1
|
Jana M, Dutta D, Poddar J, Pahan K. Activation of PPARα Exhibits Therapeutic Efficacy in a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis. J Neurosci 2023; 43:1814-1829. [PMID: 36697260 PMCID: PMC10010460 DOI: 10.1523/jneurosci.2447-21.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is a fatal inherited neurodegenerative disease of children that occurs because of defective function of the lysosomal membrane glycoprotein CLN3. JNCL features glial activation and accumulation of autofluorescent storage material containing subunit c of mitochondrial ATP synthase (SCMAS), ultimately resulting into neuronal loss. Until now, no effective therapy is available for JNCL. This study underlines the possible therapeutic importance of gemfibrozil, an activator of peroxisome proliferator-activated receptor α (PPARα) and a lipid-lowering drug approved by the Food and Drug Administration in an animal model of JNCL. Oral gemfibrozil treatment reduced microglial and astroglial activation, attenuated neuroinflammation, restored the level of transcription factor EB (TFEB; the master regulator of lysosomal biogenesis), and decreased the accumulation of storage material SCMAS in somatosensory barrel field (SBF) cortex of Cln3Δex7/8 (Cln3ΔJNCL) mice of both sexes. Accordingly, gemfibrozil treatment also improved locomotor activities of Cln3ΔJNCL mice. While investigating the mechanism, we found marked loss of PPARα in the SBF cortex of Cln3ΔJNCL mice, which increased after gemfibrozil treatment. Oral gemfibrozil also stimulated the recruitment of PPARα to the Tfeb gene promoter in vivo in the SBF cortex of Cln3ΔJNCL mice, indicating increased transcription of Tfeb in the CNS by gemfibrozil treatment via PPARα. Moreover, disease pathologies aggravated in Cln3ΔJNCL mice lacking PPARα (Cln3ΔJNCLΔPPARα) and gemfibrozil remained unable to decrease SCMAS accumulation, reduce glial activation, and improve locomotor performance of Cln3ΔJNCLΔPPARα mice. These results suggest that activation of PPARα may be beneficial for JNCL and that gemfibrozil may be repurposed for the treatment of this incurable disease.SIGNIFICANCE STATEMENT Despite intense investigations, no effective therapy is available for JNCL, an incurable inherited lysosomal storage disorder. Here, we delineate that oral administration of gemfibrozil, a lipid-lowering drug, decreases glial inflammation, normalizes and/or upregulates TFEB, and reduces accumulation of autofluorescent storage material in SBF cortex to improve locomotor activities in Cln3Δex7/8 (Cln3ΔJNCL) mice. Aggravation of disease pathology in Cln3ΔJNCL mice lacking PPARα (Cln3ΔJNCLΔPPARα) and inability of gemfibrozil to decrease SCMAS accumulation, reduce glial activation, and improve locomotor performance of Cln3ΔJNCLΔPPARα mice delineates an important role of PPARα in this process. These studies highlight a new property of gemfibrozil and indicate its possible therapeutic use in JNCL patients.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Debashis Dutta
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612
| | - Jit Poddar
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| |
Collapse
|
2
|
Bioinformatic Prioritization and Functional Annotation of GWAS-Based Candidate Genes for Primary Open-Angle Glaucoma. Genes (Basel) 2022; 13:genes13061055. [PMID: 35741817 PMCID: PMC9222386 DOI: 10.3390/genes13061055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Background: Primary open-angle glaucoma (POAG) is the most prevalent glaucoma subtype, but its exact etiology is still unknown. In this study, we aimed to prioritize the most likely ‘causal’ genes and identify functional characteristics and underlying biological pathways of POAG candidate genes. Methods: We used the results of a large POAG genome-wide association analysis study from GERA and UK Biobank cohorts. First, we performed systematic gene-prioritization analyses based on: (i) nearest genes; (ii) nonsynonymous single-nucleotide polymorphisms; (iii) co-regulation analysis; (iv) transcriptome-wide association studies; and (v) epigenomic data. Next, we performed functional enrichment analyses to find overrepresented functional pathways and tissues. Results: We identified 142 prioritized genes, of which 64 were novel for POAG. BICC1, AFAP1, and ABCA1 were the most highly prioritized genes based on four or more lines of evidence. The most significant pathways were related to extracellular matrix turnover, transforming growth factor-β, blood vessel development, and retinoic acid receptor signaling. Ocular tissues such as sclera and trabecular meshwork showed enrichment in prioritized gene expression (>1.5 fold). We found pleiotropy of POAG with intraocular pressure and optic-disc parameters, as well as genetic correlation with hypertension and diabetes-related eye disease. Conclusions: Our findings contribute to a better understanding of the molecular mechanisms underlying glaucoma pathogenesis and have prioritized many novel candidate genes for functional follow-up studies.
Collapse
|
3
|
de la Fuente AG, Queiroz RML, Ghosh T, McMurran CE, Cubillos JF, Bergles DE, Fitzgerald DC, Jones CA, Lilley KS, Glover CP, Franklin RJM. Changes in the Oligodendrocyte Progenitor Cell Proteome with Ageing. Mol Cell Proteomics 2020; 19:1281-1302. [PMID: 32434922 PMCID: PMC8015006 DOI: 10.1074/mcp.ra120.002102] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 11/06/2022] Open
Abstract
Following central nervous system (CNS) demyelination, adult oligodendrocyte progenitor cells (OPCs) can differentiate into new myelin-forming oligodendrocytes in a regenerative process called remyelination. Although remyelination is very efficient in young adults, its efficiency declines progressively with ageing. Here we performed proteomic analysis of OPCs freshly isolated from the brains of neonate, young and aged female rats. Approximately 50% of the proteins are expressed at different levels in OPCs from neonates compared with their adult counterparts. The amount of myelin-associated proteins, and proteins associated with oxidative phosphorylation, inflammatory responses and actin cytoskeletal organization increased with age, whereas cholesterol-biosynthesis, transcription factors and cell cycle proteins decreased. Our experiments provide the first ageing OPC proteome, revealing the distinct features of OPCs at different ages. These studies provide new insights into why remyelination efficiency declines with ageing and potential roles for aged OPCs in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Alerie G de la Fuente
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, United Kingdom
| | - Rayner M L Queiroz
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, United Kingdom; Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Granta Park, United Kingdom
| | - Tanay Ghosh
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, United Kingdom
| | - Christopher E McMurran
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom
| | - Juan F Cubillos
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, United Kingdom
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA; John Hopkins University, Kavli Neuroscience Discovery Institute, USA
| | - Denise C Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Clare A Jones
- John Hopkins University, Kavli Neuroscience Discovery Institute, USA
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, United Kingdom
| | - Colin P Glover
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Granta Park, United Kingdom; Oncology Early Clinical Projects, Oncology R &D, AstraZeneca, Melbourn Science Park, Melbourn, Hertfordshire, United Kingdom
| | - Robin J M Franklin
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, United Kingdom.
| |
Collapse
|
4
|
Mehdizadeh M, Ashtari N, Jiao X, Rahimi Balaei M, Marzban A, Qiyami-Hour F, Kong J, Ghavami S, Marzban H. Alteration of the Dopamine Receptors' Expression in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant (Naked-Ataxia ( NAX)) Mouse. Int J Mol Sci 2020; 21:E2914. [PMID: 32326360 PMCID: PMC7215910 DOI: 10.3390/ijms21082914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
A spontaneous mutation in the lysosomal acid phosphatase (Acp2) enzyme (nax: naked-ataxia) in experimental mice results in delayed hair appearance and severe cytoarchitectural impairments of the cerebellum, such as a Purkinje cell (PC) migration defect. In our previous investigation, our team showed that Acp2 expression plans a significant role in cerebellar development. On the other hand, the dopaminergic system is also a player in central nervous system (CNS) development, including cerebellar structure and function. In the current investigation, we have explored how Acp2 can be involved in the regulation of the dopaminergic pathway in the cerebellum via the regulation of dopamine receptor expression and patterning. We provided evidence about the distribution of different dopamine receptors in the developing cerebellum by comparing the expression of dopamine receptors on postnatal days (P) 5 and 17 between nax mice and wild-type (wt) littermates. To this aim, immunohistochemistry and Western blot analysis were conducted using five antibodies against dopamine receptors (DRD1, -2, -3, -4, and -5) accompanied by RNAseq data. Our results revealed that DRD1, -3, and -4 gene expressions significantly increased in nax cerebella but not in wt, while gene expressions of all 5 receptors were evident in PCs of both wt and nax cerebella. DRD3 was strongly expressed in the PCs' somata and cerebellar nuclei neurons at P17 in nax mice, which was comparable to the expression levels in the cerebella of wt littermates. In addition, DRD3 was expressed in scattered cells in a granular layer reminiscent of Golgi cells and was observed in the wt cerebella but not in nax mice. DRD4 was expressed in a subset of PCs and appeared to align with the unique parasagittal stripes pattern. This study contributes to our understanding of alterations in the expression pattern of DRDs in the cerebellum of nax mice in comparison to their wt littermates, and it highlights the role of Acp2 in regulating the dopaminergic system.
Collapse
Affiliation(s)
- Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
| | - Niloufar Ashtari
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| | - Xiaodan Jiao
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| | - Maryam Rahimi Balaei
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| | - Asghar Marzban
- Department of Pediatrics, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran;
| | - Farshid Qiyami-Hour
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
| | - Jiming Kong
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
| | - Saeid Ghavami
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Hassan Marzban
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| |
Collapse
|
5
|
Sleat DE, Wiseman JA, El-Banna M, Zheng H, Zhao C, Soherwardy A, Moore DF, Lobel P. Analysis of Brain and Cerebrospinal Fluid from Mouse Models of the Three Major Forms of Neuronal Ceroid Lipofuscinosis Reveals Changes in the Lysosomal Proteome. Mol Cell Proteomics 2019; 18:2244-2261. [PMID: 31501224 PMCID: PMC6823856 DOI: 10.1074/mcp.ra119.001587] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/06/2019] [Indexed: 01/06/2023] Open
Abstract
Treatments are emerging for the neuronal ceroid lipofuscinoses (NCLs), a group of similar but genetically distinct lysosomal storage diseases. Clinical ratings scales measure long-term disease progression and response to treatment but clinically useful biomarkers have yet to be identified in these diseases. We have conducted proteomic analyses of brain and cerebrospinal fluid (CSF) from mouse models of the most frequently diagnosed NCL diseases: CLN1 (infantile NCL), CLN2 (classical late infantile NCL) and CLN3 (juvenile NCL). Samples were obtained at different stages of disease progression and proteins quantified using isobaric labeling. In total, 8303 and 4905 proteins were identified from brain and CSF, respectively. We also conduced label-free analyses of brain proteins that contained the mannose 6-phosphate lysosomal targeting modification. In general, we detect few changes at presymptomatic timepoints but later in disease, we detect multiple proteins whose expression is significantly altered in both brain and CSF of CLN1 and CLN2 animals. Many of these proteins are lysosomal in origin or are markers of neuroinflammation, potentially providing clues to underlying pathogenesis and providing promising candidates for further validation.
Collapse
Affiliation(s)
- David E Sleat
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854; Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, NJ 08854.
| | | | - Mukarram El-Banna
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Caifeng Zhao
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Amenah Soherwardy
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Dirk F Moore
- Department of Biostatistics, School of Public Health, Rutgers - The State University of New Jersey, Piscataway, NJ 08854
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854; Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, NJ 08854.
| |
Collapse
|
6
|
Alsayyah A, ElMazoudy R, Al-Namshan M, Al-Jafary M, Alaqeel N. Chronic neurodegeneration by aflatoxin B1 depends on alterations of brain enzyme activity and immunoexpression of astrocyte in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109407. [PMID: 31279280 DOI: 10.1016/j.ecoenv.2019.109407] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Aflatoxin B1 poses the greatest risk among the mycotoxins to target-organisms particularly human, however, no studies addressed the neurotoxicity of chronic exposure of aflatoxin. The oral dose level 1/600th of LD50 for 30, 60, and 90 days was used for three aflatoxin groups, respective to negative and vehicle control groups. Activity levels of brain antioxidants viz: superoxide dismutase, catalase, glutathione, and glutathione peroxidase significantly decreased in the three experimental durations in time-dependent trend, in contrast, lipid peroxidation showed a significant increase compared to controls. Significantly, chronic-dependent increase trend was noticed in the AF60 and AF90 group for acid phosphatase (16.1%, 35.2%), alkaline phosphatase (32.1%, 50.8%), aspartate aminotransferase (38.7%, 120.0%) and lactate dehydrogenase (30.6%, 42.1%) activities, respectively. However, a significant 23.7% decrease in the brain creatine kinase activity following 90 days of AFB1administration. Chronic administration of aflatoxin also causes alterations in activities of protein carbonyl with a maximum increase (twofold) after 90 days. Further, histopathological and immunohistochemical results confirmed time-related vasodilation, necrosis and astrocytes gliosis by high glial fibrillary acidic protein immunostaining in response to AFB1. These findings infer that long-term exposure to AFB1 results in several pathophysiological circumstances in a duration-dependent manner concerning neurodegeneration especially Alzheimer's disease.
Collapse
Affiliation(s)
- Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box.2208, Dammam, 31441, Saudi Arabia
| | - Reda ElMazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.
| | - Mashael Al-Namshan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Meneerah Al-Jafary
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Nouf Alaqeel
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| |
Collapse
|
7
|
Grassi S, Chiricozzi E, Mauri L, Sonnino S, Prinetti A. Sphingolipids and neuronal degeneration in lysosomal storage disorders. J Neurochem 2018; 148:600-611. [PMID: 29959861 DOI: 10.1111/jnc.14540] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/27/2022]
Abstract
Ceramide, sphingomyelin, and glycosphingolipids (both neutral and acidic) are characterized by the presence in the lipid moiety of an aliphatic base known as sphingosine. Altogether, they are called sphingolipids and are particularly abundant in neuronal plasma membranes, where, via interactions with the other membrane lipids and membrane proteins, they play a specific role in modulating the cell signaling processes. The metabolic pathways determining the plasma membrane sphingolipid composition are thus the key point for functional changes of the cell properties. Unnatural changes of the neuronal properties are observed in sphingolipidoses, lysosomal storage diseases occurring when a lysosomal sphingolipid hydrolase is not working, leading to the accumulation of the substrate and to its distribution to all the cell membranes interacting with lysosomes. Moreover, secondary accumulation of sphingolipids is a common trait of other lysosomal storage diseases. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Danyukova T, Ariunbat K, Thelen M, Brocke-Ahmadinejad N, Mole SE, Storch S. Loss of CLN7 results in depletion of soluble lysosomal proteins and impaired mTOR reactivation. Hum Mol Genet 2018; 27:1711-1722. [PMID: 29514215 PMCID: PMC5932567 DOI: 10.1093/hmg/ddy076] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022] Open
Abstract
Defects in the MFSD8 gene encoding the lysosomal membrane protein CLN7 lead to CLN7 disease, a neurodegenerative lysosomal storage disorder belonging to the group of neuronal ceroid lipofuscinoses. Here, we have performed a SILAC-based quantitative analysis of the lysosomal proteome using Cln7-deficient mouse embryonic fibroblasts (MEFs) from a Cln7 knockout (ko) mouse model. From 3335 different proteins identified, we detected 56 soluble lysosomal proteins and 29 highly abundant lysosomal membrane proteins. Quantification revealed that the amounts of 12 different soluble lysosomal proteins were significantly reduced in Cln7 ko MEFs compared with wild-type controls. One of the most significantly depleted lysosomal proteins was Cln5 protein that underlies another distinct neuronal ceroid lipofuscinosis disorder. Expression analyses showed that the mRNA expression, biosynthesis, intracellular sorting and proteolytic processing of Cln5 were not affected, whereas the depletion of mature Cln5 protein was due to increased proteolytic degradation by cysteine proteases in Cln7 ko lysosomes. Considering the similar phenotypes of CLN5 and CLN7 patients, our data suggest that depletion of CLN5 may play an important part in the pathogenesis of CLN7 disease. In addition, we found a defect in the ability of Cln7 ko MEFs to adapt to starvation conditions as shown by impaired mammalian target of rapamycin complex 1 reactivation, reduced autolysosome tubulation and increased perinuclear accumulation of autolysosomes compared with controls. In summary, depletion of multiple soluble lysosomal proteins suggest a critical role of CLN7 for lysosomal function, which may contribute to the pathogenesis and progression of CLN7 disease.
Collapse
Affiliation(s)
- Tatyana Danyukova
- Section Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Khandsuren Ariunbat
- Section Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Melanie Thelen
- Institute of Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | | | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, Department of Genetics, Evolution and Environment & UCL GOSH Institute of Child Health, University College London, London WC1E 6BT, UK
| | - Stephan Storch
- Section Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
9
|
Sleat DE, Tannous A, Sohar I, Wiseman JA, Zheng H, Qian M, Zhao C, Xin W, Barone R, Sims KB, Moore DF, Lobel P. Proteomic Analysis of Brain and Cerebrospinal Fluid from the Three Major Forms of Neuronal Ceroid Lipofuscinosis Reveals Potential Biomarkers. J Proteome Res 2017; 16:3787-3804. [PMID: 28792770 DOI: 10.1021/acs.jproteome.7b00460] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clinical trials have been conducted for the neuronal ceroid lipofuscinoses (NCLs), a group of neurodegenerative lysosomal diseases that primarily affect children. Whereas clinical rating systems will evaluate long-term efficacy, biomarkers to measure short-term response to treatment would be extremely valuable. To identify candidate biomarkers, we analyzed autopsy brain and matching CSF samples from controls and three genetically distinct NCLs due to deficiencies in palmitoyl protein thioesterase 1 (CLN1 disease), tripeptidyl peptidase 1 (CLN2 disease), and CLN3 protein (CLN3 disease). Proteomic and biochemical methods were used to analyze lysosomal proteins, and, in general, we find that changes in protein expression compared with control were most similar between CLN2 disease and CLN3 disease. This is consistent with previous observations of biochemical similarities between these diseases. We also conducted unbiased proteomic analyses of CSF and brain using isobaric labeling/quantitative mass spectrometry. Significant alterations in protein expression were identified in each NCL, including reduced STXBP1 in CLN1 disease brain. Given the confounding variable of post-mortem changes, additional validation is required, but this study provides a useful starting set of candidate NCL biomarkers for further evaluation.
Collapse
Affiliation(s)
- David E Sleat
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States.,Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences , Piscataway, New Jersey 08854, United States
| | - Abla Tannous
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Istvan Sohar
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Jennifer A Wiseman
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Meiqian Qian
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Caifeng Zhao
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Winnie Xin
- Neurogenetics DNA Diagnostic Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Rosemary Barone
- Neurogenetics DNA Diagnostic Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Katherine B Sims
- Neurogenetics DNA Diagnostic Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Dirk F Moore
- Department of Biostatistics, School of Public Health, Rutgers - The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States.,Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences , Piscataway, New Jersey 08854, United States
| |
Collapse
|
10
|
Best HL, Neverman NJ, Wicky HE, Mitchell NL, Leitch B, Hughes SM. Characterisation of early changes in ovine CLN5 and CLN6 Batten disease neural cultures for the rapid screening of therapeutics. Neurobiol Dis 2017; 100:62-74. [DOI: 10.1016/j.nbd.2017.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/19/2016] [Accepted: 01/01/2017] [Indexed: 01/12/2023] Open
|
11
|
Brandenstein L, Schweizer M, Sedlacik J, Fiehler J, Storch S. Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cln7. Hum Mol Genet 2016; 25:777-91. [PMID: 26681805 DOI: 10.1093/hmg/ddv615] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
CLN7 disease is an autosomal recessive, childhood-onset neurodegenerative lysosomal storage disorder caused by the defective lysosomal membrane protein CLN7. We have disrupted the Cln7/Mfsd8 gene in mice by targeted deletion of exon 2 generating a novel knockout (KO) mouse model for CLN7 disease, which recapitulates key features of human CLN7 disease pathology. Cln7 KO mice showed increased mortality and a neurological phenotype including hind limb clasping and myoclonus. Lysosomal dysfunction in the brain of mutant mice was shown by the storage of autofluorescent lipofuscin-like lipopigments, subunit c of mitochondrial ATP synthase and saposin D and increased expression of lysosomal cathepsins B, D and Z. By immunohistochemical co-stainings, increased cathepsin Z expression restricted to Cln7-deficient microglia and neurons was found. Ultrastructural analyses revealed large storage bodies in Purkinje cells of Cln7 KO mice containing inclusions composed of irregular, curvilinear and rectilinear profiles as well as fingerprint profiles. Generalized astrogliosis and microgliosis in the brain preceded neurodegeneration in the olfactory bulb, cerebral cortex and cerebellum in Cln7 KO mice. Increased levels of LC3-II and the presence of neuronal p62- and ubiquitin-positive protein aggregates suggested that impaired autophagy represents a major pathomechanism in the brain of Cln7 KO mice. The data suggest that loss of the putative lysosomal transporter Cln7 in the brain leads to lysosomal dysfunction, impaired constitutive autophagy and neurodegeneration late in disease.
Collapse
Affiliation(s)
| | | | - Jan Sedlacik
- Department of Diagnostics and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Jens Fiehler
- Department of Diagnostics and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | | |
Collapse
|
12
|
Rahimi Balaei M, Jiao X, Ashtari N, Afsharinezhad P, Ghavami S, Marzban H. Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse. Int J Mol Sci 2016; 17:E115. [PMID: 26784182 PMCID: PMC4730356 DOI: 10.3390/ijms17010115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 01/08/2023] Open
Abstract
Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2) mouse (nax--naked-ataxia mutant mouse) correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc) degeneration. Loss of Pcs in the nax cerebellum is compartmentalized and harmonized to the classic pattern of gene expression of the cerebellum in the wild type mouse. Usually, degeneration starts in the anterior and posterior zones and continues to the central and nodular zones of cerebellum. Studies have suggested that the p75 neurotrophin receptor (NTR) plays a role in Pc degeneration; thus, in this study, we investigated the p75NTR pattern and protein expression in the cerebellum of the nax mutant mouse. Despite massive Pc degeneration that was observed in the nax mouse cerebellum, p75NTR pattern expression was similar to the HSP25 pattern in nax mice and comparable with wild type sibling cerebellum. In addition, immunoblot analysis of p75NTR protein expression did not show any significant difference between nax and wild type sibling (p > 0.5). In comparison with wild type counterparts, p75NTR pattern expression is aligned with the fundamental cytoarchitecture organization of the cerebellum and is unchanged in the nax mouse cerebellum despite the severe neurodevelopmental disorder accompanied with Pc degeneration.
Collapse
Affiliation(s)
- Maryam Rahimi Balaei
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaodan Jiao
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Niloufar Ashtari
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Pegah Afsharinezhad
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Health Policy Research Center, Shiraz University of Medical Science, Shiraz 713484579, Iran.
| | - Hassan Marzban
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
13
|
Wavre-Shapton ST, Calvi AA, Turmaine M, Seabra MC, Cutler DF, Futter CE, Mitchison HM. Photoreceptor phagosome processing defects and disturbed autophagy in retinal pigment epithelium of Cln3Δex1-6 mice modelling juvenile neuronal ceroid lipofuscinosis (Batten disease). Hum Mol Genet 2015; 24:7060-74. [PMID: 26450516 PMCID: PMC4654058 DOI: 10.1093/hmg/ddv406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/22/2015] [Indexed: 12/21/2022] Open
Abstract
Retinal degeneration and visual impairment are the first signs of juvenile neuronal ceroid lipofuscinosis caused by CLN3 mutations, followed by inevitable progression to blindness. We investigated retinal degeneration in Cln3(Δex1-6) null mice, revealing classic 'fingerprint' lysosomal storage in the retinal pigment epithelium (RPE), replicating the human disease. The lysosomes contain mitochondrial F0-ATP synthase subunit c along with undigested membranes, indicating a reduced degradative capacity. Mature autophagosomes and basal phagolysosomes, the terminal degradative compartments of autophagy and phagocytosis, are also increased in Cln3(Δex1) (-6) RPE, reflecting disruption to these key pathways that underpin the daily phagocytic turnover of photoreceptor outer segments (POS) required for maintenance of vision. The accumulated autophagosomes have post-lysosome fusion morphology, with undigested internal contents visible, while accumulated phagosomes are frequently docked to cathepsin D-positive lysosomes, without mixing of phagosomal and lysosomal contents. This suggests lysosome-processing defects affect both autophagy and phagocytosis, supported by evidence that phagosomes induced in Cln3(Δex1) (-) (6)-derived mouse embryonic fibroblasts have visibly disorganized membranes, unprocessed internal vesicles and membrane contents, in addition to reduced LAMP1 membrane recruitment. We propose that defective lysosomes in Cln3(Δex1) (-) (6) RPE have a reduced degradative capacity that impairs the final steps of the intimately connected autophagic and phagocytic pathways that are responsible for degradation of POS. A build-up of degradative organellar by-products and decreased recycling of cellular materials is likely to disrupt processes vital to maintenance of vision by the RPE.
Collapse
Affiliation(s)
- Silène T Wavre-Shapton
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK, Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Alessandra A Calvi
- Nuclear Dynamics and Architecture, Institute of Medical Biology, Singapore 138648, Singapore
| | - Mark Turmaine
- Faculty of Life Sciences, Division of Biosciences and
| | - Miguel C Seabra
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Daniel F Cutler
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK and MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology, London, UK
| | - Clare E Futter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK,
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Programme and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK,
| |
Collapse
|
14
|
Licchetta L, Bisulli F, Fietz M, Valentino ML, Morbin M, Mostacci B, Oliver KL, Berkovic SF, Tinuper P. A novel mutation af Cln3 associated with delayed-classic juvenile ceroid lipofuscinois and autophagic vacuolar myopathy. Eur J Med Genet 2015; 58:540-4. [PMID: 26360874 DOI: 10.1016/j.ejmg.2015.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 11/17/2022]
Abstract
Juvenile neuronal-ceroid-lipofuscinosis (JNCL) is a lysosomal storage disease caused by mutations in CLN3. The most frequent mutation is a 1.02-kb deletion that, when homozygous, causes the classical clinical presentation. Patients harboring mutations different than the major deletion show a marked clinical heterogeneity, including protracted disease course with possible involvement of extraneuronal tissues. Cardiac involvement is relatively rare in JNCL and it is usually due to myocardial storage of ceroid-lipofuscinin. Only recently, histopathological findings of autophagic vacuolar myopathy (AVM) were detected in JNCL patients with severe cardiomyopathy. We describe a 35-year-old male showing a delayed-classic JNCL with visual loss in childhood and neurological manifestations only appearing in adult life. He had an unusual CLN3 genotype with an unreported deletion (p.Ala349_Leu350del) and the known p.His315Glnfs*67 mutation. Autophagic vacuolar myopathy was shown by muscle biopsy. At clinical follow-up, moderately increased CPK levels were detected whereas periodic cardiac assessments have been normal to date. Adult neurologists should be aware of protracted JNCL as cause of progressive neurological decline in adults. The occurrence of autophagic vacuolar myopathy necessitates periodic cardiac surveillance, which is not usually an issue in classic JNCL due to early neurological death.
Collapse
Affiliation(s)
- L Licchetta
- IRCCS Istituto delle Scienze Neurologiche of Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - F Bisulli
- IRCCS Istituto delle Scienze Neurologiche of Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - M Fietz
- Department of Biochemical Genetics, SA Pathology, Adelaide, South Australia, Australia
| | - M L Valentino
- IRCCS Istituto delle Scienze Neurologiche of Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - M Morbin
- Neuropathology & Neurology V - IRCCS Foundation "Istituto Neurologico Carlo Besta", Milan, Italy
| | - B Mostacci
- IRCCS Istituto delle Scienze Neurologiche of Bologna, Italy
| | - K L Oliver
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - S F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - P Tinuper
- IRCCS Istituto delle Scienze Neurologiche of Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Bailey K, Rahimi Balaei M, Mannan A, Del Bigio MR, Marzban H. Purkinje cell compartmentation in the cerebellum of the lysosomal Acid phosphatase 2 mutant mouse (nax - naked-ataxia mutant mouse). PLoS One 2014; 9:e94327. [PMID: 24722417 PMCID: PMC3983142 DOI: 10.1371/journal.pone.0094327] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/15/2014] [Indexed: 12/11/2022] Open
Abstract
The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation.
Collapse
Affiliation(s)
- Karen Bailey
- Department of Human Anatomy and Cell Science, Manitoba Institute of Child Health (MICH), Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maryam Rahimi Balaei
- Department of Human Anatomy and Cell Science, Manitoba Institute of Child Health (MICH), Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ashraf Mannan
- Institute of Human Genetics, University Medical Center Goettingen, Georg-August University, Goettingen, Germany
| | - Marc R. Del Bigio
- Department of Human Anatomy and Cell Science, Manitoba Institute of Child Health (MICH), Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pathology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Manitoba Institute of Child Health (MICH), Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
16
|
Damme M, Brandenstein L, Fehr S, Jankowiak W, Bartsch U, Schweizer M, Hermans-Borgmeyer I, Storch S. Gene disruption of Mfsd8 in mice provides the first animal model for CLN7 disease. Neurobiol Dis 2014; 65:12-24. [PMID: 24423645 DOI: 10.1016/j.nbd.2014.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/20/2013] [Accepted: 01/04/2014] [Indexed: 12/28/2022] Open
Abstract
Mutations in the major facilitator superfamily domain containing 8 (MFSD8) gene coding for the lysosomal CLN7 membrane protein result in CLN7 disease, a lysosomal storage disease of childhood. CLN7 disease belongs to a group of inherited disorders, called neuronal ceroid lipofuscinoses (NCL), which are characterized by the accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. We have disrupted the Mfsd8 gene by insertion of a lacZ gene-trap cassette between exons 1 and 2 in mice and have analyzed the impact of Cln7 depletion on neuronal and visceral tissues. Analysis of lacZ reporter gene activity in heterozygous Mfsd8((wt/tm1a)) mice showed strong Mfsd8 mRNA expression in the cerebral cortex, in the hippocampus and in the kidney. Homozygous Mfsd8((tm1a/tm1a)) mice were viable and fertile and resembled biochemically the NCL-phenotype of human CLN7 patients including the accumulation of autofluorescent material in the brain and peripheral tissues and of subunit c of mitochondrial ATP synthase in the cerebellum and nuclei of distinct brain regions, and the degeneration of photoreceptor cells in the retina. Lysosomal storage was found in large neurons of the medulla, the hippocampus and in Purkinje cells of the cerebellum in mutant mice. The ultrastructure of the storage material revealed dense lamellar bodies with irregular forms within cerebellar and hippocampal neurons. In the brain loss of Cln7 was accompanied by mild reactive microgliosis and subtle astrogliosis by 10months of age, respectively. In summary we have generated a mouse model which is partly valuable as some but not all neuropathological features of human CLN7 disease are recapitulated thus representing an animal model to study CLN7-specific disease mechanisms.
Collapse
Affiliation(s)
- Markus Damme
- Biochemistry I, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany.
| | - Laura Brandenstein
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Susanne Fehr
- Center for Molecular Neurobiology Hamburg, ZMNH, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Wanda Jankowiak
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Udo Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg, ZMNH, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Irm Hermans-Borgmeyer
- Center for Molecular Neurobiology Hamburg, ZMNH, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Stephan Storch
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
17
|
Mannose 6 dephosphorylation of lysosomal proteins mediated by acid phosphatases Acp2 and Acp5. Mol Cell Biol 2011; 32:774-82. [PMID: 22158965 DOI: 10.1128/mcb.06195-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mannose 6-phosphate (Man6P) residues represent a recognition signal required for efficient receptor-dependent transport of soluble lysosomal proteins to lysosomes. Upon arrival, the proteins are rapidly dephosphorylated. We used mice deficient for the lysosomal acid phosphatase Acp2 or Acp5 or lacking both phosphatases (Acp2/Acp5(-/-)) to examine their role in dephosphorylation of Man6P-containing proteins. Two-dimensional (2D) Man6P immunoblot analyses of tyloxapol-purified lysosomal fractions revealed an important role of Acp5 acting in concert with Acp2 for complete dephosphorylation of lysosomal proteins. The most abundant lysosomal substrates of Acp2 and Acp5 were identified by Man6P affinity chromatography and mass spectrometry. Depending on the presence of Acp2 or Acp5, the isoelectric point of the lysosomal cholesterol-binding protein Npc2 ranged between 7.0 and 5.4 and may thus regulate its interaction with negatively charged lysosomal membranes at acidic pH. Correspondingly, unesterified cholesterol was found to accumulate in lysosomes of cultured hepatocytes of Acp2/Acp5(-/-) mice. The data demonstrate that dephosphorylation of Man6P-containing lysosomal proteins requires the concerted action of Acp2 and Acp5 and is needed for hydrolysis and removal of degradation products.
Collapse
|
18
|
Thelen M, Fehr S, Schweizer M, Braulke T, Galliciotti G. High expression of disease-related Cln6 in the cerebral cortex, purkinje cells, dentate gyrus, and hippocampal ca1 neurons. J Neurosci Res 2011; 90:568-74. [PMID: 22012656 DOI: 10.1002/jnr.22773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 12/12/2022]
Abstract
Mutations in the CLN6 gene cause a variant form of late infantile neuronal ceroid lipofuscinosis, a relentless neurodegenerative disease that is inherited as an autosomal recessive trait in humans and in the naturally occurring nclf mouse strain. The CLN6 protein is localized in the endoplasmic reticulum, but it has an unknown function. To develop a molecular understanding of neurodegeneration induced by mutations in CLN6, we examined the spatial and temporal distribution of Cln6 mRNA expression in murine brain. By using Northern blot and tissue qPCR array techniques, a single Cln6 transcript was detected throughout the adult brain, with greatest expression in the cerebellum and hypothalamus. Real-time qPCR showed 2.4-4-fold increases in Cln6 mRNA levels in the cortex and cerebellum during the first 28 days of life, with less prominent enhancement of expression in the hippocampus. In situ hybridization analyses demonstrated Cln6 expression in brainstem, dentate gyrus, and hippocampal neurons of newborn P0 mice. From P14 onward, Cln6 expression is widely distributed throughout the brain and is most prominent in cells of cortical layers II-VI, the Purkinje cell layer, dentate gyrus, and hippocampal CA1 region of adult mice. In different regions of the brain in P0 and P28 nclf mice, the Cln6 mRNA abundance was reduced by 30-40% compared with control mice. These findings implicate Cln6 in the survival and maturation of specific neuronal populations during development and make it possible to compare regional Cln6 expression with the distribution of subsequent pathology.
Collapse
Affiliation(s)
- Melanie Thelen
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
19
|
Lebrun AH, Moll-Khosrawi P, Pohl S, Makrypidi G, Storch S, Kilian D, Streichert T, Otto B, Mole SE, Ullrich K, Cotman S, Kohlschütter A, Braulke T, Schulz A. Analysis of potential biomarkers and modifier genes affecting the clinical course of CLN3 disease. Mol Med 2011; 17:1253-61. [PMID: 21863212 DOI: 10.2119/molmed.2010.00241] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 08/17/2011] [Indexed: 12/20/2022] Open
Abstract
Mutations in the CLN3 gene lead to juvenile neuronal ceroid lipofuscinosis, a pediatric neurodegenerative disorder characterized by visual loss, epilepsy and psychomotor deterioration. Although most CLN3 patients carry the same 1-kb deletion in the CLN3 gene, their disease phenotype can be variable. The aims of this study were to (i) study the clinical phenotype in CLN3 patients with identical genotype, (ii) identify genes that are dysregulated in CLN3 disease regardless of the clinical course that could be useful as biomarkers, and (iii) find modifier genes that affect the progression rate of the disease. A total of 25 CLN3 patients homozygous for the 1-kb deletion were classified into groups with rapid, average or slow disease progression using an established clinical scoring system. Genome-wide expression profiling was performed in eight CLN3 patients with different disease progression and matched controls. The study showed high phenotype variability in CLN3 patients. Five genes were dysregulated in all CLN3 patients and present candidate biomarkers of the disease. Of those, dual specificity phosphatase 2 (DUSP2) was also validated in acutely CLN3-depleted cell models and in CbCln3(Δex7/8) cerebellar precursor cells. A total of 13 genes were upregulated in patients with rapid disease progression and downregulated in patients with slow disease progression; one gene showed dysregulation in the opposite way. Among these potential modifier genes, guanine nucleotide exchange factor 1 for small GTPases of the Ras family (RAPGEF1) and transcription factor Spi-B (SPIB) were validated in an acutely CLN3-depleted cell model. These findings indicate that differential perturbations of distinct signaling pathways might alter disease progression and provide insight into the molecular alterations underlying neuronal dysfunction in CLN3 disease and neurodegeneration in general.
Collapse
Affiliation(s)
- Anne-Hélène Lebrun
- Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Getty AL, Benedict JW, Pearce DA. A novel interaction of CLN3 with nonmuscle myosin-IIB and defects in cell motility of Cln3(-/-) cells. Exp Cell Res 2010; 317:51-69. [PMID: 20850431 DOI: 10.1016/j.yexcr.2010.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 11/15/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is a pediatric lysosomal storage disorder characterized by accumulation of autofluorescent storage material and neurodegeneration, which result from mutations in CLN3. The function of CLN3, a lysosomal membrane protein, is currently unknown. We report that CLN3 interacts with cytoskeleton-associated nonmuscle myosin-IIB. Both CLN3 and myosin-IIB are ubiquitously expressed, yet mutations in either produce dramatic consequences in the CNS such as neurodegeneration in JNCL patients and Cln3(-/-) mouse models, or developmental deficiencies in Myh10(-/-) mice, respectively. A scratch assay revealed a migration defect associated with Cln3(-/-) cells. Inhibition of nonmuscle myosin-II with blebbistatin in WT cells resulted in a phenotype that mimics the Cln3(-/-) migration defect. Moreover, inhibiting lysosome function by treating cells with chloroquine exacerbated the migration defect in Cln3(-/-). Cln3(-/-) cells traversing a transwell filter under gradient trophic factor conditions displayed altered migration, further linking lysosomal function and cell migration. The myosin-IIB distribution in Cln3(-/-) cells is elongated, indicating a cytoskeleton defect caused by the loss of CLN3. In summary, cells lacking CLN3 have defects that suggest altered myosin-IIB activity, supporting a functional and physical interaction between CLN3 and myosin-IIB. We propose that the migration defect in Cln3(-/-) results, in part, from the loss of the CLN3-myosin-IIB interaction.
Collapse
Affiliation(s)
- Amanda L Getty
- Center for Neural Development and Disease, Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
21
|
Pohl S, Encarnacão M, Castrichini M, Müller-Loennies S, Muschol N, Braulke T. Loss of N-acetylglucosamine-1-phosphotransferase gamma subunit due to intronic mutation in GNPTG causes mucolipidosis type III gamma: Implications for molecular and cellular diagnostics. Am J Med Genet A 2009; 152A:124-32. [DOI: 10.1002/ajmg.a.33170] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Pohl S, Tiede S, Castrichini M, Cantz M, Gieselmann V, Braulke T. Compensatory expression of human N-acetylglucosaminyl-1-phosphotransferase subunits in mucolipidosis type III gamma. Biochim Biophys Acta Mol Basis Dis 2009; 1792:221-5. [PMID: 19708128 DOI: 10.1016/j.bbadis.2009.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The N-Acetylglucosaminyl-1-phosphotransferase plays a key role in the generation of mannose 6-phosphate (M6P) recognition markersessential for efficient transport of lysosomal hydrolases to lysosomes. The phosphotransferase is composed of six subunits (alpha2, beta2, gamma2). The alpha- and beta-subunits are catalytically active and encoded by a single gene, GNPTAB, whereas the gamma-subunit encoded by GNPTG is proposed to recognize conformational structures common to lysosomal enzymes. Defects in GNPTG cause mucolipidosis type III gamma, which is characterized by missorting and cellular loss of lysosomal enzymes leading to lysosomal accumulation of storage material. Using plasmon resonance spectrometry, we showed that recombinant gamma-subunit failed to bind the lysosomal enzyme arylsulfatase A. Additionally, the overexpression of the gamma-subunit in COS7 cells did not result in hypersecretion of newly synthesized lysosomal enzymes expected for competition for binding sites of the endogenous phosphotransferase complex. Analysis of fibroblasts exhibiting a novel mutation in GNPTG (c.619insT, p.K207IfsX7) revealed that the expression of GNPTAB was increased whereas in gamma-subunit overexpressing cells the GNPTAB mRNA was reduced. The data suggest that the gamma-subunit is important for the balance of phosphotransferase subunits rather for general binding of lysosomal enzymes.
Collapse
Affiliation(s)
- Sandra Pohl
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf Martinistrasse 52, Building N27, 20246 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Kielar C, Wishart TM, Palmer A, Dihanich S, Wong AM, Macauley SL, Chan CH, Sands MS, Pearce DA, Cooper JD, Gillingwater TH. Molecular correlates of axonal and synaptic pathology in mouse models of Batten disease. Hum Mol Genet 2009; 18:4066-80. [PMID: 19640925 PMCID: PMC2758138 DOI: 10.1093/hmg/ddp355] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs; Batten disease) are collectively the most frequent autosomal-recessive neurodegenerative disease of childhood, but the underlying cellular and molecular mechanisms remain unclear. Several lines of evidence have highlighted the important role that non-somatic compartments of neurons (axons and synapses) play in the instigation and progression of NCL pathogenesis. Here, we report a progressive breakdown of axons and synapses in the brains of two different mouse models of NCL: Ppt1−/− model of infantile NCL and Cln6nclf model of variant late-infantile NCL. Synaptic pathology was evident in the thalamus and cortex of these mice, but occurred much earlier within the thalamus. Quantitative comparisons of expression levels for a subset of proteins previously implicated in regulation of axonal and synaptic vulnerability revealed changes in proteins involved with synaptic function/stability and cell-cycle regulation in both strains of NCL mice. Protein expression changes were present at pre/early-symptomatic stages, occurring in advance of morphologically detectable synaptic or axonal pathology and again displayed regional selectivity, occurring first within the thalamus and only later in the cortex. Although significant differences in individual protein expression profiles existed between the two NCL models studied, 2 of the 15 proteins examined (VDAC1 and Pttg1) displayed robust and significant changes at pre/early-symptomatic time-points in both models. Our study demonstrates that synapses and axons are important early pathological targets in the NCLs and has identified two proteins, VDAC1 and Pttg1, with the potential for use as in vivo biomarkers of pre/early-symptomatic axonal and synaptic vulnerability in the NCLs.
Collapse
Affiliation(s)
- Catherine Kielar
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King's College London, London SE5 9NU, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Di Domenico C, Villani GRD, Di Napoli D, Nusco E, Calì G, Nitsch L, Di Natale P. Intracranial gene delivery of LV-NAGLU vector corrects neuropathology in murine MPS IIIB. Am J Med Genet A 2009; 149A:1209-18. [PMID: 19449420 DOI: 10.1002/ajmg.a.32861] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mucopolysacccharidosis (MPS) IIIB is an inherited lysosomal storage disorder caused by the deficiency of alpha-N-acetylglucosaminidase (NAGLU). The disease is characterized by mild somatic features and severe neurological involvement with high mortality. Although several therapeutic approaches have been applied to the murine model of the disease, no effective therapy is available for patients. In this study, we used the lentiviral-NAGLU vector to deliver the functional human NAGLU gene into the brain of young adult MPS IIIB mice. We report the restoration of active enzyme with a sustained expression throughout a large portion of the brain, and a significantly improved behavioral performance of treated animals. Moreover, we analyzed the effect of therapy on the expression profile of some genes related to neurotrophic signaling molecules and inflammatory cytokines previously found altered in MPS IIIB mice. At 1 month from treatment, the level of cerebellin 1 (Cbln1) was decreased while the brain-derived neurotrophic factor (Bdnf) expression was increased, both reaching normal values. At 6 months from treatment a significant reduction in the expression of all the inflammation- and oxidative stress-related genes was observed, as well as the maintenance of the correction of the Bdnf gene expression. These results indicate that NAGLU delivery from intracerebral sources has the capacity to alleviate most disease manifestations in MPS IIIB mice; furthermore, Bdnf might be a response-to-therapy biomarker for MPS IIIB.
Collapse
Affiliation(s)
- Carmela Di Domenico
- Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Persichetti E, Chuzhanova NA, Dardis A, Tappino B, Pohl S, Thomas NST, Rosano C, Balducci C, Paciotti S, Dominissini S, Montalvo AL, Sibilio M, Parini R, Rigoldi M, Di Rocco M, Parenti G, Orlacchio A, Bembi B, Cooper DN, Filocamo M, Beccari T. Identification and molecular characterization of six novel mutations in the UDP-N-acetylglucosamine-1-phosphotransferase gamma subunit (GNPTG) gene in patients with mucolipidosis III gamma. Hum Mutat 2009; 30:978-84. [PMID: 19370764 DOI: 10.1002/humu.20959] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mucolipidosis type III (MLIII) is an autosomal recessive disorder affecting lysosomal hydrolase trafficking. In a study of 10 patients from seven families with a clinical phenotype and enzymatic diagnosis of MLIII, six novel GNPTG gene mutations were identified. These included missense (p.T286M) and nonsense (p.W111X) mutations and a transition in the obligate AG-dinucleotide of the intron 8 acceptor splice site (c.610-2A>G). Three microdeletions were also identified, two of which (c.611delG and c.640_667del28) were located within the coding region whereas one (c.609+28_610-16del) was located entirely within intron 8. RT-PCR analysis of the c.610-2A>G transition demonstrated that the change altered splicing, leading to the production of two distinct aberrantly spliced forms, viz. the skipping of exon 9 (p.G204_K247del) or the retention of introns 8 and 9 (p.G204VfsX28). RT-PCR analysis, performed on a patient homozygous for the intronic deletion (c.609+28_610-16del), failed to detect any GNPTG RNA transcripts. To determine whether c.609+28_610-16del allele-derived transcripts were subject to nonsense-mediated mRNA decay (NMD), patient fibroblasts were incubated with the protein synthesis inhibitor anisomycin. An RT-PCR fragment retaining 43 bp of intron 8 was consistently detected suggesting that the 33-bp genomic deletion had elicited NMD. Quantitative real-time PCR and GNPTG western blot analysis confirmed that the homozygous microdeletion p.G204VfsX17 had elicited NMD resulting in failure to synthesize GNPTG protein. Analysis of the sequences surrounding the microdeletion breakpoints revealed either intrinsic repetitivity of the deleted region or short direct repeats adjacent to the breakpoint junctions. This is consistent with these repeats having mediated the microdeletions via replication slippage and supports the view that the mutational spectrum of the GNPTG gene is strongly influenced by the properties of the local DNA sequence environment.
Collapse
Affiliation(s)
- Emanuele Persichetti
- Dipartimento di Medicina Interna, Università degli Studi di Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Codlin S, Mole SE. S. pombe btn1, the orthologue of the Batten disease gene CLN3, is required for vacuole protein sorting of Cpy1p and Golgi exit of Vps10p. J Cell Sci 2009; 122:1163-73. [PMID: 19299465 DOI: 10.1242/jcs.038323] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Batten disease is characterised by lysosomal dysfunction. The most common type of the disease is caused by mutations in the membrane protein CLN3, whose function is unknown. We show that the fission yeast orthologue Btn1p, previously implicated in vacuole function, is required for correct sorting of the vacuole hydrolase carboxypeptidase Y (Cpy1p). This is, in part, due to a defect in trafficking of Vps10p, the sorting receptor for Cpy1p, from the Golgi to the trans-Golgi network in btn1Delta cells. Our data also implicate btn1 in other Vps10-independent Cpy1-sorting pathways. Furthermore, btn1 affects the number, intracellular location and structure of Golgi compartments. We show that the prevacuole location of Btn1p is at the Golgi, because Btn1p colocalises predominantly with the Golgi marker Gms1p in compartments that are sensitive to Brefeldin A. Btn1p function might be linked to that of Vps34p, a phosphatidylinositol 3-kinase, because Btn1p acts as a multicopy suppressor of the severe Cpy1p vacuole protein-sorting defect of vps34Delta cells. Together, these results indicate an important role for Btn1p in the Golgi complex, which affects Golgi homeostasis and vacuole protein sorting. We propose a similar role for CLN3 in mammalian cells.
Collapse
Affiliation(s)
- Sandra Codlin
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
27
|
Haines RL, Codlin S, Mole SE. The fission yeast model for the lysosomal storage disorder Batten disease predicts disease severity caused by mutations in CLN3. Dis Model Mech 2008; 2:84-92. [PMID: 19132115 DOI: 10.1242/dmm.000851] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 11/14/2008] [Indexed: 12/21/2022] Open
Abstract
The function of the CLN3 protein, which is mutated in patients with the neurodegenerative lysosomal storage disorder Batten disease, has remained elusive since it was identified 13 years ago. Here, we exploited the Schizosaccharomyces pombe model to gain new insights into CLN3 function. We modelled all missense mutations of CLN3 in the orthologous protein Btn1p, as well as a series of targeted mutations, and assessed trafficking and the ability of the mutant proteins to rescue four distinct phenotypes of btn1Delta cells. Mutating the C-terminal cysteine residues of Btn1p caused it to be internalised into the vacuole, providing further evidence that this protein functions from pre-vacuole compartments. Mutations in the lumenal regions of the multi-spanning membrane protein, especially in the third lumenal domain which contains a predicted amphipathic helix, had the most significant impact on Btn1p function, indicating that these domains of CLN3 are functionally important. Only one mutant protein was able to rescue the cell curving phenotype (p.Glu295Lys), and since this mutation is associated with a very protracted disease progression, this phenotype could be used to predict the disease severity of novel mutations in CLN3. The ability to predict disease phenotypes in S. pombe confirms this yeast as an invaluable tool to understanding Batten disease.
Collapse
Affiliation(s)
- Rebecca L Haines
- MRC Laboratory for Molecular Cell Biology, UCL Institute of Child Health, University College London, Gower Street, London, UK
| | | | | |
Collapse
|
28
|
Metcalf DJ, Calvi AA, Seaman MN, Mitchison HM, Cutler DF. Loss of the Batten disease gene CLN3 prevents exit from the TGN of the mannose 6-phosphate receptor. Traffic 2008; 9:1905-14. [PMID: 18817525 DOI: 10.1111/j.1600-0854.2008.00807.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
The neuronal ceroid lipofuscinoses (NCLs, Batten disease) are a group of inherited childhood-onset neurodegenerative disorders characterized by the lysosomal accumulation of undigested material within cells. To understand this dysfunction, we analysed trafficking of the cation-independent mannose 6-phosphate receptor (CI-MPR), which delivers the digestive enzymes to lysosomes. A common form of NCL is caused by mutations in CLN3, a multipass transmembrane protein of unknown function. We report that ablation of CLN3 causes accumulation of CI-MPR in the trans Golgi network, reflecting a 50% reduction in exit. This CI-MPR trafficking defect is accompanied by a fall in maturation and cellular activity of lysosomal cathepsins. CLN3 is therefore essential for trafficking along the route needed for delivery of lysosomal enzymes, and its loss thereby contributes to and may explain the lysosomal dysfunction underlying Batten disease.
Collapse
Affiliation(s)
- Daniel J Metcalf
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E6BT, UK
| | | | | | | | | |
Collapse
|