1
|
Mukherjee A, Biswas S, Roy I. Exploring immunotherapeutic strategies for neurodegenerative diseases: a focus on Huntington's disease and Prion diseases. Acta Pharmacol Sin 2025:10.1038/s41401-024-01455-w. [PMID: 39890942 DOI: 10.1038/s41401-024-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/09/2024] [Indexed: 02/03/2025]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for the treatment of neurodegenerative disorders, which are characterized by the progressive loss of neurons and impaired cognitive functions. In this review, active and passive immunotherapeutic strategies that help address the underlying pathophysiology of Huntington's disease (HD) and prion diseases by modulating the immune system are discussed. The current landscape of immunotherapeutic strategies, including monoclonal antibodies and vaccine-based approaches, to treat these diseases is highlighted, along with their potential benefits and mechanisms of action. Immunotherapy generally works by targeting disease-specific proteins, which serve as the pathological hallmarks of these diseases. Additionally, the review addresses the challenges and limitations associated with immunotherapy. For HD, immunotherapeutic approaches focus on neutralizing the toxic effects of mutant huntingtin and tau proteins, thereby reducing neurotoxicity. Immunotherapeutic approaches targeting flanking sequences, rather than the polyglutamine tract in the mutant huntingtin protein, have yielded promising outcomes for patients with HD. In prion diseases, therapies attempt to prevent or eliminate misfolded proteins that cause neurodegeneration. The major challenge in prion diseases is immune tolerance. Approaches to overcome the highly tolerogenic nature of the prion protein have been discussed. A common hurdle in delivering antibodies is the blood‒brain barrier, and strategies that can breach this barrier are being investigated. As protein aggregation and neurotoxicity are related, immunotherapeutic strategies being developed for other neurodegenerative diseases could be repurposed to target protein aggregation in HD and prion diseases. While significant advances in this field have been achieved, continued research and development are necessary to overcome the existing limitations, which will help in shaping the future of immunotherapy as a strategy for managing neurological disorders.
Collapse
Affiliation(s)
- Abhiyanta Mukherjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
2
|
Schiller M, Wilson GC, Keitsch S, Soddemann M, Wilker B, Edwards MJ, Scherbaum N, Gulbins E. Phosphatidic acid is involved in regulation of autophagy in neurons in vitro and in vivo. Pflugers Arch 2024; 476:1881-1894. [PMID: 39375214 PMCID: PMC11582205 DOI: 10.1007/s00424-024-03026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024]
Abstract
Major depressive disorder (MDD) is a common and severe psychiatric disease, which does not only lead to variety of neuropsychiatric symptoms, but unfortunately in a relatively large proportion of cases also to suicide. The pathogenesis of MDD still requires definition. We have previously shown that ceramide is increased in the blood plasma of patients with MDD. In mouse models of MDD, which are induced by treatment with corticosterone or application of chronic unpredictable stress, increased blood plasma ceramide also increased and caused an inhibition of phospholipase D in endothelial cells of the hippocampus and reduced phosphatidic acid levels in the hippocampus. Here, we demonstrated that corticosterone treatment of PC12 cells resulted in reduced cellular autophagy, which is corrected by treatment with phosphatidic acid. In vivo, treatment of mice with corticosterone or chronic unpredictable stress also reduced autophagy in hippocampus neurons. Autophagy was normalized upon i.v. injection of phosphatidic acid in these mouse models of MDD. In an attempt to identify targets of phosphatidic acid in neurons, we demonstrated that corticosterone reduced levels of the ganglioside GM1 in PC-12 cells and the hippocampus of mice, which were normalized by treatment of cells or i.v. injection of mice with phosphatidic acid. GM1 application also normalized autophagy in cultured neurons. Phosphatidic acid and GM1 corrected stress-induced alterations in behavior, i.e., mainly anxiety and anhedonia, in experimental MDD in mice. Our data suggest that phosphatidic acid may regulate via GM1 autophagy in neurons.
Collapse
Affiliation(s)
- Maximilian Schiller
- LVR-University Hospital Essen, Department of Psychiatry and Psychotherapy, Faculty of Medicine, Faculty of Medicine, University of Duisburg-Essen, 45147, Essen, Germany
| | - Gregory C Wilson
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0558, USA
| | - Simone Keitsch
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Matthias Soddemann
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Michael J Edwards
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Norbert Scherbaum
- LVR-University Hospital Essen, Department of Psychiatry and Psychotherapy, Faculty of Medicine, Faculty of Medicine, University of Duisburg-Essen, 45147, Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
3
|
Do K, Benavente R, Catumbela CSG, Khan U, Kramm C, Soto C, Morales R. Adaptation of the protein misfolding cyclic amplification (PMCA) technique for the screening of anti-prion compounds. FASEB J 2024; 38:e23843. [PMID: 39072789 PMCID: PMC11453167 DOI: 10.1096/fj.202400614r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Prion diseases result from the misfolding of the physiological prion protein (PrPC) to a pathogenic conformation (PrPSc). Compelling evidence indicates that prevention and/or reduction of PrPSc replication are promising therapeutic strategies against prion diseases. However, the existence of different PrPSc conformations (or strains) associated with disease represents a major problem when identifying anti-prion compounds. Efforts to identify strain-specific anti-prion molecules are limited by the lack of biologically relevant high-throughput screening platforms to interrogate compound libraries. Here, we describe adaptations to the protein misfolding cyclic amplification (PMCA) technology (able to faithfully replicate PrPSc strains) that increase its throughput to facilitate the screening of anti-prion molecules. The optimized PMCA platform includes a reduction in sample and reagents, as well as incubation/sonication cycles required to efficiently replicate and detect rodent-adapted and cervid PrPSc strains. The visualization of PMCA products was performed via dot blots, a method that contributed to reduced processing times. These technical changes allowed us to evaluate small molecules with previously reported anti-prion activity. This proof-of-principle screening was evaluated for six rodent-adapted prion strains. Our data show that these compounds targeted either none, all or some PrPSc strains at variable concentrations, demonstrating that this PMCA system is suitable to test compound libraries for putative anti-prion molecules targeting specific PrPSc strains. Further analyses of a small compound library against deer prions demonstrate the potential of this new PMCA format to identify strain-specific anti-prion molecules. The data presented here demonstrate the use of the PMCA technique in the selection of prion strain-specific anti-prion compounds.
Collapse
Affiliation(s)
- Katherine Do
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Celso S. G. Catumbela
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Uffaf Khan
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Carlos Kramm
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
4
|
Bai Y, Cai Y, Chang D, Li D, Huo X, Zhu T. Immunotherapy for depression: Recent insights and future targets. Pharmacol Ther 2024; 257:108624. [PMID: 38442780 DOI: 10.1016/j.pharmthera.2024.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Depression stands as a prominent contributor to global disability, entailing an elevated risk of suicide. Substantial evidence supports the notion that immune dysregulation may play a role in the development of depression and impede responses to antidepressant treatments. Immune dysregulation may cause depression in susceptible individuals through raising inflammatory responses. Differences in immune cell types and the release of pro-inflammatory mediators are observed in the blood and cerebrospinal fluid of patients with major depressive disorder, which is associated with neuroimmune dysfunction. Therefore, the interaction of peripheral and central immune targets in depression needs to be understood. Urgent attention is required for the development of innovative therapeutics directed at modulating immune responses for the treatment of depression. This review delineates the immune mechanisms involved in the pathogenesis of depression, assesses the therapeutic potential of immune system targeting for depression treatment, and deliberates on the merits and constraints of employing immunotherapy in the management of depression.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Yang Cai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Di Chang
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School of Southeast University, Nanjing 210009, China
| | - Daxing Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinchen Huo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tianhao Zhu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
5
|
Singh A, Arora S, Chavan M, Shahbaz S, Jabeen H. An Overview of the Neurotrophic and Neuroprotective Properties of the Psychoactive Drug Lithium as an Autophagy Modulator in Neurodegenerative Conditions. Cureus 2023; 15:e44051. [PMID: 37746513 PMCID: PMC10517711 DOI: 10.7759/cureus.44051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
For both short-term and long-term treatment of bipolar disorder, lithium is a prototypical mood stabilizer. Lithium's neuroprotective properties were revealed by cumulative translational research, which opened the door to reforming the chemical as a treatment for neurodegenerative illnesses. The control of homeostatic systems such as oxidative stress, autophagy, apoptosis, mitochondrial function, and inflammation underlies lithium's neuroprotective characteristics. The fact that lithium inhibits the enzymes inositol monophosphatase (IMPase) and glycogen synthase kinase (GSK)-3 may be the cause of the various intracellular reactions. In this article, we review lithium's neurobiological properties, as demonstrated by its neurotrophic and neuroprotective capabilities, as well as translational studies in cells in culture and in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Prion disease, amyotrophic lateral sclerosis (ALS), ischemic stroke, and neuronal ceroid lipofuscinosis (NCL), discussing the justification for the drug's use in the treatment of these neurodegenerative disorders.
Collapse
Affiliation(s)
- Ajay Singh
- Internal Medicine, Sri Ram Murti Smarak Institute of Medical Sciences, Bareilly, IND
| | - Sanjiya Arora
- Health Department, Sub District Hospital (SDH) cum Civil Hospital, Fatehabad, Fatehabad, IND
| | - Manisha Chavan
- Internal Medicine, Kakatiya Medical College, Rangam Peta, Warangal, IND
| | - Samen Shahbaz
- Internal Medicine, Faisalabad Medical University, Faisalabad, PAK
| | - Hafsa Jabeen
- Internal Medicine, Dow University of Health Sciences, Nanakwara, PAK
| |
Collapse
|
6
|
Villegas-Vázquez EY, Quintas-Granados LI, Cortés H, González-Del Carmen M, Leyva-Gómez G, Rodríguez-Morales M, Bustamante-Montes LP, Silva-Adaya D, Pérez-Plasencia C, Jacobo-Herrera N, Reyes-Hernández OD, Figueroa-González G. Lithium: A Promising Anticancer Agent. Life (Basel) 2023; 13:537. [PMID: 36836894 PMCID: PMC9966411 DOI: 10.3390/life13020537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Lithium is a therapeutic cation used to treat bipolar disorders but also has some important features as an anti-cancer agent. In this review, we provide a general overview of lithium, from its transport into cells, to its innovative administration forms, and based on genomic, transcriptomic, and proteomic data. Lithium formulations such as lithium acetoacetate (LiAcAc), lithium chloride (LiCl), lithium citrate (Li3C6H5O7), and lithium carbonate (Li2CO3) induce apoptosis, autophagy, and inhibition of tumor growth and also participate in the regulation of tumor proliferation, tumor invasion, and metastasis and cell cycle arrest. Moreover, lithium is synergistic with standard cancer therapies, enhancing their anti-tumor effects. In addition, lithium has a neuroprotective role in cancer patients, by improving their quality of life. Interestingly, nano-sized lithium enhances its anti-tumor activities and protects vital organs from the damage caused by lipid peroxidation during tumor development. However, these potential therapeutic activities of lithium depend on various factors, such as the nature and aggressiveness of the tumor, the type of lithium salt, and its form of administration and dosage. Since lithium has been used to treat bipolar disorder, the current study provides an overview of its role in medicine and how this has changed. This review also highlights the importance of this repurposed drug, which appears to have therapeutic cancer potential, and underlines its molecular mechanisms.
Collapse
Affiliation(s)
- Edgar Yebrán Villegas-Vázquez
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | | | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Miguel Rodríguez-Morales
- Licenciatura en Médico Cirujano, Facultad de Ciencias de la Salud Universidad Anáhuac Norte, Academia de Genética Médica, Naucalpan de Juárez 52786, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México 14080, Mexico
- Laboratorio de Genómica, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| |
Collapse
|
7
|
Shim KH, Sharma N, An SSA. Prion therapeutics: Lessons from the past. Prion 2022; 16:265-294. [PMID: 36515657 PMCID: PMC9754114 DOI: 10.1080/19336896.2022.2153551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are a group of incurable zoonotic neurodegenerative diseases (NDDs) in humans and other animals caused by the prion proteins. The abnormal folding and aggregation of the soluble cellular prion proteins (PrPC) into scrapie isoform (PrPSc) in the Central nervous system (CNS) resulted in brain damage and other neurological symptoms. Different therapeutic approaches, including stalling PrPC to PrPSc conversion, increasing PrPSc removal, and PrPC stabilization, for which a spectrum of compounds, ranging from organic compounds to antibodies, have been explored. Additionally, a non-PrP targeted drug strategy using serpin inhibitors has been discussed. Despite numerous scaffolds being screened for anti-prion activity in vitro, only a few were effective in vivo and unfortunately, almost none of them proved effective in the clinical studies, most likely due to toxicity and lack of permeability. Recently, encouraging results from a prion-protein monoclonal antibody, PRN100, were presented in the first human trial on CJD patients, which gives a hope for better future for the discovery of other new molecules to treat prion diseases. In this comprehensive review, we have re-visited the history and discussed various classes of anti-prion agents, their structure, mode of action, and toxicity. Understanding pathogenesis would be vital for developing future treatments for prion diseases. Based on the outcomes of existing therapies, new anti-prion agents could be identified/synthesized/designed with reduced toxicity and increased bioavailability, which could probably be effective in treating prion diseases.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Niti Sharma
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|
8
|
Thellung S, Corsaro A, Dellacasagrande I, Nizzari M, Zambito M, Florio T. Proteostasis unbalance in prion diseases: Mechanisms of neurodegeneration and therapeutic targets. Front Neurosci 2022; 16:966019. [PMID: 36148145 PMCID: PMC9485628 DOI: 10.3389/fnins.2022.966019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/05/2022] [Indexed: 01/18/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are progressive neurodegenerative disorders of the central nervous system that affect humans and animals as sporadic, inherited, and infectious forms. Similarly to Alzheimer's disease and other neurodegenerative disorders, any attempt to reduce TSEs' lethality or increase the life expectancy of affected individuals has been unsuccessful. Typically, the onset of symptoms anticipates the fatal outcome of less than 1 year, although it is believed to be the consequence of a decades-long process of neuronal death. The duration of the symptoms-free period represents by itself a major obstacle to carry out effective neuroprotective therapies. Prions, the infectious entities of TSEs, are composed of a protease-resistant protein named prion protein scrapie (PrPSc) from the prototypical TSE form that afflicts ovines. PrPSc misfolding from its physiological counterpart, cellular prion protein (PrPC), is the unifying pathogenic trait of all TSEs. PrPSc is resistant to intracellular turnover and undergoes amyloid-like fibrillation passing through the formation of soluble dimers and oligomers, which are likely the effective neurotoxic entities. The failure of PrPSc removal is a key pathogenic event that defines TSEs as proteopathies, likewise other neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease, characterized by alteration of proteostasis. Under physiological conditions, protein quality control, led by the ubiquitin-proteasome system, and macroautophagy clears cytoplasm from improperly folded, redundant, or aggregation-prone proteins. There is evidence that both of these crucial homeostatic pathways are impaired during the development of TSEs, although it is still unclear whether proteostasis alteration facilitates prion protein misfolding or, rather, PrPSc protease resistance hampers cytoplasmic protein quality control. This review is aimed to critically analyze the most recent advancements in the cause-effect correlation between PrPC misfolding and proteostasis alterations and to discuss the possibility that pharmacological restoring of ubiquitin-proteasomal competence and stimulation of autophagy could reduce the intracellular burden of PrPSc and ameliorate the severity of prion-associated neurodegeneration.
Collapse
Affiliation(s)
- Stefano Thellung
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Irene Dellacasagrande
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Mario Nizzari
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Martina Zambito
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- *Correspondence: Tullio Florio
| |
Collapse
|
9
|
Lysosomal dysfunction is associated with NLRP3 inflammasome activation in chronic unpredictable mild stress-induced depressive mice. Behav Brain Res 2022; 432:113987. [PMID: 35780959 DOI: 10.1016/j.bbr.2022.113987] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 01/12/2023]
Abstract
NLRP3 inflammasome pathway-mediated inflammatory response is closely associated with depression. Increasing attention has been recently paid to the links between autophagy and depression, however, the relationship between autophagy and NLRP3 inflammasome in depressive behavior remain poorly understood. In the present study, the potential roles of autophagy-lysosome pathway in NLRP3 inflammasome regulation were investigated both in vivo (chronic unpredictable mild stress (CUMS)-induced depressive mouse model) and in vitro (LPS-induced cellular model) model. It demonstrated that CUMS induces depressive-like behaviors in mice, accompanied by increased expression of NLRP3 inflammasome and inflammatory responses. Meanwhile, it promoted the autophagosome marker LC3 and autophagic adaptor protein p62 accumulation, accompanied by the decrease of lysosomal cathepsins B and D expression in the prefrontal cortex of mice. Notably, a significant colocalization of NLRP3 and LC3 in CUMS mice by immunofluorescence co-staining were observed. For the in vitro study, disrupting the lysosomal function with Baf A1 significantly increased the LPS-induced NLRP3 inflammasome accumulation and pro-inflammatory factors (IL-1β and IL-18) production in BV2 cells. Collectively, our results suggested that the autophagic process is related to NLRP3 inflammasome activation, and dysfunctional lysosome in autophagy-lysosomal pathway may retard NLRP3 inflammasome degradation, facilitating the production of pro-inflammatory factors, thereby contributing to depressive behavior in CUMS mice.
Collapse
|
10
|
Kornhuber J, Gulbins E. New Molecular Targets for Antidepressant Drugs. Pharmaceuticals (Basel) 2021; 14:894. [PMID: 34577594 PMCID: PMC8472072 DOI: 10.3390/ph14090894] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder (MDD) is a common and severe mental disorder that is usually recurrent and has a high risk of suicide. This disorder manifests not only with psychological symptoms but also multiple changes throughout the body, including increased risks of obesity, diabetes, and cardiovascular disease. Peripheral markers of oxidative stress and inflammation are elevated. MDD is therefore best described as a multisystem whole-body disease. Pharmacological treatment with antidepressants usually requires several weeks before the desired effects manifest. Previous theories of depression, such as the monoamine or neurogenesis hypotheses, do not explain these characteristics well. In recent years, new mechanisms of action have been discovered for long-standing antidepressants that also shed new light on depression, including the sphingolipid system and the receptor for brain-derived neurotrophic factor (BDNF).
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45117 Essen, Germany;
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
11
|
Contiliani DF, Ribeiro YDA, de Moraes VN, Pereira TC. MicroRNAs in Prion Diseases-From Molecular Mechanisms to Insights in Translational Medicine. Cells 2021; 10:1620. [PMID: 34209482 PMCID: PMC8307047 DOI: 10.3390/cells10071620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules able to post-transcriptionally regulate gene expression via base-pairing with partially complementary sequences of target transcripts. Prion diseases comprise a singular group of neurodegenerative conditions caused by endogenous, misfolded pathogenic (prion) proteins, associated with molecular aggregates. In humans, classical prion diseases include Creutzfeldt-Jakob disease, fatal familial insomnia, Gerstmann-Sträussler-Scheinker syndrome, and kuru. The aim of this review is to present the connections between miRNAs and prions, exploring how the interaction of both molecular actors may help understand the susceptibility, onset, progression, and pathological findings typical of such disorders, as well as the interface with some prion-like disorders, such as Alzheimer's. Additionally, due to the inter-regulation of prions and miRNAs in health and disease, potential biomarkers for non-invasive miRNA-based diagnostics, as well as possible miRNA-based therapies to restore the levels of deregulated miRNAs on prion diseases, are also discussed. Since a cure or effective treatment for prion disorders still pose challenges, miRNA-based therapies emerge as an interesting alternative strategy to tackle such defying medical conditions.
Collapse
Affiliation(s)
- Danyel Fernandes Contiliani
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| | - Yasmin de Araújo Ribeiro
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| | - Vitor Nolasco de Moraes
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| | - Tiago Campos Pereira
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| |
Collapse
|
12
|
Do Autophagy Enhancers/ROS Scavengers Alleviate Consequences of Mild Mitochondrial Dysfunction Induced in Neuronal-Derived Cells? Int J Mol Sci 2021; 22:ijms22115753. [PMID: 34072255 PMCID: PMC8197898 DOI: 10.3390/ijms22115753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/02/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial function is at the nexus of pathways regulating synaptic-plasticity and cellular resilience. The involvement of brain mitochondrial dysfunction along with increased reactive oxygen species (ROS) levels, accumulating mtDNA mutations, and attenuated autophagy is implicated in psychiatric and neurodegenerative diseases. We have previously modeled mild mitochondrial dysfunction assumed to occur in bipolar disorder (BPD) using exposure of human neuronal cells (SH-SY5Y) to rotenone (an inhibitor of mitochondrial-respiration complex-I) for 72 and 96 h, which exhibited up- and down-regulation of mitochondrial respiration, respectively. In this study, we aimed to find out whether autophagy enhancers (lithium, trehalose, rapamycin, and resveratrol) and/or ROS scavengers [resveratrol, N-acetylcysteine (NAC), and Mn-Tbap) can ameliorate neuronal mild mitochondrial dysfunction. Only lithium (added for the last 24/48 h of the exposure to rotenone for 72/96 h, respectively) counteracted the effect of rotenone on most of the mitochondrial respiration parameters (measured as oxygen consumption rate (OCR)). Rapamycin, resveratrol, NAC, and Mn-Tbap counteracted most of rotenone's effects on OCR parameters after 72 h, possibly via different mechanisms, which are not necessarily related to their ROS scavenging and/or autophagy enhancement effects. The effect of lithium reversing rotenone's effect on OCR parameters is compatible with lithium's known positive effects on mitochondrial function and is possibly mediated via its effect on autophagy. By-and-large it may be summarized that some autophagy enhancers/ROS scavengers alleviate some rotenone-induced mild mitochondrial changes in SH-SY5Y cells.
Collapse
|
13
|
Kabir MT, Uddin MS, Abdeen A, Ashraf GM, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM. Evidence Linking Protein Misfolding to Quality Control in Progressive Neurodegenerative Diseases. Curr Top Med Chem 2021; 20:2025-2043. [PMID: 32552649 DOI: 10.2174/1568026620666200618114924] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Several proteolytic systems including ubiquitin (Ub)-proteasome system (UPS), chaperonemediated autophagy (CMA), and macroautophagy are used by the mammalian cells to remove misfolded proteins (MPs). UPS mediates degradation of most of the MPs, where Ub-conjugated substrates are deubiquitinated, unfolded, and passed through the proteasome's narrow chamber, and eventually break into smaller peptides. It has been observed that the substrates that show a specific degradation signal, the KFERQ sequence motif, can be delivered to and go through CMA-mediated degradation in lysosomes. Macroautophagy can help in the degradation of substrates that are prone to aggregation and resistant to both the CMA and UPS. In the aforesaid case, cargoes are separated into autophagosomes before lysosomal hydrolase-mediated degradation. Even though the majority of the aggregated and MPs in the human proteome can be removed via cellular protein quality control (PQC), some mutant and native proteins tend to aggregate into β-sheet-rich oligomers that exhibit resistance to all identified proteolytic processes and can, therefore, grow into extracellular plaques or inclusion bodies. Indeed, the buildup of protease-resistant aggregated and MPs is a usual process underlying various protein misfolding disorders, including neurodegenerative diseases (NDs) for example Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion diseases. In this article, we have focused on the contribution of PQC in the degradation of pathogenic proteins in NDs.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Uddin MN, Elahi M, Shimonaka S, Kakuta S, Ishiguro K, Motoi Y, Hattori N. Strain-specific clearance of seed-dependent tau aggregation by lithium-induced autophagy. Biochem Biophys Res Commun 2021; 543:65-71. [PMID: 33517128 DOI: 10.1016/j.bbrc.2020.12.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 01/06/2023]
Abstract
Different conformational strains of tau have been implicated in the clinicopathological heterogeneity of tauopathies. In this study, we hypothesized that distinct strains are degraded in a different manner. Lithium, a drug for bipolar disorder, had previously been reported to reduce aggregation-prone protein content by promoting autophagy. Here, we assessed the effects of lithium on tau aggregates using different tauopathy brain seeds. SH-SY5Y cells were transfected with C-terminal tau fragment Tau-CTF24 (residues 243-441), and Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) brain seeds were introduced. After 48-h lithium treatment, sarkosyl-insoluble fractions were prepared. Lithium treatment was found to reduce the amount of insoluble tau and p62, and increase LC3-II levels along with the number of autophagic vacuoles in AD-seeded cells. The effects were lower in case of CBD seeds, and comparable between PSP and AD seeds. An inhibitor of myo-inositol monophosphatase (IMPase) also demonstrated similar effects. Overall, the study suggested that aggregated tau protein is degraded by lithium-induced autophagy, influencing IMPase in a strain-specific manner.
Collapse
Affiliation(s)
- Mohammad Nasir Uddin
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Montasir Elahi
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan; Department of Neurology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Shotaro Shimonaka
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Research Support Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Koichi Ishiguro
- Department of Neurology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yumiko Motoi
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan; Department of Neurology, Graduate School of Medicine, Juntendo University, Tokyo, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
| | - Nobutaka Hattori
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan; Department of Neurology, Graduate School of Medicine, Juntendo University, Tokyo, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
15
|
The Role of Cellular Prion Protein in Promoting Stemness and Differentiation in Cancer. Cancers (Basel) 2021; 13:cancers13020170. [PMID: 33418999 PMCID: PMC7825291 DOI: 10.3390/cancers13020170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Aside from its well-established role in prion disorders, in the last decades the significance of cellular prion protein (PrPC) expression in human cancers has attracted great attention. An extensive body of work provided evidence that PrPC contributes to tumorigenesis by regulating tumor growth, differentiation, and resistance to conventional therapies. In particular, PrPC over-expression has been related to the acquisition of a malignant phenotype of cancer stem cells (CSCs) in a variety of solid tumors, encompassing pancreatic ductal adenocarcinoma, osteosarcoma, breast, gastric, and colorectal cancers, and primary brain tumors as well. According to consensus, increased levels of PrPC endow CSCs with self-renewal, proliferative, migratory, and invasive capacities, along with increased resistance to anti-cancer agents. In addition, increasing evidence demonstrates that PrPc also participates in multi-protein complexes to modulate the oncogenic properties of CSCs, thus sustaining tumorigenesis. Therefore, strategies aimed at targeting PrPC and/or PrPC-organized complexes could be a promising approach for anti-cancer therapy. Abstract Cellular prion protein (PrPC) is seminal to modulate a variety of baseline cell functions to grant homeostasis. The classic role of such a protein was defined as a chaperone-like molecule being able to rescue cell survival. Nonetheless, PrPC also represents the precursor of the deleterious misfolded variant known as scrapie prion protein (PrPSc). This variant is detrimental in a variety of prion disorders. This multi-faceted role of PrP is greatly increased by recent findings showing how PrPC in its folded conformation may foster tumor progression by acting at multiple levels. The present review focuses on such a cancer-promoting effect. The manuscript analyzes recent findings on the occurrence of PrPC in various cancers and discusses the multiple effects, which sustain cancer progression. Within this frame, the effects of PrPC on stemness and differentiation are discussed. A special emphasis is provided on the spreading of PrPC and the epigenetic effects, which are induced in neighboring cells to activate cancer-related genes. These detrimental effects are further discussed in relation to the aberrancy of its physiological and beneficial role on cell homeostasis. A specific paragraph is dedicated to the role of PrPC beyond its effects in the biology of cancer to represent a potential biomarker in the follow up of patients following surgical resection.
Collapse
|
16
|
Recent developments in antibody therapeutics against prion disease. Emerg Top Life Sci 2020; 4:169-173. [PMID: 32633322 DOI: 10.1042/etls20200002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Preclinical evidence indicates that prion diseases can respond favorably to passive immunotherapy. However, certain antibodies to the cellular prion protein PrPC can be toxic. Comprehensive studies of structure-function relationships have revealed that the flexible amino-terminal tail of PrPC is instrumental for mediating prion toxicity. In a first-in-human study, an anti-prion antibody has been recently administered to patients diagnosed with sporadic Creutzfeldt-Jakob's disease, the most prevalent human prion disease. Moreover, large-scale serosurveys have mapped the prevalence of naturally occurring human anti-prion autoantibodies in health and disease. Here, we provide a perspective on the limitations and opportunities of therapeutic anti-prion antibodies.
Collapse
|
17
|
A New Take on Prion Protein Dynamics in Cellular Trafficking. Int J Mol Sci 2020; 21:ijms21207763. [PMID: 33092231 PMCID: PMC7589859 DOI: 10.3390/ijms21207763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
The mobility of cellular prion protein (PrPC) in specific cell membrane domains and among distinct cell compartments dictates its molecular interactions and directs its cell function. PrPC works in concert with several partners to organize signaling platforms implicated in various cellular processes. The scaffold property of PrPC is able to gather a molecular repertoire to create heterogeneous membrane domains that favor endocytic events. Dynamic trafficking of PrPC through multiple pathways, in a well-orchestrated mechanism of intra and extracellular vesicular transport, defines its functional plasticity, and also assists the conversion and spreading of its infectious isoform associated with neurodegenerative diseases. In this review, we highlight how PrPC traffics across intra- and extracellular compartments and the consequences of this dynamic transport in governing cell functions and contributing to prion disease pathogenesis.
Collapse
|
18
|
Ishibashi D, Ishikawa T, Mizuta S, Tange H, Nakagaki T, Hamada T, Nishida N. Novel Compounds Identified by Structure-Based Prion Disease Drug Discovery Using In Silico Screening Delay the Progression of an Illness in Prion-Infected Mice. Neurotherapeutics 2020; 17:1836-1849. [PMID: 32767031 PMCID: PMC7851219 DOI: 10.1007/s13311-020-00903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The accumulation of abnormal prion protein (PrPSc) produced by the structure conversion of PrP (PrPC) in the brain induces prion disease. Although the conversion process of the protein is still not fully elucidated, it has been known that the intramolecular chemical bridging in the most fragile pocket of PrP, known as the "hot spot," stabilizes the structure of PrPC and inhibits the conversion process. Using our original structure-based drug discovery algorithm, we identified the low molecular weight compounds that predicted binding to the hot spot. NPR-130 and NPR-162 strongly bound to recombinant PrP in vitro, and fragment molecular orbital (FMO) analysis indicated that the high affinity of those candidates to the PrP is largely dependent on nonpolar interactions, such as van der Waals interactions. Those NPRs showed not only significant reduction of the PrPSc levels but also remarkable decrease of the number of aggresomes in persistently prion-infected cells. Intriguingly, treatment with those candidate compounds significantly prolonged the survival period of prion-infected mice and suppressed prion disease-specific pathological damage, such as vacuole degeneration, PrPSc accumulation, microgliosis, and astrogliosis in the brain, suggesting their possible clinical use. Our results indicate that in silico drug discovery using NUDE/DEGIMA may be widely useful to identify candidate compounds that effectively stabilize the protein.
Collapse
Affiliation(s)
- Daisuke Ishibashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Takeshi Ishikawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
| | - Satoshi Mizuta
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Hiroya Tange
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Tsuyoshi Hamada
- Nagasaki Advanced Computing Center, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Nagasaki Advanced Computing Center, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
19
|
The Role of Vesicle Trafficking Defects in the Pathogenesis of Prion and Prion-Like Disorders. Int J Mol Sci 2020; 21:ijms21197016. [PMID: 32977678 PMCID: PMC7582986 DOI: 10.3390/ijms21197016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/26/2022] Open
Abstract
Prion diseases are fatal and transmissible neurodegenerative diseases in which the cellular form of the prion protein ‘PrPc’, misfolds into an infectious and aggregation prone isoform termed PrPSc, which is the primary component of prions. Many neurodegenerative diseases, like Alzheimer’s disease, Parkinson’s disease, and polyglutamine diseases, such as Huntington’s disease, are considered prion-like disorders because of the common characteristics in the propagation and spreading of misfolded proteins that they share with the prion diseases. Unlike prion diseases, these are non-infectious outside experimental settings. Many vesicular trafficking impairments, which are observed in prion and prion-like disorders, favor the accumulation of the pathogenic amyloid aggregates. In addition, many of the vesicular trafficking impairments that arise in these diseases, turn out to be further aggravating factors. This review offers an insight into the currently known vesicular trafficking defects in these neurodegenerative diseases and their implications on disease progression. These findings suggest that these impaired trafficking pathways may represent similar therapeutic targets in these classes of neurodegenerative disorders.
Collapse
|
20
|
From Seeds to Fibrils and Back: Fragmentation as an Overlooked Step in the Propagation of Prions and Prion-Like Proteins. Biomolecules 2020; 10:biom10091305. [PMID: 32927676 PMCID: PMC7563560 DOI: 10.3390/biom10091305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Many devastating neurodegenerative diseases are driven by the misfolding of normal proteins into a pathogenic abnormal conformation. Examples of such protein misfolding diseases include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and prion diseases. The misfolded proteins involved in these diseases form self-templating oligomeric assemblies that recruit further correctly folded protein and induce their conversion. Over time, this leads to the formation of high molecular and mostly fibrillar aggregates that are increasingly inefficient at converting normal protein. Evidence from a multitude of in vitro models suggests that fibrils are fragmented to form new seeds, which can convert further normal protein and also spread to neighboring cells as observed in vivo. While fragmentation and seed generation were suggested as crucial steps in aggregate formation decades ago, the biological pathways involved remain largely unknown. Here, we show that mechanisms of aggregate clearance—namely the mammalian Hsp70–Hsp40–Hsp110 tri-chaperone system, macro-autophagy, and the proteasome system—may not only be protective, but also play a role in fragmentation. We further review the challenges that exist in determining the precise contribution of these mechanisms to protein misfolding diseases and suggest future directions to resolve these issues.
Collapse
|
21
|
López-Pérez Ó, Badiola JJ, Bolea R, Ferrer I, Llorens F, Martín-Burriel I. An Update on Autophagy in Prion Diseases. Front Bioeng Biotechnol 2020; 8:975. [PMID: 32984276 PMCID: PMC7481332 DOI: 10.3389/fbioe.2020.00975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a dynamic intracellular mechanism involved in protein and organelle turnover through lysosomal degradation. When properly regulated, autophagy supports normal cellular and developmental processes, whereas defects in autophagic degradation have been associated with several pathologies, including prion diseases. Prion diseases, or transmissible spongiform encephalopathies (TSE), are a group of fatal neurodegenerative disorders characterized by the accumulation of the pathological misfolded isoform (PrPSc) of the physiological cellular prion protein (PrPc) in the central nervous system. Autophagic vacuoles have been described in experimental models of TSE and in the natural disease in humans. The precise connection of this process with prion-related neuropathology, or even whether autophagy is completely beneficial or pathogenic during neurodegeneration, is poorly understood. Thus, the biological role of autophagy in these diseases is still open to debate. During the last years, researchers have used a wide range of morphological, genetic and biochemical methods to monitor and manipulate the autophagic pathway and thus determine the specific role of this process in TSE. It has been suggested that PrPc could play a crucial role in modulating the autophagic pathway in neuronal cells, and the presence of abnormal autophagic activity has been frequently observed in several models of TSE both in vitro and in vivo, as well as in human prion diseases. Altogether, these findings suggest that autophagy is implicated in prion neuropathology and points to an impairment or failure of the process, potentially contributing to the pathogenesis of the disease. Additionally, autophagy is now emerging as a host defense response in controlling prion infection that plays a protective role by facilitating the clearance of aggregation-prone proteins accumulated within neurons. Since autophagy is one of the pathways of PrPSc degradation, and drug-induced stimulation of autophagic flux (the dynamic process of autophagic degradation activity) produces anti-prion effects, new treatments based on its activation have been tested to develop therapeutic strategies for prion diseases. In this review, we summarize previous and recent findings concerning the role of autophagy in TSE.
Collapse
Affiliation(s)
- Óscar López-Pérez
- Laboratorio de Genética Bioquímica (LAGENBIO), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain
| | - Isidro Ferrer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Franc Llorens
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, Göttingen, Germany
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Zaragoza, Spain
| |
Collapse
|
22
|
Global analysis of protein degradation in prion infected cells. Sci Rep 2020; 10:10800. [PMID: 32612191 PMCID: PMC7329860 DOI: 10.1038/s41598-020-67505-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/06/2020] [Indexed: 12/02/2022] Open
Abstract
Prion diseases are rare, neurological disorders caused by the misfolding of the cellular prion protein (PrPC) into cytotoxic fibrils (PrPSc). Intracellular PrPSc aggregates primarily accumulate within late endosomes and lysosomes, organelles that participate in the degradation and turnover of a large subset of the proteome. Thus, intracellular accumulation of PrPSc aggregates has the potential to globally influence protein degradation kinetics within an infected cell. We analyzed the proteome-wide effect of prion infection on protein degradation rates in N2a neuroblastoma cells by dynamic stable isotopic labeling with amino acids in cell culture (dSILAC) and bottom-up proteomics. The analysis quantified the degradation rates of more than 4,700 proteins in prion infected and uninfected cells. As expected, the degradation rate of the prion protein is significantly decreased upon aggregation in infected cells. In contrast, the degradation kinetics of the remainder of the N2a proteome generally increases upon prion infection. This effect occurs concurrently with increases in the cellular activities of autophagy and some lysosomal hydrolases. The resulting enhancement in proteome flux may play a role in the survival of N2a cells upon prion infection.
Collapse
|
23
|
Abdulrahman BA, Tahir W, Doh-Ura K, Gilch S, Schatzl HM. Combining autophagy stimulators and cellulose ethers for therapy against prion disease. Prion 2020; 13:185-196. [PMID: 31578923 PMCID: PMC6779372 DOI: 10.1080/19336896.2019.1670928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders that affect animals and humans. Prions are proteinaceous infectious particles consisting of a misfolded isoform of the cellular prion protein PrPC, termed PrPSc. PrPSc accumulates in infected neurons due to partial resistance to proteolytic digestion. Using compounds that interfere with the production of PrPSc or enhance its degradation cure prion infection in vitro, but most drugs failed when used to treat prion-infected rodents. In order to synergize the effect of anti-prion drugs, we combined drugs interfering with the generation of PrPSc with compounds inducing PrPSc degradation. Here, we tested autophagy stimulators (rapamycin or AR12) and cellulose ether compounds (TC-5RW or 60SH-50) either as single or combination treatment of mice infected with RML prions. Single drug treatments significantly extended the survival compared to the untreated group. As anticipated, also all the combination therapy groups showed extended survival compared to the untreated group, but no combination treatment showed superior effects to 60SH-50 or TC-5RW treatment alone. Unexpectedly, we later found that combining autophagy stimulator and cellulose ether treatment in cultured neuronal cells mitigated the pro-autophagic activity of AR12 and rapamycin, which can in part explain the in vivo results. Overall, we show that it is critical to exclude antagonizing drug effects when attempting combination therapy. In addition, we identified AR-12 as a pro-autophagic drug that significantly extends survival of prion-infected mice, has no adverse side effects on the animals used in this study, and can be useful in future studies.
Collapse
Affiliation(s)
- Basant A Abdulrahman
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University , Cairo , Egypt
| | - Waqas Tahir
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada
| | - Hermann M Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
24
|
Suresh SN, Chakravorty A, Giridharan M, Garimella L, Manjithaya R. Pharmacological Tools to Modulate Autophagy in Neurodegenerative Diseases. J Mol Biol 2020; 432:2822-2842. [PMID: 32105729 DOI: 10.1016/j.jmb.2020.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
Considerable evidences suggest a link between autophagy dysfunction, protein aggregation, and neurodegenerative diseases. Given that autophagy is a conserved intracellular housekeeping process, modulation of autophagy flux in various model organisms have highlighted its importance for maintaining proteostasis. In postmitotic cells such as neurons, compromised autophagy is sufficient to cause accumulation of ubiquitinated aggregates, neuronal dysfunction, degeneration, and loss of motor coordination-all hallmarks of neurodegenerative diseases. Reciprocally, enhanced autophagy flux augments cellular and organismal health, in addition to extending life span. These genetic studies not-withstanding a plethora of small molecule modulators of autophagy flux have been reported that alleviate disease symptoms in models of neurodegenerative diseases. This review summarizes the potential of such molecules to be, perhaps, one of the first autophagy drugs for treating these currently incurable diseases.
Collapse
Affiliation(s)
- S N Suresh
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Anushka Chakravorty
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Mridhula Giridharan
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Lakshmi Garimella
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India; Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India.
| |
Collapse
|
25
|
Krance SH, Luke R, Shenouda M, Israwi AR, Colpitts SJ, Darwish L, Strauss M, Watts JC. Cellular models for discovering prion disease therapeutics: Progress and challenges. J Neurochem 2020; 153:150-172. [PMID: 31943194 DOI: 10.1111/jnc.14956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
Prions, which cause fatal neurodegenerative disorders such as Creutzfeldt-Jakob disease, are misfolded and infectious protein aggregates. Currently, there are no treatments available to halt or even delay the progression of prion disease in the brain. The infectious nature of prions has resulted in animal paradigms that accurately recapitulate all aspects of prion disease, and these have proven to be instrumental for testing the efficacy of candidate therapeutics. Nonetheless, infection of cultured cells with prions provides a much more powerful system for identifying molecules capable of interfering with prion propagation. Certain lines of cultured cells can be chronically infected with various types of mouse prions, and these models have been used to unearth candidate anti-prion drugs that are at least partially efficacious when administered to prion-infected rodents. However, these studies have also revealed that not all types of prions are equal, and that drugs active against mouse prions are not necessarily effective against prions from other species. Despite some recent progress, the number of cellular models available for studying non-mouse prions remains limited. In particular, human prions have proven to be particularly challenging to propagate in cultured cells, which has severely hindered the discovery of drugs for Creutzfeldt-Jakob disease. In this review, we summarize the cellular models that are presently available for discovering and testing drugs capable of blocking the propagation of prions and highlight challenges that remain on the path towards developing therapies for prion disease.
Collapse
Affiliation(s)
- Saffire H Krance
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Russell Luke
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Marc Shenouda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ahmad R Israwi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Sarah J Colpitts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lina Darwish
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maximilian Strauss
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Akhter Y, Nabi J, Hamid H, Tabassum N, Pottoo FH, Sharma A. Protein Quality Control in Neurodegeneration and Neuroprotection. QUALITY CONTROL OF CELLULAR PROTEIN IN NEURODEGENERATIVE DISORDERS 2020. [DOI: 10.4018/978-1-7998-1317-0.ch001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteostasis is essential for regulating the integrity of the proteome. Disruption of proteostasis under some rigorous conditions leads to the aggregation and accumulation of misfolded toxic proteins, which plays a central role in the pathogenesis of protein conformational disorders. The protein quality control (PQC) system serves as a multi-level security system to shield cells from abnormal proteins. The intrinsic PQC systems maintaining proteostasis include the ubiquitin-proteasome system (UPS), chaperon-mediated autophagy (CMA), and autophagy-lysosome pathway (ALP) that serve to target misfolded proteins for unfolding, refolding, or degradation. Alterations of PQC systems in neurons have been implicated in the pathogenesis of various neurodegenerative disorders. This chapter provides an overview of PQC pathways to set a framework for discussion of the role of PQC in neurodegenerative disorders. Additionally, various pharmacological approaches targeting PQC are summarized.
Collapse
Affiliation(s)
- Yasmeena Akhter
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Jahangir Nabi
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Hinna Hamid
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Faheem Hyder Pottoo
- Department of Pharmaology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Aashish Sharma
- Centre for Research in Medical Devices (CURAM), National University of Ireland, Ireland & School of Medical and Allied Sciences, GD Goenka University, Gurgaon, India
| |
Collapse
|
27
|
Holec SA, Block AJ, Bartz JC. The role of prion strain diversity in the development of successful therapeutic treatments. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:77-119. [PMID: 32958242 PMCID: PMC8939712 DOI: 10.1016/bs.pmbts.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prions are a self-propagating misfolded conformation of a cellular protein. Prions are found in several eukaryotic organisms with mammalian prion diseases encompassing a wide range of disorders. The first recognized prion disease, the transmissible spongiform encephalopathies (TSEs), affect several species including humans. Alzheimer's disease, synucleinopathies, and tauopathies share a similar mechanism of self-propagation of the prion form of the disease-specific protein reminiscent of the infection process of TSEs. Strain diversity in prion disease is characterized by differences in the phenotype of disease that is hypothesized to be encoded by strain-specific conformations of the prion form of the disease-specific protein. Prion therapeutics that target the prion form of the disease-specific protein can lead to the emergence of drug-resistant strains of prions, consistent with the hypothesis that prion strains exist as a dynamic mixture of a dominant strain in combination with minor substrains. To overcome this obstacle, therapies that reduce or eliminate the template of conversion are efficacious, may reverse neuropathology, and do not result in the emergence of drug resistance. Recent advancements in preclinical diagnosis of prion infection may allow for a combinational approach that treats the prion form and the precursor protein to effectively treat prion diseases.
Collapse
Affiliation(s)
- Sara A.M. Holec
- Institute for Applied Life Sciences and Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States,Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Alyssa J. Block
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States,Corresponding author:
| |
Collapse
|
28
|
López-Pérez Ó, Toivonen JM, Otero A, Solanas L, Zaragoza P, Badiola JJ, Osta R, Bolea R, Martín-Burriel I. Impairment of autophagy in scrapie-infected transgenic mice at the clinical stage. J Transl Med 2020; 100:52-63. [PMID: 31477795 DOI: 10.1038/s41374-019-0312-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Autophagy appears to play a role in the etiology and progress of misfolded protein disorders. Although this process is dysregulated in prion diseases, it is unknown whether this impairment is a cause or a consequence of prion neuropathology. The study of autophagy during the progress of the disease could elucidate its role. For this purpose, we have investigated its regulation at different stages of the disease in Tg338 mice, a transgenic murine model that overexpresses the highly susceptible ovine VRQ prion protein allele. Mice were intracerebrally inoculated with mouse-adapted classical scrapie and euthanized at the preclinical and clinical stages of the disease. Regulation of autophagy was investigated analyzing the distribution of LC3-B and p62 proteins by immunohistochemistry. Moreover, the expression of genes involved in autophagy regulation was quantified by real-time PCR. LC3-B and p62 proteins were downregulated and upregulated, respectively, in the central nervous system of infected mice with clinical signs of scrapie. Accumulation of p62 correlated with scrapie-related lesions, suggesting an impairment of autophagy in highly prion-affected areas. In addition, Gas5 (growth arrest-specific 5), Atg5 (autophagy-related 5), and Fbxw7 (F-box and WD repeat domain containing 7) transcripts were downregulated in mesencephalon and cervical spinal cord of the same group of animals. The impairment of autophagic machinery seems to be part of the pathological process of scrapie, but only during the late stage of prion infection. Similarities between Tg338 mice and the natural ovine disease make them a reliable in vivo model to study prion infection and autophagy side by side.
Collapse
Affiliation(s)
- Óscar López-Pérez
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| | - Janne Markus Toivonen
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| | - Laura Solanas
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| | - Rosario Osta
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain. .,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain.
| |
Collapse
|
29
|
Thangaraj A, Sil S, Tripathi A, Chivero ET, Periyasamy P, Buch S. Targeting endoplasmic reticulum stress and autophagy as therapeutic approaches for neurological diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 350:285-325. [PMID: 32138902 DOI: 10.1016/bs.ircmb.2019.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Abdelaziz DH, Thapa S, Abdulrahman B, Vankuppeveld L, Schatzl HM. Metformin reduces prion infection in neuronal cells by enhancing autophagy. Biochem Biophys Res Commun 2019; 523:423-428. [PMID: 31874705 DOI: 10.1016/j.bbrc.2019.12.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
Prion diseases are fatal infectious neurodegenerative disorders in human and animals that are caused by misfolding of the cellular prion protein (PrPC) into the infectious isoform PrPSc. No effective treatment is available for prion diseases. Metformin is a first-line medication for treatment of type 2 diabetes which is known to activate AMPK and induce autophagy through the inhibition of mammalian target of rapamycin (mTOR1) signaling. Metformin was reported to be beneficial in various protein misfolding and neurodegenerative diseases like Alzheimer's and Huntington's diseases. In this study we investigated the anti-prion effect of metformin in persistently prion-infected neuronal cells. Our data showed that metformin significantly decreased the PrPSc load in the treated cells, as shown by less PK resistant PrP in Western blots and reduced prion conversion activity in Real-Time Quaking-Induced Conversion (RT-QuIC) assay in both 22L-ScN2a and RML-ScCAD5 cells. Additionally, metformin induced autophagy as shown by higher levels of LC3-II in treated cells compared with control cells. On the other hand, our mouse bioassay showed that oral metformin at a dose of 2 mg/ml in drinking water had no effect on the survival of prion-infected mice. In conclusion, our findings describe the anti-prion effect of metformin in two persistently prion-infected neuronal cell lines. This effect can be explained at least partially by the autophagy inducing activity of metformin. This study sheds light on metformin as an anti-prion candidate for the combination therapy of prion diseases.
Collapse
Affiliation(s)
- Dalia H Abdelaziz
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt; Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Simrika Thapa
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada; Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Basant Abdulrahman
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt; Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Lauren Vankuppeveld
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Hermann M Schatzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada; Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
31
|
Ryskalin L, Busceti CL, Biagioni F, Limanaqi F, Familiari P, Frati A, Fornai F. Prion Protein in Glioblastoma Multiforme. Int J Mol Sci 2019; 20:ijms20205107. [PMID: 31618844 PMCID: PMC6834196 DOI: 10.3390/ijms20205107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
The cellular prion protein (PrPc) is an evolutionarily conserved cell surface protein encoded by the PRNP gene. PrPc is ubiquitously expressed within nearly all mammalian cells, though most abundantly within the CNS. Besides being implicated in the pathogenesis and transmission of prion diseases, recent studies have demonstrated that PrPc contributes to tumorigenesis by regulating tumor growth, differentiation, and resistance to conventional therapies. In particular, PrPc over-expression has been related to the acquisition of a malignant phenotype of cancer stem cells (CSCs) in a variety of solid tumors, encompassing pancreatic ductal adenocarcinoma (PDAC), osteosarcoma, breast cancer, gastric cancer, and primary brain tumors, mostly glioblastoma multiforme (GBM). Thus, PrPc is emerging as a key in maintaining glioblastoma cancer stem cells’ (GSCs) phenotype, thereby strongly affecting GBM infiltration and relapse. In fact, PrPc contributes to GSCs niche’s maintenance by modulating GSCs’ stem cell-like properties while restraining them from differentiation. This is the first review that discusses the role of PrPc in GBM. The manuscript focuses on how PrPc may act on GSCs to modify their expression and translational profile while making the micro-environment surrounding the GSCs niche more favorable to GBM growth and infiltration.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy.
| | - Carla L Busceti
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli, Italy.
| | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy.
| | - Pietro Familiari
- Department of Neuroscience, Mental Health and Sense Organs NESMOS, Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy.
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli, Italy.
| |
Collapse
|
32
|
Limanaqi F, Biagioni F, Ryskalin L, Busceti CL, Fornai F. Molecular Mechanisms Linking ALS/FTD and Psychiatric Disorders, the Potential Effects of Lithium. Front Cell Neurosci 2019; 13:450. [PMID: 31680867 PMCID: PMC6797817 DOI: 10.3389/fncel.2019.00450] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Altered proteostasis, endoplasmic reticulum (ER) stress, abnormal unfolded protein response (UPR), mitochondrial dysfunction and autophagy impairment are interconnected events, which contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). In recent years, the mood stabilizer lithium was shown to potentially modify ALS/FTD beyond mood disorder-related pathology. The effects of lithium are significant in ALS patients carrying genetic variations in the UNC13 presynaptic protein, which occur in ALS/FTD and psychiatric disorders as well. In the brain, lithium modulates a number of biochemical pathways involved in synaptic plasticity, proteostasis, and neuronal survival. By targeting UPR-related events, namely ER stress, excitotoxicity and autophagy dysfunction, lithium produces plastic effects. These are likely to relate to neuroprotection, which was postulated for mood and motor neuron disorders. In the present manuscript, we try to identify and discuss potential mechanisms through which lithium copes concomitantly with ER stress, UPR and autophagy dysfunctions related to UNC13 synaptic alterations and aberrant RNA and protein processing. This may serve as a paradigm to provide novel insights into the neurobiology of ALS/FTD featuring early psychiatric disturbances.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
33
|
Abdelaziz DH, Abdulrahman BA, Gilch S, Schatzl HM. Autophagy pathways in the treatment of prion diseases. Curr Opin Pharmacol 2019; 44:46-52. [PMID: 31096117 DOI: 10.1016/j.coph.2019.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 01/04/2023]
Abstract
Prions use cellular machineries for autocatalytic propagation by conformational conversion of the cellular prion protein into the pathological isoform PrPSc. Autophagy is a basic cellular degradation and recycling machinery that delivers cargo to lysosomes. Increase of autophagic flux in cells results in enhanced delivery of PrPSc in late endosomes to lysosomal degradation, providing a therapeutic target for prion diseases. Application of chemical enhancers of autophagy to cell or mouse models of prion infection provided a solid experimental proof-of-concept for this anti-prion strategy. In addition, increasing autophagy also reduces exosomal release of prions and transfer of prion infectivity between cells. Taken together, pharmacological induction of autophagy is a promising target for containing prion diseases, and ideal candidate for future combination therapies.
Collapse
Affiliation(s)
- Dalia H Abdelaziz
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Basant A Abdulrahman
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Ecosystem and Public Health, University of Calgary, Calgary, Alberta, Canada
| | - Hermann M Schatzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
34
|
Abstract
Most common neurodegenerative diseases feature deposition of protein amyloids and degeneration of brain networks. Amyloids are ordered protein assemblies that can act as templates for their own replication through monomer addition. Evidence suggests that this characteristic may underlie the progression of pathology in neurodegenerative diseases. Many different amyloid proteins, including Aβ, tau, and α-synuclein, exhibit properties similar to those of infectious prion protein in experimental systems: discrete and self-replicating amyloid structures, transcellular propagation of aggregation, and transmissible neuropathology. This review discusses the contribution of prion phenomena and transcellular propagation to the progression of pathology in common neurodegenerative diseases such as Alzheimer's and Parkinson's. It reviews fundamental events such as cell entry, amplification, and transcellular movement. It also discusses amyloid strains, which produce distinct patterns of neuropathology and spread through the nervous system. These concepts may impact the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
35
|
Burke CM, Walsh DJ, Steele AD, Agrimi U, Di Bari MA, Watts JC, Supattapone S. Full restoration of specific infectivity and strain properties from pure mammalian prion protein. PLoS Pathog 2019; 15:e1007662. [PMID: 30908557 PMCID: PMC6448948 DOI: 10.1371/journal.ppat.1007662] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/04/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, protein-only PrPSc preparations lack significant levels of prion infectivity, leading to the alternative hypothesis that cofactor molecules are required to form infectious prions. Here, we show that prions with parental strain properties and full specific infectivity can be restored from protein-only PrPSc in vitro. The restoration reaction is rapid, potent, and requires bank vole PrPC substrate, post-translational modifications, and cofactor molecules. To our knowledge, this represents the first report in which the essential properties of an infectious mammalian prion have been restored from pure PrP without adaptation. These findings provide evidence for a unified hypothesis of prion infectivity in which the global structure of protein-only PrPSc accurately stores latent infectious and strain information, but cofactor molecules control a reversible switch that unmasks biological infectivity.
Collapse
Affiliation(s)
- Cassandra M. Burke
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Daniel J. Walsh
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Alexander D. Steele
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Surachai Supattapone
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
36
|
Thellung S, Corsaro A, Nizzari M, Barbieri F, Florio T. Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein Toxicity. Int J Mol Sci 2019; 20:ijms20040901. [PMID: 30791416 PMCID: PMC6412775 DOI: 10.3390/ijms20040901] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this review is to critically analyze promises and limitations of pharmacological inducers of autophagy against protein misfolding-associated neurodegeneration. Effective therapies against neurodegenerative disorders can be developed by regulating the “self-defense” equipment of neurons, such as autophagy. Through the degradation and recycling of the intracellular content, autophagy promotes neuron survival in conditions of trophic factor deprivation, oxidative stress, mitochondrial and lysosomal damage, or accumulation of misfolded proteins. Autophagy involves the activation of self-digestive pathways, which is different for dynamics (macro, micro and chaperone-mediated autophagy), or degraded material (mitophagy, lysophagy, aggrephagy). All neurodegenerative disorders share common pathogenic mechanisms, including the impairment of autophagic flux, which causes the inability to remove the neurotoxic oligomers of misfolded proteins. Pharmacological activation of autophagy is typically achieved by blocking the kinase activity of mammalian target of rapamycin (mTOR) enzymatic complex 1 (mTORC1), removing its autophagy suppressor activity observed under physiological conditions; acting in this way, rapamycin provided the first proof of principle that pharmacological autophagy enhancement can induce neuroprotection through the facilitation of oligomers’ clearance. The demand for effective disease-modifying strategies against neurodegenerative disorders is currently stimulating the development of a wide number of novel molecules, as well as the re-evaluation of old drugs for their pro-autophagic potential.
Collapse
Affiliation(s)
- Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Mario Nizzari
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
| |
Collapse
|
37
|
Rein T. Is Autophagy Involved in the Diverse Effects of Antidepressants? Cells 2019; 8:E44. [PMID: 30642024 PMCID: PMC6356221 DOI: 10.3390/cells8010044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
Autophagy has received increased attention as a conserved process governing cellular energy and protein homeostasis that is thus relevant in a range of physiological and pathophysiological conditions. Recently, autophagy has also been linked to depression, mainly through its involvement in the action of antidepressants. Some antidepressant drugs and psychotropic medication have been reported to exert beneficial effects in other diseases, for example, in cancer and neurodegenerative diseases. This review collates the evidence for the hypothesis that autophagy contributes to the effects of antidepressants beyond depression treatment.
Collapse
Affiliation(s)
- Theo Rein
- Max Planck Institute of Psychiatry, Munich 80804, Germany.
| |
Collapse
|
38
|
Gassen NC, Rein T. Is There a Role of Autophagy in Depression and Antidepressant Action? Front Psychiatry 2019; 10:337. [PMID: 31156481 PMCID: PMC6529564 DOI: 10.3389/fpsyt.2019.00337] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy has been recognized as evolutionary conserved intracellular pathway that ensures energy, organelle, and protein homeostasis through lysosomal degradation of damaged macromolecules and organelles. It is activated under various stress situations, e.g., food deprivation or proteotoxic conditions. Autophagy has been linked to several diseases, more recently also including stress-related diseases such as depression. A growing number of publications report on the role of autophagy in neurons, also referred to as "neuronal autophagy" on the one hand, and several studies describe effects of antidepressants-or of compounds that exert antidepressant-like actions-on autophagy on the other hand. This minireview highlights the emerging evidence for the involvement of autophagy in the pathology and treatment of depression and discusses current limitations as well as potential avenues for future research.
Collapse
Affiliation(s)
- Nils C Gassen
- Department of Psychiatry, Bonn Clinical Center, Bonn, Germany.,Max Planck Institute of Psychiatry, Munich, Germany
| | - Theo Rein
- Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
39
|
Abstract
The development of multiple cell culture models of prion infection over the last two decades has led to a significant increase in our understanding of how prions infect cells. In particular, new techniques to distinguish exogenous from endogenous prions have allowed us for the first time to look in depth at the earliest stages of prion infection through to the establishment of persistent infection. These studies have shown that prions can infect multiple cell types, both neuronal and nonneuronal. Once in contact with the cell, they are rapidly taken up via multiple endocytic pathways. After uptake, the initial replication of prions occurs almost immediately on the plasma membrane and within multiple endocytic compartments. Following this acute stage of prion replication, persistent prion infection may or may not be established. Establishment of a persistent prion infection in cells appears to depend upon the achievement of a delicate balance between the rate of prion replication and degradation, the rate of cell division, and the efficiency of prion spread from cell to cell. Overall, cell culture models have shown that prion infection of the cell is a complex and variable process which can involve multiple cellular pathways and compartments even within a single cell.
Collapse
Affiliation(s)
- Suzette A Priola
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States.
| |
Collapse
|
40
|
Relaño-Ginés A, Lehmann S, Brillaud E, Belondrade M, Casanova D, Hamela C, Vincent C, Poupeau S, Sarniguet J, Alvarez T, Arnaud JD, Maurel JC, Crozet C. Lithium as a disease-modifying agent for prion diseases. Transl Psychiatry 2018; 8:163. [PMID: 30135493 PMCID: PMC6105724 DOI: 10.1038/s41398-018-0209-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
Prion diseases still remain incurable despite multiple efforts to develop a treatment. Therefore, it is important to find strategies to at least reduce the symptoms. Lithium has been considered as a neuroprotective agent for years, and the objective of this preclinical study was to evaluate the efficacy of lithium delivered as a water-in-oil microemulsion (Aonys®). This delivery system allows using low doses of lithium and to avoid the toxicity observed in chronic treatments. C57BL/6J mice were intracranially inoculated with ME7 prion-infected brain homogenates and then were treated with lithium from day 90 post inoculation until their death. Lithium was administered at traditional doses (16 mg/kg/day) by the gavage route and at lower doses (40 or 160 µg/kg/day; Aonys®) by the rectal mucosa route. Low doses of lithium (Aonys®) improved the survival of prion-inoculated mice, and also decreased vacuolization, astrogliosis, and neuronal loss compared with controls (vehicle alone). The extent of the protective effects in mice treated with low-dose lithium was comparable or even higher than what was observed in mice that received lithium at the traditional dose. These results indicate that lithium administered using this innovative delivery system could represent a potential therapeutic approach not only for prion diseases but also for other neurodegenerative diseases.
Collapse
Affiliation(s)
- A. Relaño-Ginés
- 0000 0001 2097 0141grid.121334.6Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, diagnostic et thérapie cellulaire des affections neurodégénératives—Institut National de la Santé et de la Recherche Médicale Université de Montpellier U1183 Centre Hospitalo, Universitaire de Montpellier, Montpellier, France ,grid.433120.7Institut de Génétique Humaine, Centre National de la Recherche Scientifique-UPR1142, Montpellier, France
| | - S. Lehmann
- 0000 0001 2097 0141grid.121334.6Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, diagnostic et thérapie cellulaire des affections neurodégénératives—Institut National de la Santé et de la Recherche Médicale Université de Montpellier U1183 Centre Hospitalo, Universitaire de Montpellier, Montpellier, France ,grid.433120.7Institut de Génétique Humaine, Centre National de la Recherche Scientifique-UPR1142, Montpellier, France
| | - E. Brillaud
- Medesis Pharma SA, Avenue du Golf, Baillargues, France
| | - M. Belondrade
- grid.433120.7Institut de Génétique Humaine, Centre National de la Recherche Scientifique-UPR1142, Montpellier, France
| | - D. Casanova
- grid.433120.7Institut de Génétique Humaine, Centre National de la Recherche Scientifique-UPR1142, Montpellier, France
| | - C. Hamela
- grid.433120.7Institut de Génétique Humaine, Centre National de la Recherche Scientifique-UPR1142, Montpellier, France
| | - C. Vincent
- Medesis Pharma SA, Avenue du Golf, Baillargues, France
| | - S. Poupeau
- Medesis Pharma SA, Avenue du Golf, Baillargues, France
| | - J. Sarniguet
- Medesis Pharma SA, Avenue du Golf, Baillargues, France
| | - T. Alvarez
- 0000 0001 2097 0141grid.121334.6Etablissement Confiné d’Expérimentation BioCampus, Université Montpellier, Campus Triolet, Bâtiment 53, CECEMA, Montpellier, France
| | - J. D. Arnaud
- 0000 0001 2097 0141grid.121334.6Etablissement Confiné d’Expérimentation BioCampus, Université Montpellier, Campus Triolet, Bâtiment 53, CECEMA, Montpellier, France
| | - J. C. Maurel
- Medesis Pharma SA, Avenue du Golf, Baillargues, France
| | - C. Crozet
- 0000 0001 2097 0141grid.121334.6Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, diagnostic et thérapie cellulaire des affections neurodégénératives—Institut National de la Santé et de la Recherche Médicale Université de Montpellier U1183 Centre Hospitalo, Universitaire de Montpellier, Montpellier, France ,grid.433120.7Institut de Génétique Humaine, Centre National de la Recherche Scientifique-UPR1142, Montpellier, France
| |
Collapse
|
41
|
Sharma S, Young RJ, Chen J, Chen X, Oh EC, Schiller MR. Minimotifs dysfunction is pervasive in neurodegenerative disorders. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:414-432. [PMID: 30225339 PMCID: PMC6139474 DOI: 10.1016/j.trci.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Minimotifs are modular contiguous peptide sequences in proteins that are important for posttranslational modifications, binding to other molecules, and trafficking to specific subcellular compartments. Some molecular functions of proteins in cellular pathways can be predicted from minimotif consensus sequences identified through experimentation. While a role for minimotifs in regulating signal transduction and gene regulation during disease pathogenesis (such as infectious diseases and cancer) is established, the therapeutic use of minimotif mimetic drugs is limited. In this review, we discuss a general theme identifying a pervasive role of minimotifs in the pathomechanism of neurodegenerative diseases. Beyond their longstanding history in the genetics of familial neurodegeneration, minimotifs are also major players in neurotoxic protein aggregation, aberrant protein trafficking, and epigenetic regulation. Generalizing the importance of minimotifs in neurodegenerative diseases offers a new perspective for the future study of neurodegenerative mechanisms and the investigation of new therapeutics.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Richard J. Young
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- Department of Psychology, Las Vegas, NV, USA
| | - Edwin C. Oh
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
42
|
Misfolded Protein Linked Strategies Toward Biomarker Development for Neurodegenerative Diseases. Mol Neurobiol 2018; 56:2559-2578. [DOI: 10.1007/s12035-018-1232-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
|
43
|
Phadwal K, Kurian D, Salamat MKF, MacRae VE, Diack AB, Manson JC. Spermine increases acetylation of tubulins and facilitates autophagic degradation of prion aggregates. Sci Rep 2018; 8:10004. [PMID: 29968775 PMCID: PMC6030104 DOI: 10.1038/s41598-018-28296-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/18/2018] [Indexed: 12/30/2022] Open
Abstract
Autolysosomal dysfunction and unstable microtubules are hallmarks of chronic neurodegenerative diseases associated with misfolded proteins. Investigation of impaired protein quality control and clearance systems could therefore provide an important avenue for intervention. To investigate this we have used a highly controlled model for protein aggregation, an in vitro prion system. Here we report that prion aggregates traffic via autolysosomes in the cytoplasm. Treatment with the natural polyamine spermine clears aggregates by enhancing autolysosomal flux. We demonstrated this by blocking the formation of mature autophagosomes resulting in accumulation of prion aggregates in the cytoplasm. Further we investigated the mechanism of spermine’s mode of action and we demonstrate that spermine increases the acetylation of microtubules, which is known to facilitate retrograde transport of autophagosomes from the cellular periphery to lysosomes located near the nucleus. We further report that spermine facilitates selective autophagic degradation of prion aggregates by binding to microtubule protein Tubb6. This is the first report in which spermine and the pathways regulated by it are applied as a novel approach towards clearance of misfolded prion protein and we suggest that this may have important implication for the broader family of protein misfolding diseases.
Collapse
Affiliation(s)
- Kanchan Phadwal
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Dominic Kurian
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | | | - Vicky E MacRae
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Abigail B Diack
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jean C Manson
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK. .,Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK. .,Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
44
|
Vilette D, Courte J, Peyrin JM, Coudert L, Schaeffer L, Andréoletti O, Leblanc P. Cellular mechanisms responsible for cell-to-cell spreading of prions. Cell Mol Life Sci 2018; 75:2557-2574. [PMID: 29761205 PMCID: PMC11105574 DOI: 10.1007/s00018-018-2823-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.
Collapse
Affiliation(s)
- Didier Vilette
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France.
| | - Josquin Courte
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
- Laboratoire Physico Chimie Curie, UMR168, UPMC, IPGG, Sorbonne Universités, 6 Rue Jean Calvin, 75005, Paris, France
| | - Jean Michel Peyrin
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France.
| | - Laurent Coudert
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Laurent Schaeffer
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Olivier Andréoletti
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France
| | - Pascal Leblanc
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France.
| |
Collapse
|
45
|
Pronin AV, Gogoleva IV, Torshin IY, Gromovа OA. [Neurotrophic effects of lithium stimulate the reduction of ischemic and neurodegenerative brain damage]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 116:99-108. [PMID: 27166488 DOI: 10.17116/jnevro20161162199-108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For over 60 years, high doses of lithium (hundreds of milligrams of elemental lithium) have being used to treat bipolar disorder. However, only during the past 20 years the relevant basic and clinical studies have shown that neuroprotective and neurotrophic effects of lithium are possible in much smaller doses ( hundreds of micrograms of elemental lithium). These data indicate a significant potential for the clinical applications of lithium-based drugs in modern neurology for the purposes of prevention and treatment of neurodegenerative and ischemic pathologies. Pharmacological and molecular biology studies indicated that the inhibition of glycogen synthase kinase-syntentase-3 (GSK-3) and induction of brain-derived neurotrophic factors are the main mechanisms of neurotropic actions of lithium. Also, by inhibiting the NMDA receptors, lithium regulates the calcium homeostasis and inhibits the activation of calcium-dependent apotosis. These and other molecular mechanisms of lithium action protect neurons from ischemia and neurodegeneration thus contributing to a significant reduction of neurological deficit in various models of stroke and neurodegenerative diseases.
Collapse
Affiliation(s)
- A V Pronin
- Ivanovo State Medical Academy, Ivanovo, Russian Satellite Center, Trace Elements Institute for UNESCO, Moscow
| | - I V Gogoleva
- Ivanovo State Medical Academy, Ivanovo, Russian Satellite Center, Trace Elements Institute for UNESCO, Moscow
| | - I Yu Torshin
- Ivanovo State Medical Academy, Ivanovo, Russian Satellite Center, Trace Elements Institute for UNESCO, Moscow
| | - O A Gromovа
- Ivanovo State Medical Academy, Ivanovo, Russian Satellite Center, Trace Elements Institute for UNESCO, Moscow
| |
Collapse
|
46
|
Shah SZA, Zhao D, Hussain T, Sabir N, Yang L. Regulation of MicroRNAs-Mediated Autophagic Flux: A New Regulatory Avenue for Neurodegenerative Diseases With Focus on Prion Diseases. Front Aging Neurosci 2018; 10:139. [PMID: 29867448 PMCID: PMC5962651 DOI: 10.3389/fnagi.2018.00139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/25/2018] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are fatal neurological disorders affecting various mammalian species including humans. Lack of proper diagnostic tools and non-availability of therapeutic remedies are hindering the control strategies for prion diseases. MicroRNAs (miRNAs) are abundant endogenous short non-coding essential RNA molecules that negatively regulate the target genes after transcription. Several biological processes depend on miRNAs, and altered profiles of these miRNAs are potential biomarkers for various neurodegenerative diseases, including prion diseases. Autophagic flux degrades the misfolded prion proteins to reduce chronic endoplasmic reticulum stress and enhance cell survival. Recent evidence suggests that specific miRNAs target and regulate the autophagic mechanism, which is critical for alleviating cellular stress. miRNAs-mediated regulation of these specific proteins involved in the autophagy represents a new target with highly significant therapeutic prospects. Here, we will briefly describe the biology of miRNAs, the use of miRNAs as potential biomarkers with their credibility, the regulatory mechanism of miRNAs in major neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and prion diseases, degradation pathways for aggregated prion proteins, the role of autophagy in prion diseases. Finally, we will discuss the miRNAs-modulated autophagic flux in neurodegenerative diseases and employ them as potential therapeutic intervention strategy in prion diseases.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Naveed Sabir
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
47
|
Abdulrahman BA, Abdelaziz DH, Schatzl HM. Autophagy regulates exosomal release of prions in neuronal cells. J Biol Chem 2018; 293:8956-8968. [PMID: 29700113 PMCID: PMC5995502 DOI: 10.1074/jbc.ra117.000713] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/19/2018] [Indexed: 12/29/2022] Open
Abstract
Prions are protein-based infectious agents that autocatalytically convert the cellular prion protein PrPC to its pathological isoform PrPSc. Subsequent aggregation and accumulation of PrPSc in nervous tissues causes several invariably fatal neurodegenerative diseases in humans and animals. Prions can infect recipient cells when packaged into endosome-derived nanoparticles called exosomes, which are present in biological fluids such as blood, urine, and saliva. Autophagy is a basic cellular degradation and recycling machinery that also affects exosomal processing, but whether autophagy controls release of prions in exosomes is unclear. Our work investigated the effect of autophagy modulation on exosomal release of prions and how this interplay affects cellular prion infection. Exosomes isolated from cultured murine central neuronal cells (CAD5) and peripheral neuronal cells (N2a) contained prions as shown by immunoblotting for PrPSc, prion-conversion activity, and cell culture infection. We observed that autophagy stimulation with the mTOR inhibitor rapamycin strongly inhibited exosomal prion release. In contrast, inhibition of autophagy by wortmannin or CRISPR/Cas9-mediated knockout of the autophagy protein Atg5 (autophagy-related 5) greatly increased the release of exosomes and exosome-associated prions. We also show that a difference in exosomal prion release between CAD5 and N2a cells is related to differences at the level of basal autophagy. Taken together, our results indicate that autophagy modulation can control lateral transfer of prions by interfering with their exosomal release. We describe a novel role of autophagy in the prion life cycle, an understanding that may provide useful targets for containing prion diseases.
Collapse
Affiliation(s)
- Basant A Abdulrahman
- From the Department of Comparative Biology & Experimental Medicine and.,the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,the Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt, and
| | - Dalia H Abdelaziz
- From the Department of Comparative Biology & Experimental Medicine and.,the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,the Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt, and
| | - Hermann M Schatzl
- From the Department of Comparative Biology & Experimental Medicine and .,the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,the Departments of Veterinary Sciences and of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
48
|
Xiao X, Shang X, Zhai B, Zhang H, Zhang T. Nicotine alleviates chronic stress-induced anxiety and depressive-like behavior and hippocampal neuropathology via regulating autophagy signaling. Neurochem Int 2018; 114:58-70. [PMID: 29339018 DOI: 10.1016/j.neuint.2018.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 01/24/2023]
Abstract
Recently, we reported that chronic nicotine significantly improved chronic stress-induced impairments of cognition and the hippocampal synaptic plasticity in mice, however, the underlying mechanism still needs to be explored. In the present study, 32 male C57BL/6 mice were divided into four groups: control (CON), stress (CUS), stress with chronic nicotine administration (CUS + Nic) and chronic nicotine administration (Nic). The anxiety-like behavior and neuropathological alteration of DG neurons were examined. Moreover, PC12 cells were examined with corticosterone in the presence or absence of nicotine. Both cell viability and apoptosis were determined. When treated simultaneously with an unpredictable chronic mild stress (CUS), nicotine (0.2 mg/kg/d) attenuated behavioral deficits and neuropathological alterations of DG neurons. Moreover, Western blotting showed that chronic nicotine also elevated the level of autophagy makers including Beclin-1 and LC3 II triggered by CUS. In addition, concomitant treatment with nicotine (10 μM) significantly attenuated the loss of PC12 cell viability (p < .01) and apoptosis compared to that of corticosterone treatment alone. Besides, chronic nicotine also enhanced the protein and RNA expression levels of autophagy makers triggered by corticosterone, such as Beclin-1, LC3 II and p62/SQSTM1. However, the above improvements were significantly blocked by autophagy inhibitor 3-MA. Importantly, the activation of the PI3K/Akt/mTOR signaling was carefully tested to illuminate the effects of chronic nicotine. Consequently, chronic nicotine played a role of neuroprotection in either CUS mice or corticosterone cells associating with the enhancement of the autophagy signaling, which was involved in activating the PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Xi Xiao
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Xueliang Shang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Baohui Zhai
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Hui Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071, Tianjin, PR China.
| |
Collapse
|
49
|
Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide. Mol Psychiatry 2018; 23:2324-2346. [PMID: 30038230 PMCID: PMC6294742 DOI: 10.1038/s41380-018-0090-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/12/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a common and severe disease characterized by mood changes, somatic alterations, and often suicide. MDD is treated with antidepressants, but the molecular mechanism of their action is unknown. We found that widely used antidepressants such as amitriptyline and fluoxetine induce autophagy in hippocampal neurons via the slow accumulation of sphingomyelin in lysosomes and Golgi membranes and of ceramide in the endoplasmic reticulum (ER). ER ceramide stimulates phosphatase 2A and thereby the autophagy proteins Ulk, Beclin, Vps34/Phosphatidylinositol 3-kinase, p62, and Lc3B. Although treatment with amitriptyline or fluoxetine requires at least 12 days to achieve sphingomyelin accumulation and the subsequent biochemical and cellular changes, direct inhibition of sphingomyelin synthases with tricyclodecan-9-yl-xanthogenate (D609) results in rapid (within 3 days) accumulation of ceramide in the ER, activation of autophagy, and reversal of biochemical and behavioral signs of stress-induced MDD. Inhibition of Beclin blocks the antidepressive effects of amitriptyline and D609 and induces cellular and behavioral changes typical of MDD. These findings identify sphingolipid-controlled autophagy as an important target for antidepressive treatment methods and provide a rationale for the development of novel antidepressants that act within a few days.
Collapse
|
50
|
Abdulrahman BA, Abdelaziz D, Thapa S, Lu L, Jain S, Gilch S, Proniuk S, Zukiwski A, Schatzl HM. The celecoxib derivatives AR-12 and AR-14 induce autophagy and clear prion-infected cells from prions. Sci Rep 2017; 7:17565. [PMID: 29242534 PMCID: PMC5730578 DOI: 10.1038/s41598-017-17770-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/30/2017] [Indexed: 01/05/2023] Open
Abstract
Prion diseases are fatal infectious neurodegenerative disorders that affect both humans and animals. The autocatalytic conversion of the cellular prion protein (PrPC) into the pathologic isoform PrPSc is a key feature in prion pathogenesis. AR-12 is an IND-approved derivative of celecoxib that demonstrated preclinical activity against several microbial diseases. Recently, AR-12 has been shown to facilitate clearance of misfolded proteins. The latter proposes AR-12 to be a potential therapeutic agent for neurodegenerative disorders. In this study, we investigated the role of AR-12 and its derivatives in controlling prion infection. We tested AR-12 in prion infected neuronal and non-neuronal cell lines. Immunoblotting and confocal microscopy results showed that AR-12 and its analogue AR-14 reduced PrPSc levels after only 72 hours of treatment. Furthermore, infected cells were cured of PrPSc after exposure of AR-12 or AR-14 for only two weeks. We partially attribute the influence of the AR compounds on prion propagation to autophagy stimulation, in line with our previous findings that drug-induced stimulation of autophagy has anti-prion effects in vitro and in vivo. Taken together, this study demonstrates that AR-12 and the AR-14 analogue are potential new therapeutic agents for prion diseases and possibly protein misfolding disorders involving prion-like mechanisms.
Collapse
Affiliation(s)
- Basant A Abdulrahman
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Helwan University, 11795, Cairo, Egypt
| | - Dalia Abdelaziz
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Helwan University, 11795, Cairo, Egypt
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Li Lu
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Shubha Jain
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | | | | | - Hermann M Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.
- Departments of Veterinary Sciences and of Molecular Biology, University of Wyoming, Laramie, Wyoming, 82071, USA.
| |
Collapse
|