1
|
Ye C, Chen L, Zhang L, Zheng Y, Liu X, Huang Z, Tang K, Jiang X, Chen P. IL-17A, IL-23R, FCGR3A are associated with neuropsychiatric systemic lupus erythematosus susceptibility in pediatric patients with lupus nephritis. Cytokine 2025; 188:156874. [PMID: 39904110 DOI: 10.1016/j.cyto.2025.156874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
OBJECTIVE To comprehensively investigate the impact of candidate loci on the susceptibility to neuropsychiatric systemic lupus erythematosus (NPSLE) in a cohort of Chinese children with lupus nephritis (LN). METHODS This case-control study included sixty-two patients. And the case group consisted of 12 LN patients appearing NPSLE, while the control group consisted of 50 LN patients. A total of fifty-four single nucleotide polymorphisms (SNPs) across twenty genes were genotyped using the Agena Bioscience MassArray iPLEX platform. The associations between susceptibility to NPSLE and candidate SNPs were assessed using SNPStats online software. We evaluated the influence of candidate SNPs on the risk of NPSLE through odds ratios (OR) and 95 % confidence intervals (CI). Additionally, linkage disequilibrium (LD) and coefficient (D' and r2) for haplotypes and their frequencies were performed using the genetic statistical online software SHEsis. RESULTS Three significant SNPs were identified: IL17RA rs2895332, IL23R rs10889677, and FCGR3A rs396991. AA genotype of FCGR3A rs396991, GG genotype of IL17RA rs2895332 and AA genotype of IL23R rs10889677 exhibited a decreased risk of NPSLE compared to CA and CC genotypes, GA and AA genotypes, and CA and CC genotypes (rs396991 AA vs. CA-CC, OR 5.00, 95 %CI 0.99-25.17, P = 0.029; rs2895332 GG vs. GA-AA, OR 7.83, 95 %CI 1.47-41.79, P = 0.017; rs10889677 AA vs. CA-CC, OR 4.50, 95 %CI 1.08-18.69, P = 0.027). Furthermore, the haplotype A-T-G (STAT4 rs13426947, rs1551443 and rs3024866) appeared to confer protection against the development of NPSLE. The multivariate logistic regression analysis indicated that two specific SNPs were significantly associated with an increased risk of NPSLE: [FCGR3A rs396991 (OR = 6.444, 95 %CI = 1.1-37.736, P = 0.039), IL17RA rs2895332 (OR = 0.128, 95 %CI = 0.017-0.963, P = 0.046)]. Notably, the RegulomeDB score of them reached 1 f. Using HaploReg, these loci were in strong LD (r2>0.8) with several SNPs. CONCLUSION Our findings indicate that the polymorphisms IL17RA rs2895332, IL23R rs10889677, and FCGR3A rs396991 are significantly associated with the risk of NPSLE in childhood-onset LN.
Collapse
Affiliation(s)
- Chen Ye
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lizhi Chen
- Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Zhang
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yifan Zheng
- College of Pharmacy, University of Michigan, Ann Arbor, United States
| | - Xiaohong Liu
- Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Huang
- Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kejing Tang
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Jiang
- Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Pan Chen
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Bravi B, Verga C, Palladini M, Poletti S, Buticchi C, Stefania S, Stefano D, Colombo C, Comai S, Benedetti F. Effects of kynurenine pathway metabolites on choroid plexus volume, hemodynamic response, and spontaneous neural activity: A new mechanism for disrupted neurovascular communication and impaired cognition in mood disorders. Brain Behav Immun 2025; 125:414-427. [PMID: 39909168 DOI: 10.1016/j.bbi.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/07/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025] Open
Abstract
Major Depressive Disorder (MDD) and Bipolar Disorder (BD) involve alterations of immune-inflammatory setpoints that activate the kynurenine pathway (KP), affecting serotoninergic and glutamatergic neurotransmission through indoleamine-2,3-dioxygenase (IDO) activity. This process produces metabolites like Kynurenine (Kyn), 3-Hydroxykynurenine (3-HK), Quinolinic acid (QuinA), and Kynurenic acid (KynA), these last two acting as agonist and antagonist at glutamatergic N-methyl-D-aspartate receptors (NMDARs), respectively. NMDARs, expressed in the choroid plexus (ChP) and arteriolar smooth muscle cells, regulate blood-brain-barrier permeability and cerebral artery dilation, suggesting that KP may influence neurovascular coupling, aligning blood flow with neural energy demand. KP's role in modulating vascular tone supports this hypothesis. Altered fractional amplitude of low-frequency fluctuations (fALFF) and disrupted default mode network (DMN) activity in mood disorders are linked to cognitive deficits possibly through neurovascular uncoupling like in neurological diseases. This makes fALFF and hemodynamic response function (HRF) potential indicators of these changes. We investigated KP associations with ChP volumes, functional-MRI at rest measures like spontaneous neural activity (fALFF) and hemodynamic response function (HRF) parameters within the default mode network (DMN), and cognitive performance in 42 MDD and 36 BD inpatients experiencing a depressive episode. Results revealed that lower QuinA/KynA ratios and higher KynA levels predict larger ChP volumes. Higher KYN and 3-HK levels, along with lower KynA levels, were associated with increased DMN fALFF and shorter time-to-peak (TTP) in HRF, suggesting altered neurovascular coupling. Mediation analyses indicated that KP metabolites influenced cognitive performance through their effects on resting state measures, affecting global cognitive functioning score, verbal fluency, and psychomotor coordination. These findings suggest that KP metabolites modulate brain function and structure via NMDAR-mediated pathways and vascular-based mechanisms, offering insights into the cognitive impairments observed in mood disorders and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Beatrice Bravi
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Chiara Verga
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Mariagrazia Palladini
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Camilla Buticchi
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Sut Stefania
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Dall'Acqua Stefano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Cristina Colombo
- Vita-Salute San Raffaele University, Milan, Italy; Mood Disorder Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Soda T, Brunetti V, Berra-Romani R, Moccia F. The Emerging Role of N-Methyl-D-Aspartate (NMDA) Receptors in the Cardiovascular System: Physiological Implications, Pathological Consequences, and Therapeutic Perspectives. Int J Mol Sci 2023; 24:ijms24043914. [PMID: 36835323 PMCID: PMC9965111 DOI: 10.3390/ijms24043914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels that are activated by the neurotransmitter glutamate, mediate the slow component of excitatory neurotransmission in the central nervous system (CNS), and induce long-term changes in synaptic plasticity. NMDARs are non-selective cation channels that allow the influx of extracellular Na+ and Ca2+ and control cellular activity via both membrane depolarization and an increase in intracellular Ca2+ concentration. The distribution, structure, and role of neuronal NMDARs have been extensively investigated and it is now known that they also regulate crucial functions in the non-neuronal cellular component of the CNS, i.e., astrocytes and cerebrovascular endothelial cells. In addition, NMDARs are expressed in multiple peripheral organs, including heart and systemic and pulmonary circulations. Herein, we survey the most recent information available regarding the distribution and function of NMDARs within the cardiovascular system. We describe the involvement of NMDARs in the modulation of heart rate and cardiac rhythm, in the regulation of arterial blood pressure, in the regulation of cerebral blood flow, and in the blood-brain barrier (BBB) permeability. In parallel, we describe how enhanced NMDAR activity could promote ventricular arrhythmias, heart failure, pulmonary artery hypertension (PAH), and BBB dysfunction. Targeting NMDARs could represent an unexpected pharmacological strategy to reduce the growing burden of several life-threatening cardiovascular disorders.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987613
| |
Collapse
|
4
|
Furon J, Yetim M, Pouettre E, Martinez de Lizarrondo S, Maubert E, Hommet Y, Lebouvier L, Zheng Z, Ali C, Vivien D. Blood tissue Plasminogen Activator (tPA) of liver origin contributes to neurovascular coupling involving brain endothelial N-Methyl-D-Aspartate (NMDA) receptors. Fluids Barriers CNS 2023; 20:11. [PMID: 36737775 PMCID: PMC9896721 DOI: 10.1186/s12987-023-00411-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Regulation of cerebral blood flow (CBF) directly influence brain functions and dysfunctions and involves complex mechanisms, including neurovascular coupling (NVC). It was suggested that the serine protease tissue-type plasminogen activator (tPA) could control CNV induced by whisker stimulation in rodents, through its action on N-methyl-D-Aspartate receptors (NMDARs). However, the origin of tPA and the location and mechanism of its action on NMDARs in relation to CNV remained debated. METHODS Here, we answered these issues using tPANull mice, conditional deletions of either endothelial tPA (VECad-CreΔtPA) or endothelial GluN1 subunit of NMDARs (VECad-CreΔGluN1), parabioses between wild-type and tPANull mice, hydrodynamic transfection-induced deletion of liver tPA, hepatectomy and pharmacological approaches. RESULTS We thus demonstrate that physiological concentrations of vascular tPA, achieved by the bradykinin type 2 receptors-dependent production and release of tPA from liver endothelial cells, promote NVC, through a mechanism dependent on brain endothelial NMDARs. CONCLUSIONS These data highlight a new mechanism of regulation of NVC involving both endothelial tPA and NMDARs.
Collapse
Affiliation(s)
- Jonathane Furon
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Mervé Yetim
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Elsa Pouettre
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Sara Martinez de Lizarrondo
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Eric Maubert
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Yannick Hommet
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Laurent Lebouvier
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Ze Zheng
- grid.30760.320000 0001 2111 8460Department of Medicine, Medical College of Wisconsin, Milwaukee, WI USA ,grid.280427.b0000 0004 0434 015XBlood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI USA
| | - Carine Ali
- grid.460771.30000 0004 1785 9671UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074 Caen, France
| | - Denis Vivien
- UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Bvd Becquerel, BP 5229, 14074, Caen, France. .,Department of Clinical Research, Caen-Normandie University Hospital, Caen, France.
| |
Collapse
|
5
|
Yang JX, Yang MM, Han YJ, Gao CH, Cao J. FLAIR-hyperintense lesions in anti-MOG-associated encephalitis with seizures overlaying anti-N-methyl-D-aspartate receptor encephalitis: a case report and literature review. Front Immunol 2023; 14:1149987. [PMID: 37138864 PMCID: PMC10150000 DOI: 10.3389/fimmu.2023.1149987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Background FLAIR-hyperintense lesions in anti-MOG-associated encephalitis with seizures (FLAMES) has been identified increasingly frequently in recent years. However, this rare MOG antibody disease may coexist with anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARe), in an overlap syndrome with unknown clinical features and prognosis. Methods We report a new case of this overlap syndrome and present a systematic review of similar cases in the literature to provide information on the clinical presentation, MRI features, EGG abnormalities, treatment, and prognosis of patients with this rare syndrome. Results A total of 12 patients were analyzed in the study. The most common clinical manifestations of FLAMES overlaid with anti-NMDARe were epilepsy (12/12), headache (11/12), and fever (10/12). Increases in intracranial pressure (median: 262.5 mmH2O, range: 150-380 mmH2O), cerebrospinal fluid (CSF) leukocyte count (median: 128×106/L, range: 1-610×106/L), and protein level (median: 0.48 g/L) were also observed. The median CSF anti-NMDAR antibody titer was 1:10 (1:1-1:32), while the median serum MOG antibody titer was 1:32 (1:10-1:1024). Seven cases exhibited unilateral cortical FLAIR hyperintensity, and five cases (42%) had bilateral cortical FLAIR hyperintensity, including four cases involving the bilateral medial frontal lobes. Of the 12 patients, five showed lesions at other sites (e.g., the brainstem, corpus callosum, or frontal orbital gyrus) before or after the development of cortical encephalitis. EEG showed slow waves in four cases, spike-slow waves in two cases, an epileptiform pattern in one case, and normal waves in two cases. The median number of relapses was two. Over a mean follow-up period of 18.5 months, only one patient experienced residual visual impairment, while the remaining 11 patients had good prognoses. Conclusion FLAMES alone is difficult to distinguish from overlap syndrome based on clinical features. However, FLAMES with bilateral medial frontal lobe involvement suggests the presence of the overlap syndrome.
Collapse
|
6
|
Louet ER, Glavan M, Orset C, Parcq J, Hanley DF, Vivien D. tPA-NMDAR Signaling Blockade Reduces the Incidence of Intracerebral Aneurysms. Transl Stroke Res 2022; 13:1005-1016. [PMID: 35307812 DOI: 10.1007/s12975-022-01004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
Abstract
Intracranial aneurysms (IAs) are pathological dilatations affecting cerebral arteries, and their ruptures lead to devasting intracranial hemorrhages. Although the mechanisms underlying the IA formation and rupture are still unclear, some factors have been identified as critical in the control of the vascular remodeling pathways associated with aneurysms. In a preclinical model, we have previously proposed the implication of the vascular serine protease, the tissue-type plasminogen activator (tPA), as one of the key players in this pathology. Here, we provide insights into the mechanism by which tPA is implicated in the formation and rupture of aneurysms. This was addressed using a murine model of IAs combined with (i) hydrodynamic transfections of various tPA mutants based on the potential implications of the different tPA domains in this pathophysiology and (ii) a pharmacological approach using a monoclonal antibody targeting tPA-dependent NMDA receptor (NMDAR) signaling and in vivo magnetic resonance brain imaging (MRI). Our results show that the endovascular tPA-NMDAR axis is implicated in IA formation and possibly their rupture. Accordingly, the use of a monoclonal antibody designed to block tPA-dependent endothelial NMDAR signaling (Glunomab®) decreases the rate of intracranial aneurysm formation and their rupture. The present study gives new insights into the IA pathophysiology by demonstrating the implication of the tPA-dependent endothelial NMDAR signaling. In addition, the present data proposes that a monoclonal antibody injected intravenously to target this process, i.e., Glunomab® could be a useful therapeutic candidate for this devastating disease.
Collapse
Affiliation(s)
- Estelle R Louet
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
- Op2Lysis SAS, GIP Cyceron, Boulevard H Becquerel, 14000, Caen, France
| | - Martina Glavan
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Cyrille Orset
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Jerome Parcq
- Op2Lysis SAS, GIP Cyceron, Boulevard H Becquerel, 14000, Caen, France
| | - Daniel F Hanley
- Division of Brain Injury Outcomes, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France.
- Department of Clinical Research, Caen-Normandie University Hospital, CHU, Avenue de la côte de Nacre, Caen, France.
| |
Collapse
|
7
|
Intson K, Geissah S, McCullumsmith RE, Ramsey AJ. A role for endothelial NMDA receptors in the pathophysiology of schizophrenia. Schizophr Res 2022; 249:63-73. [PMID: 33189520 PMCID: PMC11740474 DOI: 10.1016/j.schres.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Numerous genetic and postmortem studies link N-methyl-d-aspartate receptor (NMDAR) dysfunction with schizophrenia, forming the basis of the popular glutamate hypothesis. Neuronal NMDAR abnormalities are consistently reported from both basic and clinical experiments, however, non-neuronal cells also contain NMDARs, and are rarely, if ever, considered in the discussion of glutamate action in schizophrenia. We offer an examination of recent discoveries elucidating the actions and consequences of NMDAR activation in the neuroendothelium. While there has been mixed literature regarding blood flow alterations in the schizophrenia brain, in this review, we posit that some common findings may be explained by neuroendothelial NMDAR dysfunction. In particular, we emphasize that endothelial NMDARs are key mediators of neurovascular coupling, where increased neuronal activity leads to increased blood flow. Based on the broad conclusions that hypoperfusion is a neuroanatomical finding in schizophrenia, we discuss potential mechanisms by which endothelial NMDARs contribute to this disorder. We propose that endothelial NMDAR dysfunction can be a primary cause of neurovascular abnormalities in schizophrenia. Importantly, functional MRI studies using BOLD signal as a proxy for neuron activity should be considered in a new light if neurovascular coupling is impaired in schizophrenia. This review is the first to propose that NMDARs in non-excitable cells play a role in schizophrenia.
Collapse
Affiliation(s)
- Katheron Intson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Salma Geissah
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Amy J Ramsey
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Gong P, Zhang S, Ren L, Zhang J, Zhao Y, Mao X, Gan L, Wang H, Ma C, Lin Y, Ye Q, Qian K, Lin X. Electroacupuncture of the trigeminal nerve causes N-methyl-D-aspartate receptors to mediate blood-brain barrier opening and induces neuronal excitatory changes. Front Cell Neurosci 2022; 16:1020644. [PMID: 36313622 PMCID: PMC9606778 DOI: 10.3389/fncel.2022.1020644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
The blood-brain barrier (BBB) is an important structure for maintaining environmental stability in the central nervous system (CNS). Our previous study showed that specific parameters of electroacupuncture (EA) at the head points Shuigou (GV26) and Baihui (GV20) can open the BBB; however, the mechanism by which stimulation of body surface acupuncture points on the head results in peripheral stimulation and affects the status of the central BBB and the neuronal excitatory changes has not been elucidated. We used laser spectroscopy, the In Vivo Imaging System (IVIS), immunofluorescence and immunoblotting to verified the role of the trigeminal nerve in BBB opening during EA, and we applied the central N-methyl-D-aspartate (NMDA) receptors blocker MK-801 to verify the mediating role of NMDA receptors in EA-induced BBB opening. Next, electroencephalogram (EEG) and in vivo calcium imaging techniques were applied to verify the possible electrical patterns of BBB opening promoted by different intensities of EA stimulation. The results showed that the trigeminal nerve plays an important role in the alteration of BBB permeability promoted by EA stimulation of the head acupoints. Brain NMDA receptors play a mediating role in promoting BBB permeability during EA of the trigeminal nerve, which may affect the expression of the TJ protein occludin, and thus alter BBB permeability. The analysis of the electrical mechanism showed that there was no significant change in the rhythm of local field potentials (LFP) in different brain regions across frequency bands immediately after EA of the trigeminal nerve at different intensities. However, the local primary somatosensory (S1BF) area corresponding to the trigeminal nerve showed a transient reduction in the delta rhythm of LFP with no change in the high-frequency band, and the action potential (spike) with short inter spike interval (ISI) varied with EA intensity. Meanwhile, EA of the trigeminal nerve resulted in rhythmic changes in calcium waves in the S1BF region, which were influenced by different EA intensities. This study provides a research perspective and a technical approach to further explore the mechanism of EA-induced BBB opening and its potential clinical applications.
Collapse
|
9
|
Seillier C, Lesept F, Toutirais O, Potzeha F, Blanc M, Vivien D. Targeting NMDA Receptors at the Neurovascular Unit: Past and Future Treatments for Central Nervous System Diseases. Int J Mol Sci 2022; 23:ijms231810336. [PMID: 36142247 PMCID: PMC9499580 DOI: 10.3390/ijms231810336] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The excitatory neurotransmission of the central nervous system (CNS) mainly involves glutamate and its receptors, especially N-methyl-D-Aspartate receptors (NMDARs). These receptors have been extensively described on neurons and, more recently, also on other cell types. Nowadays, the study of their differential expression and function is taking a growing place in preclinical and clinical research. The diversity of NMDAR subtypes and their signaling pathways give rise to pleiotropic functions such as brain development, neuronal plasticity, maturation along with excitotoxicity, blood-brain barrier integrity, and inflammation. NMDARs have thus emerged as key targets for the treatment of neurological disorders. By their large extracellular regions and complex intracellular structures, NMDARs are modulated by a variety of endogenous and pharmacological compounds. Here, we will present an overview of NMDAR functions on neurons and other important cell types involved in the pathophysiology of neurodegenerative, neurovascular, mental, autoimmune, and neurodevelopmental diseases. We will then discuss past and future development of NMDAR targeting drugs, including innovative and promising new approaches.
Collapse
Affiliation(s)
- Célia Seillier
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
| | - Flavie Lesept
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Olivier Toutirais
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
- Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU, 14000 Caen, France
| | - Fanny Potzeha
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Manuel Blanc
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
- Department of Clinical Research, Caen University Hospital, CHU, 14000 Caen, France
- Correspondence:
| |
Collapse
|
10
|
Activation of non-classical NMDA receptors by glycine impairs barrier function of brain endothelial cells. Cell Mol Life Sci 2022; 79:479. [PMID: 35951110 PMCID: PMC9372018 DOI: 10.1007/s00018-022-04502-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 12/24/2022]
Abstract
Blood–brain barrier (BBB) integrity is necessary to maintain homeostasis of the central nervous system (CNS). NMDA receptor (NMDAR) function and expression have been implicated in BBB integrity. However, as evidenced in neuroinflammatory conditions, BBB disruption contributes to immune cell infiltration and propagation of inflammatory pathways. Currently, our understanding of the pathophysiological role of NMDAR signaling on endothelial cells remains incomplete. Thus, we investigated NMDAR function on primary mouse brain microvascular endothelial cells (MBMECs). We detected glycine-responsive NMDAR channels, composed of functional GluN1, GluN2A and GluN3A subunits. Importantly, application of glycine alone, but not glutamate, was sufficient to induce NMDAR-mediated currents and an increase in intracellular Ca2+ concentrations. Functionally, glycine-mediated NMDAR activation leads to loss of BBB integrity and changes in actin distribution. Treatment of oocytes that express NMDARs composed of different subunits, with GluN1 and GluN3A binding site inhibitors, resulted in abrogation of NMDAR signaling as measured by two-electrode voltage clamp (TEVC). This effect was only detected in the presence of the GluN2A subunits, suggesting the latter as prerequisite for pharmacological modulation of NMDARs on brain endothelial cells. Taken together, our findings argue for a novel role of glycine as NMDAR ligand on endothelial cells shaping BBB integrity.
Collapse
|
11
|
Park JK, Lee EJ, Kim KK. Isolated Leptomeningeal Enhancement in Anti-N-Methyl D-Aspartate Receptor Encephalitis: The Diagnostic Value of Contrast-Enhanced Fluid-Attenuated Inversion Recovery Imaging. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2022; 83:945-950. [PMID: 36238909 PMCID: PMC9550631 DOI: 10.3348/jksr.2021.0098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 06/16/2023]
Abstract
Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is a common autoimmune encephalitis that is noted to be a severe but treatable disease entity. Patients with anti-NMDAR encephalitis often develop psychotic symptoms, including delusions, hallucinations, and paranoia, as well as memory impairment and persistent loss of attention. However, MRI findings in such patients show no abnormalities in most cases. Although typical brain abnormality features, known as T2 hyperintensities, involve the brain parenchyma and contrast enhancement at the cerebral cortex or overlying meninges, isolated leptomeningeal enhancement has been rarely reported in anti-NMDAR encephalitis. Herein, we report a patient with anti-NMDAR encephalitis who presented with isolated leptomeningeal enhancement, additionally showing the diagnostic value of contrast-enhanced fluid-attenuated inversion recovery imaging.
Collapse
|
12
|
NMDA mediates disruption of blood-brain barrier permeability via Rho/ROCK signaling pathway. Neurochem Int 2022; 154:105278. [PMID: 35017026 DOI: 10.1016/j.neuint.2022.105278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023]
Abstract
Glutamate can activate the N-methyl-D-aspartatic acid (NMDA) receptor (NMDAR), damage brain microvascular endothelial cells, and disturb the intercellular tight junctions (TJs). These result in changes in the permeability of the blood brain barrier (BBB). In neurons, the activation of Rho/ROCK signaling pathway is related to the activation of NMDAR,however, whether human brain vascular endothelial cells NMDAR mediates the Rho/ROCK pathway is not fully understood. The present study evaluates the effects of excessive NMDAR activation induced by NMDA (a glutamate analog) on the Rho/ROCK signaling pathway and the permeability of BBB by using a primary human brain microvascular endothelial cell (HBMEC) model. NMDAR subunit GluN1 was expressed in HBMECs and promoted by NMDA detected by Western blot and qRT-PCR. Furthermore, NMDA exposure decreased HBMEC viability, promoted HBMEC apoptosis, increased intracellular reactive oxygen species (ROS) levels, and destroyed the endothelial cytoskeleton. Additionally, NMDA exposure suppressed transendothelial electrical resistance (TEER) values and the expression of TJ proteins occludin and claudin5; it also promoted ROCK activated substrate myosin phosphatase target subunit-1 (MYPT)-1 phosphorylation and the transmittance of sodium fluorescein. In contrast, these effects were attenuated by ROCK inhibitor hydroxyfasudil (HF) and NMDAR antagonist MK801, respectively. Therefore, these results indicate that excessive endothelial NMDAR activation induced by NMDA may induce TJs and cytoskeleton damage, while HF attenuated NMDA-induced cytotoxicity in HBMECs by inhibiting the Rho/ROCK signaling pathway.
Collapse
|
13
|
Fairless R, Bading H, Diem R. Pathophysiological Ionotropic Glutamate Signalling in Neuroinflammatory Disease as a Therapeutic Target. Front Neurosci 2021; 15:741280. [PMID: 34744612 PMCID: PMC8567076 DOI: 10.3389/fnins.2021.741280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/30/2021] [Indexed: 01/15/2023] Open
Abstract
Glutamate signalling is an essential aspect of neuronal communication involving many different glutamate receptors, and underlies the processes of memory, learning and synaptic plasticity. Despite neuroinflammatory diseases covering a range of maladies with very different biological causes and pathophysiologies, a central role for dysfunctional glutamate signalling is becoming apparent. This is not just restricted to the well-described role of glutamate in mediating neurodegeneration, but also includes a myriad of other influences that glutamate can exert on the vasculature, as well as immune cell and glial regulation, reflecting the ability of neurons to communicate with these compartments in order to couple their activity with neuronal requirements. Here, we discuss the role of pathophysiological glutamate signalling in neuroinflammatory disease, using both multiple sclerosis and Alzheimer's disease as examples, and how current steps are being made to harness our growing understanding of these processes in the development of neuroprotective strategies. This review focuses in particular on N-methyl-D-aspartate (NMDA) and 2-amino-3-(3-hydroxy-5-methylisooxazol-4-yl) propionate (AMPA) type ionotropic glutamate receptors, although metabotropic, G-protein-coupled glutamate receptors may also contribute to neuroinflammatory processes. Given the indispensable roles of glutamate-gated ion channels in synaptic communication, means of pharmacologically distinguishing between physiological and pathophysiological actions of glutamate will be discussed that allow deleterious signalling to be inhibited whilst minimising the disturbance of essential neuronal function.
Collapse
Affiliation(s)
- Richard Fairless
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Seillier C, Hélie P, Petit G, Vivien D, Clemente D, Le Mauff B, Docagne F, Toutirais O. Roles of the tissue-type plasminogen activator in immune response. Cell Immunol 2021; 371:104451. [PMID: 34781155 PMCID: PMC8577548 DOI: 10.1016/j.cellimm.2021.104451] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic has once again
brought to the forefront the existence of a tight link between the
coagulation/fibrinolytic system and the immunologic processes.
Tissue-type plasminogen activator (tPA) is a serine protease with a key
role in fibrinolysis by converting plasminogen into plasmin that can
finally degrade fibrin clots. tPA is released in the blood by endothelial
cells and hepatocytes but is also produced by various types of immune
cells including T cells and monocytes. Beyond its role on hemostasis, tPA
is also a potent modulator of inflammation and is involved in the
regulation of several inflammatory diseases. Here, after a brief
description of tPA structure, we review its new functions in adaptive
immunity focusing on T cells and antigen presenting cells. We intend to
synthesize the recent knowledge on proteolysis- and receptor-mediated
effects of tPA on immune response in physiological and pathological
context.
Collapse
Affiliation(s)
- Célia Seillier
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Pauline Hélie
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Gautier Petit
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; Department of Clinical Research, Caen University Hospital, CHU Caen, France
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Brigitte Le Mauff
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU Caen, France
| | - Fabian Docagne
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Olivier Toutirais
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU Caen, France.
| |
Collapse
|
15
|
N-methyl-D-aspartate receptor antibody and the choroid plexus in schizophrenia patients with tardive dyskinesia. J Psychiatr Res 2021; 142:290-298. [PMID: 34411812 DOI: 10.1016/j.jpsychires.2021.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Immune disturbance has been postulated to be one of the mechanisms underlying the pathogenesis of tardive dyskinesia (TD). Recently, the role of autoimmune abnormality in TD has been increasingly recognized. Autoantibodies against neuronal N-methyl-D-aspartate receptor (NMDAR) may be cross-reactive in the brain in neuropsychiatric disorders, and the choroid plexus (CP) is a crucial immune barrier in the central nervous system (CNS). We supposed that NMDAR antibodies might underlie the pathophysiological process of TD through the mediation of CP. METHODS Serum NMDAR antibody levels were assessed by enzyme-linked immunosorbent assay, CP and ventricle volumes were assessed by magnetic resonance imaging in schizophrenia patients with TD (n = 61), without TD (NTD, n = 61), and in healthy controls (n = 74). Psychopathology and TD severity were assessed by the Positive and Negative Syndrome Scale and Abnormal Involuntary Movement Scale (AIMS). RESULTS NMDAR antibody levels were significantly higher, CP volumes were larger in the TD group than in the NTD group (p = 0.022; p = 0.019, respectively). In the TD group, higher NMDAR antibody level was correlated with larger CP volume (β = 0.406, p = 0.002). An elevated NMDAR antibody level and enlarged CP volume were correlated with orofacial AIMS score (β = 0.331, p = 0.011; β = 0.459, p = 3.34 × 10-4, respectively). In a mediation model, the effect of NMDAR antibody level on the orofacial AIMS score was mediated by the CP volume (indirect effect: β = 0.08, 95% confidence interval = 0.002-0.225; direct effect: β = 0.14, p = 0.154). CONCLUSIONS Our findings highlight a potential NMDAR antibody-associated mechanism in orofacial TD, which may be mediated by increased CP volume.
Collapse
|
16
|
Xie X, Luo C, Liang JY, Huang R, Yang JL, Li L, Li Y, Xing H, Chen H. NMDAR in bladder smooth muscle is not a pharmacotherapy target for overactive bladder in mice. PeerJ 2021; 9:e11684. [PMID: 34277150 PMCID: PMC8272467 DOI: 10.7717/peerj.11684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Overactive bladder (OAB) is a common condition that affects a significant patient population. The N-methyl-D-aspartate receptor (NMDAR) has a role in developing bladder overactivity, pharmacological inhibition of which inhibits bladder overactivity. The common pathogenesis of OAB involves bladder smooth muscle (BSM) overactivity. In this study, a smooth muscle-specific NMDAR knockout (SMNRKO) mouse model was generated. The bladders from SMNRKO mice displayed normal size and weight with an intact bladder wall and well-arranged BSM bundles. Besides, SMNRKO mice had normal voiding patterns and urodynamics and BSM contractility, indicating that NMDAR in BSM was not essential for normal physiological bladder morphology and function. Unexpectedly, cyclophosphamide (CYP)-treated SMNRKO and wild-type (WT) mice had similar pathological changes in the bladder. Furthermore, SMNRKO mice displayed similar altered voiding patterns and urodynamic abnormalities and impaired BSM contractility compared with WT mice after CYP treatment. MK801 partially reversed the pathological bladder morphology and improved bladder dysfunction induced by CYP, but did not cause apparent differences between WT mice and SMNRKO mice, suggesting that NMDAR in BSM was not involved in pathological bladder morphology and function. Moreover, the direct instillation of NMDAR agonists or antagonists into the CYP-induced OAB did not affect bladder urodynamic function, indicating that NMDAR in BSM was not the pharmacotherapy target of MK801 for CYP-induced cystitis. The findings indicated that NMDAR in BSM was not essential for normal physiological or pathological bladder morphology and function, and MK801 improving pathological bladder function was not mediated by an action on NMDAR in BSM.
Collapse
Affiliation(s)
- Xiang Xie
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chuang Luo
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jia Yu Liang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Run Huang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jia Li Yang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Linlong Li
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - YangYang Li
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongming Xing
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Huan Chen
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
17
|
Xia N, Hua Y, Li J, Chen Y, Li X, Lin J, Xu H, Xie C, Wang X. 2-(2-Benzofuranyl)-2-Imidazoline Attenuates the Disruption of the Blood-Brain Barrier in EAE via NMDAR. Neurochem Res 2021; 46:1674-1685. [PMID: 33772673 DOI: 10.1007/s11064-021-03304-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Blood-brain barrier (BBB) disruption has been recognized as an early hallmark of multiple sclerosis (MS) pathology. Our previous studies have shown that 2-(2-Benzofuranyl)-2-imidazoline (2-BFI) protected against experimental autoimmune encephalomyelitis (EAE), a classic animal model of MS. However, the potential effects of 2-BFI on BBB permeability have not yet been evaluated in the context of EAE. Herein, we aimed to investigate the effect of 2-BFI on BBB permeability in both an animal model and an in vitro BBB model using TNF-α to imitate the inflammatory damage to the BBB in MS. In the animal model, 2-BFI reduced neurological deficits and BBB permeability in EAE mice compared with saline treatment. The Western blot results indicated that 2-BFI not only alleviated the loss of the tight junction protein occludin caused by EAE but also inhibited the activation of the NR1-ERK signaling pathway. In an in vitro BBB model, 2-BFI (100 μM) alleviated the TNF-α-induced increase in permeability and reduction in expression of occludin in monolayer bEnd.3 cells. Similar protective effects were also observed after treatment with the NMDAR antagonist MK801. The Western blot results showed that the TNF-α-induced BBB breakdown and increase in NMDAR subunit 1 (NR1) levels and ERK phosphorylation could be blocked by pretreatment with 2-BFI or MK801. However, no additional effect was observed on BBB permeability or the expression of occludin and p-ERK after pretreatment with both 2-BFI and MK801. Our study indicates that 2-BFI alleviates the disruption of BBB in the context of inflammatory injury similar to that of MS by targeting NMDAR1, as well as by likely activating the subsequent ERK signaling pathway. These results provide further evidence for 2-BFI as a potential drug for the treatment of MS.
Collapse
Affiliation(s)
- Niange Xia
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Yingjie Hua
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Jia Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Yanyan Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Xueying Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Jiahe Lin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Huiqin Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Chenglong Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Xinshi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China.
| |
Collapse
|
18
|
Wei M, Huang Q, Liu Z, Luo Y, Xia J. Intestinal Barrier Dysfunction Participates in the Pathophysiology of Ischemic Stroke. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:401-416. [PMID: 33749565 DOI: 10.2174/1871527320666210322115808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
The gastrointestinal tract is a major organ for the body to absorb nutrients, water and electrolytes. At the same time, it is a tight barrier to resist the invasion of harmful substances and maintain the homeostasis of the internal environment. Destruction of the intestinal barrier is linked to the digestive system, cardiovascular system, endocrine system and other systemic diseases. Mounting evidence suggests that ischemic stroke not only changes the intestinal microbes, but also increases the permeability of the intestinal barrier, leading to bacterial translocation, infection, and even sepsis. The intestinal barrier, as part of the gut-brain axis, has also been proven to participate in the pathophysiological process of ischemic stroke. However, little attention has been paid to it. Since ischemic stroke is a major public health issue worldwide, there is an urgent need to know more about the disease for better prevention, treatment and prognosis. Therefore, understanding the pathophysiological relationship between ischemic stroke and the intestinal barrier will help researchers further uncover the pathophysiological mechanism of ischemic stroke and provide a novel therapeutic target for the treatment of ischemic stroke. Here, we review the physiology and pathology between ischemic stroke and intestinal barrier based on related articles published in the past ten years about the relationship between ischemic stroke, stroke risk factors and intestinal flora, intestinal barrier, and discuss the following parts: the intestinal barrier; possible mechanisms of intestinal barrier destruction in ischemic stroke; intestinal barrier destruction caused by stroke-related risk factors; intestinal barrier dysfunction in ischemic stroke; targeting the intestinal barrier to improve stroke; conclusions and perspectives.
Collapse
Affiliation(s)
- Minping Wei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Qin Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Yunfang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| |
Collapse
|
19
|
Jouini N, Saied Z, Ben Sassi S, Nebli F, Messaoud T, Hentati F, Belal S. Impacts of Iron Metabolism Dysregulation on Alzheimer's Disease. J Alzheimers Dis 2021; 80:1439-1450. [PMID: 33682709 DOI: 10.3233/jad-201250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Iron plays an important role in maintaining cell survival, with normal iron trafficking known to be regulated by the ceruloplasmin-transferrin (Cp-Tf) antioxidant system. Disruption to this system is thought to be detrimental to normal brain function. OBJECTIVE To determine whether an imbalance of iron and the proteins involved in its metabolism (ceruloplasmin and transferrin) are linked to Alzheimer's disease (AD) and to the expression of amyloid-beta (Aβ) peptide 1-42 (Aβ1-42), which is a major species of Aβ, and the most toxic. METHODS We evaluated the concentrations of iron, calcium, magnesium, and Aβ1-42 in the cerebrospinal fluid (CSF) of patients with AD and cognitively normal controls. Correlations between the components of the Cp-Tf antioxidant system in plasma were studied to determine the role of peripheral blood in the onset and/or development of AD. We used commercial ELISA immunoassays to measure Aβ1-42, immunoturbidimetry to quantify ceruloplasmin and transferrin, and colorimetry to quantify iron, calcium, and magnesium. RESULTS We found that the AD group had lower CSF concentrations of Aβ1-42 (p < 0.001) and calcium (p < 0.001), but a higher CSF concentration of iron (p < 0.001). Significantly lower plasma concentrations of ceruloplasmin (p = 0.003), transferrin (mean, p < 0.001), and iron (p < 0.001) were observed in the AD group than in cognitively normal adults. Moreover, we found a strong interdependence between most of these components. CONCLUSION Iron dyshomeostasis has a crucial role in the onset of AD and/or its development. Correcting metal misdistribution is an appealing therapeutic strategy for AD.
Collapse
Affiliation(s)
- Najla Jouini
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Faculty of Medicine of Tunis, Neurosciences Department, University of Tunis El Manar, Tunis, Tunisia.,Biology Laboratory, Children's Hospital, Tunis, Tunisia.,Neurology Department, National Institute of Neurology, Tunis, Tunisia.,Current address: Institute of Technology, Tralee, Co. Kerry, Ireland
| | - Zakaria Saied
- Faculty of Medicine of Tunis, Neurosciences Department, University of Tunis El Manar, Tunis, Tunisia.,Neurology Department, National Institute of Neurology, Tunis, Tunisia
| | - Samia Ben Sassi
- Faculty of Medicine of Tunis, Neurosciences Department, University of Tunis El Manar, Tunis, Tunisia.,Neurology Department, National Institute of Neurology, Tunis, Tunisia
| | - Fatma Nebli
- Faculty of Medicine of Tunis, Neurosciences Department, University of Tunis El Manar, Tunis, Tunisia.,Neurology Department, National Institute of Neurology, Tunis, Tunisia
| | | | - Faycel Hentati
- Faculty of Medicine of Tunis, Neurosciences Department, University of Tunis El Manar, Tunis, Tunisia.,Neurology Department, National Institute of Neurology, Tunis, Tunisia
| | - Samir Belal
- Faculty of Medicine of Tunis, Neurosciences Department, University of Tunis El Manar, Tunis, Tunisia.,Neurology Department, National Institute of Neurology, Tunis, Tunisia
| |
Collapse
|
20
|
Ivan DC, Walthert S, Berve K, Steudler J, Locatelli G. Dwellers and Trespassers: Mononuclear Phagocytes at the Borders of the Central Nervous System. Front Immunol 2021; 11:609921. [PMID: 33746939 PMCID: PMC7973121 DOI: 10.3389/fimmu.2020.609921] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 01/02/2023] Open
Abstract
The central nervous system (CNS) parenchyma is enclosed and protected by a multilayered system of cellular and acellular barriers, functionally separating glia and neurons from peripheral circulation and blood-borne immune cells. Populating these borders as dynamic observers, CNS-resident macrophages contribute to organ homeostasis. Upon autoimmune, traumatic or neurodegenerative inflammation, these phagocytes start playing additional roles as immune regulators contributing to disease evolution. At the same time, pathological CNS conditions drive the migration and recruitment of blood-borne monocyte-derived cells across distinct local gateways. This invasion process drastically increases border complexity and can lead to parenchymal infiltration of blood-borne phagocytes playing a direct role both in damage and in tissue repair. While recent studies and technical advancements have highlighted the extreme heterogeneity of these resident and CNS-invading cells, both the compartment-specific mechanism of invasion and the functional specification of intruding and resident cells remain unclear. This review illustrates the complexity of mononuclear phagocytes at CNS interfaces, indicating how further studies of CNS border dynamics are crucially needed to shed light on local and systemic regulation of CNS functions and dysfunctions.
Collapse
|
21
|
Tawfik A, Mohamed R, Kira D, Alhusban S, Al-Shabrawey M. N-Methyl-D-aspartate receptor activation, novel mechanism of homocysteine-induced blood-retinal barrier dysfunction. J Mol Med (Berl) 2021; 99:119-130. [PMID: 33159240 PMCID: PMC7785674 DOI: 10.1007/s00109-020-02000-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/18/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
Elevated levels of amino acid homocysteine (Hcy) recognized as hyperhomocysteinemia (HHcy) was reported in several human visual disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Breakdown of blood-retinal barrier (BRB) is concomitant with vision loss in DR and AMD. We previously reported that HHcy alters BRB. Here, we tested the hypothesis that HHcy alters BRB via activation of N-methyl-D-aspartate receptor (NMDAR). Human retinal endothelial cells subjected to high level of Hcy and mouse model of HHcy were used. We injected Hcy intravitreal and used a mouse model of HHcy that lacks cystathionine-β-synthase (CBS). RT-PCR, western blot, and immunofluorescence showed that retinal endothelial cells (RECs) express NMDAR at the gene and protein levels both in vitro and in vivo and this was increased by HHcy. We assessed BRB function and retinal morphology using fluorescein angiogram and optical coherence tomography (OCT) under HHcy with and without pharmacological inhibition of NMDAR by (MK801) or in mice lacking endothelial NMDAR (NMDARE-/- mouse). Additionally, retinal albumin leakage and tight junction proteins ZO-1 and occludin were assessed by western blotting analysis. Inhibition or elimination of NMDAR was able to improve the altered retinal hyperpermeability and morphology under HHcy as indicated by significant decrease in retinal albumin leakage and restoration of tight junction proteins ZO-1 and occludin. Our findings underscore a potential role for endothelial NMDAR in mediating Hcy-induced breakdown of BRB and subsequently as a potential therapeutic target in retinal diseases associated with HHcy such as DR and AMD. KEY MESSAGES: • Elevated levels of homocysteine (Hcy) are defined as hyperhomocysteinemia (HHcy). • HHcy is implicated in diabetic retinopathy and age-related macular degeneration. • HHcy alters BRB via activation of N-methyl-D-aspartate receptor.
Collapse
Affiliation(s)
- Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA.
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA.
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA.
- Department of Ophthalmology, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA.
| | - Riyaz Mohamed
- Department of Physiology Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
| | - Dina Kira
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
| | - Suhib Alhusban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
- Department of Ophthalmology, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
22
|
Pan H, Steixner-Kumar AA, Seelbach A, Deutsch N, Ronnenberg A, Tapken D, von Ahsen N, Mitjans M, Worthmann H, Trippe R, Klein-Schmidt C, Schopf N, Rentzsch K, Begemann M, Wienands J, Stöcker W, Weissenborn K, Hollmann M, Nave KA, Lühder F, Ehrenreich H. Multiple inducers and novel roles of autoantibodies against the obligatory NMDAR subunit NR1: a translational study from chronic life stress to brain injury. Mol Psychiatry 2021; 26:2471-2482. [PMID: 32089545 PMCID: PMC8440197 DOI: 10.1038/s41380-020-0672-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/03/2022]
Abstract
Circulating autoantibodies (AB) of different immunoglobulin classes (IgM, IgA, and IgG), directed against the obligatory N-methyl-D-aspartate-receptor subunit NR1 (NMDAR1-AB), belong to the mammalian autoimmune repertoire, and appear with age-dependently high seroprevalence across health and disease. Upon access to the brain, they can exert NMDAR-antagonistic/ketamine-like actions. Still unanswered key questions, addressed here, are conditions of NMDAR1-AB formation/boosting, intraindividual persistence/course in serum over time, and (patho)physiological significance of NMDAR1-AB in modulating neuropsychiatric phenotypes. We demonstrate in a translational fashion from mouse to human that (1) serum NMDAR1-AB fluctuate upon long-term observation, independent of blood-brain barrier (BBB) perturbation; (2) a standardized small brain lesion in juvenile mice leads to increased NMDAR1-AB seroprevalence (IgM + IgG), together with enhanced Ig-class diversity; (3) CTLA4 (immune-checkpoint) genotypes, previously found associated with autoimmune disease, predispose to serum NMDAR1-AB in humans; (4) finally, pursuing our prior findings of an early increase in NMDAR1-AB seroprevalence in human migrants, which implicated chronic life stress as inducer, we independently replicate these results with prospectively recruited refugee minors. Most importantly, we here provide the first experimental evidence in mice of chronic life stress promoting serum NMDAR1-AB (IgA). Strikingly, stress-induced depressive-like behavior in mice and depression/anxiety in humans are reduced in NMDAR1-AB carriers with compromised BBB where NMDAR1-AB can readily reach the brain. To conclude, NMDAR1-AB may have a role as endogenous NMDAR antagonists, formed or boosted under various circumstances, ranging from genetic predisposition to, e.g., tumors, infection, brain injury, and stress, altogether increasing over lifetime, and exerting a spectrum of possible effects, also including beneficial functions.
Collapse
Affiliation(s)
- Hong Pan
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Agnes A. Steixner-Kumar
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anna Seelbach
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nadine Deutsch
- grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Anja Ronnenberg
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Daniel Tapken
- grid.5570.70000 0004 0490 981XDepartment of Biochemistry I–Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Nico von Ahsen
- grid.411984.10000 0001 0482 5331Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Marina Mitjans
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hans Worthmann
- grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ralf Trippe
- grid.5570.70000 0004 0490 981XDepartment of Biochemistry I–Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Christina Klein-Schmidt
- grid.5570.70000 0004 0490 981XDepartment of Biochemistry I–Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Nadine Schopf
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kristin Rentzsch
- Institute for Experimental Immunology, Euroimmun, Lübeck, Germany
| | - Martin Begemann
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Department of Psychiatry & Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Wienands
- grid.7450.60000 0001 2364 4210Institute for Cellular and Molecular Immunology, Georg August University, Göttingen, Germany
| | - Winfried Stöcker
- Institute for Experimental Immunology, Euroimmun, Lübeck, Germany
| | - Karin Weissenborn
- grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Michael Hollmann
- grid.5570.70000 0004 0490 981XDepartment of Biochemistry I–Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Klaus-Armin Nave
- grid.419522.90000 0001 0668 6902Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Fred Lühder
- grid.411984.10000 0001 0482 5331Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
23
|
Bicker J, Alves G, Fonseca C, Falcão A, Fortuna A. Repairing blood-CNS barriers: Future therapeutic approaches for neuropsychiatric disorders. Pharmacol Res 2020; 162:105226. [PMID: 33007420 DOI: 10.1016/j.phrs.2020.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Central nervous system (CNS) drug development faces significant difficulties that translate into high rates of failure and lack of innovation. The pathophysiology of neurological and psychiatric disorders often results in the breakdown of blood-CNS barriers, disturbing the CNS microenvironment and worsening disease progression. Therefore, restoring the integrity of blood-CNS barriers may have a beneficial influence in several CNS disorders and improve treatment outcomes. In this review, pathways that may be modulated to protect blood-CNS barriers from neuroinflammatory and oxidative insults are featured. First, the participation of the brain endothelium and glial cells in disruption processes is discussed. Then, the relevance of regulatory systems is analysed, specifically the hypothalamic-pituitary axis, the renin-angiotensin system, sleep and circadian rhythms, and glutamate neurotransmission. Lastly, compounds of endogenous and exogenous origin that are known to mediate the repair of blood-CNS barriers are presented. We believe that enhancing the protection of blood-CNS barriers is a promising therapeutic strategy to pursue in the future.
Collapse
Affiliation(s)
- Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| |
Collapse
|
24
|
Anfray A, Drieu A, Hingot V, Hommet Y, Yetim M, Rubio M, Deffieux T, Tanter M, Orset C, Vivien D. Circulating tPA contributes to neurovascular coupling by a mechanism involving the endothelial NMDA receptors. J Cereb Blood Flow Metab 2020; 40:2038-2054. [PMID: 31665952 PMCID: PMC7786842 DOI: 10.1177/0271678x19883599] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The increase of cerebral blood flow evoked by neuronal activity is essential to ensure enough energy supply to the brain. In the neurovascular unit, endothelial cells are ideally placed to regulate key neurovascular functions of the brain. Nevertheless, some outstanding questions remain about their exact role neurovascular coupling (NVC). Here, we postulated that the tissue-type plasminogen activator (tPA) present in the circulation might contribute to NVC by a mechanism dependent of its interaction with endothelial N-Methyl-D-Aspartate Receptor (NMDAR). To address this question, we used pharmacological and genetic approaches to interfere with vascular tPA-dependent NMDAR signaling, combined with laser speckle flowmetry, intravital microscopy and ultrafast functional ultrasound in vivo imaging. We found that the tPA present in the blood circulation is capable of potentiating the cerebral blood flow increase induced by the activation of the mouse somatosensorial cortex, and that this effect is mediated by a tPA-dependent activation of NMDAR expressed at the luminal part of endothelial cells of arteries. Although blood molecules, such as acetylcholine, bradykinin or ATP are known to regulate vascular tone and induce vessel dilation, our present data provide the first evidence that circulating tPA is capable of influencing neurovascular coupling (NVC).
Collapse
Affiliation(s)
- Antoine Anfray
- Normandie University, UNICAEN, INSERM, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Caen, France
| | - Antoine Drieu
- Normandie University, UNICAEN, INSERM, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Caen, France
| | - Vincent Hingot
- Institut Langevin, CNRS, INSERM, ESPCI Paris, PSL Research University, Paris, France
| | - Yannick Hommet
- Normandie University, UNICAEN, INSERM, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Caen, France
| | - Mervé Yetim
- Normandie University, UNICAEN, INSERM, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Caen, France
| | - Marina Rubio
- Normandie University, UNICAEN, INSERM, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Caen, France
| | - Thomas Deffieux
- Institut Langevin, CNRS, INSERM, ESPCI Paris, PSL Research University, Paris, France
| | - Mickael Tanter
- Institut Langevin, CNRS, INSERM, ESPCI Paris, PSL Research University, Paris, France
| | - Cyrille Orset
- Normandie University, UNICAEN, INSERM, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Caen, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Caen, France
- CHU Caen, Department of Clinical Research, Caen Normandie University Hospital, Avenue de la Côte de Nacre, Caen, France
- Denis Vivien, INSERM UMR-S U1237 “Physiopathology and Imaging of Neurological Disorders”, University Caen Normandie, GIP Cyceron, Bd Becquerel, BP5229, Caen 14074, France.
| |
Collapse
|
25
|
Liberale L, Bertolotto M, Minetti S, Contini P, Verzola D, Ameri P, Ghigliotti G, Pende A, Camici GG, Carbone F, Montecucco F. Recombinant Tissue Plasminogen Activator (r-tPA) Induces In-Vitro Human Neutrophil Migration via Low Density Lipoprotein Receptor-Related Protein 1 (LRP-1). Int J Mol Sci 2020; 21:7014. [PMID: 32977685 PMCID: PMC7582901 DOI: 10.3390/ijms21197014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023] Open
Abstract
Thrombolysis is the gold standard treatment for acute ischemic stroke. Besides its fibrinolytic role, recombinant tissue plasminogen activator (r-tPA) holds several non-fibrinolytic functions. Here, we investigated the potential role of r-tPA on human primary neutrophil migration in vitro. By means of modified Boyden chamber migration assay and checkerboard analysis we showed a dose-dependent chemotactic effect of r-TPA with a maximum effect reached by 0.03 mg/mL (0.003-1 mg/mL). Pre-incubation with MAP kinases inhibitors allowed the identification of PI3K/Akt, but not ERK1/2 as the intracellular pathway mediating the observed effects. Furthermore, by means of real-time PCR, immunocytochemistry and cytofluorimetry we demonstrated that the r-tPA receptor low density lipoprotein receptor-related protein 1 (LRP-1) is synthetized and expressed by neutrophils in response to r-tPA and TNF-α. Inhibition of LRP-1 by receptor-associated protein (RAP), prevented r-tPA-mediated F-actin polymerization, migration and signal through Akt but not ERK1/2. Lastly, also neutrophil degranulation in response to r-tPA seems to be mediated by LRP-1 under adhesion conditions. In conclusion, we show that r-tPA induces neutrophil chemotaxis through LRP-1/Akt pathway. Blunting r-tPA-mediated neutrophil activation might be beneficial as an adjuvant therapy to thrombolysis in this setting.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland; (L.L.); (G.G.C.)
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
| | - Maria Bertolotto
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
| | - Silvia Minetti
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
| | - Paola Contini
- Clinical Immunology, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy;
| | - Daniela Verzola
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy;
| | - Pietro Ameri
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
- Laboratory of Cardiovascular Biology, IRCCS Ospedale Policlinico San Martino & Department of Internal Medicine, University of Genoa, 16126 Genoa, Italy
| | - Giorgio Ghigliotti
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
- Laboratory of Cardiovascular Biology, IRCCS Ospedale Policlinico San Martino & Department of Internal Medicine, University of Genoa, 16126 Genoa, Italy
| | - Aldo Pende
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
- Clinic of Emergency Medicine, Department of Emergency Medicine, University of Genoa, 16126 Genoa, Italy
| | - Giovanni G. Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland; (L.L.); (G.G.C.)
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
| |
Collapse
|
26
|
Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction. Biomolecules 2020; 10:biom10081119. [PMID: 32751132 PMCID: PMC7463551 DOI: 10.3390/biom10081119] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Elevated plasma homocysteine (Hcy) level, known as hyperhomocysteinemia (HHcy) has been linked to different systemic and neurological diseases, well-known as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and has been identified as a risk factor for several ocular disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Different mechanisms have been proposed to explain HHcy-induced visual dysfunction, including oxidative stress, upregulation of inflammatory mediators, retinal ganglion cell apoptosis, and extracellular matrix remodeling. Our previous studies using in vivo and in vitro models of HHcy have demonstrated that Hcy impairs the function of both inner and outer blood retinal barrier (BRB). Dysfunction of BRB is a hallmark of vision loss in DR and AMD. Our findings highlighted oxidative stress, ER stress, inflammation, and epigenetic modifications as possible mechanisms of HHcy-induced BRB dysfunction. In addition, we recently reported HHcy-induced brain inflammation as a mechanism of blood–brain barrier (BBB) dysfunction and pathogenesis of Alzheimer’s disease (AD). Moreover, we are currently investigating the activation of glutamate receptor N-methyl-d-aspartate receptor (NMDAR) as the molecular mechanism for HHcy-induced BRB dysfunction. This review focuses on the studied effects of HHcy on BRB and the controversial role of HHcy in the pathogenesis of aging neurological diseases such as DR, AMD, and AD. We also highlight the possible mechanisms for such deleterious effects of HHcy.
Collapse
|
27
|
Barna L, Walter FR, Harazin A, Bocsik A, Kincses A, Tubak V, Jósvay K, Zvara Á, Campos-Bedolla P, Deli MA. Simvastatin, edaravone and dexamethasone protect against kainate-induced brain endothelial cell damage. Fluids Barriers CNS 2020; 17:5. [PMID: 32036791 PMCID: PMC7008534 DOI: 10.1186/s12987-019-0166-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/27/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Excitotoxicity is a central pathological pathway in many neurological diseases with blood-brain barrier (BBB) dysfunction. Kainate, an exogenous excitotoxin, induces epilepsy and BBB damage in animal models, but the direct effect of kainate on brain endothelial cells has not been studied in detail. Our aim was to examine the direct effects of kainate on cultured cells of the BBB and to test three anti-inflammatory and antioxidant drugs used in clinical practice, simvastatin, edaravone and dexamethasone, to protect against kainate-induced changes. METHODS Primary rat brain endothelial cell, pericyte and astroglia cultures were used to study cell viability by impedance measurement. BBB permeability was measured on a model made from the co-culture of the three cell types. The production of nitrogen monoxide and reactive oxygen species was followed by fluorescent probes. The mRNA expression of kainate receptors and nitric oxide synthases were studied by PCR. RESULTS Kainate damaged brain endothelial cells and made the immunostaining of junctional proteins claudin-5 and zonula occludens-1 discontinuous at the cell border indicating the opening of the barrier. The permeability of the BBB model for marker molecules fluorescein and albumin and the production of nitric oxide in brain endothelial cells were increased by kainate. Simvastatin, edaravone and dexamethasone protected against the reduced cell viability, increased permeability and the morphological changes in cellular junctions caused by kainate. Dexamethasone attenuated the elevated nitric oxide production and decreased the inducible nitric oxide synthase (NOS2/iNOS) mRNA expression increased by kainate treatment. CONCLUSION Kainate directly damaged cultured brain endothelial cells. Simvastatin, edaravone and dexamethasone protected the BBB model against kainate-induced changes. Our results confirmed the potential clinical usefulness of these drugs to attenuate BBB damage.
Collapse
Affiliation(s)
- Lilla Barna
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary.,Doctoral School in Biology, University of Szeged, Somogyi u. 4, Szeged, 6720, Hungary
| | - Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Alexandra Bocsik
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Vilmos Tubak
- Creative Laboratory Ltd., Temesvári krt. 62, Szeged, 6726, Hungary
| | - Katalin Jósvay
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ágnes Zvara
- Institute of Genetics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Patricia Campos-Bedolla
- Unidad de Investigacion Medica en Enfermedades Neurologicas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, 06720, Ciudad de México, DF, México
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary. .,Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
28
|
Nonionotropic Action of Endothelial NMDA Receptors on Blood-Brain Barrier Permeability via Rho/ROCK-Mediated Phosphorylation of Myosin. J Neurosci 2020; 40:1778-1787. [PMID: 31953371 DOI: 10.1523/jneurosci.0969-19.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/14/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Increase in blood-brain barrier (BBB) permeability is a crucial step in neuroinflammatory processes. We previously showed that N Methyl D Aspartate Receptor (NMDARs), expressed on cerebral endothelial cells forming the BBB, regulate immune cell infiltration across this barrier in the mouse. Here, we describe the mechanism responsible for the action of NMDARs on BBB permeabilization. We report that mouse CNS endothelial NMDARs display the regulatory GluN3A subunit. This composition confers to NMDARs' unconventional properties: these receptors do not induce Ca2+ influx but rather show nonionotropic properties. In inflammatory conditions, costimulation of human brain endothelial cells by NMDA agonists (NMDA or glycine) and the serine protease tissue plasminogen activator, previously shown to potentiate NMDAR activity, induces metabotropic signaling via the Rho/ROCK pathway. This pathway leads to an increase in permeability via phosphorylation of myosin light chain and subsequent shrinkage of human brain endothelial cells. Together, these data draw a link between NMDARs and the cytoskeleton in brain endothelial cells that regulates BBB permeability in inflammatory conditions.SIGNIFICANCE STATEMENT The authors describe how NMDARs expressed on endothelial cells regulate blood-brain barrier function via myosin light chain phosphorylation and increase in permeability. They report that these non-neuronal NMDARs display distinct structural, functional, and pharmacological features than their neuronal counterparts.
Collapse
|
29
|
Klinedinst BS, Pappas C, Le S, Yu S, Wang Q, Wang L, Allenspach-Jorn K, Mochel JP, Willette AA. Aging-related changes in fluid intelligence, muscle and adipose mass, and sex-specific immunologic mediation: A longitudinal UK Biobank study. Brain Behav Immun 2019; 82:396-405. [PMID: 31513875 PMCID: PMC7755032 DOI: 10.1016/j.bbi.2019.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Obesity in midlife and early late-life is associated with worse normal cognitive aging. Dual-energy X-ray absorptiometry (DEXA) suggests that visceral adipose mass (VAM) plays a predominant role, whereas non-visceral adipose mass (NVAM) and lean muscle mass (LMM) have shown conflicting relationships. It is unknown how longitudinal, cognitive changes in age-sensitive domains like fluid intelligence (FI) correspond to VAM, NVAM, and LMM in women and men. Furthermore, changes over time in blood leukocyte sub-populations may partially or fully account for sex-specific associations. METHODS Data on 4431 late middle-aged, cognitively unimpaired adults (mean = 64.5 y) was obtained from the UK Biobank prospective cohort across 22 centers. FI scores, blood leukocyte counts, and covariates (age, social class, education) were measured at three 2-year intervals over 6 years. DEXA collection overlapped with these intervals. Sex-stratified growth curves, structural equations, and Preacher-Hayes mediation were used to estimate direct and indirect effects. β-weights were standardized. RESULTS More LMM predicted gains in FI scores among women (β = 0.130, p < .001) and men (β = 0.089, p < .001). Conversely, more VAM and NVAM independently predicted FI decline equally among sexes (e.g., NVAM: women: β = -0.082, p < .001; men: β = -0.076, p < .001). Among women, FI associations were fully mediated by higher eosinophil counts via VAM (λ = 30.8%, p = .028) and lower lymphocyte counts via LMM (λ = 69.2%, p = .021). Among men, FI associations were partially mediated by lower basophils counts via LMM (λ = 4.5%, p = .042) and higher counts via VAM (λ = 50%, p = .037). CONCLUSION The proportion of LMM and VAM equally influenced male FI changes over 6 years, whereas higher LMM among women appeared to more strongly influence. FI changes. Leukocyte counts strongly mediated VAM- and LMM-related FI changes in a sex-specific manner, but not for NVAM. For clinical translation, exercise studies in older adults may benefit from assessing sex-specific values of DEXA-based tissue mass, FI, and leukocyte sub-populations to gauge potential cognitive benefits of less VAM and more LMM.
Collapse
Affiliation(s)
- Brandon S. Klinedinst
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA,Neuroscience Graduate Program, Iowa State University, Ames, IA, USA
| | - Colleen Pappas
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Scott Le
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA,Interdisciplinary Graduate Studies Program, Iowa State University, Ames, IA, USA
| | - Shan Yu
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Qian Wang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA,Neuroscience Graduate Program, Iowa State University, Ames, IA, USA
| | - Li Wang
- Department of Statistics, Iowa State University, Ames, IA, USA
| | | | | | - Auriel A. Willette
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA,Neuroscience Graduate Program, Iowa State University, Ames, IA, USA,Interdisciplinary Graduate Studies Program, Iowa State University, Ames, IA, USA,Department of Biomedical Sciences, Iowa State University, Ames, IA, USA,Department of Neurology, University of Iowa, Iowa City, USA,Send Correspondence to: Auriel A. Willette, 1109 HNSB, 2302 Osborn Drive, Ames, IA 50011-1078, Phone: (515) 294-3110,
| |
Collapse
|
30
|
Lu L, Hogan-Cann AD, Globa AK, Lu P, Nagy JI, Bamji SX, Anderson CM. Astrocytes drive cortical vasodilatory signaling by activating endothelial NMDA receptors. J Cereb Blood Flow Metab 2019; 39:481-496. [PMID: 29072857 PMCID: PMC6421257 DOI: 10.1177/0271678x17734100] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Astrocytes express neurotransmitter receptors that serve as sensors of synaptic activity and initiate signals leading to activity-dependent local vasodilation and increases in blood flow. We previously showed that arteriolar vasodilation produced by activation of cortical astrocytes is dependent on endothelial nitric oxide synthase (eNOS) and endogenous agonists of N-methyl-D-aspartate (NMDA) receptors. Here, we tested the hypothesis that these effects are mediated by NMDA receptors expressed by brain endothelial cells. Primary endothelial cultures expressed NMDA receptor subunits and produced nitric oxide in response to co-agonists, glutamate and D-serine. In cerebral cortex in situ, immunoelectron microscopy revealed that endothelial cells express the GluN1 NMDA receptor subunit at basolateral membrane surfaces in an orientation suitable for receiving intercellular messengers from brain cells. In cortical slices, activation of astrocytes by two-photon flash photolysis of a caged Ca2+ compound or application of a metabotropic glutamate receptor agonist caused endothelial NO generation and local vasodilation. These effects were mitigated by NMDA receptor antagonists and conditional gene silencing of endothelial GluN1, indicating at least partial dependence on endothelial NMDA receptors. Our observations identify a novel astrocyte-endothelial vasodilatory signaling axis that could contribute to endothelium-dependent vasodilation in brain functional hyperemia.
Collapse
Affiliation(s)
- Lingling Lu
- 1 Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba and Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, Canada
| | - Adam D Hogan-Cann
- 1 Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba and Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, Canada
| | - Andrea K Globa
- 2 Department of Cellular and Physiological Sciences and the Djavad Mowafaghian Center for Brain Health, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Ping Lu
- 1 Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba and Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, Canada
| | - James I Nagy
- 3 Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Shernaz X Bamji
- 2 Department of Cellular and Physiological Sciences and the Djavad Mowafaghian Center for Brain Health, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Christopher M Anderson
- 1 Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba and Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, Canada
| |
Collapse
|
31
|
Kuzmina US, Zainullina LF, Vakhitov VA, Bakhtiyarova KZ, Vakhitova YV. The role of glutamate in the pathogenesis of multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:160-167. [DOI: 10.17116/jnevro2019119081160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Jézéquel J, Johansson EM, Leboyer M, Groc L. Pathogenicity of Antibodies against NMDA Receptor: Molecular Insights into Autoimmune Psychosis. Trends Neurosci 2018; 41:502-511. [PMID: 29807730 DOI: 10.1016/j.tins.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/05/2018] [Accepted: 05/01/2018] [Indexed: 11/16/2022]
Abstract
Recent years have seen a flourishing literature on detection of circulating autoantibodies against neurotransmitter receptors in patients with neuropsychiatric disorders. These studies have generated hope for a better understanding of the underlying molecular dysfunctions and for appropriate therapeutic strategies. However, the detection of these autoantibodies in healthy subjects, and the lack of mechanistic insights have fostered debate about the pathogenic role of such autoantibodies. Here, we specifically discuss the biological evidence linking autoantibodies directed against the glutamatergic N-methyl-d-aspartate (NMDA) receptor (NMDAR-Abs) and psychosis, emphasising recent single-molecule imaging investigations that unveiled the impaired surface trafficking of NMDAR in the presence of NMDAR-Abs from psychotic patients. Although still in its infancy, the hypothesis that NMDAR-Abs from patients with psychosis play a pathogenic role is thus gaining support, opening avenues of fundamental and translational investigations.
Collapse
Affiliation(s)
- J Jézéquel
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France
| | - E M Johansson
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France
| | - M Leboyer
- University Paris Est Créteil, Psychiatry Department, Hopitaux Universitaires Henri Mondor, AP-HP, DHU PePSY, INSERM, U955, Créteil, France
| | - L Groc
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France.
| |
Collapse
|
33
|
Abstract
OBJECTIVES The efficacy of ketamine in relieving complex regional pain syndrome (CRPS) lacks predictive factors. The value of three-phase bone scintigraphy (TPBS) was assessed for this purpose. MATERIALS AND METHODS TPBS was performed in 105 patients with unilateral, focal CRPS of type 1 before 5 days of ketamine infusions. Tracer uptake was measured in the region of interest concerned by CRPS and the contralateral homologous region. For the 3 scintigraphic phases (vascular, tissular, and bone phases), an asymmetry ratio of fixation was calculated between the affected and the unaffected sides (vascular phase [VPr], tissular phase [TPr], and bone phase [BPr]). Ketamine efficacy was assessed on pain intensity scores. RESULTS Ketamine-induced pain relief did not correlate with VPr, TPr, and BPr, but with the ratios of these ratios: BPr/TPr (r=0.32, P=0.009), BPr/VPr (r=0.34, P=0.005), and TPr/VPr (r=0.23, P=0.02). The optimum cut-off value for predicting the response to ketamine therapy was >1.125 for BPr/TPr, >1.075 for BPr/VPr, and >0.935 for TPr/VPr. The combination of increased values of BPr/TPr, BPr/VPr, and TPr/VPr was highly significantly associated with ketamine therapy outcome. CONCLUSIONS The relative hyperfixation of the radioactive tracer in the limb region concerned by CRPS in phases 2 and 3 versus phase 1 of TPBS correlated positively to the analgesic efficacy of ketamine. This study shows for the first time the potential predictive value of TPBS regarding ketamine therapy outcome. In addition, these results suggest that the analgesic action of ketamine is not restricted to "central" mechanisms, but may also involve "peripheral" mechanisms related to tissue inflammation and bone remodeling.
Collapse
|
34
|
Dumas SJ, Bru-Mercier G, Courboulin A, Quatredeniers M, Rücker-Martin C, Antigny F, Nakhleh MK, Ranchoux B, Gouadon E, Vinhas MC, Vocelle M, Raymond N, Dorfmüller P, Fadel E, Perros F, Humbert M, Cohen-Kaminsky S. NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension. Circulation 2018; 137:2371-2389. [PMID: 29444988 DOI: 10.1161/circulationaha.117.029930] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/22/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Excessive proliferation and apoptosis resistance in pulmonary vascular cells underlie vascular remodeling in pulmonary arterial hypertension (PAH). Specific treatments for PAH exist, mostly targeting endothelial dysfunction, but high pulmonary arterial pressure still causes heart failure and death. Pulmonary vascular remodeling may be driven by metabolic reprogramming of vascular cells to increase glutaminolysis and glutamate production. The N-methyl-d-aspartate receptor (NMDAR), a major neuronal glutamate receptor, is also expressed on vascular cells, but its role in PAH is unknown. METHODS We assessed the status of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and controls through mass spectrometry imaging, Western blotting, and immunohistochemistry. We measured the glutamate release from cultured pulmonary vascular cells using enzymatic assays and analyzed NMDAR regulation/phosphorylation through Western blot experiments. The effect of NMDAR blockade on human pulmonary arterial smooth muscle cell proliferation was determined using a BrdU incorporation assay. We assessed the role of NMDARs in vascular remodeling associated to pulmonary hypertension, in both smooth muscle-specific NMDAR knockout mice exposed to chronic hypoxia and the monocrotaline rat model of pulmonary hypertension using NMDAR blockers. RESULTS We report glutamate accumulation, upregulation of the NMDAR, and NMDAR engagement reflected by increases in GluN1-subunit phosphorylation in the pulmonary arteries of human patients with PAH. Kv channel inhibition and type A-selective endothelin receptor activation amplified calcium-dependent glutamate release from human pulmonary arterial smooth muscle cell, and type A-selective endothelin receptor and platelet-derived growth factor receptor activation led to NMDAR engagement, highlighting crosstalk between the glutamate-NMDAR axis and major PAH-associated pathways. The platelet-derived growth factor-BB-induced proliferation of human pulmonary arterial smooth muscle cells involved NMDAR activation and phosphorylated GluN1 subunit localization to cell-cell contacts, consistent with glutamatergic communication between proliferating human pulmonary arterial smooth muscle cells via NMDARs. Smooth-muscle NMDAR deficiency in mice attenuated the vascular remodeling triggered by chronic hypoxia, highlighting the role of vascular NMDARs in pulmonary hypertension. Pharmacological NMDAR blockade in the monocrotaline rat model of pulmonary hypertension had beneficial effects on cardiac and vascular remodeling, decreasing endothelial dysfunction, cell proliferation, and apoptosis resistance while disrupting the glutamate-NMDAR pathway in pulmonary arteries. CONCLUSIONS These results reveal a dysregulation of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and identify vascular NMDARs as targets for antiremodeling treatments in PAH.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Calcium/pharmacology
- Cell Proliferation/drug effects
- Disease Models, Animal
- Dizocilpine Maleate/pharmacology
- Endothelin-1/pharmacology
- Glutamic Acid/metabolism
- Humans
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Potassium Channels, Voltage-Gated/metabolism
- Rats
- Receptors, Endothelin/chemistry
- Receptors, Endothelin/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Sébastien J Dumas
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Gilles Bru-Mercier
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Audrey Courboulin
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Marceau Quatredeniers
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Catherine Rücker-Martin
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Fabrice Antigny
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Morad K Nakhleh
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Benoit Ranchoux
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Elodie Gouadon
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Maria-Candida Vinhas
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Matthieu Vocelle
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Nicolas Raymond
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Peter Dorfmüller
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Elie Fadel
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Frédéric Perros
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Marc Humbert
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H.)
| | - Sylvia Cohen-Kaminsky
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.).
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| |
Collapse
|
35
|
Banjara M, Ghosh C, Dadas A, Mazzone P, Janigro D. Detection of brain-directed autoantibodies in the serum of non-small cell lung cancer patients. PLoS One 2017; 12:e0181409. [PMID: 28746384 PMCID: PMC5528996 DOI: 10.1371/journal.pone.0181409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/02/2017] [Indexed: 01/17/2023] Open
Abstract
Antibodies against brain proteins were identified in the plasma of cancer patients and are defined to cause paraneoplastic neurological syndromes. The profiles of brain-directed antibodies in non-small cell lung cancer (NSCLC) are largely unknown. Here, for the first time, we compared autoantibodies against brain proteins in NSCLC (n = 18) against those present in age-matched non-cancer control subjects (n = 18) with a similar life-style, habit, and medical history. Self-recognizing immunoglobulin (IgG) are primarily directed against cells in the cortex (P = 0.008), hippocampus (P = 0.003–0.05), and cerebellum (P = 0.02). More specifically, IgG targets were prominent in the pyramidal, Purkinje, and granule cell layers. Furthermore, autoimmune IgG signals were localized to neurons (81%), astrocytes (48%), and endothelial (29%) cells. While cancer sera yielded overall higher intensity signals, autoantigens of 100, 65, 45, 37, and 30 kDa molecular weights were the most represented. Additionally, a group of 100 kDa proteins seem more prevalent in female adenocarcinoma patients (4/5, 80%). In conclusion, our results revealed autoantigen specificity in NSCLC, which implicitly depends on patient’s demographics and disease history. Patients at risk for lung cancer but with no active disease revealed that the immune profile in NSCLC is disease-dependent.
Collapse
Affiliation(s)
- Manoj Banjara
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Chaitali Ghosh
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- * E-mail: (DJ); (CG)
| | - Aaron Dadas
- Department of Biomedical Engineering, Ohio State University, Columbus, OH, United States of America
| | - Peter Mazzone
- Respiratory Centre, Cleveland Clinic, Cleveland, OH, United States of America
| | - Damir Janigro
- Flocel Inc., Cleveland, OH, United States of America
- Department of Physiology, Case Western Reserve University, Cleveland, OH, United States of America
- * E-mail: (DJ); (CG)
| |
Collapse
|
36
|
Abstract
Neuronal survival, electrical signaling and synaptic activity require a well-balanced micro-environment in the central nervous system. This is achieved by the blood-brain barrier (BBB), an endothelial barrier situated in the brain capillaries, that controls near-to-all passage in and out of the brain. The endothelial barrier function is highly dependent on signaling interactions with surrounding glial, neuronal and vascular cells, together forming the neuro-glio-vascular unit. Within this functional unit, connexin (Cx) channels are of utmost importance for intercellular communication between the different cellular compartments. Connexins are best known as the building blocks of gap junction (GJ) channels that enable direct cell-cell transfer of metabolic, biochemical and electric signals. In addition, beyond their role in direct intercellular communication, Cxs also form unapposed, non-junctional hemichannels in the plasma membrane that allow the passage of several paracrine messengers, complementing direct GJ communication. Within the NGVU, Cxs are expressed in vascular endothelial cells, including those that form the BBB, and are eminent in astrocytes, especially at their endfoot processes that wrap around cerebral vessels. However, despite the density of Cx channels at this so-called gliovascular interface, it remains unclear as to how Cx-based signaling between astrocytes and BBB endothelial cells may converge control over BBB permeability in health and disease. In this review we describe available evidence that supports a role for astroglial as well as endothelial Cxs in the regulation of BBB permeability during development as well as in disease states.
Collapse
|
37
|
Maubert ME, Wigdahl B, Nonnemacher MR. Opinion: Inhibition of Blood-Brain Barrier Repair as a Mechanism in HIV-1 Disease. Front Neurosci 2017; 11:228. [PMID: 28491017 PMCID: PMC5405129 DOI: 10.3389/fnins.2017.00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Monique E Maubert
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| |
Collapse
|
38
|
Ehrenreich H. Autoantibodies against the N-Methyl-d-Aspartate Receptor Subunit NR1: Untangling Apparent Inconsistencies for Clinical Practice. Front Immunol 2017; 8:181. [PMID: 28298911 PMCID: PMC5331041 DOI: 10.3389/fimmu.2017.00181] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/08/2017] [Indexed: 12/31/2022] Open
Abstract
This viewpoint review provides an integrative picture of seemingly contradictory work published on N-methyl-d-aspartate receptor 1 (NMDAR1) autoantibodies (AB). Based on the present state of knowledge, it gives recommendations for the clinical decision process regarding immunosuppressive treatment. Brain antigen-directed AB in general and NMDAR1-AB in particular belong to a preexisting autoimmune repertoire of mammals including humans. Specific autoimmune reactive B cells may get repeatedly (perhaps transiently) boosted by various potential stimulants (e.g., microbiome, infections, or neoplasms) plus less efficiently suppressed over lifespan (gradual loss of tolerance), likely explaining the increasing seroprevalence upon aging (>20% NMDAR1-AB in 80-year-old humans). Pathophysiological significance emerges (I) when AB-specific plasma cells settle in the brain and produce large amounts of brain antigen-directed AB intrathecally and/or (II) in conditions of compromised blood–brain barrier (BBB), for instance, upon injury, infection, inflammation, or genetic predisposition (APOE4 haplotype), which then allows substantial access of circulating AB to the brain. Regarding NMDAR1-AB, functional effects on neurons in vitro and elicitation of brain symptoms in vivo have been demonstrated for immunoglobulin (Ig) classes, IgM, IgA, and IgG. Under conditions of brain inflammation, intrathecal production and class switch to IgG may provoke high NMDAR1-AB (and other brain antigen-directed AB) levels in cerebrospinal fluid (CSF) and serum, causing the severe syndrome named “anti-NMDAR encephalitis,” which then requires immunosuppressive therapy on top of the causal encephalitis treatment (if available). However, negative CSF NMDAR1-AB results cannot exclude chronic effects of serum NMDAR1-AB on the central nervous system, since the brain acts as “immunoprecipitator,” particularly in situations of compromised BBB. In any case of suspected symptomatic consequences of circulating AB directed against brain antigens, leakiness of the BBB should be evaluated by CSF analysis (albumin quotient as proxy) and magnetic resonance imaging before considering immunosuppression.
Collapse
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) , Göttingen , Germany
| |
Collapse
|
39
|
Lin CC, Yang AH, Lin ATL. Activation of the mTOR dependent signaling pathway underlies ketamine-induced uropathy. Neurourol Urodyn 2017; 36:1988-1995. [PMID: 28220552 DOI: 10.1002/nau.23234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/16/2016] [Accepted: 01/20/2017] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the pathogenic role of activation of the mammalian target of the rapamycin (mTOR) in the ketamine induced microvascular injury. METHODS Twenty-three patients with ketamine-induced cystitis (KC) and 16 control volunteers were recruited. Bladder tissues were obtained from both groups by cystoscopic biopsies. Phospho-S6 ribosomal protein (p-S6RP), an end product of the mTOR pathway, was stained in the urinary bladder from both groups. Endothelial cells of the urinary bladder (HBdMECs) were examined to investigate the in vitro activation of the mTOR pathway and the co-expression of the endothelial marker (cluster of differentiation 31 [CD31]) and the mesenchymal marker (fibroblast-specific protein 1 [FSP-1]). RESULTS Expression of p-S6RP increased significantly after ketamine exposure, especially in the vesical microvessels of KC patients. In HBdMECs treated with 100 µM Ketamine, time-dependent activation of the mTOR pathway occurred, with significantly increased levels of the phosphorylated forms of mTOR at 30 min and of S6RP and p70S6 kinase (p70S6K) at 6 h. The increased level of p-S6RP returned to baseline within 2 days after ketamine exposure. The co-expression of CD31 and FSP-1 implied that EndMT was present in HBdMECs at 7 days after ketamine treatment, while TGF-β1 facilitated significant up-regulation of FSP-1 at 1 day after treatment. Furthermore, when the mTOR inhibitor rapamycin was administered with ketamine to the HBdMECs, the expression of FSP-1 decreased significantly. CONCLUSIONS Ketamine induces activation of the mTOR pathway and subsequent mesenchymal phenotypic expression (FSP1) in HBdMECs.
Collapse
Affiliation(s)
- Chih-Chieh Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - An-Hang Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Pathology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Alex Tong-Long Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
40
|
Macrez R, Vivien D, Docagne F. [Role of endothelial NMDA receptors in a mouse model of multiple sclerosis]. Med Sci (Paris) 2017; 32:1068-1071. [PMID: 28044968 DOI: 10.1051/medsci/20163212008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Richard Macrez
- Normandie Univ, Unicaen, Inserm, physiopathology and imaging of neurological disorders (PhIND), boulevard Becquere, 14000 Caen, France
| | - Denis Vivien
- Normandie Univ, Unicaen, Inserm, physiopathology and imaging of neurological disorders (PhIND), boulevard Becquere, 14000 Caen, France - Service de biologie, délégation recherche clinique et innovation, centre hospitalier universitaire de Caen, 14000 Caen, France
| | - Fabian Docagne
- Normandie Univ, Unicaen, Inserm, physiopathology and imaging of neurological disorders (PhIND), boulevard Becquere, 14000 Caen, France
| |
Collapse
|
41
|
Leboyer M, Berk M, Yolken RH, Tamouza R, Kupfer D, Groc L. Immuno-psychiatry: an agenda for clinical practice and innovative research. BMC Med 2016; 14:173. [PMID: 27788673 PMCID: PMC5084344 DOI: 10.1186/s12916-016-0712-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The diagnostic scheme for psychiatric disorders is currently based purely on descriptive nomenclature given that biomarkers subtypes and clearly defined causal mechanisms are lacking for the vast majority of disorders. The emerging field of "immuno-psychiatry" has the potential to widen the exploration of a mechanism-based nosology, possibly leading to the discovery of more effective personalised treatment strategies. DISCUSSION Disturbances in immuno-inflammatory and related systems have been implicated in the aetiology, pathophysiology, phenomenology and comorbidity of several psychiatric disorders, including major mood disorders and schizophrenia. A fundamental challenge in their clinical management is to identify bio-signatures that might indicate risk, state, trait, prognosis or theragnosis. Here, we provide the rationale for a clinical and research agenda to refine future clinical practice and conceptual views, and to delineate pathways toward innovative treatment discovery. CONCLUSION The development of bio-signatures will allow clinicians to tailor interventions to the abovementioned biomarker subtypes - a major translational goal for research in this field.
Collapse
Affiliation(s)
- Marion Leboyer
- Psychiatry Department, University Paris-Est-Créteil, Mondor hospital, AP-HP, DHU PePSY, Translational Psychiatry laboratory, INSERM U955, Paris, France. .,Fondation FondaMental, Creteil, France. .,University of Bordeaux, UMR 5297, 33000, Bordeaux, France.
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre (Barwon Health), School of Medicine, Geelong, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Orygen, National Centre of Excellence for Youth Mental Health, Parkville, VIC, Australia.,Department of Psychiatry, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ryad Tamouza
- Fondation FondaMental, Creteil, France.,INSERM, U1160, Hôpital Saint Louis, Paris, F75010, France.,Laboratoire Jean Dausset, LabexTransplantex, Hôpital Saint Louis, Paris, F75010, France
| | - David Kupfer
- Departments of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laurent Groc
- Fondation FondaMental, Creteil, France. .,University of Bordeaux, UMR 5297, 33000, Bordeaux, France. .,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33077, Bordeaux, France.
| |
Collapse
|
42
|
Physiological Roles of Non-Neuronal NMDA Receptors. Trends Pharmacol Sci 2016; 37:750-767. [DOI: 10.1016/j.tips.2016.05.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 12/14/2022]
|
43
|
Lin CC, Lin ATL, Yang AH, Chen KK. Microvascular Injury in Ketamine-Induced Bladder Dysfunction. PLoS One 2016; 11:e0160578. [PMID: 27529746 PMCID: PMC4987039 DOI: 10.1371/journal.pone.0160578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/21/2016] [Indexed: 11/19/2022] Open
Abstract
The pathogenesis of ketamine-induced cystitis (KC) remains unclear. In this study, bladder microvascular injury was investigated as a possible contributing mechanism. A total of 36 KC patients with exposure to ketamine for more than 6 months, and 9 control subjects, were prospectively recruited. All participants completed questionnaires, including the O'Leary-Sant interstitial cystitis symptom index (ICSI) and the interstitial cystitis problem index (ICPI). All KC patients received a urodynamic study and radiological exams. Bladder tissues were obtained from cystoscopic biopsies in the control group and after hydrodistention in the KC group. Double-immunofluorescence staining of N-methyl-d-aspartate receptor subunit 1 (NMDAR1) and the endothelial marker, cluster of differentiation 31 (CD31), was performed to reveal the existence of NMDAR1 on the endothelium. Electron microscopy (EM) was applied to assess the microvascular change in the urinary bladder and to measure the thickening of the basement membrane (BM). A proximity ligation assay (PLA) was used to quantify the co-localization of the endothelial CD31 receptor and the mesenchymal marker [fibroblast-specific protein 1 (FSP-1)]. The Mann-Whitney U test and Spearman's correlation coefficient were used for statistical analysis. The mean ICSI [14.38 (± 4.16)] and ICPI [12.67 (± 3.54)] scores of the KC group were significantly higher than those (0 and 0, respectively) of the control group (both p < 0.001). The KC patients had decreasing cystometric bladder capacity (CBC) with a mean volume of 65.38 (± 48.67) mL. NMDAR1 was expressed on endothelial cells in both groups under immunofluorescence staining. Moreover, KC patients had significant BM duplication of microvessels in the mucosa of the urinary bladder under EM. The co-expression of the endothelial marker CD31 and mesenchymal marker FSP1 was significantly stained and calculated under PLA. In conclusion, microvascular injury and mesenchymal phenotypic alteration of endothelial cells can potentially contribute to KC-induced bladder dysfunction.
Collapse
Affiliation(s)
- Chih-Chieh Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Alex Tong-Long Lin
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - An-Hang Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Pathology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| | - Kuang-Kuo Chen
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
44
|
Macrez R, Stys PK, Vivien D, Lipton SA, Docagne F. Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities. Lancet Neurol 2016; 15:1089-102. [PMID: 27571160 DOI: 10.1016/s1474-4422(16)30165-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 12/22/2022]
Abstract
Research advances support the idea that excessive activation of the glutamatergic pathway plays an important part in the pathophysiology of multiple sclerosis. Beyond the well established direct toxic effects on neurons, additional sites of glutamate-induced cell damage have been described, including effects in oligodendrocytes, astrocytes, endothelial cells, and immune cells. Such toxic effects could provide a link between various pathological aspects of multiple sclerosis, such as axonal damage, oligodendrocyte cell death, demyelination, autoimmunity, and blood-brain barrier dysfunction. Understanding of the mechanisms underlying glutamate toxicity in multiple sclerosis could help in the development of new approaches for diagnosis, treatment, and follow-up in patients with this debilitating disease. While several clinical trials of glutamatergic modulators have had disappointing results, our growing understanding suggests that there is reason to remain optimistic about the therapeutic potential of these drugs.
Collapse
Affiliation(s)
| | - Peter K Stys
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Denis Vivien
- INSERM U919, University of Caen Normandy, Caen, France
| | - Stuart A Lipton
- Scintillon Institute San Diego, CA, USA; Scripps Research Institute, La Jolla, CA, USA; School of Mecicine, University of California, San Diego, CA, USA
| | | |
Collapse
|
45
|
Macrez R, Ortega MC, Bardou I, Mehra A, Fournier A, Van der Pol SMA, Haelewyn B, Maubert E, Lesept F, Chevilley A, de Castro F, De Vries HE, Vivien D, Clemente D, Docagne F. Neuroendothelial NMDA receptors as therapeutic targets in experimental autoimmune encephalomyelitis. Brain 2016; 139:2406-19. [PMID: 27435092 DOI: 10.1093/brain/aww172] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/02/2016] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis is among the most common causes of neurological disability in young adults. Here we provide the preclinical proof of concept of the benefit of a novel strategy of treatment for multiple sclerosis targeting neuroendothelial N-methyl-D-aspartate glutamate receptors. We designed a monoclonal antibody against N-methyl-D-aspartate receptors, which targets a regulatory site of the GluN1 subunit of N-methyl-D-aspartate receptor sensitive to the protease tissue plasminogen activator. This antibody reverted the effect of tissue plasminogen activator on N-methyl-D-aspartate receptor function without affecting basal N-methyl-D-aspartate receptor activity (n = 21, P < 0.01). This antibody bound N-methyl-D-aspartate receptors on the luminal surface of neurovascular endothelium in human tissues and in mouse, at the vicinity of tight junctions of the blood-spinal cord barrier. Noteworthy, it reduced human leucocyte transmigration in an in vitro model of the blood-brain barrier (n = 12, P < 0.05). When injected during the effector phase of MOG-induced experimental autoimmune encephalomyelitis (n = 24), it blocked the progression of neurological impairments, reducing cumulative clinical score (P < 0.001) and mean peak score (P < 0.001). This effect was observed in wild-type animals but not in tissue plasminogen activator knock-out animals (n = 10). This therapeutic effect was associated to a preservation of the blood-spinal cord barrier (n = 6, P < 0.001), leading to reduced leucocyte infiltration (n = 6, P < 0.001). Overall, this study unveils a critical function of endothelial N-methyl-D-aspartate receptor in multiple sclerosis, and highlights the therapeutic potential of strategies targeting the protease-regulated site of N-methyl-D-aspartate receptor.
Collapse
Affiliation(s)
- Richard Macrez
- 1 INSERM, INSERM-U919, Caen Cedex, F-14074 France 2 Universite' de Caen BasseNormandie, Caen Cedex, F-14074 France 3 GIP Cyceron, Caen, F-14074 France
| | - Maria C Ortega
- 4 Grupo de Grupo de Neurobiología del Desarrollo-GNDe. Hospital Nacional de Parapléjicos - Toledo, Spain
| | - Isabelle Bardou
- 1 INSERM, INSERM-U919, Caen Cedex, F-14074 France 2 Universite' de Caen BasseNormandie, Caen Cedex, F-14074 France 3 GIP Cyceron, Caen, F-14074 France
| | - Anupriya Mehra
- 1 INSERM, INSERM-U919, Caen Cedex, F-14074 France 2 Universite' de Caen BasseNormandie, Caen Cedex, F-14074 France 3 GIP Cyceron, Caen, F-14074 France
| | - Antoine Fournier
- 1 INSERM, INSERM-U919, Caen Cedex, F-14074 France 2 Universite' de Caen BasseNormandie, Caen Cedex, F-14074 France 3 GIP Cyceron, Caen, F-14074 France
| | - Susanne M A Van der Pol
- 5 Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, The Netherlands
| | - Benoit Haelewyn
- 6 Centre Universitaire de Ressources Biologiques, Université de Caen Basse-Normandie, Caen, France
| | - Eric Maubert
- 1 INSERM, INSERM-U919, Caen Cedex, F-14074 France 2 Universite' de Caen BasseNormandie, Caen Cedex, F-14074 France 3 GIP Cyceron, Caen, F-14074 France
| | - Flavie Lesept
- 1 INSERM, INSERM-U919, Caen Cedex, F-14074 France 2 Universite' de Caen BasseNormandie, Caen Cedex, F-14074 France 3 GIP Cyceron, Caen, F-14074 France
| | - Arnaud Chevilley
- 1 INSERM, INSERM-U919, Caen Cedex, F-14074 France 2 Universite' de Caen BasseNormandie, Caen Cedex, F-14074 France 3 GIP Cyceron, Caen, F-14074 France
| | - Fernando de Castro
- 4 Grupo de Grupo de Neurobiología del Desarrollo-GNDe. Hospital Nacional de Parapléjicos - Toledo, Spain 7 Grupo de Neurobiología del Desarrollo-GNDe. Instituto Cajal. CSIC - Madrid, Spain
| | - Helga E De Vries
- 5 Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, The Netherlands
| | - Denis Vivien
- 1 INSERM, INSERM-U919, Caen Cedex, F-14074 France 2 Universite' de Caen BasseNormandie, Caen Cedex, F-14074 France 3 GIP Cyceron, Caen, F-14074 France
| | - Diego Clemente
- 4 Grupo de Grupo de Neurobiología del Desarrollo-GNDe. Hospital Nacional de Parapléjicos - Toledo, Spain 8 Grupo de Neuroimmuno-reparación. Hospital Nacional de Parapléjicos - Toledo, Spain
| | - Fabian Docagne
- 1 INSERM, INSERM-U919, Caen Cedex, F-14074 France 2 Universite' de Caen BasseNormandie, Caen Cedex, F-14074 France 3 GIP Cyceron, Caen, F-14074 France
| |
Collapse
|
46
|
Sheng L, Wang L, Su M, Zhao X, Hu R, Yu X, Hong J, Liu D, Xu B, Zhu Y, Wang H, Hong F. Mechanism of TiO2 nanoparticle-induced neurotoxicity in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2016; 31:163-175. [PMID: 25059219 DOI: 10.1002/tox.22031] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/07/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
Zebrafish (Danio rerio) has been used historically for evaluating the toxicity of environmental and aqueous toxicants, and there is an emerging literature reporting toxic effects of manufactured nanoparticles (NPs) in zebrafish embryos. Few researches, however, are focused on the neurotoxicity on adult zebrafish after subchronic exposure to TiO2 NPs. This study was designed to evaluate the morphological changes, alterations of neurochemical contents, and expressions of memory behavior-related genes in zebrafish brains caused by exposures to 5, 10, 20, and 40 μg/L TiO2 NPs for 45 consecutive days. Our data indicated that spatial recognition memory and levels of norepinephrine, dopamine, and 5-hydroxytryptamine were significantly decreased and NO levels were markedly elevated, and over proliferation of glial cells, neuron apoptosis, and TiO2 NP aggregation were observed after low dose exposures of TiO2 NPs. Furthermore, the low dose exposures of TiO2 NPs significantly activated expressions of C-fos, C-jun, and BDNF genes, and suppressed expressions of p38, NGF, CREB, NR1, NR2ab, and GluR2 genes. These findings imply that low dose exposures of TiO2 NPs may result in the brain damages in zebrafish, provide a developmental basis for evaluating the neurotoxicity of subchronic exposure, and raise the caution of aquatic application of TiO2 NPs.
Collapse
Affiliation(s)
- Lei Sheng
- Medical College of Soochow University, Suzhou, 215123, China
| | - Ling Wang
- Libary of Soochow University, Suzhou, 215021, China
| | - Mingyu Su
- Medical College of Soochow University, Suzhou, 215123, China
- Suzhou Environmental Monitor Center, Suzhou, 215004, China
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou, 215123, China
| | - Renping Hu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaohong Yu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou, 215123, China
| | - Dong Liu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Bingqing Xu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Yunting Zhu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Han Wang
- Medical College of Soochow University, Suzhou, 215123, China
| | - Fashui Hong
- Medical College of Soochow University, Suzhou, 215123, China
| |
Collapse
|
47
|
Chen JT, Chen TG, Chang YC, Chen CY, Chen RM. Roles of NMDARs in maintenance of the mouse cerebrovascular endothelial cell-constructed tight junction barrier. Toxicology 2016; 339:40-50. [DOI: 10.1016/j.tox.2015.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/18/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
|
48
|
The plasminogen activation system in neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2015; 1862:395-402. [PMID: 26493446 DOI: 10.1016/j.bbadis.2015.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 01/30/2023]
Abstract
The plasminogen activation (PA) system consists in a group of proteases and protease inhibitors regulating the activation of the zymogen plasminogen into its proteolytically active form, plasmin. Here, we give an update of the current knowledge about the role of the PA system on different aspects of neuroinflammation. These include modification in blood-brain barrier integrity, leukocyte diapedesis, removal of fibrin deposits in nervous tissues, microglial activation and neutrophil functions. Furthermore, we focus on the molecular mechanisms (some of them independent of plasmin generation and even of proteolysis) and target receptors responsible for these effects. The description of these mechanisms of action may help designing new therapeutic strategies targeting the expression, activity and molecular mediators of the PA system in neurological disorders involving neuroinflammatory processes. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
|
49
|
Medial Septal NMDA Glutamate Receptors are Involved in Modulation of Blood Natural Killer Cell Activity in Rats. J Neuroimmune Pharmacol 2015; 11:121-32. [PMID: 26454750 DOI: 10.1007/s11481-015-9632-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/15/2015] [Indexed: 02/08/2023]
Abstract
The purpose of the present study was to determine the specific role of the medial septal (MS) NMDA glutamate receptors on peripheral blood natural killer cell cytotoxicity (NKCC) and their (large granular lymphocyte, LGL) number, as well as the plasma concentration of tumor necrosis factor α (TNF-α) and corticosterone in male Wistar rats exposed to elevated plus maze (EPM) stress or non-stress conditions. The NMDA groups were injected with NMDA glutamate receptor agonist (N-methyl-D-aspartate; 0.25 μg/rat), the D-AP7 group was injected with DL-2-amino-7-phosphoheptanoate (0.1 μg/rat), an antagonist of NMDA glutamate receptors, and the control Sal group with saline (0.5 μl/rat) via previously implanted cannulae into the MS. There was an increase in the NKCC, NK/LGL number and plasma TNF-α concentration after the NMDA injections, being much stronger within the rats under non-stress conditions rather than the rats exposed to EPM stress. These parameters were decreased in the D-AP7 rats, suggesting receptor/ion channel specificity. Moreover, a lower plasma corticosterone concentration within the NMDA rather than the Sal and D-AP7 groups was found. The obtained results suggest that activation of the NMDA glutamate receptors in the MS, accompanied by changes in the corticosterone and cytokine responses, may be involved in modulation of the blood natural anti-tumor response, under EPM stress and non-stress conditions.
Collapse
|
50
|
Macrez R, Vivien D, Docagne F. Letter by Macrez et al. Regarding Article, "Preexisting Serum Autoantibodies Against the NMDAR Subunit NR1 Modulate Evolution of Lesion Size in Acute Ischemic Stroke". Stroke 2015; 46:e177. [PMID: 26022638 DOI: 10.1161/strokeaha.115.009670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Richard Macrez
- Inserm, Inserm UMR-S U919, Serine Protease and Pathophysiology of the Neurovascular Unit, GIP Cyceron, University of Caen Lower-Normandy, Caen, France
| | - Denis Vivien
- Inserm, Inserm UMR-S U919, Serine Protease and Pathophysiology of the Neurovascular Unit, GIP Cyceron, University of Caen Lower-Normandy, Caen, France
| | - Fabian Docagne
- Inserm, Inserm UMR-S U919, Serine Protease and Pathophysiology of the Neurovascular Unit, GIP Cyceron, University of Caen Lower-Normandy, Caen, France
| |
Collapse
|