1
|
Rath S, Kumar Panda S, Chattapadhya A, Goswami C, Kumar Singh A. A Remarkable ParaCEST Activity Shown by a Co(II) Complex of Bis-Dipicolinamideacetamide With One Inner Sphere Water Molecule. Chem Asian J 2025; 20:e202401405. [PMID: 39891574 DOI: 10.1002/asia.202401405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/03/2025]
Abstract
Reaction of the BDPAA (N,N-dimethyl pyridine-based tri(carboxamide)) with iron tetrafluoroborate, cobalt chloride and nickel triflate separately in methanol/acetonitrile affords the complex, [Fe(BDPAA)(H2O)](BF4)2, [Co(BDPAA)(H2O)]Cl2 and [Ni(BDPAA)(H2O)](CF3SO3)2, respectively. The solid-state structural analysis of cobalt and nickel complexes of bis-dipicolinamideacetamide (BDPAA) ligand and the solution state paraCEST studies of all three complexes are presented. Among these complexes, only Co(II)-BDPAA complex exhibits remarkable paraCEST activity due to exchangeable carboxamide NH2 protons, whereas the corresponding Fe complex shows very little CEST effect and Ni complex did not show CEST activity at all. Single crystal X-ray analysis of [Co(BDPAA)(H2O)]Cl2 indicates that the Co(II) ion exhibits a seven-coordination with N3O2 from the ligand and one inner sphere water molecule, leading to a distorted pentagonal bipyramidal (pbp) geometry. Presaturation of the picolinamide protons of the Co complex, 73 ppm distant from the bulk water signal by 25 μT pulse at 37 °C leads to an 18 % decrease in intensity of 1H NMR signals due to CEST effect. The Co-BDPAA complex shows the best CEST effect at pH around 7.4-7.6. The measured proton exchange rate constant (kex) values for the CEST peaks at 20 and 73 ppm were approximately 3.66×103 s-1 and 3.74×103 s-1, respectively.
Collapse
Affiliation(s)
- Soumyadarshi Rath
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752050, India
| | - Suvam Kumar Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752050, India
| | - Anupriya Chattapadhya
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda, 752050, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Chandan Goswami
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda, 752050, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Akhilesh Kumar Singh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752050, India
| |
Collapse
|
2
|
Mohanta S, Das NK, Goswami C. Taxol-treatment alters endogenous TRPV1 expression and mitochondrial membrane potential in mesenchymal stem cells: Relevant in chemotherapy-induced pathophysiology. Biochem Biophys Res Commun 2024; 737:150498. [PMID: 39128224 DOI: 10.1016/j.bbrc.2024.150498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Microtubule-based chemotherapeutics, primarily Taxane-derived agents are still used as the major live-saving agents, yet have several side effects including serious loss of immune cells, bone density etc. which lowers the quality of life. This imposes the need to understand the effects of these agents on Mesenchymal Stem Cells (MSCs) in details. In this work we demonstrate that Taxol and Nocodazole affects the endogenous expression of TRPV1, a non-selective cation channel in MSCs. These agents also affect the status of polymerized Actin as well as Tyrosinated-tubulin, basal cytosolic Ca2+ and mitochondrial membrane potential (ΔΨm). Notably, pharmacological modulation of TRPV1 by Capsaicin or Capsazepine can also alter the above-mentioned parameters in a context-dependent manner. We suggest that endogenous expression of TRPV1 and pharmacological modulation of TRPV1 can be utilized to rescue some of these parameters effectively. These findings may have significance in the treatments and strategies with Microtubule-based chemotherapeutics and stem-cell based therapy.
Collapse
Affiliation(s)
- Sushama Mohanta
- School of Biological Sciences, National Institute of Science Education and Research, Khurda, Odisha, 752050, India; Homi Bhabha National Institute, Mumbai, 400094, India
| | - Nilesh Kumar Das
- School of Biological Sciences, National Institute of Science Education and Research, Khurda, Odisha, 752050, India; Homi Bhabha National Institute, Mumbai, 400094, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, Khurda, Odisha, 752050, India; Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
3
|
Mohanta S, Saha S, Das NK, Swain N, Kumar S, Goswami C. Tubulin interaction at tubulin-binding sequence 1 (TBS1) is required for proper surface expression and TRPV1 channel activity. Life Sci 2024; 357:123070. [PMID: 39332490 DOI: 10.1016/j.lfs.2024.123070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
TRPV1, a polymodal and nonselective cation channel has unique gating mechanisms which is regulated by supramolecular complexes at the plasma membrane formed with membrane proteins, lipids and kinase pathways. Crosstalk between microtubule cytoskeleton with TRPV1 at various level has been established. Previously we demonstrated that the positively-charged residues present at specific tubulin-binding stretch sequences (i.e. TBS1 and TBS2, AA 710-730 and 770-797 respectively) located at the C-terminus of TRPV1 are crucial for tubulin interaction and such sequences have evolutionary origin. The nature of TRPV1-tubulin complex and its functional importance remain poorly understood. Here, we made several mutations in the TBS1 and TBS2 regions and characterized such mutants. Though these mutations reduce tubulin interaction drastically, a low and basal-level of tubulin interaction remains with these mutants. Substitution of positively-charged residues (Lys and Arg) to Ala in the TBS1, but not in TBS2 region results in reduced ligand-sensitivity. Such ligand-sensitivity is altered in response to Taxol or Nocodazole. We suggest that tubulin interaction at the TBS1 region favours channel opening while interaction in TBS2 favours channel closure. We demonstrate for the first time the functional significance of TRPV1-tubulin complex and endorse microtubule dynamics as a parameter that can alter TRPV1 channel functions. These findings can be relevant for several physiological functions and also in the context of chemotherapy-induced neuropathic pain caused by various microtubule stabilizing chemotherapeutic drugs. Thus, this characterization may indicate TRPV1 as a potential therapeutic target relevant for chemotherapeutic drug-induced peripheral neuropathies, neurodegeneration and other neurological disorders.
Collapse
Affiliation(s)
- Sushama Mohanta
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Somdatta Saha
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Nilesh Kumar Das
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Nirlipta Swain
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India
| | - Satish Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
4
|
Mohanta S, Das NK, Saha S, Goswami C. Capsaicin-insensitivity of TRPV1-R575D mutant located at the lipid-water-interface region can be rescued by either extracellular Ca 2+-chelation or cholesterol reduction. Neurochem Int 2024; 179:105826. [PMID: 39117000 DOI: 10.1016/j.neuint.2024.105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
TRPV1 acts as a unique polymodal ion channel having distinct structure and gating properties. In this context, TRPV1-R575D represents a special mutant located at the inner lipid-water-interface (LWI) region that has less possibility of interaction with membrane cholesterol. In control conditions, this lab-generated mutant of TRPV1 shows no "ligand-sensitivity", reduced surface expression, reduced localization in the lipid rafts, yet induces high cellular lethality. Notably, the cellular lethality induced by TRPV1-R575D expression can be rescued by adding 5'I-RTX (a specific inhibitor of TRPV1) or by introducing another mutation in the next position, i.e. in TRPV1-R575D/D576R. In this work we characterized TRPV1-R575D and TRPV1-R575D/D576R mutants in different cellular conditions and compared with the TRPV1-WT. We report that the "ligand-insensitivity" of TRPV1-R575D can be rescued in certain conditions, such as by chelation of extracellular Ca2+, or by reduction of the membrane cholesterol. Here we show that Ca2+ plays an important role in the channel gating of TRPV1-WT as well as LWI mutants (TRPV1-R575D, TRPV1-R575D/D576R). However, chelation of intracellular Ca2+ or depletion of ER Ca2+ did not have a significant effect on the TRPV1-R575D. Certain properties related to channel gating of mutant TRPV1-R575D/D576R can be rescued partially or fully in a context -dependent manner. Cholesterol depletion also alters these properties. Our data suggests that lower intracellular basal Ca2+ acts as a pre-requisite for further opening of TRPV1-R575D. These findings enable better understanding of the structure-function relationship of TRPV1 and may be critical in comprehending the channelopathies induced by other homologous thermosensitive TRPVs.
Collapse
Affiliation(s)
- Sushama Mohanta
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha, 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Nilesh Kumar Das
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha, 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Somdatta Saha
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha, 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha, 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
5
|
Smith G, McCoy K, Di Prisco GV, Kuklish A, Grant E, Bhat M, Patel S, Mackie K, Atwood B, Kalinovsky A. Deletion of endocannabinoid synthesizing enzyme DAGLα from cerebellar Purkinje cells decreases social preference and elevates anxiety. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607068. [PMID: 39211155 PMCID: PMC11361171 DOI: 10.1101/2024.08.08.607068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The endocannabinoid (eCB) signaling system is robustly expressed in the cerebellum starting from the embryonic developmental stages to adulthood. There it plays a key role in regulating cerebellar synaptic plasticity and excitability, suggesting that impaired eCB signaling will lead to deficits in cerebellar adjustments of ongoing behaviors and cerebellar learning. Indeed, human mutations in DAGLα are associated with neurodevelopmental disorders. In this study, we show that selective deletion of the eCB synthesizing enzyme diacylglycerol lipase alpha (Daglα) from mouse cerebellar Purkinje cells (PCs) alters motor and social behaviors, disrupts short-term synaptic plasticity in both excitatory and inhibitory synapses, and reduces Purkinje cell activity during social exploration. Our results provide the first evidence for cerebellar-specific eCB regulation of social behaviors and implicate eCB regulation of synaptic plasticity and PC activity as the neural substrates contributing to these deficits. Abstract Figure
Collapse
|
6
|
Chahl LA. TRPV1 Channels in the Central Nervous System as Drug Targets. Pharmaceuticals (Basel) 2024; 17:756. [PMID: 38931423 PMCID: PMC11206835 DOI: 10.3390/ph17060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
TRPV1 channels are polymodal cation channels located predominantly on primary afferent neurons that are activated by inflammatory mediators, capsaicin (the active component in chili peppers), and noxious heat. TRPV1 channel antagonists are potential new analgesic agents, but their development has been hindered by the finding that they also produce loss of thermal homeostasis and response to noxious heat. Results from recent studies of the TRPV1 channel indicate that it might be possible to develop TRPV1 channel antagonists that inhibit pain without affecting noxious heat sensation. TRPV1 channels are also present in the central nervous system (CNS) and have been implicated in learning, memory, and behaviour. TRPV1 channel modulators have been proposed to have possible therapeutic potential in the treatment of neurological and psychiatric conditions. However, further understanding of the role of TRPV1 channels in the CNS is required before therapeutic advances in the treatment of neuropsychiatric conditions with TRPV1 channel modulators can be made.
Collapse
Affiliation(s)
- Loris A Chahl
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
7
|
Rezzani R, Favero G, Gianò M, Pinto D, Labanca M, van Noorden CJ, Rinaldi F. Transient Receptor Potential Channels in the Healthy and Diseased Blood-Brain Barrier. J Histochem Cytochem 2024; 72:199-231. [PMID: 38590114 PMCID: PMC11020746 DOI: 10.1369/00221554241246032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
The large family of transient receptor potential (TRP) channels are integral membrane proteins that function as environmental sensors and act as ion channels after activation by mechanical (touch), physical (heat, pain), and chemical stimuli (pungent compounds such as capsaicin). Most TRP channels are localized in the plasma membrane of cells but some of them are localized in membranes of organelles and function as intracellular Ca2+-ion channels. TRP channels are involved in neurological disorders but their precise role(s) and relevance in these disorders are not clear. Endothelial cells of the blood-brain barrier (BBB) express TRP channels such as TRP vanilloid 1-4 and are involved in thermal detection by regulating BBB permeability. In neurological disorders, TRP channels in the BBB are responsible for edema formation in the brain. Therefore, drug design to modulate locally activity of TRP channels in the BBB is a hot topic. Today, the application of TRP channel antagonists against neurological disorders is still limited.
Collapse
Affiliation(s)
- Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research Adaption and Regeneration of Tissues and Organs - ARTO, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| | - Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research Adaption and Regeneration of Tissues and Organs - ARTO, University of Brescia, Brescia, Italy
| | - Marzia Gianò
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, Milan, Italy
| | - Mauro Labanca
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| | - Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, Milan, Italy
| |
Collapse
|
8
|
Bai Y, Liu J, Wu X, Pang B, Zhang S, Jiang M, Chen A, Huang H, Chen Y, Zeng Y, Mei L, Gao K. Susceptibility of immature spiral ganglion neurons to aminoglycoside-induced ototoxicity is mediated by the TRPV1 channel in mice. Hear Res 2023; 440:108910. [PMID: 37956582 DOI: 10.1016/j.heares.2023.108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Aminoglycoside antibiotics are among the most common agents that can cause sensorineural hearing loss. From clinical experience, premature babies, whose inner ear is still developing, are more susceptible to aminoglycoside-induced ototoxicity, which is echoed by our previous study carried out in organotypic cultures. This study aimed to investigate whether a nonselective cation channel, TRPV1, contributes to the susceptibility of immature spiral ganglion neurons (SGNs) to the damage caused by aminoglycosides. Through western blotting and immunofluorescence, we found that the TRPV1 expression levels were much higher in immature SGNs than in their mature counterparts. In postnatal day 7 cochlear organotypic cultures, AMG-517 reduced reactive oxygen species generation and inhibited SGN apoptosis under aminoglycoside challenge. However, in adult mice, AMG-517 did not ameliorate the ABR threshold increase at high frequencies (16 kHz and 32 kHz) after aminoglycoside administration, and the SGNs within the cochleae had no morphological changes. By further regulating the function of TRPV1 in primary cultured SGNs with its inhibitor AMG-517 and agonist capsaicin, we demonstrated that TRPV1 is a major channel for aminoglycoside uptake: AMG-517 can significantly reduce, while capsaicin can significantly increase, the uptake of GTTR. In addition, TRPV1 knockdown in SGNs can also significantly reduce the uptake of GTTR. Taken together, our results demonstrated that aminoglycosides can directly enter immature SGNs through the TRPV1 channel. High expression of TRPV1 contributes to the susceptibility of immature SGNs to aminoglycoside-induced damage. The TRPV1 inhibitor AMG-517 has the potential to be a therapeutic agent for preventing aminoglycoside-induced ototoxicity in immature SGNs.
Collapse
Affiliation(s)
- Yijiang Bai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Jing Liu
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Xuewen Wu
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Bo Pang
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, PR China
| | - Shuai Zhang
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Mengzhu Jiang
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Anhai Chen
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Huping Huang
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yongjia Chen
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yuan Zeng
- Patient Service Center, Xiangya Hospital Central South University, Changsha, PR China
| | - Lingyun Mei
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China.
| | - Kelei Gao
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, PR China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, PR China; Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China.
| |
Collapse
|
9
|
Lourenço DM, Soares R, Sá-Santos S, Mateus JM, Rodrigues RS, Moreira JB, Vaz SH, Sebastião AM, Solá S, Xapelli S. Unravelling a novel role for cannabidivarin in the modulation of subventricular zone postnatal neurogenesis. Eur J Pharmacol 2023; 959:176079. [PMID: 37802277 DOI: 10.1016/j.ejphar.2023.176079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Postnatal neurogenesis has been shown to rely on the endocannabinoid system. Here we aimed at unravelling the role of Cannabidivarin (CBDV), a non-psychoactive cannabinoid, with high affinity for the non-classical cannabinoid receptor TRPV1, on subventricular zone (SVZ) postnatal neurogenesis. Using the neurosphere assay, SVZ-derived neural stem/progenitor cells (NSPCs) were incubated with CBDV and/or 5'-Iodoresinferotoxin (TRPV1 antagonist), and their role on cell viability, proliferation, and differentiation were dissected. CBDV was able to promote, through a TRPV1-dependent mechanism, cell survival, cell proliferation and neuronal differentiation. Furthermore, pulse-chase experiments revealed that CBDV-induced neuronal differentiation was a result of cell cycle exit of NSPCs. Regarding oligodendrocyte differentiation, CBDV inhibited oligodendrocyte differentiation and maturation. Since our data suggested that the CBDV-induced modulation of NSPCs acted via TRPV1, a sodium-calcium channel, and that intracellular calcium levels are known regulators of NSPCs fate and neuronal maturation, single cell calcium imaging was performed to evaluate the functional response of SVZ-derived cells. We observed that CBDV-responsive cells displayed a two-phase calcium influx profile, being the initial phase dependent on TRPV1 activation. Taken together, this work unveiled a novel and untapped neurogenic potential of CBDV via TRPV1 modulation. These findings pave the way to future neural stem cell biological studies and repair strategies by repurposing this non-psychoactive cannabinoid as a valuable therapeutic target.
Collapse
Affiliation(s)
- Diogo M Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Rita Soares
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sónia Sá-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Joana M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
10
|
Singh A, Muduli C, Senanayak SP, Goswami L. Graphite nanopowder incorporated xanthan gum scaffold for effective bone tissue regeneration purposes with improved biomineralization. Int J Biol Macromol 2023; 234:123724. [PMID: 36801298 DOI: 10.1016/j.ijbiomac.2023.123724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
In the current work, biomaterial composed of Xanthan gum and Diethylene glycol dimethacrylate with impregnation of graphite nanopowder filler in their matrices was fabricated successfully for their potential usage in the engineering of bone defects. Various physicochemical properties associated with the biomaterial were characterized using FTIR, XRD, TGA, SEM etc. The biomaterial rheological studies imparted the better notable properties associated with the inclusion of graphite nanopowder. The biomaterial synthesized exhibited a controlled drug release. Adhesion and proliferation of different secondary cell lines do not generate ROS on the current biomaterial and thus show its biocompatibility and non-toxic nature. The synthesized biomaterial's osteogenic potential on SaOS-2 cells was supported by increased ALP activity, enhanced differentiation and biomineralization under osteoinductive circumstances. The current biomaterial demonstrates that in addition to the drug-delivery applications, it can also be a cost-effective substrate for cellular activities and has all the necessary properties to be considered as a promising alternative material suitable for repairing and restoring bone tissues. We propose that this biomaterial may have commercial importance in the biomedical field.
Collapse
Affiliation(s)
- Abhishek Singh
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Chinmayee Muduli
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, India
| | - Satyaprasad P Senanayak
- Nanoelectronics and Device Physics Lab, School of Physical Science, National Institute of Science Education and Research, An OCC of HBNI, Jatni 752050, India
| | - Luna Goswami
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India; School of Chemical Technology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India.
| |
Collapse
|
11
|
Human skeletal dysplasia causing L596P-mutant alters the conserved amino acid pattern at the lipid-water-Interface of TRPV4. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184085. [PMID: 36403799 DOI: 10.1016/j.bbamem.2022.184085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
TRPV4 is a polymodal and non-selective cation channel that is activated by multiple physical and chemical stimuli. >50 naturally occurring point-mutation of TRPV4 have been identified in human, most of which induce different diseases commonly termed as channelopathies. While, these mutations are either "gain-of-function" or "loss-of-function" in nature, the exact molecular and cellular mechanisms behind such diverse channelopathies are largely unknown. In this work, we analyze the evolutionary conservation of individual amino acids present in the lipid-water-interface (LWI) regions and the relationship of TRPV4 with membrane cholesterol. Our data suggests that the positive-negative charges and hydrophobic-hydrophilic amino acids form "specific patterns" in the LWI region which remain conserved throughout the vertebrate evolution and thus suggesting for the specific microenvironment where TRPV4 remain functional. Notably, Spondylometaphyseal Dysplasia, Kozlowski (SMDK) disease causing L596P mutation disrupts this pattern significantly at the LWI region. L596P mutant also sequesters Caveolin-1 differently, especially in partial cholesterol-depleted (~40 % reduction) conditions. L596P shows altered localization in membrane and enhanced Ca2+-influx properties in cell as well as in filopodia-like structures. We propose that conserved pattern of amino acids is an important parameter for proper localization and functions of TRPV4 in physiological conditions. These findings also offer a new paradigm to analyze the channelopathies caused by mutations in LWI regions of other channels as well.
Collapse
|
12
|
Potassium and Chloride Ion Channels in Cancer: A Novel Paradigm for Cancer Therapeutics. Rev Physiol Biochem Pharmacol 2021; 183:135-155. [PMID: 34291318 DOI: 10.1007/112_2021_62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cancer is a collection of diseases caused by specific changes at the genomic level that support cell proliferation indefinitely. Traditionally, ion channels are known to control a variety of cellular processes including electrical signal generation and transmission, secretion, and contraction by controlling ionic gradients. However, recent studies had brought to light important facts on ion channels in cancer biology.In this review we discuss the mechanism linking potassium or chloride ion channel activity to biochemical pathways controlling proliferation in cancer cells and the potential advantages of targeting ion channels as an anticancer therapeutic option.
Collapse
|
13
|
TRPV2 interacts with actin and reorganizes submembranous actin cytoskeleton. Biosci Rep 2021; 40:226528. [PMID: 32985655 PMCID: PMC7560523 DOI: 10.1042/bsr20200118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 11/17/2022] Open
Abstract
The understanding of molecules and their role in neurite initiation and/or extension is not only helpful to prevent different neurodegenerative diseases but also can be important in neuronal damage repair. In this work, we explored the role of transient receptor potential vanilloid 2 (TRPV2), a non-selective cation channel in the context of neurite functions. We confirm that functional TRPV2 is endogenously present in F11 cell line, a model system mimicking peripheral neuron. In F11 cells, TRPV2 localizes in specific subcellular regions enriched with filamentous actin, such as in growth cone, filopodia, lamellipodia and in neurites. TRPV2 regulates actin cytoskeleton and also interacts with soluble actin. Ectopic expression of TRPV2-GFP in F11 cell induces more primary and secondary neurites, confirming its role in neurite initiation, extension and branching events. TRPV2-mediated neuritogenesis is dependent on wildtype TRPV2 as cells expressing TRPV2 mutants reveal no neuritogenesis. These findings are relevant to understand the sprouting of new neurites, neuroregeneration and neuronal plasticity at the cellular, subcellular and molecular levels. Such understanding may have further implications in neurodegeneration and peripheral neuropathy.
Collapse
|
14
|
Modified tamarind kernel polysaccharide-based matrix alters neuro-keratinocyte cross-talk and serves as a suitable scaffold for skin tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111779. [PMID: 33579440 DOI: 10.1016/j.msec.2020.111779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022]
Abstract
Advanced technologies like skin tissue engineering are requisite of various disorders where artificially synthesized materials need to be used as a scaffold in vivo, which in turn can allow the formation of functional skin and epidermal layer with all biological sensory functions. In this work, we present a set of hydrogels which have been synthesized by the method utilizing radical polymerization of a natural polymer extracted from kernel of Tamarindus indica, commonly known as Tamarind Kernel Powder (TKP) modified by utilizing the monomer acrylic acid (AA) in different mole ratios. These materials are termed as TKP: AA hydrogels and characterized by Atomic Force Microscopy (AFM), surface charge, and particle size distribution using Dynamic Light Scattering measurements. These materials are biocompatible with mouse dermal fibroblasts (NIH- 3T3) and human skin keratinocytes (HaCaT), as confirmed by MTT and biocompatibility assays. These TKP: AA hydrogels do not induce unwanted ROS signaling as confirmed by mitochondrial functionality determined by DCFDA staining, Mitosox imaging, and measuring the ATP levels. We demonstrate that in the co-culture system, TKP: AA allows the establishment of proper neuro-keratinocyte contact formation, suggesting that this hydrogel can be suitable for developing skin with sensory functions. Skin corrosion analysis on SD rats confirms that TKP: AA is appropriate for in vivo applications as well. This is further confirmed by in vivo compatibility and toxicity studies, including hemocompatibility and histopathology of liver and kidney upon direct introduction of hydrogel into the body. We propose that TKP: AA (1: 5) offers a suitable surface for skin tissue engineering with sensory functions applicable in vitro, in vivo, and ex vivo. These findings may have broad biomedical and clinical importance.
Collapse
|
15
|
Lavanderos B, Silva I, Cruz P, Orellana-Serradell O, Saldías MP, Cerda O. TRP Channels Regulation of Rho GTPases in Brain Context and Diseases. Front Cell Dev Biol 2020; 8:582975. [PMID: 33240883 PMCID: PMC7683514 DOI: 10.3389/fcell.2020.582975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Neurological and neuropsychiatric disorders are mediated by several pathophysiological mechanisms, including developmental and degenerative abnormalities caused primarily by disturbances in cell migration, structural plasticity of the synapse, and blood-vessel barrier function. In this context, critical pathways involved in the pathogenesis of these diseases are related to structural, scaffolding, and enzymatic activity-bearing proteins, which participate in Ca2+- and Ras Homologs (Rho) GTPases-mediated signaling. Rho GTPases are GDP/GTP binding proteins that regulate the cytoskeletal structure, cellular protrusion, and migration. These proteins cycle between GTP-bound (active) and GDP-bound (inactive) states due to their intrinsic GTPase activity and their dynamic regulation by GEFs, GAPs, and GDIs. One of the most important upstream inputs that modulate Rho GTPases activity is Ca2+ signaling, positioning ion channels as pivotal molecular entities for Rho GTPases regulation. Multiple non-selective cationic channels belonging to the Transient Receptor Potential (TRP) family participate in cytoskeletal-dependent processes through Ca2+-mediated modulation of Rho GTPases. Moreover, these ion channels have a role in several neuropathological events such as neuronal cell death, brain tumor progression and strokes. Although Rho GTPases-dependent pathways have been extensively studied, how they converge with TRP channels in the development or progression of neuropathologies is poorly understood. Herein, we review recent evidence and insights that link TRP channels activity to downstream Rho GTPase signaling or modulation. Moreover, using the TRIP database, we establish associations between possible mediators of Rho GTPase signaling with TRP ion channels. As such, we propose mechanisms that might explain the TRP-dependent modulation of Rho GTPases as possible pathways participating in the emergence or maintenance of neuropathological conditions.
Collapse
Affiliation(s)
- Boris Lavanderos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Ian Silva
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo Cruz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Octavio Orellana-Serradell
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - María Paz Saldías
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
16
|
Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol Ther 2020; 220:107743. [PMID: 33181192 DOI: 10.1016/j.pharmthera.2020.107743] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Capsaicin, the pungent ingredient in chili peppers, produces intense burning pain in humans. Capsaicin selectively activates the transient receptor potential vanilloid 1 (TRPV1), which is enriched in nociceptive primary afferents, and underpins the mechanism for capsaicin-induced burning pain. Paradoxically, capsaicin has long been used as an analgesic. The development of topical patches and injectable formulations containing capsaicin has led to application in clinical settings to treat chronic pain conditions, such as neuropathic pain and the potential to treat osteoarthritis. More detailed determination of the neurobiological mechanisms of capsaicin-induced analgesia should provide the logical rationale for capsaicin therapy and help to overcome the treatment's limitations, which include individual differences in treatment outcome and procedural discomfort. Low concentrations of capsaicin induce short-term defunctionalization of nociceptor terminals. This phenomenon is reversible within hours and, hence, likely does not account for the clinical benefit. By contrast, high concentrations of capsaicin lead to long-term defunctionalization mediated by the ablation of TRPV1-expressing afferent terminals, resulting in long-lasting analgesia persisting for several months. Recent studies have shown that capsaicin-induced Ca2+/calpain-mediated ablation of axonal terminals is necessary to produce long-lasting analgesia in a mouse model of neuropathic pain. In combination with calpain, axonal mitochondrial dysfunction and microtubule disorganization may also contribute to the longer-term effects of capsaicin. The analgesic effects subside over time in association with the regeneration of the ablated afferent terminals. Further determination of the neurobiological mechanisms of capsaicin-induced analgesia should lead to more efficacious non-opioidergic analgesic options with fewer adverse side effects.
Collapse
|
17
|
Transient Receptor Potential Vanilloid 3 (TRPV3) in the Cerebellum of Rat and Its Role in Motor Coordination. Neuroscience 2020; 424:121-132. [DOI: 10.1016/j.neuroscience.2019.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/11/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
|
18
|
Kumar S, Majhi RK, Sanyasi S, Goswami C, Goswami L. Acrylic acid grafted tamarind kernel polysaccharide-based hydrogel for bone tissue engineering in absence of any osteo-inducing factors. Connect Tissue Res 2018; 59:111-121. [PMID: 29458266 DOI: 10.1080/03008207.2018.1442444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE With increased life expectancy, disorders in lifestyle and other clinical conditions, and the changes in the connective tissues such as in bone, impose diverse biomedical problems. Cells belong to osteogenic lineages are extremely specific for their surface requirements. Therefore, suitable surfaces are the critical bottle neck for successful bone tissue engineering. This study involves assessment of polysaccharide-based hydrogel which effectively allows growth, differentiation and mineralisation of osteogenic cells even in the absence of osteogenic inducing factors. MATERIALS AND METHODS Tamarind Kernel Polysaccharide was grafted with acrylic acid at different mole ratio. The critical parameter, surface morphology for bio application was assessed by SEM. MTT assay has been performed with hydrogels on Saos-2 cells. The biocompatibility and adhesion of different cell lines (F-11, Saos-2, Raw 264.7 and MSCs) on hydrogel surface was performed by Phalloidin and DAPI staining. Further the differentiation, mineralization and expression of different osteogenic markers, ALP assay, Alizarin Red staining and q-PCR was performed. RESULTS The hydrogels show highly porous and interconnected pores. MTT assay demonstrates the hydrogel have no cytotoxicity towards Saos-2 cells and are suitable for proliferation of different lineage of cell lines. ALP, Alizarin red staining and q-PCR assay shows that the hydrogel surface enhances the differentiation, mineralization and expression of different osteogenic genes in Saos-2 cells in the absence of any osteogenic inducing factors. Conclusion Synthesized hydrogel surface triggers signalling events towards osteogenesis even in the absence of added growth factors. We proposed that this material can be used for effective bone tissue engineering in vitro at low cost.
Collapse
Affiliation(s)
- Satish Kumar
- a School of Biotechnology , KIIT University , Bhubaneswar , India
| | - Rakesh Kumar Majhi
- b School of Biological Sciences , National Institute of Science Education and Research , Bhubaneswar , Orissa , India.,c Homi Bhabha National Institute, Training School Complex , Mumbai , India
| | - Sridhar Sanyasi
- a School of Biotechnology , KIIT University , Bhubaneswar , India
| | - Chandan Goswami
- b School of Biological Sciences , National Institute of Science Education and Research , Bhubaneswar , Orissa , India.,c Homi Bhabha National Institute, Training School Complex , Mumbai , India
| | - Luna Goswami
- a School of Biotechnology , KIIT University , Bhubaneswar , India
| |
Collapse
|
19
|
Choudhury P, Kumar S, Singh A, Kumar A, Kaur N, Sanyasi S, Chawla S, Goswami C, Goswami L. Hydroxyethyl methacrylate grafted carboxy methyl tamarind (CMT-g-HEMA) polysaccharide based matrix as a suitable scaffold for skin tissue engineering. Carbohydr Polym 2018; 189:87-98. [DOI: 10.1016/j.carbpol.2018.01.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 01/18/2023]
|
20
|
Isensee J, Schild C, Schwede F, Hucho T. Crosstalk from cAMP to ERK1/2 emerges during postnatal maturation of nociceptive neurons and is maintained during aging. J Cell Sci 2017; 130:2134-2146. [PMID: 28515230 DOI: 10.1242/jcs.197327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 05/10/2017] [Indexed: 02/02/2023] Open
Abstract
Maturation of nociceptive neurons depends on changes in transcription factors, ion channels and neuropeptides. Mature nociceptors initiate pain in part by drastically reducing the activation threshold via intracellular sensitization signaling. Whether sensitization signaling also changes during development and aging remains so far unknown. Using a novel automated microscopy approach, we quantified changes in intracellular signaling protein expression and in their signaling dynamics, as well as changes in intracellular signaling cascade wiring, in sensory neurons from newborn to senescent (24 months of age) rats. We found that nociceptive subgroups defined by the signaling components protein kinase A (PKA)-RIIβ (also known as PRKAR2B) and CaMKIIα (also known as CAMK2A) developed at around postnatal day 10, the time of nociceptor maturation. The integrative nociceptor marker, PKA-RIIβ, allowed subgroup segregation earlier than could be achieved by assessing the classical markers TRPV1 and Nav1.8 (also known as SCN10A). Signaling kinetics remained constant over lifetime despite in part strong changes in the expression levels. Strikingly, we found a mechanism important for neuronal memory - i.e. the crosstalk from cAMP and PKA to ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1, respectively) - to emerge postnatally. Thus, maturation of nociceptors is closely accompanied by altered expression, activation and connectivity of signaling pathways known to be central for pain sensitization and neuronal memory formation.
Collapse
Affiliation(s)
- Joerg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Robert Koch Str. 10, Cologne D-50931, Germany
| | - Cosimo Schild
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Robert Koch Str. 10, Cologne D-50931, Germany
| | - Frank Schwede
- BIOLOG Life Science Institute, Flughafendamm 9A, Bremen D-28199, Germany
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Robert Koch Str. 10, Cologne D-50931, Germany
| |
Collapse
|
21
|
Sanyasi S, Kumar S, Ghosh A, Majhi RK, Kaur N, Choudhury P, Singh UP, Goswami C, Goswami L. A Modified Polysaccharide-Based Hydrogel for Enhanced Osteogenic Maturation and Mineralization Independent of Differentiation Factors. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/08/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Sridhar Sanyasi
- School of Biotechnology; KIIT University; Bhubaneswar 751024 India
| | - Satish Kumar
- School of Biotechnology; KIIT University; Bhubaneswar 751024 India
| | - Arijit Ghosh
- School of Biological Sciences; NISER; Bhubaneswar 751024 India
| | | | - Navneet Kaur
- School of Biotechnology; KIIT University; Bhubaneswar 751024 India
| | | | - Udai P. Singh
- School of Electronics Engineering; KIIT University; Bhubaneswar 751024 India
| | - Chandan Goswami
- School of Biological Sciences; NISER; Bhubaneswar 751024 India
| | - Luna Goswami
- School of Biotechnology; KIIT University; Bhubaneswar 751024 India
| |
Collapse
|
22
|
Anand U, Sinisi M, Fox M, MacQuillan A, Quick T, Korchev Y, Bountra C, McCarthy T, Anand P. Mycolactone-mediated neurite degeneration and functional effects in cultured human and rat DRG neurons: Mechanisms underlying hypoalgesia in Buruli ulcer. Mol Pain 2016; 12:12/0/1744806916654144. [PMID: 27325560 PMCID: PMC4956182 DOI: 10.1177/1744806916654144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/16/2016] [Indexed: 01/08/2023] Open
Abstract
Background Mycolactone is a polyketide toxin secreted by the mycobacterium Mycobacterium ulcerans, responsible for the extensive hypoalgesic skin lesions characteristic of patients with Buruli ulcer. A recent pre-clinical study proposed that mycolactone may produce analgesia via activation of the angiotensin II type 2 receptor (AT2R). In contrast, AT2R antagonist EMA401 has shown analgesic efficacy in animal models and clinical trials for neuropathic pain. We therefore investigated the morphological and functional effects of mycolactone in cultured human and rat dorsal root ganglia (DRG) neurons and the role of AT2R using EMA401. Primary sensory neurons were prepared from avulsed cervical human DRG and rat DRG; 24 h after plating, neurons were incubated for 24 to 96 h with synthetic mycolactone A/B, followed by immunostaining with antibodies to PGP9.5, Gap43, β tubulin, or Mitotracker dye staining. Acute functional effects were examined by measuring capsaicin responses with calcium imaging in DRG neuronal cultures treated with mycolactone. Results Morphological effects: Mycolactone-treated cultures showed dramatically reduced numbers of surviving neurons and non-neuronal cells, reduced Gap43 and β tubulin expression, degenerating neurites and reduced cell body diameter, compared with controls. Dose-related reduction of neurite length was observed in mycolactone-treated cultures. Mitochondria were distributed throughout the length of neurites and soma of control neurons, but clustered in the neurites and soma of mycolactone-treated neurons. Functional effects: Mycolactone-treated human and rat DRG neurons showed dose-related inhibition of capsaicin responses, which were reversed by calcineurin inhibitor cyclosporine and phosphodiesterase inhibitor 3-isobutyl-1-Methylxanthine, indicating involvement of cAMP/ATP reduction. The morphological and functional effects of mycolactone were not altered by Angiotensin II or AT2R antagonist EMA401. Conclusion Mycolactone induces toxic effects in DRG neurons, leading to impaired nociceptor function, neurite degeneration, and cell death, resembling the cutaneous hypoalgesia and nerve damage in individuals with M. Ulcerans infection.
Collapse
Affiliation(s)
- U Anand
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - M Sinisi
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Middlesex, UK
| | - M Fox
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Middlesex, UK
| | - A MacQuillan
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Middlesex, UK
| | - T Quick
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Middlesex, UK
| | - Y Korchev
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - C Bountra
- University of Oxford Structural Genomics Consortium, Headington, Oxford, UK
| | - T McCarthy
- Spinifex Pharmaceuticals Pty Ltd, St. Preston, VIC, Australia
| | - P Anand
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
23
|
Vrenken KS, Jalink K, van Leeuwen FN, Middelbeek J. Beyond ion-conduction: Channel-dependent and -independent roles of TRP channels during development and tissue homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1436-46. [DOI: 10.1016/j.bbamcr.2015.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/26/2015] [Accepted: 11/11/2015] [Indexed: 01/09/2023]
|
24
|
Perspectives of TRPV1 Function on the Neurogenesis and Neural Plasticity. Neural Plast 2016; 2016:1568145. [PMID: 26881090 PMCID: PMC4736371 DOI: 10.1155/2016/1568145] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023] Open
Abstract
The development of new strategies to renew and repair neuronal networks using neural plasticity induced by stem cell graft could enable new therapies to cure diseases that were considered lethal until now. In adequate microenvironment a neuronal progenitor must receive molecular signal of a specific cellular context to determine fate, differentiation, and location. TRPV1, a nonselective calcium channel, is expressed in neurogenic regions of the brain like the subgranular zone of the hippocampal dentate gyrus and the telencephalic subventricular zone, being valuable for neural differentiation and neural plasticity. Current data show that TRPV1 is involved in several neuronal functions as cytoskeleton dynamics, cell migration, survival, and regeneration of injured neurons, incorporating several stimuli in neurogenesis and network integration. The function of TRPV1 in the brain is under intensive investigation, due to multiple places where it has been detected and its sensitivity for different chemical and physical agonists, and a new role of TRPV1 in brain function is now emerging as a molecular tool for survival and control of neural stem cells.
Collapse
|
25
|
Cáceres M, Ortiz L, Recabarren T, Romero A, Colombo A, Leiva-Salcedo E, Varela D, Rivas J, Silva I, Morales D, Campusano C, Almarza O, Simon F, Toledo H, Park KS, Trimmer JS, Cerda O. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility. PLoS One 2015; 10:e0130540. [PMID: 26110647 PMCID: PMC4482413 DOI: 10.1371/journal.pone.0130540] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022] Open
Abstract
Cellular migration and contractility are fundamental processes that are regulated by a variety of concerted mechanisms such as cytoskeleton rearrangements, focal adhesion turnover, and Ca2+ oscillations. TRPM4 is a Ca2+-activated non-selective cationic channel (Ca2+-NSCC) that conducts monovalent but not divalent cations. Here, we used a mass spectrometry-based proteomics approach to identify putative TRPM4-associated proteins. Interestingly, the largest group of these proteins has actin cytoskeleton-related functions, and among these nine are specifically annotated as focal adhesion-related proteins. Consistent with these results, we found that TRPM4 localizes to focal adhesions in cells from different cellular lineages. We show that suppression of TRPM4 in MEFs impacts turnover of focal adhesions, serum-induced Ca2+ influx, focal adhesion kinase (FAK) and Rac activities, and results in reduced cellular spreading, migration and contractile behavior. Finally, we demonstrate that the inhibition of TRPM4 activity alters cellular contractility in vivo, affecting cutaneous wound healing. Together, these findings provide the first evidence, to our knowledge, for a TRP channel specifically localized to focal adhesions, where it performs a central role in modulating cellular migration and contractility.
Collapse
Affiliation(s)
- Mónica Cáceres
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Liliana Ortiz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Tatiana Recabarren
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Anibal Romero
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alicia Colombo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Elías Leiva-Salcedo
- Section on Cellular Signaling, Program in Developmental Biology, National Institute of Child Health and Human Development (NICHD), National Institute of Health, Bethesda, Maryland, United States of America
| | - Diego Varela
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - José Rivas
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ian Silva
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego Morales
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camilo Campusano
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Oscar Almarza
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Simon
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
- Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Hector Toledo
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Kang-Sik Park
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, California, United States of America
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - James S. Trimmer
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, California, United States of America
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Oscar Cerda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Mrkonjić S, Garcia-Elias A, Pardo-Pastor C, Bazellières E, Trepat X, Vriens J, Ghosh D, Voets T, Vicente R, Valverde MA. TRPV4 participates in the establishment of trailing adhesions and directional persistence of migrating cells. Pflugers Arch 2015; 467:2107-19. [PMID: 25559845 DOI: 10.1007/s00424-014-1679-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/21/2022]
Abstract
Calcium signaling participates in different cellular processes leading to cell migration. TRPV4, a non-selective cation channel that responds to mechano-osmotic stimulation and heat, is also involved in cell migration. However, the mechanistic involvement of TRPV4 in cell migration is currently unknown. We now report that expression of the mutant channel TRPV4-(121)AAWAA (lacking the phosphoinositide-binding site (121)KRWRK(125) and the response to physiological stimuli) altered HEK293 cell migration. Altered migration patterns included periods of fast and persistent motion followed by periods of stalling and turning, and the extension of multiple long cellular protrusions. TRPV4-WT overexpressing cells showed almost complete loss of directionality with frequent turns, no progression, and absence of long protrusions. Traction microscopy revealed higher tractions forces in the tail of TRPV4-(121)AAWAA than in TRPV4-WT expressing cells. These results are consistent with a defective and augmented tail retraction in TRPV4-(121)AAWAA- and TRPV4-WT-expressing cells, respectively. The activity of calpain, a protease implicated in focal adhesion (FA) disassembly, was decreased in TRPV4-(121)AAWAA compared with TRPV4-WT-expressing cells. Consistently, larger focal adhesions were seen in TRPV4-(121)AAWAA compared with TRPV4-WT-expressing HEK293 cells, a result that was also reproduced in T47D and U87 cells. Similarly, overexpression of the pore-dead mutant TRPV4-M680D resumed the TRPV4-(121)AAWAA phenotype presenting larger FA. The migratory phenotype obtained in HEK293 cells overexpressing TRPV4-(121)AAWAA was mimicked by knocking-down TRPC1, a cationic channel that participates in cell migration. Together, our results point to the participation of TRPV4 in the dynamics of trailing adhesions, a function that may require the interplay of TRPV4 with other cation channels or proteins present at the FA sites.
Collapse
Affiliation(s)
- Sanela Mrkonjić
- Laboratory of Molecular Physiology and Channelopathies, Dept. of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Anna Garcia-Elias
- Laboratory of Molecular Physiology and Channelopathies, Dept. of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Carlos Pardo-Pastor
- Laboratory of Molecular Physiology and Channelopathies, Dept. of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Elsa Bazellières
- Institute for Bioengineering of Catalonia, Barcelona, Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, and Ciber Enfermedades Respiratorias, Barcelona, Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, and Ciber Enfermedades Respiratorias, Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Barcelona, Spain
| | - Joris Vriens
- Laboratory of Ion Channels and TRP Research Platform Leuven, KU Leuven, Leuven, Belgium
| | - Debapriya Ghosh
- Laboratory of Ion Channels and TRP Research Platform Leuven, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channels and TRP Research Platform Leuven, KU Leuven, Leuven, Belgium
| | - Rubén Vicente
- Laboratory of Molecular Physiology and Channelopathies, Dept. of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Miguel A Valverde
- Laboratory of Molecular Physiology and Channelopathies, Dept. of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
27
|
Maccarrone M, Guzman M, Mackie K, Doherty P, Harkany T. Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nat Rev Neurosci 2014; 15:786-801. [PMID: 25409697 PMCID: PMC4765324 DOI: 10.1038/nrn3846] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Among the many signalling lipids, endocannabinoids are increasingly recognized for their important roles in neuronal and glial development. Recent experimental evidence suggests that, during neuronal differentiation, endocannabinoid signalling undergoes a fundamental switch from the prenatal determination of cell fate to the homeostatic regulation of synaptic neurotransmission and bioenergetics in the mature nervous system. These studies also offer novel insights into neuropsychiatric disease mechanisms and contribute to the public debate about the benefits and the risks of cannabis use during pregnancy and in adolescence.
Collapse
Affiliation(s)
- Mauro Maccarrone
- School of Medicine and Center of Integrated Research, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, I-00128 Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation, Via del Fosso di Fiorano 65, I-00143 Rome, Italy
| | - Manuel Guzman
- Department of Biochemistry and Molecular Biology I and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Complutense University, E-28040 Madrid, Spain
| | - Ken Mackie
- Department of Psychological & Brain Sciences, Indiana University, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
| | - Patrick Doherty
- Wolfson Centre for Age-Related Diseases, King's College London SE1 1UL, United Kingdom
| | - Tibor Harkany
- Division of Molecular Neuroscience, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| |
Collapse
|
28
|
Premkumar LS, Pabbidi RM. Diabetic peripheral neuropathy: role of reactive oxygen and nitrogen species. Cell Biochem Biophys 2014; 67:373-83. [PMID: 23722999 DOI: 10.1007/s12013-013-9609-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The prevalence of diabetes has reached epidemic proportions. There are two forms of diabetes: type 1 diabetes mellitus is due to auto-immune-mediated destruction of pancreatic β-cells resulting in absolute insulin deficiency and type 2 diabetes mellitus is due to reduced insulin secretion and or insulin resistance. Both forms of diabetes are characterized by chronic hyperglycemia, leading to the development of diabetic peripheral neuropathy (DPN) and microvascular pathology. DPN is characterized by enhanced or reduced thermal, chemical, and mechanical pain sensitivities. In the long-term, DPN results in peripheral nerve damage and accounts for a substantial number of non-traumatic lower-limb amputations. This review will address the mechanisms, especially the role of reactive oxygen and nitrogen species in the development and progression of DPN.
Collapse
Affiliation(s)
- Louis S Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA,
| | | |
Collapse
|
29
|
Ho KW, Lambert WS, Calkins DJ. Activation of the TRPV1 cation channel contributes to stress-induced astrocyte migration. Glia 2014; 62:1435-51. [PMID: 24838827 DOI: 10.1002/glia.22691] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 01/13/2023]
Abstract
Astrocytes provide metabolic, structural, and synaptic support to neurons in normal physiology and also contribute widely to pathogenic processes in response to stress or injury. Reactive astrocytes can undergo cytoskeletal reorganization and increase migration through changes in intracellular Ca(2+) mediated by a variety of potential modulators. Here we tested whether migration of isolated retinal astrocytes following mechanical injury (scratch wound) involves the transient receptor potential vanilloid-1 channel (TRPV1), which contributes to Ca(2+)-mediated cytoskeletal rearrangement and migration in other systems. Application of the TRPV1-specific antagonists, capsazepine (CPZ) or 5'-iodoresiniferatoxin (IRTX), slowed migration by as much as 44%, depending on concentration. In contrast, treatment with the TRPV1-specific agonists, capsaicin (CAP) or resiniferatoxin (RTX) produced only a slight acceleration over a range of concentrations. Chelation of extracellular Ca(2+) with EGTA (1 mM) slowed astrocyte migration by 35%. Ratiometric imaging indicated that scratch wound induced a sharp 20% rise in astrocyte Ca(2+) that dissipated with distance from the wound. Treatment with IRTX both slowed and dramatically reduced the scratch-induced Ca(2+) increase. Both CPZ and IRTX influenced astrocyte cytoskeletal organization, especially near the wound edge. Taken together, our results indicate that astrocyte mobilization in response to mechanical stress involves influx of extracellular Ca(2+) and cytoskeletal changes in part mediated by TRPV1 activation.
Collapse
Affiliation(s)
- Karen W Ho
- Vanderbilt Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | |
Collapse
|
30
|
Ahn S, Park J, An I, Jung SJ, Hwang J. Transient receptor potential cation channel V1 (TRPV1) is degraded by starvation- and glucocorticoid-mediated autophagy. Mol Cells 2014; 37:257-63. [PMID: 24658385 PMCID: PMC3969047 DOI: 10.14348/molcells.2014.2384] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 01/09/2023] Open
Abstract
A mammalian cell renovates itself by autophagy, a process through which cellular components are recycled to produce energy and maintain homeostasis. Recently, the abundance of gap junction proteins was shown to be regulated by autophagy during starvation conditions, suggesting that transmembrane proteins are also regulated by autophagy. Transient receptor potential vanilloid type 1 (TRPV1), an ion channel localized to the plasma membrane and endoplasmic reticulum (ER), is a sensory transducer that is activated by a wide variety of exogenous and endogenous physical and chemical stimuli. Intriguingly, the abundance of cellular TRPV1 can change dynamically under pathological conditions. However, the mechanisms by which the protein levels of TRPV1 are regulated have not yet been explored. Therefore, we investigated the mechanisms of TRPV1 recycling using HeLa cells constitutively expressing TRPV1. Endogenous TRPV1 was degraded in starvation conditions; this degradation was blocked by chloroquine (CLQ), 3MA, or downregulation of Atg7. Interestingly, a glucocorticoid (cortisol) was capable of inducing autophagy in HeLa cells. Cortisol increased cellular conversion of LC3-I to LC-3II, leading autophagy and resulting in TRPV1 degradation, which was similarly inhibited by treatment with CLQ, 3MA, or downregulation of Atg7. Furthermore, cortisol treatment induced the colocalization of GFP-LC3 with endogenous TRPV1. Cumulatively, these observations provide evidence that degradation of TRPV1 is mediated by autophagy, and that this pathway can be enhanced by cortisol.
Collapse
Affiliation(s)
- Seyoung Ahn
- Graduate School for Biomedical Science and Engineering, Hanyang University, Seoul 133-791,
Korea
| | - Jungyun Park
- Graduate School for Biomedical Science and Engineering, Hanyang University, Seoul 133-791,
Korea
| | - Inkyung An
- Graduate School for Biomedical Science and Engineering, Hanyang University, Seoul 133-791,
Korea
| | - Sung Jun Jung
- Department of Physiology, College of Medicine, Hanyang University, Seoul 133-791,
Korea
| | - Jungwook Hwang
- Graduate School for Biomedical Science and Engineering, Hanyang University, Seoul 133-791,
Korea
| |
Collapse
|
31
|
A carboxy methyl tamarind polysaccharide matrix for adhesion and growth of osteoclast-precursor cells. Carbohydr Polym 2014; 101:1033-42. [DOI: 10.1016/j.carbpol.2013.10.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 11/23/2022]
|
32
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
33
|
Schwab A, Fabian A, Hanley PJ, Stock C. Role of ion channels and transporters in cell migration. Physiol Rev 2013; 92:1865-913. [PMID: 23073633 DOI: 10.1152/physrev.00018.2011] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell motility is central to tissue homeostasis in health and disease, and there is hardly any cell in the body that is not motile at a given point in its life cycle. Important physiological processes intimately related to the ability of the respective cells to migrate include embryogenesis, immune defense, angiogenesis, and wound healing. On the other side, migration is associated with life-threatening pathologies such as tumor metastases and atherosclerosis. Research from the last ≈ 15 years revealed that ion channels and transporters are indispensable components of the cellular migration apparatus. After presenting general principles by which transport proteins affect cell migration, we will discuss systematically the role of channels and transporters involved in cell migration.
Collapse
|
34
|
Lim HY, Albuquerque B, Häussler A, Myrczek T, Ding A, Tegeder I. Progranulin contributes to endogenous mechanisms of pain defense after nerve injury in mice. J Cell Mol Med 2012; 16:708-21. [PMID: 21645236 PMCID: PMC3822842 DOI: 10.1111/j.1582-4934.2011.01350.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Progranulin haploinsufficiency is associated with frontotemporal dementia in humans. Deficiency of progranulin led to exaggerated inflammation and premature aging in mice. The role of progranulin in adaptations to nerve injury and neuropathic pain are still unknown. Here we found that progranulin is up-regulated after injury of the sciatic nerve in the mouse ipsilateral dorsal root ganglia and spinal cord, most prominently in the microglia surrounding injured motor neurons. Progranulin knockdown by continuous intrathecal spinal delivery of small interfering RNA after sciatic nerve injury intensified neuropathic pain-like behaviour and delayed the recovery of motor functions. Compared to wild-type mice, progranulin-deficient mice developed more intense nociceptive hypersensitivity after nerve injury. The differences escalated with aging. Knockdown of progranulin reduced the survival of dissociated primary neurons and neurite outgrowth, whereas addition of recombinant progranulin rescued primary dorsal root ganglia neurons from cell death induced by nerve growth factor withdrawal. Thus, up-regulation of progranulin after neuronal injury may reduce neuropathic pain and help motor function recovery, at least in part, by promoting survival of injured neurons and supporting regrowth. A deficiency in this mechanism may increase the risk for injury-associated chronic pain.
Collapse
Affiliation(s)
- Hee-Young Lim
- Pharmazentrum frankfurt, ZAFES, Clinical Pharmacology, Goethe-University, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Conservation of tubulin-binding sequences in TRPV1 throughout evolution. PLoS One 2012; 7:e31448. [PMID: 22496727 PMCID: PMC3322131 DOI: 10.1371/journal.pone.0031448] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/08/2012] [Indexed: 01/10/2023] Open
Abstract
Background Transient Receptor Potential Vanilloid sub type 1 (TRPV1), commonly known as capsaicin receptor can detect multiple stimuli ranging from noxious compounds, low pH, temperature as well as electromagnetic wave at different ranges. In addition, this receptor is involved in multiple physiological and sensory processes. Therefore, functions of TRPV1 have direct influences on adaptation and further evolution also. Availability of various eukaryotic genomic sequences in public domain facilitates us in studying the molecular evolution of TRPV1 protein and the respective conservation of certain domains, motifs and interacting regions that are functionally important. Methodology and Principal Findings Using statistical and bioinformatics tools, our analysis reveals that TRPV1 has evolved about ∼420 million years ago (MYA). Our analysis reveals that specific regions, domains and motifs of TRPV1 has gone through different selection pressure and thus have different levels of conservation. We found that among all, TRP box is the most conserved and thus have functional significance. Our results also indicate that the tubulin binding sequences (TBS) have evolutionary significance as these stretch sequences are more conserved than many other essential regions of TRPV1. The overall distribution of positively charged residues within the TBS motifs is conserved throughout evolution. In silico analysis reveals that the TBS-1 and TBS-2 of TRPV1 can form helical structures and may play important role in TRPV1 function. Conclusions and Significance Our analysis identifies the regions of TRPV1, which are important for structure – function relationship. This analysis indicates that tubulin binding sequence-1 (TBS-1) near the TRP-box forms a potential helix and the tubulin interactions with TRPV1 via TBS-1 have evolutionary significance. This interaction may be required for the proper channel function and regulation and may also have significance in the context of Taxol®-induced neuropathy.
Collapse
|
36
|
Abstract
The Transient receptor potential (TRP) family of cation channels is a large protein family, which is mainly structurally uniform. Proteins consist typically of six transmembrane domains and mostly four subunits are necessary to form a functional channel. Apart from this, TRP channels display a wide variety of activation mechanisms (ligand binding, G-protein coupled receptor dependent, physical stimuli such as temperature, pressure, etc.) and ion selectivity profiles (from highly Ca(2+) selective to non-selective for cations). They have been described now in almost every tissue of the body, including peripheral and central neurons. Especially in the sensory nervous system the role of several TRP channels is already described on a detailed level. This review summarizes data that is currently available on their role in the central nervous system. TRP channels are involved in neurogenesis and brain development, synaptic transmission and they play a key role in the development of several neurological diseases.
Collapse
|
37
|
Goswami C, Kuhn J, Dina OA, Fernández-Ballester G, Levine JD, Ferrer-Montiel A, Hucho T. Estrogen destabilizes microtubules through an ion-conductivity-independent TRPV1 pathway. J Neurochem 2011; 117:995-1008. [PMID: 21480900 DOI: 10.1111/j.1471-4159.2011.07270.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recently, we described estrogen and agonists of the G-protein coupled estrogen receptor GPR30 to induce protein kinase C (PKC)ε-dependent pain sensitization. PKCε phosphorylates the ion channel transient receptor potential, vanilloid subclass I (TRPV1) close to a novel microtubule-TRPV1 binding site. We now modeled the binding of tubulin to the TRPV1 C-terminus. The model suggests PKCε phosphorylation of TRPV1-S800 to abolish the tubulin-TRPV1 interaction. Indeed, in vitro PKCε phosphorylation of TRPV1 hindered tubulin-binding to TRPV1. In vivo, treatment of sensory neurons and F-11 cells with estrogen and the GPR30 agonist, G-1, resulted in microtubule destabilization and retraction of microtubules from filopodial structures. We found estrogen and G-1 to regulate the stability of the microtubular network via PKC phosphorylation of the PKCε-phosphorylation site TRPV1-S800. Microtubule disassembly was not, however, dependent on TRPV1 ion conductivity. TRPV1 knock-down in rats inverted the effect of the microtubule-modulating drugs, Taxol and Nocodazole, on estrogen-induced and PKCε-dependent mechanical pain sensitization. Thus, we suggest the C-terminus of TRPV1 to be a signaling intermediate downstream of estrogen and PKCε, regulating microtubule-stability and microtubule-dependent pain sensitization.
Collapse
Affiliation(s)
- Chandan Goswami
- Department for Molecular Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Ozkucur N, Perike S, Sharma P, Funk RHW. Persistent directional cell migration requires ion transport proteins as direction sensors and membrane potential differences in order to maintain directedness. BMC Cell Biol 2011; 12:4. [PMID: 21255452 PMCID: PMC3042415 DOI: 10.1186/1471-2121-12-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 01/22/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Ion transport proteins generate small electric fields that can induce directional cell motility; however, little is known about their mechanisms that lead to directedness. We investigated Na, K-ATPase (NaKA) and Na+/H+ exchanger isoforms (NHE1 and 3) in SaOS-2 and Calvarial osteoblasts, which present anode- and cathode- directed motility, during electrotaxis. RESULTS Significant colocalizations of NaKA with vinculin and pNHE3 with ß-actin were observed to occur at the leading edges of cells. The directedness were attenuated when NaKA or NHE3 was inhibited, confirming their implication in directional sensing. Depending on the perceived direction, a divergent regulation in PIP2 levels as a function of NHE3 and NaKA levels was observed, suggesting that PIP2 may act as a spatiotemporal regulator of the cell membrane during electrotaxis. Moreover, at the same places where pNHE3 accumulates, bubble-shaped H+ clouds were observed, suggesting a physio-mechanical role for NHE3. The cell membrane becomes hyperpolarized at the front and depolarized at the back, which confirms NaKA activity at the leading edge. CONCLUSION We suggest a novel role for both NaKA and NHE3 that extends beyond ion translocation and conclude that they can act as directional sensors and Vmem as a regulatory cue which maintain the persistent direction in electrotaxis.
Collapse
Affiliation(s)
- Nurdan Ozkucur
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technical University of Dresden, Dresden, Germany.
| | | | | | | |
Collapse
|
39
|
Goswami C, Goswami L. Filamentous microtubules in the neuronal spinous process and the role of microtubule regulatory drugs in neuropathic pain. Neurochem Int 2010; 57:497-503. [DOI: 10.1016/j.neuint.2010.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 05/28/2010] [Accepted: 06/30/2010] [Indexed: 11/26/2022]
|
40
|
Goswami C. Structural and functional regulation of growth cone, filopodia and synaptic sites by TRPV1. Commun Integr Biol 2010; 3:614-8. [PMID: 21331257 DOI: 10.4161/cib.3.6.13397] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 08/23/2010] [Indexed: 01/29/2023] Open
Abstract
Specialized neuronal structures namely growth cones, filopodia and spines are important entities by which neurons communicate with each other, integrate multiple signaling events, consolidate interacting structures and exchange synaptic information. Recent studies confirmed that Transient Receptor Potential Vanilloid sub type 1 (TRPV1), alternatively known as capsaicin receptor, forms a signaling complex at the plasma membrane and integrate multiple exogenous and endogenous signaling cues there. This receptor localizes in the neuronal growth cones and also in filopodial tips. In addition, TRPV1 is endogenously present in synaptic structures and located both in pre- and post-synaptic spines of cortical neurons. Being nonselective Ca(2+)-channel, TRPV1 regulates the morphology and the functions of these structures by various mechanisms. Our studies indicated that physical interaction with signaling and structural molecules, modulation of different cytoskeleton, synaptic scaffolding structures and vesicle recycling by Ca(2+)-dependent and -independent events are the key mechanisms by which TRPV1 regulates growth cone, filopodia and spines in a coordinated manner. TRPV1 not only regulates the morphology, but also regulates the functions of these entities. Thus TRPV1 is important not only for the detection of noxious stimuli and transmission of pain signaling, but also are for the neuronal communications and network formation.
Collapse
Affiliation(s)
- Chandan Goswami
- National Institute of Science Education and Research; Institute of Physics Campus; Sachivalaya Marg; Bhubaneswar, Orissa India
| |
Collapse
|
41
|
Importance of non-selective cation channel TRPV4 interaction with cytoskeleton and their reciprocal regulations in cultured cells. PLoS One 2010; 5:e11654. [PMID: 20657843 PMCID: PMC2906515 DOI: 10.1371/journal.pone.0011654] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 06/15/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND TRPV4 and the cellular cytoskeleton have each been reported to influence cellular mechanosensitive processes as well as the development of mechanical hyperalgesia. If and how TRPV4 interacts with the microtubule and actin cytoskeleton at a molecular and functional level is not known. METHODOLOGY AND PRINCIPAL FINDINGS We investigated the interaction of TRPV4 with cytoskeletal components biochemically, cell biologically by observing morphological changes of DRG-neurons and DRG-neuron-derived F-11 cells, as well as functionally with calcium imaging. We find that TRPV4 physically interacts with tubulin, actin and neurofilament proteins as well as the nociceptive molecules PKCepsilon and CamKII. The C-terminus of TRPV4 is sufficient for the direct interaction with tubulin and actin, both with their soluble and their polymeric forms. Actin and tubulin compete for binding. The interaction with TRPV4 stabilizes microtubules even under depolymerizing conditions in vitro. Accordingly, in cellular systems TRPV4 colocalizes with actin and microtubules enriched structures at submembranous regions. Both expression and activation of TRPV4 induces striking morphological changes affecting lamellipodial, filopodial, growth cone, and neurite structures in non-neuronal cells, in DRG-neuron derived F11 cells, and also in IB4-positive DRG neurons. The functional interaction of TRPV4 and the cytoskeleton is mutual as Taxol, a microtubule stabilizer, reduces the Ca2+-influx via TRPV4. CONCLUSIONS AND SIGNIFICANCE TRPV4 acts as a regulator for both, the microtubule and the actin. In turn, we describe that microtubule dynamics are an important regulator of TRPV4 activity. TRPV4 forms a supra-molecular complex containing cytoskeletal proteins and regulatory kinases. Thereby it can integrate signaling of various intracellular second messengers and signaling cascades, as well as cytoskeletal dynamics. This study points out the existence of cross-talks between non-selective cation channels and cytoskeleton at multiple levels. These cross talks may help us to understand the molecular basis of the Taxol-induced neuropathic pain development commonly observed in cancer patients.
Collapse
|
42
|
Goswami C, Rademacher N, Smalla KH, Kalscheuer V, Ropers HH, Gundelfinger ED, Hucho T. TRPV1 acts as a synaptic protein and regulates vesicle recycling. J Cell Sci 2010; 123:2045-57. [PMID: 20483957 DOI: 10.1242/jcs.065144] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Electrophysiological studies demonstrate that transient receptor potential vanilloid subtype 1 (TRPV1) is involved in neuronal transmission. Although it is expressed in the peripheral as well as the central nervous system, the questions remain whether TRPV1 is present in synaptic structures and whether it is involved in synaptic processes. In the present study we gathered evidence that TRPV1 can be detected in spines of cortical neurons, that it colocalizes with both pre- and postsynaptic proteins, and that it regulates spine morphology. Moreover, TRPV1 is also present in biochemically prepared synaptosomes endogenously. In F11 cells, a cell line derived from dorsal-root-ganglion neurons, TRPV1 is enriched in the tips of elongated filopodia and also at sites of cell-cell contact. In addition, we also detected TRPV1 in synaptic transport vesicles, and in transport packets within filopodia and neurites. Using FM4-64 dye, we demonstrate that recycling and/or fusion of these vesicles can be rapidly modulated by TRPV1 activation, leading to rapid reorganization of filopodial structure. These data suggest that TRPV1 is involved in processes such as neuronal network formation, synapse modulation and release of synaptic transmitters.
Collapse
Affiliation(s)
- Chandan Goswami
- Signal Transduction in Pain and Mental Retardation, Department for Molecular Human Genetics, Max-Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Davies JW, Hainsworth AH, Guerin CJ, Lambert DG. Pharmacology of capsaicin-, anandamide-, and N-arachidonoyl-dopamine-evoked cell death in a homogeneous transient receptor potential vanilloid subtype 1 receptor population. Br J Anaesth 2010; 104:596-602. [PMID: 20354008 DOI: 10.1093/bja/aeq067] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Transient receptor potential vanilloid subtype 1 (TRPV1) receptor is a primary pain-sensing relay at peripheral sensory nerve endings and is also widespread in the brain, where it is implicated in neurodegeneration. Previous studies of TRPV1 neurotoxicity have utilized heterogeneous receptor populations, non-selective ligands, or non-neuronal cell types. Here, we explored the pharmacology of TRPV1-induced cytotoxicity in a homogeneous, neurone-like cellular environment. METHODS Cell death was examined in a human neurone-like cell line, stably expressing recombinant human TRPV1. Cytotoxicity was quantified in terms of nuclear morphology and mitochondrial complex II activity. Immunocytochemical markers of apoptotic cell death were also examined. RESULTS The TRPV1-selective agonist capsaicin, and the endovanilloids anandamide and N-arachidonoyl-dopamine (NADA), induced TRPV1-dependent delayed cell death in a concentration- and time-dependent manner. Capsaicin exposure time was significantly correlated with potency (r(2)=0.91, P=0.01). Release of cytochrome c from mitochondria, activation of caspase-3, and condensed nuclear chromatin were evident 6 h after capsaicin exposure, but cytotoxicity was unaffected by a pan-caspase inhibitor (zVAD-fmk, 50 microM). CONCLUSIONS We conclude that capsaicin, anandamide, and NADA can initiate TRPV1-dependent delayed cell death in neurone-like cells. This is an apoptosis-like process, but independent of caspase activity.
Collapse
Affiliation(s)
- J W Davies
- Division of Anaesthesia, Critical Care and Pain Management, Department of Cardiovascular Sciences (Pharmacology and Therapeutics Group), University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | | | | | | |
Collapse
|
44
|
Abstract
Chronic pain associated with inflammation is a common clinical problem, and the underlying mechanisms have only begun to be unraveled. GRK2 regulates cellular signaling by promoting G-protein-coupled receptor (GPCR) desensitization and direct interaction with downstream kinases including p38. The aim of this study was to determine the contribution of GRK2 to regulation of inflammatory pain and to unravel the underlying mechanism. GRK2(+/-) mice with an approximately 50% reduction in GRK2 developed increased and markedly prolonged thermal hyperalgesia and mechanical allodynia after carrageenan-induced paw inflammation or after intraplantar injection of the GPCR-binding chemokine CCL3. The effect of reduced GRK2 in specific cells was investigated using Cre-Lox technology. Carrageenan- or CCL3-induced hyperalgesia was increased but not prolonged in mice with decreased GRK2 only in Na(v)1.8 nociceptors. In vitro, reduced neuronal GRK2 enhanced CCL3-induced TRPV1 sensitization. In vivo, CCL3-induced acute hyperalgesia in GRK2(+/-) mice was mediated via TRPV1. Reduced GRK2 in microglia/monocytes only was required and sufficient to transform acute carrageenan- or CCL3-induced hyperalgesia into chronic hyperalgesia. Chronic hyperalgesia in GRK2(+/-) mice was associated with ongoing microglial activation and increased phospho-p38 and tumor necrosis factor alpha (TNF-alpha) in the spinal cord. Inhibition of spinal cord microglial, p38, or TNF-alpha activity by intrathecal administration of specific inhibitors reversed ongoing hyperalgesia in GRK2(+/-) mice. Microglia/macrophage GRK2 expression was reduced in the lumbar ipsilateral spinal cord during neuropathic pain, underlining the pathophysiological relevance of microglial GRK2. Thus, we identified completely novel cell-specific roles of GRK2 in regulating acute and chronic inflammatory hyperalgesia.
Collapse
|
45
|
Jara-Oseguera A, Simon SA, Rosenbaum T. TRPV1: on the road to pain relief. Curr Mol Pharmacol 2010; 1:255-69. [PMID: 20021438 DOI: 10.2174/1874467210801030255] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Historically, drug research targeted to pain treatment has focused on trying to prevent the propagation of action potentials in the periphery from reaching the brain rather than pinpointing the molecular basis underlying the initial detection of the nociceptive stimulus: the receptor itself. This has now changed, given that many receptors of nociceptive stimuli have been identified and/or cloned. Transient Receptor Potential (TRP) channels have been implicated in several physiological processes such as mechanical, chemical and thermal stimuli detection. Ten years after the cloning of TRPV1, compelling data has been gathered on the role of this channel in inflammatory and neuropathic states. TRPV1 activation in nociceptive neurons, where it is normally expressed, triggers the release of neuropeptides and transmitters resulting in the generation of action potentials that will be sent to higher CNS areas where they will often be perceived as pain. Its activation also will evoke the peripheral release of pro-inflammatory compounds that may sensitize other neurons to physical, thermal or chemical stimuli. For these reasons as well as because its continuous activation causes analgesia, TRPV1 has become a viable drug target for clinical use in the management of pain. This review will provide a general picture of the physiological and pathophysiological roles of the TRPV1 channel and of its structural, pharmacological and biophysical properties. Finally, it will provide the reader with an overall view of the status of the discovery of potential therapeutic agents for the management of chronic and neuropathic pain.
Collapse
Affiliation(s)
- Andrés Jara-Oseguera
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | | | | |
Collapse
|
46
|
Prager-Khoutorsky M, Bourque CW. Osmosensation in vasopressin neurons: changing actin density to optimize function. Trends Neurosci 2009; 33:76-83. [PMID: 19963290 DOI: 10.1016/j.tins.2009.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/31/2009] [Accepted: 11/13/2009] [Indexed: 11/19/2022]
Abstract
The proportional relation between circulating vasopressin concentration and plasma osmolality is fundamental for body fluid homeostasis. Although changes in the sensitivity of this relation are associated with pathophysiological conditions, central mechanisms modulating osmoregulatory gain are unknown. Here, we review recent data that sheds important light on this process. The cell autonomous osmosensitivity of vasopressin neurons depends on cation channels comprising a variant of the transient receptor potential vanilloid 1 (TRPV1) channel. Hyperosmotic activation is mediated by a mechanical process where sensitivity increases in proportion with actin filament density. Moreover, angiotensin II amplifies osmotic activation by a rapid stimulation of actin polymerization, suggesting that neurotransmitter-induced changes in cytoskeletal organization in osmosensory neurons can mediate central changes in osmoregulatory gain.
Collapse
Affiliation(s)
- Masha Prager-Khoutorsky
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Canada
| | | |
Collapse
|
47
|
El Andaloussi-Lilja J, Lundqvist J, Forsby A. TRPV1 expression and activity during retinoic acid-induced neuronal differentiation. Neurochem Int 2009; 55:768-74. [PMID: 19651168 DOI: 10.1016/j.neuint.2009.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 07/02/2009] [Accepted: 07/24/2009] [Indexed: 12/15/2022]
Abstract
The transient receptor potential vanilloid subtype 1 (TRPV1) is a Ca(2+)-permeable channel primarily expressed in dorsal root ganglion neurons. Besides its function in thermogenic nociception and neurogenic inflammation, TRPV1 is involved in cell migration, cytoskeleton re-organisation and in neuronal guidance. To explore the TRPV1 level and activity during conditions for neuronal maturation, TRPV1-expressing SHSY5Y neuroblastoma cells were differentiated into a neuronal phenotype using all-trans-retinoic acid (RA). We show that RA highly up-regulated the total and cell surface TRPV1 protein expression but the TRPV1 mRNA level was unaffected. The up-regulated receptors were localised to the cell bodies and the developed neurites. Furthermore, RA increased both the basal intracellular free Ca(2+) concentration by 30% as well as the relative capsaicin-induced Ca(2+) influx. The results show that TRPV1 protein expression increases during RA-induced differentiation in vitro, which generates an altered intracellular Ca(2+) homeostasis.
Collapse
|
48
|
Eijkelkamp N, Heijnen CJ, Elsenbruch S, Holtmann G, Schedlowski M, Kavelaars A. G protein-coupled receptor kinase 6 controls post-inflammatory visceral hyperalgesia. Brain Behav Immun 2009; 23:18-26. [PMID: 18687398 DOI: 10.1016/j.bbi.2008.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/03/2008] [Accepted: 07/08/2008] [Indexed: 11/30/2022] Open
Abstract
Post-inflammatory pain is a poorly understood phenomenon. G protein-coupled receptors are involved in regulating pain signaling in the context of inflammation. G protein-coupled receptor kinases (GRK) modulate signaling through these receptors. We investigated whether GRK6 contributes to post-inflammatory visceral hyperalgesia. Colitis was induced in female mice by 1% dextran sodium sulphate in drinking water for 7 days. Disease score, colon length, and colonic cytokines were determined. On day 49, when animals had recovered from colitis, we induced visceral pain by intracolonic capsaicin instillation. Behavioral responses to capsaicin were monitored for 20 min. Referred hyperalgesia was measured using von Frey hairs. Spinal cord c-Fos was visualized by immunohistochemistry. In contrast to our earlier observations in male GRK6-/- and wild type (WT) mice, we did not detect differences in the course of colitis or in expression of colonic cytokines between female GRK6-/- and WT mice. After recovery from colitis, capsaicin-induced behavioral pain responses and spinal cord c-Fos expression were more pronounced in female GRK6-/- than WT mice. Naive GRK6-/- and WT animals did not differ in pain and c-Fos responses to capsaicin. Capsaicin-induced referred hyperalgesia post-colitis was increased in GRK6-/- compared to WT mice. However, referred hyperalgesia post-colitis was not affected by ablation of GRK6. Furthermore, in vitro IL-1beta sensitized the capsaicin receptor TRPV1 and this process was inhibited by over-expression of GRK6. We describe the novel concept that GRK6 inhibits post-inflammatory visceral hyperalgesia but does not contribute to visceral pain in naive animals. We propose that GRK6 regulates inflammation-induced sensitization of TRPV1.
Collapse
Affiliation(s)
- Niels Eijkelkamp
- Laboratory of Psychoneuroimmunology, University Medical Center Utrecht, Room KC 03.068.0, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Goswami C, Hucho T. Submembraneous microtubule cytoskeleton: biochemical and functional interplay of TRP channels with the cytoskeleton. FEBS J 2008; 275:4684-99. [PMID: 18754773 DOI: 10.1111/j.1742-4658.2008.06617.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Much work has focused on the electrophysiological properties of transient receptor potential channels. Recently, a novel aspect of importance emerged: the interplay of transient receptor potential channels with the cytoskeleton. Recent data suggest a direct interaction and functional repercussion for both binding partners. The bi-directionality of physical and functional interaction renders therefore, the cytoskeleton a potent integration point of complex biological signalling events, from both the cytoplasm and the extracellular space. In this minireview, we focus mostly on the interaction of the cytoskeleton with transient receptor potential vanilloid channels. Thereby, we point out the functional importance of cytoskeleton components both as modulator and as modulated downstream effector. The resulting implications for patho-biological situations are discussed.
Collapse
Affiliation(s)
- Chandan Goswami
- Department for Molecular Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | |
Collapse
|
50
|
Clark K, Middelbeek J, van Leeuwen FN. Interplay between TRP channels and the cytoskeleton in health and disease. Eur J Cell Biol 2008; 87:631-40. [PMID: 18342984 DOI: 10.1016/j.ejcb.2008.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 11/30/2022] Open
Abstract
Transient receptor potential (TRP) channels are a family of cation channels that play a key role in ion homeostasis and cell volume regulation. In addition, TRP channels are considered universal integrators of sensory information required for taste, vision, hearing, touch, temperature, and the detection of mechanical force. Seminal investigations exploring the molecular mechanisms of phototransduction in Drosophila have demonstrated that TRP channels operate within macromolecular complexes closely associated with the cytoskeleton. More recent evidence shows that mammalian TRP channels similarly connect to the cytoskeleton to affect cytoskeletal organization and cell adhesion via ion-transport-dependent and -independent mechanisms. In this review, we discuss new insights into the interplay between TRP channels and the cytoskeleton and provide recent examples of such interactions in different physiological systems.
Collapse
Affiliation(s)
- Kristopher Clark
- University of Dundee, MRC Protein Phosphorylation Unit, Dundee DD1 5EH, Scotland, UK
| | | | | |
Collapse
|