPA: front polar area; PD: Parkinson's disease; NM: neuromelanin; DCI: DOPA decarboxylase inhibitor; STEF: simple test for evaluating hand function; TUG: timed up and go test; TMT: trail-making test; SN: substantia nigra; NM-MRI: neuromelanin magnetic resonance imaging; MCID: the minimal clinically important difference; SNpc: substantia nigra pars compacta; VTA: ventral tegmental area; LC: locus coeruleus; PFC: prefrontal cortex; M1: primary motor cortex; MDS: Movement Disorder Society; MIBG: 123I-metaiodobenzylguanidine; SBR: specific binding ratio; SPECT: single-photon emission computed tomography; DAT: dopamine transporter; NIBS: noninvasive brain stimulation; tDCS: transcranial direct current stimulation; MAOB: monoamine oxidase B; DCI: decarboxylase inhibitor; repetitive transcranial magnetic stimulation: rTMS; diffusion tensor imaging: DTI; arterial spin labeling: ASL.
Collapse
Affiliation(s)
- Koji Ishikuro
- Department of Rehabilitation, Toyama University Hospital, Toyama, Japan
| | - Noriaki Hattori
- Department of Rehabilitation, Toyama University Hospital, Toyama, Japan
| | - Rieko Imanishi
- Department of Rehabilitation, Toyama University Hospital, Toyama, Japan
| | - Kohta Furuya
- Department of Rehabilitation, Toyama University Hospital, Toyama, Japan
| | - Takeshi Nakata
- Department of Rehabilitation, Toyama University Hospital, Toyama, Japan
| | - Nobuhiro Dougu
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Mamoru Yamamoto
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hirofumi Konishi
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takamasa Nukui
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomohiro Hayashi
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ryoko Anada
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Noriyuki Matsuda
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hiroaki Hirosawa
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ryo Tanaka
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takashi Shibata
- Department of Neurosurgery, Faculty of Medicine, Toyama, Japan
| | - Koichi Mori
- Department of Radiology, Faculty of Medicine, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, Faculty of Medicine, Toyama, Japan
| | - Satoshi Kuroda
- Department of Neurosurgery, Faculty of Medicine, Toyama, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
6
|
Lin M, Mackie PM, Shaerzadeh F, Gamble-George J, Miller DR, Martyniuk CJ, Khoshbouei H. In Parkinson's patient-derived dopamine neurons, the triplication of α-synuclein locus induces distinctive firing pattern by impeding D2 receptor autoinhibition. Acta Neuropathol Commun 2021; 9:107. [PMID: 34099060 PMCID: PMC8185945 DOI: 10.1186/s40478-021-01203-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pathophysiological changes in dopamine neurons precede their demise and contribute to the early phases of Parkinson's disease (PD). Intracellular pathological inclusions of the protein α-synuclein within dopaminergic neurons are a cardinal feature of PD, but the mechanisms by which α-synuclein contributes to dopaminergic neuron vulnerability remain unknown. The inaccessibility to diseased tissue has been a limitation in studying progression of pathophysiology prior to degeneration of dopamine neurons. To address these issues, we differentiated induced pluripotent stem cells (iPSCs) from a PD patient carrying the α-synuclein triplication mutation (AST) and an unaffected first-degree relative (NAS) into dopaminergic neurons. In human-like dopamine neurons α-synuclein overexpression reduced the functional availability of D2 receptors, resulting in a stark dysregulation in firing activity, dopamine release, and neuronal morphology. We back-translated these findings into primary mouse neurons overexpressing α-synuclein and found a similar phenotype, supporting the causal role for α-synuclein. Importantly, application of D2 receptor agonist, quinpirole, restored the altered firing activity of AST-derived dopaminergic neurons to normal levels. These results provide novel insights into the pre-degenerative pathophysiological neuro-phenotype induced by α-synuclein overexpression and introduce a potential mechanism for the long-established clinical efficacy of D2 receptor agonists in the treatment of PD.
Collapse
Affiliation(s)
- Min Lin
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Phillip M Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Fatima Shaerzadeh
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | | | - Douglas R Miller
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Chris J Martyniuk
- Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
7
|
The role of KATP channel blockade and activation in the protection against neurodegeneration in the rotenone model of Parkinson's disease. Life Sci 2020; 257:118070. [DOI: 10.1016/j.lfs.2020.118070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
|
8
|
Sun L, Wei H. Ryanodine Receptors: A Potential Treatment Target in Various Neurodegenerative Disease. Cell Mol Neurobiol 2020; 41:1613-1624. [PMID: 32833122 DOI: 10.1007/s10571-020-00936-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Progressive neuronal demise is a key contributor to the key pathogenic event implicated in many different neurodegenerative disorders (NDDs). There are several therapeutic strategies available; however, none of them are particularly effective. Targeted neuroprotective therapy is one such therapy, which seems a compelling option, yet remains challenging due to the internal heterogeneity of the mechanisms underlying various NDDs. An alternative method to treat NDDs is to exploit common modalities involving molecularly distinct subtypes and thus develop specialized drugs with broad-spectrum characteristics. There is mounting evidence which supports for the theory that dysfunctional ryanodine receptors (RyRs) disrupt intracellular Ca2+ homeostasis, contributing to NDDs significantly. This review aims to provide direct and indirect evidence on the intersection of NDDs and RyRs malfunction, and to shed light on novel strategies to treat RyRs-mediated disease, modifying pharmacological therapies such as the potential therapeutic role of dantrolene, a RyRs antagonist.
Collapse
Affiliation(s)
- Liang Sun
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
- Department of Anesthesiology, Peking University People's Hospital, Beijing, 100044, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Fu Y, Depue RA. A novel neurobehavioral framework of the effects of positive early postnatal experience on incentive and consummatory reward sensitivity. Neurosci Biobehav Rev 2019; 107:615-640. [DOI: 10.1016/j.neubiorev.2019.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
|
10
|
Kumar VHS, Lipshultz SE. Caffeine and Clinical Outcomes in Premature Neonates. CHILDREN (BASEL, SWITZERLAND) 2019; 6:E118. [PMID: 31653108 PMCID: PMC6915633 DOI: 10.3390/children6110118] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022]
Abstract
Caffeine is the most widely used drug by both adults and children worldwide due to its ability to promote alertness and elevate moods. It is effective in the management of apnea of prematurity in premature infants. Caffeine for apnea of prematurity reduces the incidence of bronchopulmonary dysplasia in very-low-birth-weight infants and improves survival without neurodevelopmental disability at 18-21 months. Follow-up studies of the infants in the Caffeine for Apnea of Prematurity trial highlight the long-term safety of caffeine in these infants, especially relating to motor, behavioral, and intelligence skills. However, in animal models, exposure to caffeine during pregnancy and lactation adversely affects neuronal development and adult behavior of their offspring. Prenatal caffeine predisposes to intrauterine growth restriction and small growth for gestational age at birth. However, in-utero exposure to caffeine is also associated with excess growth, obesity, and cardio-metabolic changes in children. Caffeine therapy is a significant advance in newborn care, conferring immediate benefits in preterm neonates. Studies should help define the appropriate therapeutic window for caffeine treatment along with with the mechanisms relating to its beneficial effects on the brain and the lung. The long-term consequences of caffeine in adults born preterm are being studied and may depend on the ability of caffeine to modulate both the expression and the maturation of adenosine receptors in infants treated with caffeine.
Collapse
Affiliation(s)
- Vasantha H S Kumar
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA.
| | - Steven E Lipshultz
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
11
|
Stutz B, Nasrallah C, Nigro M, Curry D, Liu ZW, Gao XB, Elsworth JD, Mintz L, Horvath TL. Dopamine neuronal protection in the mouse Substantia nigra by GHSR is independent of electric activity. Mol Metab 2019; 24:120-138. [PMID: 30833218 PMCID: PMC6531791 DOI: 10.1016/j.molmet.2019.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/25/2022] Open
Abstract
Objective Dopamine neurons in the Substantia nigra (SN) play crucial roles in control of voluntary movement. Extensive degeneration of this neuronal population is the cause of Parkinson's disease (PD). Many factors have been linked to SN DA neuronal survival, including neuronal pacemaker activity (responsible for maintaining basal firing and DA tone) and mitochondrial function. Dln-101, a naturally occurring splice variant of the human ghrelin gene, targets the ghrelin receptor (GHSR) present in the SN DA cells. Ghrelin activation of GHSR has been shown to protect SN DA neurons against 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP) treatment. We decided to compare the actions of Dln-101 with ghrelin and identify the mechanisms associated with neuronal survival. Methods Histologial, biochemical, and behavioral parameters were used to evaluate neuroprotection. Inflammation and redox balance of SN DA cells were evaluated using histologial and real-time PCR analysis. Designer Receptors Exclusively Activated by Designer Drugs (DREADD) technology was used to modulate SN DA neuron electrical activity and associated survival. Mitochondrial dynamics in SN DA cells was evaluated using electron microscopy data. Results Here, we report that the human isoform displays an equivalent neuroprotective factor. However, while exogenous administration of mouse ghrelin electrically activates SN DA neurons increasing dopamine output, as well as locomotion, the human isoform significantly suppressed dopamine output, with an associated decrease in animal motor behavior. Investigating the mechanisms by which GHSR mediates neuroprotection, we found that dopamine cell-selective control of electrical activity is neither sufficient nor necessary to promote SN DA neuron survival, including that associated with GHSR activation. We found that Dln101 pre-treatment diminished MPTP-induced mitochondrial aberrations in SN DA neurons and that the effect of Dln101 to protect dopamine cells was dependent on mitofusin 2, a protein involved in the process of mitochondrial fusion and tethering of the mitochondria to the endoplasmic reticulum. Conclusions Taken together, these observations unmasked a complex role of GHSR in dopamine neuronal protection independent on electric activity of these cells and revealed a crucial role for mitochondrial dynamics in some aspects of this process. Dln101 is a human splice-variant of the ghrelin gene with different expression pattern. Ghrelin and Dln101 display equivalent levels of neuroprotection of SN DA cells. Modulation of electrical activity of SN DA cells is not relevant for neuroprotection. Mitochondrial fusion protein 2 (MFN 2) blocks DLN101-induced mitochondrial fusion in SN DA neurons and prevents DLN101-induced neuroprotection.
Collapse
Affiliation(s)
- Bernardo Stutz
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, USA.
| | - Carole Nasrallah
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, USA; Interdepartmental Neuroscience Program, USA
| | - Mariana Nigro
- Department of Obstetrics, Gynecology and Reproductive Sciences, USA
| | | | - Zhong-Wu Liu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, USA
| | - Xiao-Bing Gao
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, USA
| | | | | | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, USA; Interdepartmental Neuroscience Program, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, 1078, Hungary.
| |
Collapse
|
12
|
Giguère N, Burke Nanni S, Trudeau LE. On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson's Disease. Front Neurol 2018; 9:455. [PMID: 29971039 PMCID: PMC6018545 DOI: 10.3389/fneur.2018.00455] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Significant advances have been made uncovering the factors that render neurons vulnerable in Parkinson's disease (PD). However, the critical pathogenic events leading to cell loss remain poorly understood, complicating the development of disease-modifying interventions. Given that the cardinal motor symptoms and pathology of PD involve the loss of dopamine (DA) neurons of the substantia nigra pars compacta (SNc), a majority of the work in the PD field has focused on this specific neuronal population. PD however, is not a disease of DA neurons exclusively: pathology, most notably in the form of Lewy bodies and neurites, has been reported in multiple regions of the central and peripheral nervous system, including for example the locus coeruleus, the dorsal raphe nucleus and the dorsal motor nucleus of the vagus. Cell and/or terminal loss of these additional nuclei is likely to contribute to some of the other symptoms of PD and, most notably to the non-motor features. However, exactly which regions show actual, well-documented, cell loss is presently unclear. In this review we will first examine the strength of the evidence describing the regions of cell loss in idiopathic PD, as well as the order in which this loss occurs. Secondly, we will discuss the neurochemical, morphological and physiological characteristics that render SNc DA neurons vulnerable, and will examine the evidence for these characteristics being shared across PD-affected neuronal populations. The insights raised by focusing on the underpinnings of the selective vulnerability of neurons in PD might be helpful to facilitate the development of new disease-modifying strategies and improve animal models of the disease.
Collapse
Affiliation(s)
- Nicolas Giguère
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Samuel Burke Nanni
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Louis-Eric Trudeau
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
13
|
Acylated and unacylated ghrelin confer neuroprotection to mesencephalic neurons. Neuroscience 2017; 365:137-145. [DOI: 10.1016/j.neuroscience.2017.09.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 11/18/2022]
|
14
|
Le Douaron G, Ferrié L, Sepulveda-Diaz JE, Séon-Méniel B, Raisman-Vozari R, Michel PP, Figadère B. Identification of a Novel 1,4,8-Triazaphenanthrene Derivative as a Neuroprotectant for Dopamine Neurons Vulnerable in Parkinson's Disease. ACS Chem Neurosci 2017; 8:1222-1231. [PMID: 28140556 DOI: 10.1021/acschemneuro.6b00385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Parkinson's disease (PD) is a chronic degenerative disorder characterized by typical motor symptoms caused by the death of dopamine (DA) neurons in the midbrain and ensuing shortage of DA in the striatum, at the level of nerve terminals. No curative treatment is presently available for PD in clinical practice. In our search for neuroprotectants in PD, we generated new 1,4,8-triazaphenanthrenes by combining 6-endo-dig-cycloisomerization of propargylquinoxalines and Suzuki or Sonogashira cross-coupling reactions. Neuroprotection assessment of newly synthesized 1,4,8-triazaphenanthrenes in a PD cellular model resulted in the discovery of a new hit compound PPQ (5m). Neuroprotection by 5m was concentration-dependent and the result of a combined effect on intracellular calcium release channels and astroglial cells. Of interest, 5m also counteracted DA cell loss in a mouse model of PD, making this molecule a promising candidate for PD treatment.
Collapse
Affiliation(s)
- Gael Le Douaron
- BioCIS, Université
Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
- Institut du Cerveau
et de la Moelle, Sorbonne Universités, Université Pierre
et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Laurent Ferrié
- BioCIS, Université
Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Julia E. Sepulveda-Diaz
- Institut du Cerveau
et de la Moelle, Sorbonne Universités, Université Pierre
et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Blandine Séon-Méniel
- BioCIS, Université
Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Rita Raisman-Vozari
- Institut du Cerveau
et de la Moelle, Sorbonne Universités, Université Pierre
et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Patrick P. Michel
- Institut du Cerveau
et de la Moelle, Sorbonne Universités, Université Pierre
et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Bruno Figadère
- BioCIS, Université
Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| |
Collapse
|
15
|
Yee AG, Freestone PS, Bai JZ, Lipski J. Paradoxical lower sensitivity of Locus Coeruleus than Substantia Nigra pars compacta neurons to acute actions of rotenone. Exp Neurol 2016; 287:34-43. [PMID: 27771354 DOI: 10.1016/j.expneurol.2016.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is not only associated with degeneration of dopaminergic (DAergic) neurons in the Substantia Nigra, but also with profound loss of noradrenergic neurons in the Locus Coeruleus (LC). Remarkably, LC degeneration may exceed, or even precede the loss of nigral DAergic neurons, suggesting that LC neurons may be more susceptible to damage by various insults. Using a combination of electrophysiology, fluorescence imaging and electrochemistry, we directly compared the responses of LC, nigral DAergic and nigral non-dopaminergic (non-DAergic) neurons in rat brain slices to acute application of rotenone, a mitochondrial toxin used to create animal and in vitro models of PD. Rotenone (0.01-5.0μM) dose-dependently inhibited the firing of all three groups of neurons, primarily by activating KATP channels. The toxin also depolarised mitochondrial potential (Ψm) and released reactive oxygen species (H2O2). When KATP channels were blocked, rotenone (1μM) increased the firing of LC neurons by activating an inward current associated with dose-dependent increase of cytosolic free Ca2+ ([Ca2+]i). This effect was attenuated by blocking oxidative stress-sensitive TRPM2 channels, and by pre-treatment of slices with anti-oxidants. These results demonstrate that rotenone inhibits the activity of LC neurons mainly by activating KATP channels, and increases [Ca2+]ivia TRPM2 channels. Since the responses of LC neurons were smaller than those of nigral DAergic neurons, our study shows that LC neurons are paradoxically less sensitive to acute effects of this parkinsonian toxin.
Collapse
Affiliation(s)
- Andrew G Yee
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Peter S Freestone
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ji-Zhong Bai
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Janusz Lipski
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
16
|
Le Douaron G, Ferrié L, Sepulveda-Diaz JE, Amar M, Harfouche A, Séon-Méniel B, Raisman-Vozari R, Michel PP, Figadère B. New 6-Aminoquinoxaline Derivatives with Neuroprotective Effect on Dopaminergic Neurons in Cellular and Animal Parkinson Disease Models. J Med Chem 2016; 59:6169-86. [PMID: 27341519 DOI: 10.1021/acs.jmedchem.6b00297] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of aging characterized by motor symptoms that result from the loss of midbrain dopamine neurons and the disruption of dopamine-mediated neurotransmission. There is currently no curative treatment for this disorder. To discover druggable neuroprotective compounds for dopamine neurons, we have designed and synthesized a second-generation of quinoxaline-derived molecules based on structure-activity relationship studies, which led previously to the discovery of our first neuroprotective brain penetrant hit compound MPAQ (5c). Neuroprotection assessment in PD cellular models of our newly synthesized quinoxaline-derived compounds has led to the selection of a better hit compound, PAQ (4c). Extensive in vitro characterization of 4c showed that its neuroprotective action is partially attributable to the activation of reticulum endoplasmic ryanodine receptor channels. Most interestingly, 4c was able to attenuate neurodegeneration in a mouse model of PD, making this compound an interesting drug candidate for the treatment of this disorder.
Collapse
Affiliation(s)
- Gael Le Douaron
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France.,Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225 , 75013 Paris, France
| | - Laurent Ferrié
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France
| | - Julia E Sepulveda-Diaz
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225 , 75013 Paris, France
| | - Majid Amar
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France.,Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225 , 75013 Paris, France
| | - Abha Harfouche
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France
| | - Blandine Séon-Méniel
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France
| | - Rita Raisman-Vozari
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225 , 75013 Paris, France
| | - Patrick P Michel
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225 , 75013 Paris, France
| | - Bruno Figadère
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France
| |
Collapse
|
17
|
Zhu H, Wang Z, Jin J, Pei X, Zhao Y, Wu H, Lin W, Tao J, Ji Y. Parkinson’s disease-like forelimb akinesia induced by BmK I, a sodium channel modulator. Behav Brain Res 2016; 308:166-76. [DOI: 10.1016/j.bbr.2016.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022]
|
18
|
Beart PM. Synaptic signalling and its interface with neuropathologies: snapshots from the past, present and future. J Neurochem 2016; 139 Suppl 2:76-90. [PMID: 27144305 DOI: 10.1111/jnc.13598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/09/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
This 'Past to Future' Review as part of the 60th anniversary year of the Journal of Neurochemistry focuses on synaptic transmission and associated signalling, and seeks to identify seminal progress in neurochemistry over the last 10 years which has advanced our understanding of neuronal communication in brain. The approach adopted analyses neurotransmitters on a case by case basis (i.e. amino acids, monoamines, acetylcholine, neuropeptides, ATP/purines and gasotransmitters) to highlight novel findings that have changed the way we view each type of transmitter, to explore commonalities and interactions, and to note how new insights have changed the way we view the biology of degenerative, psychiatric and behavioural conditions. Across all transmitter systems there was remarkable growth in the identification of targets likely to provide therapeutic benefit and which undoubtedly was driven by the elucidation of circuit function and new vistas of synaptic signalling. There has been an increasing trend to relate signalling to disease, notably for Alzheimer's and Parkinson's disease and related conditions, and which has occurred for each transmitter family. Forebrain circuitry and tonic excitatory control have been the centre of great attention yielding novel findings that will impact upon cognitive, emotional and addictive behaviours. Other impressive insights focus on gasotransmitters integrating activity as volume transmitters. Exciting developments in how serotonin, cholinergic, l-glutamate, galanin and adenosine receptors and their associated signalling can be beneficially targeted should underpin the development of new therapies. Clearly integrated, multifaceted neurochemistry has changed the way we view synaptic signalling and its relevance to pathobiology. Highlighted are important advances in synaptic signalling over the last decade in the Journal of Neurochemistry. Across all transmitter systems elucidation of circuit function, and notably molecular insights, have underpinned remarkable growth in the identification of targets likely to provide therapeutic benefit in neuropathologies. Another commonality was wide interest in forebrain circuitry and its tonic excitatory control. Increasingly observations relate to signalling in disease and behavioural conditions. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Philip M Beart
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
19
|
Duda J, Pötschke C, Liss B. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease. J Neurochem 2016; 139 Suppl 1:156-178. [PMID: 26865375 PMCID: PMC5095868 DOI: 10.1111/jnc.13572] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Dopamine‐releasing neurons within the Substantia nigra (SN DA) are particularly vulnerable to degeneration compared to other dopaminergic neurons. The age‐dependent, progressive loss of these neurons is a pathological hallmark of Parkinson's disease (PD), as the resulting loss of striatal dopamine causes its major movement‐related symptoms. SN DA neurons release dopamine from their axonal terminals within the dorsal striatum, and also from their cell bodies and dendrites within the midbrain in a calcium‐ and activity‐dependent manner. Their intrinsically generated and metabolically challenging activity is created and modulated by the orchestrated function of different ion channels and dopamine D2‐autoreceptors. Here, we review increasing evidence that the mechanisms that control activity patterns and calcium homeostasis of SN DA neurons are not only crucial for their dopamine release within a physiological range but also modulate their mitochondrial and lysosomal activity, their metabolic stress levels, and their vulnerability to degeneration in PD. Indeed, impaired calcium homeostasis, lysosomal and mitochondrial dysfunction, and metabolic stress in SN DA neurons represent central converging trigger factors for idiopathic and familial PD. We summarize double‐edged roles of ion channels, activity patterns, calcium homeostasis, and related feedback/feed‐forward signaling mechanisms in SN DA neurons for maintaining and modulating their physiological function, but also for contributing to their vulnerability in PD‐paradigms. We focus on the emerging roles of maintained neuronal activity and calcium homeostasis within a physiological bandwidth, and its modulation by PD‐triggers, as well as on bidirectional functions of voltage‐gated L‐type calcium channels and metabolically gated ATP‐sensitive potassium (K‐ATP) channels, and their probable interplay in health and PD.
We propose that SN DA neurons possess several feedback and feed‐forward mechanisms to protect and adapt their activity‐pattern and calcium‐homeostasis within a physiological bandwidth, and that PD‐trigger factors can narrow this bandwidth. We summarize roles of ion channels in this view, and findings documenting that both, reduced as well as elevated activity and associated calcium‐levels can trigger SN DA degeneration.
This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Johanna Duda
- Department of Applied Physiology, Ulm University, Ulm, Germany
| | | | - Birgit Liss
- Department of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
20
|
Yee AG, Lee SM, Hunter MR, Glass M, Freestone PS, Lipski J. Effects of the Parkinsonian toxin MPP+ on electrophysiological properties of nigral dopaminergic neurons. Neurotoxicology 2014; 45:1-11. [DOI: 10.1016/j.neuro.2014.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
|
21
|
Alvarez-Fischer D, Noelker C, Grünewald A, Vulinović F, Guerreiro S, Fuchs J, Lu L, Lombès A, Hirsch EC, Oertel WH, Michel PP, Hartmann A. Probenecid potentiates MPTP/MPP+toxicity by interference with cellular energy metabolism. J Neurochem 2013; 127:782-92. [DOI: 10.1111/jnc.12343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Daniel Alvarez-Fischer
- UPMC Univ Paris 06; UMR_S 975 - UMR 7725; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Inserm U 975; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- CNRS; UMR 7225; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Department of Neurology; Philipps-University Marburg; Marburg Germany. Institute of Neurogenetics; University of Lübeck; Lübeck Germany. Department of Psychiatry; University of Lübeck; Lübeck Germany
| | - Carmen Noelker
- UPMC Univ Paris 06; UMR_S 975 - UMR 7725; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Inserm U 975; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- CNRS; UMR 7225; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Department of Neurology; Philipps-University Marburg; Marburg Germany
| | - Anne Grünewald
- Institute of Neurogenetics; University of Lübeck; Lübeck Germany
| | - Franca Vulinović
- Institute of Neurogenetics; University of Lübeck; Lübeck Germany
| | - Serge Guerreiro
- UPMC Univ Paris 06; UMR_S 975 - UMR 7725; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Inserm U 975; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- CNRS; UMR 7225; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
| | - Julia Fuchs
- Collège de France; Center for Interdisciplinary Research in Biology (CIRB); CNRS UMR 7241/INSERM U1050; Paris France
| | - Lixia Lu
- UPMC Univ Paris 06; UMR_S 975 - UMR 7725; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Inserm U 975; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- CNRS; UMR 7225; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Department of Neurology; Philipps-University Marburg; Marburg Germany
| | - Anne Lombès
- Institut Cochin; INSERM UMRS 1016; CNRS UMR 8104; Université Paris Descartes; Paris France
| | - Etienne C. Hirsch
- UPMC Univ Paris 06; UMR_S 975 - UMR 7725; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Inserm U 975; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- CNRS; UMR 7225; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
| | | | - Patrick P. Michel
- UPMC Univ Paris 06; UMR_S 975 - UMR 7725; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Inserm U 975; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- CNRS; UMR 7225; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
| | - Andreas Hartmann
- UPMC Univ Paris 06; UMR_S 975 - UMR 7725; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Inserm U 975; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- CNRS; UMR 7225; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Department of Neurology; Philipps-University Marburg; Marburg Germany. Département de Neurologie; Pôle des Maladies du Système Nerveux; Hôpital de la Pitié-Salpêtrière; Paris France
| |
Collapse
|
22
|
Alvarez-Fischer D, Noelker C, Vulinović F, Grünewald A, Chevarin C, Klein C, Oertel WH, Hirsch EC, Michel PP, Hartmann A. Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model. PLoS One 2013; 8:e61700. [PMID: 23637888 PMCID: PMC3630120 DOI: 10.1371/journal.pone.0061700] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 03/17/2013] [Indexed: 12/19/2022] Open
Abstract
Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD). For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i) establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii) demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide.
Collapse
Affiliation(s)
- Daniel Alvarez-Fischer
- Université Pierre et Marie Curie-Paris 6, UMR_S 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychiatry, University of Lübeck, Lübeck, Germany
| | - Carmen Noelker
- Université Pierre et Marie Curie-Paris 6, UMR_S 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Franca Vulinović
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Anne Grünewald
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Caroline Chevarin
- Unité Mixte de Recherche S677, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Etienne C. Hirsch
- Université Pierre et Marie Curie-Paris 6, UMR_S 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
| | - Patrick P. Michel
- Université Pierre et Marie Curie-Paris 6, UMR_S 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
| | - Andreas Hartmann
- Université Pierre et Marie Curie-Paris 6, UMR_S 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Département de Neurologie, Pôle des Maladies du Système Nerveux, Hôpital de la Pitié-Salpêtrière, Paris, France
- * E-mail:
| |
Collapse
|
23
|
Kurauchi Y, Hisatsune A, Isohama Y, Sawa T, Akaike T, Katsuki H. Nitric oxide/soluble guanylyl cyclase signaling mediates depolarization-induced protection of rat mesencephalic dopaminergic neurons from MPP⁺ cytotoxicity. Neuroscience 2012; 231:206-15. [PMID: 23238575 DOI: 10.1016/j.neuroscience.2012.11.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/09/2012] [Accepted: 11/24/2012] [Indexed: 12/30/2022]
Abstract
Neuronal electrical activity has been known to affect the viability of neurons in the central nervous system. Here we show that long-lasting membrane depolarization induced by elevated extracellular K(+) recruits nitric oxide (NO)/soluble guanylyl cyclase/protein kinase G signaling pathway, induces 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP)-mediated protein S-guanylation, and confers dopaminergic neuroprotection. Treatment of primary mesencephalic cell cultures with 1-methyl-4-phenylpyridinium (MPP(+)) for 72 h decreased the number of dopaminergic neurons, whereas the cell loss was markedly inhibited by elevated extracellular concentration of K(+) (+40 mM). The neuroprotective effect of elevated extracellular K(+) was significantly attenuated by tetrodotoxin (a Na(+) channel blocker), amlodipine (a voltage-dependent Ca(2+) channel blocker), N(ω)-nitro-l-arginine methyl ester (l-NAME) (a nitric oxide synthase inhibitor), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (a soluble guanylyl cyclase inhibitor), and KT5823 or Rp-8-bromo-β-phenyl-1,N(2)-ethenoguanosine 3',5'-cyclic monophosphorothioate (Rp-8-Br-PET-cGMPS) (protein kinase G inhibitors). Elevated extracellular K(+) increased 8-nitro-cGMP production resulting in the induction of protein S-guanylation in cells in mesencephalic cultures including dopaminergic neurons. In addition, exogenous application of 8-nitro-cGMP protected dopaminergic neurons from MPP(+) cytotoxicity, which was prevented by zinc protoporphyrin IX, an inhibitor of heme oxygenase-1 (HO-1). Zinc protoporphyrin IX also inhibited the neuroprotective effect of elevated extracellular K(+). On the other hand, KT5823 or Rp-8-Br-PET-cGMPS did not inhibit the induction of HO-1 protein expression by 8-nitro-cGMP, although these protein kinase G inhibitors abrogated the neuroprotective effect of 8-nitro-cGMP. These results suggest that protein S-guanylation (leading to HO-1 induction) as well as canonical protein kinase G signaling pathway plays an important role in NO-mediated, activity-dependent dopaminergic neuroprotection.
Collapse
Affiliation(s)
- Y Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Lipski J, Nistico R, Berretta N, Guatteo E, Bernardi G, Mercuri NB. L-DOPA: a scapegoat for accelerated neurodegeneration in Parkinson's disease? Prog Neurobiol 2011; 94:389-407. [PMID: 21723913 DOI: 10.1016/j.pneurobio.2011.06.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022]
Abstract
There is consensus that amelioration of the motor symptoms of Parkinson's disease is most effective with L-DOPA (levodopa). However, this necessary therapeutic step is biased by an enduring belief that L-DOPA is toxic to the remaining substantia nigra dopaminergic neurons by itself, or by specific metabolites such as dopamine. The concept of L-DOPA toxicity originated from pre-clinical studies conducted mainly in cell culture, demonstrating that L-DOPA or its derivatives damage dopaminergic neurons due to oxidative stress and other mechanisms. However, the in vitro data remain controversial as some studies showed neuroprotective, rather than toxic action of the drug. The relevance of this debate needs to be considered in the context of the studies conducted on animals and in clinical trials that do not provide convincing evidence for L-DOPA toxicity in vivo. This review presents the current views on the pathophysiology of Parkinson's disease, focusing on mitochondrial dysfunction and oxidative/proteolytic stress, the factors that can be affected by L-DOPA or its metabolites. We then critically discuss the evidence supporting the two opposing views on the effects of L-DOPA in vitro, as well as the animal and human data. We also address the problem of inadequate experimental models used in these studies. L-DOPA remains the symptomatic 'hero' of Parkinson's disease. Whether it contributes to degeneration of nigral dopaminergic neurons, or is a 'scapegoat' for explaining undesirable or unexpected effects of the treatment, remains a hotly debated topic.
Collapse
Affiliation(s)
- Janusz Lipski
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd., Auckland 1142, New Zealand.
| | | | | | | | | | | |
Collapse
|
25
|
Toulorge D, Guerreiro S, Hild A, Maskos U, Hirsch EC, Michel PP. Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic Ca
2+. FASEB J 2011; 25:2563-73. [DOI: 10.1096/fj.11-182824] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Damien Toulorge
- Université Pierre et Marie Curie‐Paris 6Centre de Recherche de l'Institut du Cerveau et de la Moelle EpinièreUnité Mixte de Recherche‐S975ParisFrance
- Institut National de la Santé et de la Recherche Médicale U975ParisFrance
- Centre National de la Recherche ScientifiqueUnité Mixte de Recherche 7225ParisFrance
| | - Serge Guerreiro
- Université Pierre et Marie Curie‐Paris 6Centre de Recherche de l'Institut du Cerveau et de la Moelle EpinièreUnité Mixte de Recherche‐S975ParisFrance
- Institut National de la Santé et de la Recherche Médicale U975ParisFrance
- Centre National de la Recherche ScientifiqueUnité Mixte de Recherche 7225ParisFrance
| | - Audrey Hild
- Université Pierre et Marie Curie‐Paris 6Centre de Recherche de l'Institut du Cerveau et de la Moelle EpinièreUnité Mixte de Recherche‐S975ParisFrance
- Institut National de la Santé et de la Recherche Médicale U975ParisFrance
- Centre National de la Recherche ScientifiqueUnité Mixte de Recherche 7225ParisFrance
| | - Uwe Maskos
- Neurobiologie Integrative des Systèmes CholinergiquesInstitut PasteurParisFrance
| | - Etienne C. Hirsch
- Université Pierre et Marie Curie‐Paris 6Centre de Recherche de l'Institut du Cerveau et de la Moelle EpinièreUnité Mixte de Recherche‐S975ParisFrance
- Institut National de la Santé et de la Recherche Médicale U975ParisFrance
- Centre National de la Recherche ScientifiqueUnité Mixte de Recherche 7225ParisFrance
| | - Patrick P. Michel
- Université Pierre et Marie Curie‐Paris 6Centre de Recherche de l'Institut du Cerveau et de la Moelle EpinièreUnité Mixte de Recherche‐S975ParisFrance
- Institut National de la Santé et de la Recherche Médicale U975ParisFrance
- Centre National de la Recherche ScientifiqueUnité Mixte de Recherche 7225ParisFrance
| |
Collapse
|
26
|
Abstract
Methylxanthines of either natural or synthetic origin have a number of interesting pharmacological features. Proposed mechanisms of methylxanthine-induced pharmacological effects include competitive antagonism of G-coupled adenosine A(1) and A(2A) receptors and inhibition of phosphodiesterases. A number of studies have indicated that methylxanthines also exert effects through alternative mechanisms, in particular via activation of sarcoplasmic reticulum or endoplasmic reticulum ryanodine receptor (RyR) channels. More specifically, RyR channel activation by methylxanthines was reported (1) to stimulate the process of excitation coupling in muscle cells, (2) to augment the excitability of neurons and thus their capacity to release neurotransmitters, and also (3) to improve their survival. Here, we address the mechanisms by which methylxanthines control RyR activation and we consider the pharmacological consequences of this activation, in muscle and neuronal cells.
Collapse
Affiliation(s)
- Serge Guerreiro
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Université Pierre et Marie Curie-Paris 6, Paris, France
| | | | | |
Collapse
|
27
|
Functional reduction of SK3-mediated currents precedes AMPA-receptor-mediated excitotoxicity in dopaminergic neurons. Neuropharmacology 2010; 60:1176-86. [PMID: 21044638 DOI: 10.1016/j.neuropharm.2010.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 09/28/2010] [Accepted: 10/26/2010] [Indexed: 11/21/2022]
Abstract
In primary cultures of mesencephalon small-conductance calcium-activated potassium channels (SK) are expressed in dopaminergic neurons. We characterized SK-mediated currents (I(SK)) in this system and evaluated their role on homeostasis against excitotoxicity. I(SK) amplitude was reduced by the glutamatergic agonist AMPA through a reduction in SK channel number in the membrane. Blockade of I(SK) for 12 h with apamin or NS8593 reduced the number of dopaminergic neurons in a concentration-dependent manner. The effect of apamin was not additive to AMPA toxicity. On the other hand, two I(SK) agonists, 1-EBIO and CyPPA, caused a significant reduction of spontaneous loss of dopaminergic neurons. 1-EBIO reversed the effects of both AMPA and apamin as well. Thus, I(SK) influences survival and differentiation of dopaminergic neurons in vitro, and is part of protective homeostatic responses, participating in a rapidly acting negative feedback loop coupling calcium levels, neuron excitability and cellular defenses. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
|
28
|
Toulorge D, Guerreiro S, Hirsch EC, Michel PP. KATP channel blockade protects midbrain dopamine neurons by repressing a glia-to-neuron signaling cascade that ultimately disrupts mitochondrial calcium homeostasis. J Neurochem 2010; 114:553-64. [DOI: 10.1111/j.1471-4159.2010.06785.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Simunovic F, Yi M, Wang Y, Stephens R, Sonntag KC. Evidence for gender-specific transcriptional profiles of nigral dopamine neurons in Parkinson disease. PLoS One 2010; 5:e8856. [PMID: 20111594 PMCID: PMC2810324 DOI: 10.1371/journal.pone.0008856] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 12/22/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Epidemiological data suggest that the male gender is one of the risks factors for the development of Parkinson Disease (PD). Also, differences in the clinical manifestation and the course of PD have been observed between males and females. However, little is known about the molecular aspects underlying gender-specificity in PD. To address this issue, we determined the gene expression profiles of male and female dopamine (DA) neurons in sporadic PD. METHODOLOGY/PRINCIPAL FINDINGS We analyzed Affymetrix-based microarrays on laser microdissected DA neurons from postmortem brains of sporadic PD patients and age-matched controls across genders. Pathway enrichment demonstrated that major cellular pathways involved in PD pathogenesis showed different patterns of deregulation between males and females with more prominent downregulation of genes related to oxidative phosphorylation, apoptosis, synaptic transmission and transmission of nerve impulse in the male population. In addition, we found upregulation of gene products for metabolic processes and mitochondrial energy consumption in the age-matched male control neurons. On the single cell level, selected data validation using quantitative Real-Time (qRT)-PCR was consistent with microarray raw data and supported some of the observations from data analysis. CONCLUSIONS/SIGNIFICANCE On the molecular level, our results provide evidence that the expression profiles of aged normal and PD midbrain DA neurons are gender-specific. The observed differences in the expression profiles suggest a disease bias of the male gender, which could be in concordance with clinical observations that the male gender represents a risk factor for sporadic PD. Validation of gene expression by qRT-PCR supported the microarray results, but also pointed to several caveats involved in data interpretation.
Collapse
Affiliation(s)
- Filip Simunovic
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, United States of America
| | - Ming Yi
- Bioinformatics Support Group, Advanced Biomedical Computing Center, NCI-Frederick, Frederick, Maryland, United States of America
| | - Yulei Wang
- Applied Biosystems, Foster City, California, United States of America
| | - Robert Stephens
- Bioinformatics Support Group, Advanced Biomedical Computing Center, NCI-Frederick, Frederick, Maryland, United States of America
| | - Kai C. Sonntag
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, United States of America
| |
Collapse
|
30
|
Freestone PS, Chung KKH, Guatteo E, Mercuri NB, Nicholson LFB, Lipski J. Acute action of rotenone on nigral dopaminergic neurons--involvement of reactive oxygen species and disruption of Ca2+ homeostasis. Eur J Neurosci 2009; 30:1849-59. [PMID: 19912331 DOI: 10.1111/j.1460-9568.2009.06990.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rotenone is a toxin used to generate animal models of Parkinson's disease; however, the mechanisms of toxicity in substantia nigra pars compacta (SNc) neurons have not been well characterized. We have investigated rotenone (0.05-1 microm) effects on SNc neurons in acute rat midbrain slices, using whole-cell patch-clamp recording combined with microfluorometry. Rotenone evoked a tolbutamide-sensitive outward current (94 +/- 15 pA) associated with increases in intracellular [Ca(2+)] ([Ca(2+)](i)) (73.8 +/- 7.7 nm) and intracellular [Na(+)] (3.1 +/- 0.6 mm) (all with 1 microm). The outward current was not affected by a high ATP level (10 mm) in the patch pipette but was decreased by Trolox. The [Ca(2+)](i) rise was abolished by removing extracellular Ca(2+), and attenuated by Trolox and a transient receptor potential M2 (TRPM2) channel blocker, N-(p-amylcinnamoyl) anthranilic acid. Other effects included mitochondrial depolarization (rhodamine-123) and increased mitochondrial reactive oxygen species (ROS) production (MitoSox), which was also abolished by Trolox. A low concentration of rotenone (5 nm) that, by itself, did not evoke a [Ca(2+)](i) rise resulted in a large (46.6 +/- 25.3 nm) Ca(2+) response when baseline [Ca(2+)](i) was increased by a 'priming' protocol that activated voltage-gated Ca(2+) channels. There was also a positive correlation between 'naturally' occurring variations in baseline [Ca(2+)](i) and the rotenone-induced [Ca(2+)](i) rise. This correlation was not seen in non-dopaminergic neurons of the substantia nigra pars reticulata (SNr). Our results show that mitochondrial ROS production is a key element in the effect of rotenone on ATP-gated K(+) channels and TRPM2-like channels in SNc neurons, and demonstrate, in these neurons (but not in the SNr), a large potentiation of rotenone-induced [Ca(2+)](i) rise by a small increase in baseline [Ca(2+)](i).
Collapse
Affiliation(s)
- Peter S Freestone
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
31
|
Tantucci M, Mariucci G, Taha E, Spaccatini C, Tozzi A, Luchetti E, Calabresi P, Ambrosini M. Induction of heat shock protein 70 reduces the alteration of striatal electrical activity caused by mitochondrial impairment. Neuroscience 2009; 163:735-40. [DOI: 10.1016/j.neuroscience.2009.06.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 12/21/2022]
|
32
|
|
33
|
Simunovic F, Yi M, Wang Y, Macey L, Brown LT, Krichevsky AM, Andersen SL, Stephens RM, Benes FM, Sonntag KC. Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson's disease pathology. Brain 2009; 132:1795-1809. [PMID: 19052140 PMCID: PMC2724914 DOI: 10.1093/brain/awn323] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 10/01/2008] [Accepted: 11/06/2008] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease is caused by a progressive loss of the midbrain dopamine (DA) neurons in the substantia nigra pars compacta. Although the main cause of Parkinson's disease remains unknown, there is increasing evidence that it is a complex disorder caused by a combination of genetic and environmental factors, which affect key signalling pathways in substantia nigra DA neurons. Insights into pathogenesis of Parkinson's disease stem from in vitro and in vivo models and from postmortem analyses. Recent technological developments have added a new dimension to this research by determining gene expression profiles using high throughput microarray assays. However, many of the studies reported to date were based on whole midbrain dissections, which included cells other than DA neurons. Here, we have used laser microdissection to isolate single DA neurons from the substantia nigra pars compacta of controls and subjects with idiopathic Parkinson's disease matched for age and postmortem interval followed by microarrays to analyse gene expression profiling. Our data confirm a dysregulation of several functional groups of genes involved in the Parkinson's disease pathogenesis. In particular, we found prominent down-regulation of members of the PARK gene family and dysregulation of multiple genes associated with programmed cell death and survival. In addition, genes for neurotransmitter and ion channel receptors were also deregulated, supporting the view that alterations in electrical activity might influence DA neuron function. Our data provide a 'molecular fingerprint identity' of late-stage Parkinson's disease DA neurons that will advance our understanding of the molecular pathology of this disease.
Collapse
Affiliation(s)
- Filip Simunovic
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Guerreiro S, Ponceau A, Toulorge D, Martin E, Alvarez-Fischer D, Hirsch EC, Michel PP. Protection of midbrain dopaminergic neurons by the end-product of purine metabolism uric acid: potentiation by low-level depolarization. J Neurochem 2009; 109:1118-28. [DOI: 10.1111/j.1471-4159.2009.06040.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Lannuzel A, Ruberg M, Michel PP. Atypical parkinsonism in the Caribbean island of Guadeloupe: Etiological role of the mitochondrial complex I inhibitor annonacin. Mov Disord 2008; 23:2122-8. [DOI: 10.1002/mds.22300] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
36
|
Rollo CD. Dopamine and Aging: Intersecting Facets. Neurochem Res 2008; 34:601-29. [DOI: 10.1007/s11064-008-9858-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
|
37
|
Guerreiro S, Toulorge D, Hirsch E, Marien M, Sokoloff P, Michel PP. Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol Pharmacol 2008; 74:980-9. [PMID: 18621927 DOI: 10.1124/mol.108.048207] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Epidemiological evidence suggests that caffeine or its metabolites reduce the risk of developing Parkinson's disease, possibly by protecting dopaminergic neurons, but the underlying mechanism is not clearly understood. Here, we show that the primary metabolite of caffeine, paraxanthine (PX; 1, 7-dimethylxanthine), was strongly protective against neurodegeneration and loss of synaptic function in a culture system of selective dopaminergic cell death. In contrast, caffeine itself afforded only marginal protection. The survival effect of PX was highly specific to dopaminergic neurons and independent of glial cell line-derived neurotrophic factor (GDNF). Nevertheless, PX had the potential to rescue dopaminergic neurons that had matured initially with and were then deprived of GDNF. The protective effect of PX was not mediated by blockade of adenosine receptors or by elevation of intracellular cAMP levels, two pharmacological effects typical of methylxanthine derivatives. Instead, it was attributable to a moderate increase in free cytosolic calcium via the activation of reticulum endoplasmic ryanodine receptor (RyR) channels. Consistent with these observations, PX and also ryanodine, the preferential agonist of RyRs, were protective in an unrelated paradigm of mitochondrial toxin-induced dopaminergic cell death. In conclusion, our data suggest that PX has a neuroprotective potential for diseased dopaminergic neurons.
Collapse
Affiliation(s)
- Serge Guerreiro
- Unité Mixte de Recherche, Institut National de la Santé et de la Recherche Médicale/Université Pierre et Marie Curie-Paris-6, Bât. Pharmacie, Hôpital de la Salpêtrière, 47, bd de l'hôpital, 75013 Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Larsen TR, Rossen S, Gramsbergen JB. Dopamine release in organotypic cultures of foetal mouse mesencephalon: effects of depolarizing agents, pargyline, nomifensine, tetrodotoxin and calcium. Eur J Neurosci 2008; 28:569-76. [DOI: 10.1111/j.1460-9568.2008.06354.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|