1
|
Lagostena L, Rotondo D, Gualandris D, Calisi A, Lorusso C, Magnelli V, Dondero F. Impact of Legacy Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) on GABA Receptor-Mediated Currents in Neuron-Like Neuroblastoma Cells: Insights into Neurotoxic Mechanisms and Health Implications. J Xenobiot 2024; 14:1771-1783. [PMID: 39584959 PMCID: PMC11587152 DOI: 10.3390/jox14040094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are persistent environmental pollutants, raising concerns due to their widespread presence and disruptive biological effects. These compounds are highly stable, allowing them to bioaccumulate in the environment and living organisms, potentially impacting critical physiological functions such as hormonal balance, immune response, and increasing cancer risk. Despite regulatory restrictions, their pervasive nature necessitates further research into their potential effects on cellular and neuronal function. This study first evaluated the cytotoxic effects of PFOS and PFOA on S1 neuroblastoma cells; a dose-dependent reduction in cell viability was revealed for PFOS, while PFOA exhibited minimal toxicity until millimolar concentrations. We further investigated their potential to modulate GABAergic neurotransmission using patch-clamp electrophysiology. Both PFOS and PFOA caused a significant but reversible reduction in GABA receptor-mediated currents following one-minute pre-treatment. These findings suggest that PFOS and PFOA can interfere with both cellular viability and GABAergic signaling, providing critical insights into their functional impacts and highlighting the need for further investigation into the long-term consequences of PFAS exposure on nervous system health.
Collapse
Affiliation(s)
| | - Davide Rotondo
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy; (D.R.); (D.G.); (A.C.); (C.L.); (V.M.)
| | - Davide Gualandris
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy; (D.R.); (D.G.); (A.C.); (C.L.); (V.M.)
| | - Antonio Calisi
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy; (D.R.); (D.G.); (A.C.); (C.L.); (V.M.)
| | - Candida Lorusso
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy; (D.R.); (D.G.); (A.C.); (C.L.); (V.M.)
| | - Valeria Magnelli
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy; (D.R.); (D.G.); (A.C.); (C.L.); (V.M.)
| | - Francesco Dondero
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy; (D.R.); (D.G.); (A.C.); (C.L.); (V.M.)
| |
Collapse
|
2
|
Hao Y, Xie B, Fu X, Xu R, Yang Y. New Insights into lncRNAs in Aβ Cascade Hypothesis of Alzheimer's Disease. Biomolecules 2022; 12:biom12121802. [PMID: 36551230 PMCID: PMC9775548 DOI: 10.3390/biom12121802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, but its pathogenesis is not fully understood, and effective drugs to treat or reverse the progression of the disease are lacking. Long noncoding RNAs (lncRNAs) are abnormally expressed and deregulated in AD and are closely related to the occurrence and development of AD. In addition, the high tissue specificity and spatiotemporal specificity make lncRNAs particularly attractive as diagnostic biomarkers and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in AD is essential for developing new treatment strategies. In this review, we discuss the unique regulatory functions of lncRNAs in AD, ranging from Aβ production to clearance, with a focus on their interaction with critical molecules. Additionally, we highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets in AD and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Yitong Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Bo Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoshu Fu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Rong Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
- Correspondence:
| |
Collapse
|
3
|
Li D, Zhang J, Li X, Chen Y, Yu F, Liu Q. Insights into lncRNAs in Alzheimer's disease mechanisms. RNA Biol 2021; 18:1037-1047. [PMID: 32605500 PMCID: PMC8216181 DOI: 10.1080/15476286.2020.1788848] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common dementia among the elderly. The pathophysiology of AD is characterized by two hallmarks: amyloid plaques, produced by amyloid β (Aβ) aggregation, and neurofibrillary tangle (NFT), produced by accumulation of phosphorylated tau. The regulatory roles of non-coding RNAs (ncRNAs), particularly long noncoding RNAs (lncRNAs), have been widely recognized in gene expression at the transcriptional and posttranscriptional levels. Mounting evidence shows that lncRNAs are aberrantly expressed in AD progression. Here, we review the lncRNAs that implicated in the regulation of Aβ peptide, tau, inflammation, cell death, and other aspects which are the main mechanisms of AD pathology. We also discuss the possible clinical or therapeutic utility of lncRNA detection or targeting to help diagnose or possibly combat AD.
Collapse
Affiliation(s)
- Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Juan Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Xiaohui Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Yuhua Chen
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Feng Yu
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Qiang Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
4
|
Efficacy of a Three Drug-Based Therapy for Neuroblastoma in Mice. Int J Mol Sci 2021; 22:ijms22136753. [PMID: 34201814 PMCID: PMC8268736 DOI: 10.3390/ijms22136753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
High-risk neuroblastoma (HR-NB) still remains the most dangerous tumor in early childhood. For this reason, the identification of new therapeutic approaches is of fundamental importance. Recently, we combined the conventional pharmacological approach to NB, represented by cisplatin, with fendiline hydrochloride, an inhibitor of several transporters involved in multidrug resistance of cancer cells, which demonstrated an enhancement of the ability of cisplatin to induce apoptosis. In this work, we co-administrated acetazolamide, a carbonic anhydrase isoform IX (CAIX) inhibitor which was reported to increase chemotherapy efficacy in various cancer types, to the cisplatin/fendiline approach in SKNBE2 xenografts in NOD-SCID mice with the aim of identifying a novel and more effective treatment. We observed that the combination of the three drugs increases more than twelvefold the differences in the cytotoxic activity of cisplatin alone, leading to a remarkable decrease of the expression of malignancy markers. Our conclusion is that this approach, based on three FDA-approved drugs, may constitute an appropriate improvement of the pharmacological approach to HR-NB.
Collapse
|
5
|
Baldini F, Calderoni M, Vergani L, Modesto P, Florio T, Pagano A. An Overview of Long Non-Coding (lnc)RNAs in Neuroblastoma. Int J Mol Sci 2021; 22:ijms22084234. [PMID: 33921816 PMCID: PMC8072620 DOI: 10.3390/ijms22084234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is a heterogeneous developmental tumor occurring in childhood, which arises from the embryonic sympathoadrenal cells of the neural crest. Although the recent progress that has been done on this tumor, the mechanisms involved in NB are still partially unknown. Despite some genetic aberrations having been identified, the sporadic cases represent the majority. Due to its wide heterogeneity in clinical behavior and etiology, NB represents a challenge in terms of prevention and treatment. Since a definitive therapy is lacking so far, there is an urgent necessity to unveil the molecular mechanisms behind NB onset and progression to develop new therapeutic approaches. Long non-coding RNAs (lncRNAs) are a group of RNAs longer than 200 nucleotides. Whether lncRNAs are destined to become a protein or not, they exert multiple biological functions such as regulating gene expression and functions. In recent decades, different research has highlighted the possible role of lncRNAs in the pathogenesis of many diseases, including cancer. Moreover, lncRNAs may represent potential markers or targets for diagnosis and treatment of diseases. This mini-review aimed to briefly summarize the most recent findings on the involvement of some lncRNAs in NB disease by focusing on their mechanisms of action and possible role in unveiling NB onset and progression.
Collapse
Affiliation(s)
- Francesca Baldini
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
| | - Matilde Calderoni
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences DISTAV, University of Genova, 16132 Genova, Italy;
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology-Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy;
| | - Tullio Florio
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Correspondence: ; Tel.: +39-010-5558213
| |
Collapse
|
6
|
Brizzolara A, Garbati P, Vella S, Calderoni M, Quattrone A, Tonini GP, Capasso M, Longo L, Barbieri R, Florio T, Pagano A. Co-Administration of Fendiline Hydrochloride Enhances Chemotherapeutic Efficacy of Cisplatin in Neuroblastoma Treatment. Molecules 2020; 25:molecules25225234. [PMID: 33182713 PMCID: PMC7698186 DOI: 10.3390/molecules25225234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Despite significant improvement of neuroblastoma (NB) patients’ survival due to recent treatment advancements in recent years, NB is still associated with high mortality rate. In search of novel strategies to increase NB’s susceptibility to pharmacological treatments, we investigated the in vitro and in vivo effects of fendiline hydrochloride as an enhancer of cisplatin antitumor activity. To assess the modulation of fendiline treatment on cisplatin responses, we used in vitro (evaluating NB cell proliferation by XCELLigence technology and colony formation, and gene expression by RT-PCR) and in vivo (NB cell grafts in NOD-SCID mice) models of NB. NB cell treatment with fendiline induced the expression of the ncRNA NDM29, leading to cell differentiation and to the reduction of the expression of MDRs/ABC transporters linked to multidrug resistance. These events were correlated to higher NB cell susceptibility to cisplatin and, consequently, increased its cytotoxic potency. In vivo, this drug interaction causes an enhanced ability of cisplatin to induce apoptosis in NB masses, resulting in tumor growth reduction and prolonged animal survival rate. Thus, the administration of fendiline might be a possible novel therapeutic approach to increase cisplatin efficacy in aggressive and poorly responsive NB cases.
Collapse
Affiliation(s)
| | - Patrizia Garbati
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
| | - Serena Vella
- Department of Laboratory Medicine and Advanced Biotechnologies, Institute of Hospitalization and Care of a Scientific Nature—Mediterranean Institute for Transplantation and Highly Specialized Therapies (IRCCS- ISMETT), 90127 Palermo, Italy;
- Anemocyte S.r.l., 21040 Gerenzano, Italy
| | - Matilde Calderoni
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy;
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Pediatric Research Institute, The “Città della Speranza” Foundation, 35128 Padua, Italy;
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80145 Naples, Italy;
- CEINGE Biotecnologie Avanzate, 80131 Naples, Italy
- SDN Research Institute Diagnostics and Nuclear, 80133 Naples, Italy
| | - Luca Longo
- Lung Cancer Unit, Division of Medical Oncology II, IRCCS San Martino Polyclinic Hospital, 16132 Genova, Italy;
| | - Raffaella Barbieri
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
| | - Tullio Florio
- IRCCS AOU San Martino Polyclinic Hospital, 16132 Genova, Italy; (A.B.); (T.F.)
- Department of Internal Medicine (DIMI), University of Genova, 16126 Genova, Italy
| | - Aldo Pagano
- IRCCS AOU San Martino Polyclinic Hospital, 16132 Genova, Italy; (A.B.); (T.F.)
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
- Correspondence: ; Tel.: +39-010-5558213
| |
Collapse
|
7
|
MCM2 and Carbonic Anhydrase 9 Are Novel Potential Targets for Neuroblastoma Pharmacological Treatment. Biomedicines 2020; 8:biomedicines8110471. [PMID: 33153038 PMCID: PMC7692293 DOI: 10.3390/biomedicines8110471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
To overcome the lack of effective pharmacological treatments for high-risk neuroblastoma (HR-NB), the development of novel in vitro and in vivo models that better recapitulate the disease is required. Here, we used an in vitro multiclonal cell model encompassing NB cell differentiation stages, to identify potential novel pharmacological targets. This model allowed us to identify, by low-density RT-PCR arrays, two gene sets, one over-expressed during NB cell differentiation, and the other up-regulated in more malignant cells. Challenging two HR-NB gene expression datasets, we found that these two gene sets are related to high and low survival, respectively. Using mouse NB cisplatin-treated xenografts, we identified two genes within the list associated to the malignant stage (MCM2 and carbonic anhydrase 9), whose expression is positively correlated with tumor growth. Thus, we tested their pharmacological targeting as potential therapeutic strategy. We measured mice survival and tumor growth rate after xenografts of human NB treated with cisplatin in the presence of MCM2/carbonic anhydrase 9 inhibitors (ciprofloxacin and acetazolamide). MCM2 or carbonic anhydrase 9 inhibition significantly increased cisplatin activity, supporting their possible testing for NB therapy.
Collapse
|
8
|
Medoro A, Bartollino S, Mignogna D, Marziliano N, Porcile C, Nizzari M, Florio T, Pagano A, Raimo G, Intrieri M, Russo C. Proteases Upregulation in Sporadic Alzheimer's Disease Brain. J Alzheimers Dis 2020; 68:931-938. [PMID: 30814362 DOI: 10.3233/jad-181284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Certain proteases are involved in Alzheimer's disease (AD) and their erroneous control may contribute to the pathology onset and progression. In this study we evaluated the cerebral expression of eight proteases, involved in both AβPP processing and extracellular matrix remodeling. Among these proteases, ADAM10, ADAMTS1, Cathepsin D, and Meprin β show a significantly higher mRNAs expression in sporadic AD subjects versus controls, while ADAMTS1, Cathepsin D, and Meprin β show an increment also at the protein level. These data indicate that transcriptional events affecting brain proteases are activated in AD patients, suggesting a link between proteolysis and AD.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Nicola Marziliano
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.,Clinical Pathology Laboratory, ASL Taranto, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Gennaro Raimo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
9
|
Wu J, Liu C, Liu Z, Li S, Li D, Liu S, Huang X, Liu S, Yukawa Y. Pol III-Dependent Cabbage BoNR8 Long ncRNA Affects Seed Germination and Growth in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:421-435. [PMID: 30462304 DOI: 10.1093/pcp/pcy220] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/02/2018] [Indexed: 05/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts longer than 200 nt that are distributed widely in organisms and play many physiological roles. The BoNR8 lncRNA is a 272 nt long transcript yielded by RNA polymerase III in cabbage that was identified as the closest homolog of the AtR8 lncRNA in Arabidopsis. The BoNR8 lncRNA was expressed extensively in the epidermal tissue in the root elongation zone of germinated seeds, and its accumulation was induced by abiotic stresses, auxins and ABA. To investigate the correlation between the BoNR8 lncRNA and germination, BoNR8-overexpressing Arabidopsis plants (BoNR8-AtOX) were prepared. Three independent BoNR8-AtOX lines showed less primary root elongation, incomplete silique development and decreased germination rates. The germination efficiencies were affected strongly by ABA and slightly by salt stress, and ABA-related gene expression was changed in the BoNR8-AtOX lines.
Collapse
Affiliation(s)
- Juan Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, PR, Harbin, China
| | - Chunxiao Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Ziguang Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, PR, Harbin, China
| | - Shuang Li
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Dandan Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Shengyi Liu
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaoqing Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - ShenKui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Lin'an, Hangzhou, China
| | - Yasushi Yukawa
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
10
|
Relationship between long non-coding RNAs and Alzheimer's disease: a systematic review. Pathol Res Pract 2018; 215:12-20. [PMID: 30470438 DOI: 10.1016/j.prp.2018.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 01/30/2023]
Abstract
Alzheimer disease (AD), is a typical progressive and destructive neurodegenerative disease. It is the leading cause of senile dementia that is mainly represented as neurocognitive symptoms, including progressive memory impairment, cognitive disorder, personality change and language barrier, etc. The pathogeny and nosogenesis of AD have not been clearly explained. AD is characterized by extracellular senile plaques (SP) formed by beta amyloid (Aβ) deposition and neurofibrillary tangles in neuronal cells formed by hyperphosphorylation of tau, as well as the deficiency of neuronal with gliosis. However, the complete spectrum of regulating factors in molecular level that affect the pathogenesis of AD is unclear. Long non-coding RNAs (lncRNAs) are involved in numerous neurodegenerative diseases, such as Parkinson's disease (PD) and AD. It is increasingly recognized that lncRNAs is tightly related to the pathogenesis and prevention and cure of AD. In the review, we highlighted the roles of lncRNAs in AD pathways and discussed increasing interest in targeting and regulating lncRNAs for the therapeutics of AD.
Collapse
|
11
|
Kim C, Kang D, Lee EK, Lee JS. Long Noncoding RNAs and RNA-Binding Proteins in Oxidative Stress, Cellular Senescence, and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2062384. [PMID: 28811863 PMCID: PMC5547732 DOI: 10.1155/2017/2062384] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/27/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
Cellular senescence is a complex biological process that leads to irreversible cell-cycle arrest. Various extrinsic and intrinsic insults are associated with the onset of cellular senescence and frequently accompany genomic or epigenomic alterations. Cellular senescence is believed to contribute to tumor suppression, immune response, and tissue repair as well as aging and age-related diseases. Long noncoding RNAs (lncRNAs) are >200 nucleotides long, poorly conserved, and transcribed in a manner similar to that of mRNAs. They are tightly regulated during various cellular and physiological processes. Although many lncRNAs and their functional roles are still undescribed, the importance of lncRNAs in a variety of biological processes is widely recognized. RNA-binding proteins (RBPs) have a pivotal role in posttranscriptional regulation as well as in mRNA transport, storage, turnover, and translation. RBPs interact with mRNAs, other RBPs, and noncoding RNAs (ncRNAs) including lncRNAs, and they are involved in the regulation of a broad spectrum of cellular processes. Like other cell fate regulators, lncRNAs and RBPs, separately or cooperatively, are implicated in initiation and maintenance of cellular senescence, aging, and age-related diseases. Here, we review the current understanding of both lncRNAs and RBPs and their association with oxidative stress, senescence, and age-related diseases.
Collapse
Affiliation(s)
- Chongtae Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, Republic of Korea
| | - Donghee Kang
- Department of Molecular Medicine and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, Republic of Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea
| |
Collapse
|
12
|
PPAR Gamma in Neuroblastoma: The Translational Perspectives of Hypoglycemic Drugs. PPAR Res 2016; 2016:3038164. [PMID: 27799938 PMCID: PMC5069360 DOI: 10.1155/2016/3038164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma (NB) is the most common and aggressive pediatric cancer, characterized by a remarkable phenotypic diversity and high malignancy. The heterogeneous clinical behavior, ranging from spontaneous remission to fatal metastatic disease, is attributable to NB biology and genetics. Despite major advances in therapies, NB is still associated with a high morbidity and mortality. Thus, novel diagnostic, prognostic, and therapeutic approaches are required, mainly to improve treatment outcomes of high-risk NB patients. Among neuroepithelial cancers, NB is the most studied tumor as far as PPAR ligands are concerned. PPAR ligands are endowed with antitumoral effects, mainly acting on cancer stem cells, and constitute a possible add-on therapy to antiblastic drugs, in particular for NB with unfavourable prognosis. While discussing clinical background, this review will provide a synopsis of the major studies about PPAR expression in NB, focusing on the potential beneficial effects of hypoglycemic drugs, thiazolidinediones and metformin, to reduce the occurrence of relapses as well as tumor regrowth in NB patients.
Collapse
|
13
|
Alloisio S, Garbati P, Viti F, Dante S, Barbieri R, Arnaldi G, Petrelli A, Gigoni A, Giannoni P, Quarto R, Nobile M, Vassalli M, Pagano A. Generation of a Functional Human Neural Network by NDM29 Overexpression in Neuroblastoma Cancer Cells. Mol Neurobiol 2016; 54:6097-6106. [PMID: 27699601 DOI: 10.1007/s12035-016-0161-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/23/2016] [Indexed: 11/28/2022]
Abstract
Recent advances in life sciences suggest that human and rodent cell responses to stimuli might differ significantly. In this context, the results achieved in neurotoxicology and biomedical research practices using neural networks obtained from mouse or rat primary culture of neurons would benefit of the parallel evaluation of the same parameters using fully differentiated neurons with a human genetic background, thus emphasizing the current need of neuronal cells with human origin. In this work, we developed a human functionally active neural network derived by human neuroblastoma cancer cells genetically engineered to overexpress NDM29, a non-coding RNA whose increased synthesis causes the differentiation toward a neuronal phenotype. These cells are here analyzed accurately showing functional and morphological traits of neurons such as the expression of neuron-specific proteins and the possibility to generate the expected neuronal current traces and action potentials. Their morphometrical analysis is carried out by quantitative phase microscopy showing soma and axon sizes compatible with those of functional neurons. The ability of these cells to connect autonomously forming physical junctions recapitulates that of hippocampal neurons, as resulting by connect-ability test. Lastly, these cells self-organize in neural networks able to produce spontaneous firing, in which spikes can be clustered in bursts. Altogether, these results show that the neural network obtained by NDM29-dependent differentiation of neuroblastoma cells is a suitable tool for biomedical research practices.
Collapse
Affiliation(s)
- Susanna Alloisio
- ETT Spa, via Sestri 37, 16154, Genoa, Italy.,National Research Council, Institute of Biophysics, via De Marini 6, 16149, Genoa, Italy
| | | | - Federica Viti
- National Research Council, Institute of Biophysics, via De Marini 6, 16149, Genoa, Italy
| | - Silvia Dante
- Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | | | - Giovanni Arnaldi
- IRCCS-AOU San Martino-IST, Genova, Italy.,Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Alessia Petrelli
- Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Arianna Gigoni
- IRCCS-AOU San Martino-IST, Genova, Italy.,Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Paolo Giannoni
- Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Rodolfo Quarto
- IRCCS-AOU San Martino-IST, Genova, Italy.,Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Mario Nobile
- National Research Council, Institute of Biophysics, via De Marini 6, 16149, Genoa, Italy
| | - Massimo Vassalli
- National Research Council, Institute of Biophysics, via De Marini 6, 16149, Genoa, Italy
| | - Aldo Pagano
- IRCCS-AOU San Martino-IST, Genova, Italy. .,Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| |
Collapse
|
14
|
Sabitha KR, Sanjay D, Savita B, Raju TR, Laxmi TR. Electrophysiological characterization of Nsc-34 cell line using Microelectrode Array. J Neurol Sci 2016; 370:134-139. [PMID: 27772743 DOI: 10.1016/j.jns.2016.09.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022]
Abstract
Neurons communicate with each other through intricate network to evolve higher brain functions. The electrical activity of the neurons plays a crucial role in shaping the connectivity. With motor neurons being vulnerable to neurodegenerative diseases, understanding the electrophysiological properties of motor neurons is the need of the hour, in order to comprehend the impairment of connectivity in these diseases. NSC-34 cell line serves as an excellent model to study the properties of motor neurons as they express Choline acetyltransferase (ChAT). Although NSC-34 cell lines have been used to study the effect of various toxicological, neurotrophic and neuroprotective agents, the electrical activity of these cells has not been elucidated. In the current study, we have characterized the electrophysiological properties of NSC-34 cell lines using Micro-Electrode Array (MEA) as a tool. Based on the spike waveform, firing frequency, auto- and cross-correlogram analysis, we demonstrate that NSC-34 cell culture has >2 distinct types of neuronal population: principal excitatory neurons, putative interneurons and unclassified neurons. The presence of interneurons in the NSC-34 culture was characterized by increased expression of GAD-67 markers. Thus, finding an understanding of the electrophysiological properties of different population of neurons in NSC-34 cell line, will have multiple applications in the treatment of neurological disorders.
Collapse
Affiliation(s)
- K R Sabitha
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - D Sanjay
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - B Savita
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - T R Laxmi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru 560 029, India.
| |
Collapse
|
15
|
Gigoni A, Costa D, Gaetani M, Tasso R, Villa F, Florio T, Pagano A. Down-regulation of 21A Alu RNA as a tool to boost proliferation maintaining the tissue regeneration potential of progenitor cells. Cell Cycle 2016; 15:2420-30. [PMID: 27494068 DOI: 10.1080/15384101.2016.1181242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
21A is an Alu non-coding (nc) RNA transcribed by RNA polymerase (pol) III. While investigating the biological role of 21A ncRNA we documented an inverse correlation between its expression level and the rate of cell proliferation. The downregulation of this ncRNA not only caused a boost in cell proliferation, but was also associated to a transient cell dedifferentiation, suggesting a possible involvement of this RNA in cell dedifferentiation/reprogramming. In this study, we explored the possibility to enhance proliferation and dedifferentiation of cells of interest, by 21A down-regulation, using a mixture of chemically modified Anti-21A RNAs. Our results confirmed the validity of this approach that allows the amplification of specific cell populations, in a controlled manner and without inducing permanent effects. In addition to induce cell proliferation, the procedure did not decrease the tissue regeneration potential of progenitor cells in two different cell systems.
Collapse
Affiliation(s)
- Arianna Gigoni
- a Dept. of Experimental Medicine (DIMES) , University of Genova , Genova , Italy
| | | | - Massimiliano Gaetani
- c ISMETT, Mediterranean Institute for Transplantation and Advanced Specialized Therapies , Palermo , Italy.,d Ri.MED Foundation , Palermo , Italy
| | - Roberta Tasso
- a Dept. of Experimental Medicine (DIMES) , University of Genova , Genova , Italy.,b IRCCS-AOU San Martino-IST , Genova , Italy
| | - Federico Villa
- a Dept. of Experimental Medicine (DIMES) , University of Genova , Genova , Italy
| | - Tullio Florio
- e Sect. of Pharmacology, Dept. of Internal Medicine (DiMI) and Center of Excellence for Biomedical Research (CEBR), University of Genova , Genova , Italy
| | - Aldo Pagano
- a Dept. of Experimental Medicine (DIMES) , University of Genova , Genova , Italy.,b IRCCS-AOU San Martino-IST , Genova , Italy
| |
Collapse
|
16
|
Perhexiline maleate enhances antitumor efficacy of cisplatin in neuroblastoma by inducing over-expression of NDM29 ncRNA. Sci Rep 2015; 5:18144. [PMID: 26674674 PMCID: PMC4682181 DOI: 10.1038/srep18144] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/11/2015] [Indexed: 01/02/2023] Open
Abstract
High Risk Neuroblastoma (HR-NB) is a pediatric cancer characterized by high malignancy and remarkable cell heterogeneity within the tumour nodules. In a recent study, we demonstrated that in vitro and in vivo over-expression of the non-coding RNA NDM29 (neuroblastoma differentiation marker 29) induces NB cell differentiation, dramatically reducing their malignancy. Among gene expression changes, differentiated phenotype induced by NDM29 is characterized by decrease of the expression of ABC transporters responsible for anticancer drug resistance. Thus, the pharmacological induction of NDM29, in principle, might represent a possible novel strategy to increase cytotoxic drug responses. In this work, we identify a small molecule able to induce the expression of NDM29 in NB cells, conferring to malignant cells increased susceptibility to cisplatin cytotoxic effects. We demonstrate that the pharmacological induction of NDM29 expression in vivo enhances the antitumoral effects of chemotherapy specifically on tumour initiating/cancer stem cells sub-population, usually refractory to therapies and responsible for tumour relapse. In summary, we suggest a novel therapeutical approach possibly useful to treat very aggressive NB cases with poor prognosis. This novel pharmacological strategy aims to promote differentiation of “stem-like” cells to render them more susceptible to the killing action of cytotoxic anticancer drugs.
Collapse
|
17
|
Smalheiser NR. The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0504. [PMID: 25135965 PMCID: PMC4142025 DOI: 10.1098/rstb.2013.0504] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
If mRNAs were the only RNAs made by a neuron, there would be a simple mapping of mRNAs to proteins. However, microRNAs and other non-coding RNAs (ncRNAs; endo-siRNAs, piRNAs, BC1, BC200, antisense and long ncRNAs, repeat-related transcripts, etc.) regulate mRNAs via effects on protein translation as well as transcriptional and epigenetic mechanisms. Not only are genes ON or OFF, but their ability to be translated can be turned ON or OFF at the level of synapses, supporting an enormous increase in information capacity. Here, I review evidence that ncRNAs are expressed pervasively within dendrites in mammalian brain; that some are activity-dependent and highly enriched near synapses; and that synaptic ncRNAs participate in plasticity responses including learning and memory. Ultimately, ncRNAs can be viewed as the post-it notes of the neuron. They have no literal meaning of their own, but derive their functions from where (and to what) they are stuck. This may explain, in part, why ncRNAs differ so dramatically from protein-coding genes, both in terms of the usual indicators of functionality and in terms of evolutionary constraints. ncRNAs do not appear to be direct mediators of synaptic transmission in the manner of neurotransmitters or receptors, yet they orchestrate synaptic plasticity—and may drive species-specific changes in cognition.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
18
|
Costa D, Gigoni A, Würth R, Cancedda R, Florio T, Pagano A. Metformin inhibition of neuroblastoma cell proliferation is differently modulated by cell differentiation induced by retinoic acid or overexpression of NDM29 non-coding RNA. Cancer Cell Int 2014; 14:59. [PMID: 25120382 PMCID: PMC4128937 DOI: 10.1186/1475-2867-14-59] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/04/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Metformin is a widely used oral hypoglycemizing agent recently proposed as potential anti-cancer drug. In this study we report the antiproliferative effect of metformin treatment in a high risk neuroblastoma cell model, focusing on possible effects associated to different levels of differentiation and/or tumor initiating potential. METHODS Antiproliferative and cytotoxic effects of metformin were tested in human SKNBE2 and SH-SY5Y neuroblastoma cell lines and in SKNBE2 cells in which differentiation is induced by retinoic acid treatment or stable overexpression of NDM29 non-coding RNA, both conditions characterized by a neuron-like differentiated phenotype. RESULTS We found that metformin significantly inhibits the proliferation of NB cells, an effect that correlates with the inhibition of Akt, while AMPK activity resulted unchanged. Notably, metformin effects were modulated in a different ways by differentiating stimuli, being abolished after retinoic acid treatment but potentiated by overexpression of NDM29. CONCLUSION These data suggest the efficacy of metformin as neuroblastoma anticancer agent, and support the requirement of further studies on the possible role of the differentiation status on the antiproliferative effects of this drug.
Collapse
Affiliation(s)
- Delfina Costa
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy ; IRCCS-AOU San Martino-IST, Genova, Italy
| | - Arianna Gigoni
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy ; IRCCS-AOU San Martino-IST, Genova, Italy
| | - Roberto Würth
- Internal Medicine (DIMI), University of Genova, Genova, Italy
| | - Ranieri Cancedda
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy ; IRCCS-AOU San Martino-IST, Genova, Italy
| | - Tullio Florio
- Internal Medicine (DIMI), University of Genova, Genova, Italy ; Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Aldo Pagano
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy ; IRCCS-AOU San Martino-IST, Genova, Italy
| |
Collapse
|
19
|
Gavazzo P, Vassalli M, Costa D, Pagano A. Novel ncRNAs transcribed by Pol III and elucidation of their functional relevance by biophysical approaches. Front Cell Neurosci 2013; 7:203. [PMID: 24223537 PMCID: PMC3819595 DOI: 10.3389/fncel.2013.00203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/17/2013] [Indexed: 11/25/2022] Open
Abstract
In the last decade the role of non coding (nc) RNAs in neurogenesis and in the onset of neurological diseases has been assessed by a multitude of studies. In this scenario, approximately 30 small RNA polymerase (pol) III-dependent ncRNAs were recently identified by computational tools and proposed as regulatory elements. The function of several of these transcripts was elucidated in vitro and in vivo confirming their involvement in cancer and in metabolic and neurodegenerative disorders. Emerging biophysical technologies together with the introduction of a physical perspective have been advantageous in regulatory RNA investigation providing original results on: (a) the differentiation of neuroblastoma (NB) cells towards a neuron-like phenotype triggered by Neuroblastoma Differentiation Marker 29 (NDM29) ncRNA; (b) the modulation of A-type K(+) current in neurons induced by the small ncRNA 38A and (c) the synthesis driven by 17A ncRNA of a GABAB2 receptor isoform unable to trigger intracellular signaling. Moreover, the application of Single Cell Force Spectroscopy (SCFS) to these studies suggests a correlation between the malignancy stage of NB and the micro-adhesive properties of the cells, allowing to investigate the molecular basis of such a correlation.
Collapse
Affiliation(s)
- Paola Gavazzo
- Institute of Biophysics, National Research Council (CNR)Genoa, Italy
| | - Massimo Vassalli
- Institute of Biophysics, National Research Council (CNR)Genoa, Italy
| | - Delfina Costa
- Department of Experimental Medicine, University of GenoaGenoa, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of GenoaGenoa, Italy
- IRCCS Azienda Ospedaliera Universitaria San Martino-ISTGenoa, Italy
| |
Collapse
|
20
|
The Murine PSE/TATA-dependent transcriptome: evidence of functional homologies with its human counterpart. Int J Mol Sci 2012. [PMID: 23203095 PMCID: PMC3509611 DOI: 10.3390/ijms131114813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A series of recent studies demonstrated an unexpectedly high frequency of intronic RNA polymerase (pol) III transcription units spread throughout the human genome. The investigation of a subset of these transcripts revealed their tissue/cell-specific transcription together with the involvement in relevant physiopathological pathways. Despite this evidence, these transcripts did not seem to have murine orthologs, based on their nucleotide sequence, resulting in a limitation of the experimental approaches aimed to study their function. In this work, we have extended our investigation to the murine genome identifying 121 pairs of mouse/human transcripts displaying syntenic subchromosomal localization. The analysis in silico of this set of putative noncoding (nc)RNAs suggest their association with alternative splicing as suggested by recent experimental evidence. The investigation of one of these pairs taken as experimental model in mouse hippocampal neurons provided evidence of a human/mouse functional homology that does not depend on underlying sequence conservation. In this light, the collection of transcriptional units here reported can be considered as a novel source for the identification and the study of novel regulatory elements involved in relevant biological processes.
Collapse
|
21
|
Appolloni I, Curreli S, Caviglia S, Barilari M, Gambini E, Pagano A, Malatesta P. Role of Btg2 in the progression of a PDGF-induced oligodendroglioma model. Int J Mol Sci 2012. [PMID: 23203087 PMCID: PMC3509603 DOI: 10.3390/ijms131114667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tumor progression is a key aspect in oncology. Not even the overexpression of a powerful oncogenic stimulus such as platelet derived growth factor-B (PDGF-B) is sufficient per se to confer full malignancy to cells. In previous studies we showed that neural progenitors overexpressing PDGF-B need to undergo progression to acquire the capability to give rise to secondary tumor following transplant. By comparing the expression profile of PDGF-expressing cells before and after progression, we found that progressed tumors consistently downregulate the expression of the antiproliferative gene Btg2. We therefore tested whether the downregulation of Btg2 is sufficient and necessary for glioma progression with loss and gain of function experiments. Our results show that downregulation of Btg2 is not sufficient but is necessary for tumor progression since the re-introduction of Btg2 in fully progressed tumors dramatically impairs their gliomagenic potential. These results suggest an important role of Btg2 in glioma progression. Accordingly with this view, the analysis of public datasets of human gliomas showed that reduced level of Btg2 expression correlates with a significantly worse prognosis.
Collapse
Affiliation(s)
- Irene Appolloni
- IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy; E-Mails: (I.A.); (M.B.); (A.P.)
| | - Sebastiano Curreli
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.C.); (S.C.); (E.G.)
| | - Sara Caviglia
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.C.); (S.C.); (E.G.)
| | - Manuela Barilari
- IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy; E-Mails: (I.A.); (M.B.); (A.P.)
| | - Eleonora Gambini
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.C.); (S.C.); (E.G.)
| | - Aldo Pagano
- IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy; E-Mails: (I.A.); (M.B.); (A.P.)
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.C.); (S.C.); (E.G.)
| | - Paolo Malatesta
- IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy; E-Mails: (I.A.); (M.B.); (A.P.)
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.C.); (S.C.); (E.G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-010-5737403; Fax: +39-010-5737405
| |
Collapse
|
22
|
Dieci G, Conti A, Pagano A, Carnevali D. Identification of RNA polymerase III-transcribed genes in eukaryotic genomes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:296-305. [PMID: 23041497 DOI: 10.1016/j.bbagrm.2012.09.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 12/16/2022]
Abstract
The RNA polymerase (Pol) III transcription system is devoted to the production of short, generally abundant noncoding (nc) RNAs in all eukaryotic cells. Previously thought to be restricted to a few housekeeping genes easily detectable in genome sequences, the set of known Pol III-transcribed genes (class III genes) has been expanding in the last ten years, and the issue of their detection, annotation and actual expression has been stimulated and revived by the results of recent high-resolution genome-wide location analyses of the mammalian Pol III machinery, together with those of Pol III-centered computational studies and of ncRNA-focused transcriptomic approaches. In this article, we provide an outline of distinctive features of Pol III-transcribed genes that have allowed and currently allow for their detection in genome sequences, we critically review the currently practiced strategies for the identification of novel class III genes and transcripts, and we discuss emerging themes in Pol III transcription regulation which might orient future transcriptomic studies. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy.
| | | | | | | |
Collapse
|
23
|
Ciarlo E, Massone S, Penna I, Nizzari M, Gigoni A, Dieci G, Russo C, Florio T, Cancedda R, Pagano A. An intronic ncRNA-dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post-mortem Alzheimer's disease brain samples. Dis Model Mech 2012; 6:424-33. [PMID: 22996644 PMCID: PMC3597024 DOI: 10.1242/dmm.009761] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent studies indicated that sortilin-related receptor 1 (SORL1) is a risk gene for late-onset Alzheimer's disease (AD), although its role in the aetiology and/or progression of this disorder is not fully understood. Here, we report the finding of a non-coding (nc) RNA (hereafter referred to as 51A) that maps in antisense configuration to intron 1 of the SORL1 gene. 51A expression drives a splicing shift of SORL1 from the synthesis of the canonical long protein variant A to an alternatively spliced protein form. This process, resulting in a decreased synthesis of SORL1 variant A, is associated with impaired processing of amyloid precursor protein (APP), leading to increased Aβ formation. Interestingly, we found that 51A is expressed in human brains, being frequently upregulated in cerebral cortices from individuals with Alzheimer's disease. Altogether, these findings document a novel ncRNA-dependent regulatory pathway that might have relevant implications in neurodegeneration.
Collapse
Affiliation(s)
- Eleonora Ciarlo
- Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Garritano S, Gigoni A, Costa D, Malatesta P, Florio T, Cancedda R, Pagano A. A novel collection of snRNA-like promoters with tissue-specific transcription properties. Int J Mol Sci 2012; 13:11323-11332. [PMID: 23109855 PMCID: PMC3472747 DOI: 10.3390/ijms130911323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 12/28/2022] Open
Abstract
We recently identified a novel dataset of snRNA-like trascriptional units in the human genome. The investigation of a subset of these elements showed that they play relevant roles in physiology and/or pathology. In this work we expand our collection of small RNAs taking advantage of a newly developed algorithm able to identify genome sequence stretches with RNA polymerase (pol) III type 3 promoter features thus constituting putative pol III binding sites. The bioinformatic analysis of a subset of these elements that map in introns of protein-coding genes in antisense configuration suggest their association with alternative splicing, similarly to other recently characterized small RNAs. Interestingly, the analysis of the transcriptional activity of these novel promoters shows that they are active in a cell-type specific manner, in accordance with the emerging body of evidence of a tissue/cell-specific activity of pol III.
Collapse
Affiliation(s)
- Sonia Garritano
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.G.); (A.G.); (D.C.); (P.M.); (R.C.)
| | - Arianna Gigoni
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.G.); (A.G.); (D.C.); (P.M.); (R.C.)
| | - Delfina Costa
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.G.); (A.G.); (D.C.); (P.M.); (R.C.)
| | - Paolo Malatesta
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.G.); (A.G.); (D.C.); (P.M.); (R.C.)
- IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tullio Florio
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy; E-Mail:
- Centre of Excellence for Biomedical research (CEBR), University of Genoa, 16132 Genoa, Italy
| | - Ranieri Cancedda
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.G.); (A.G.); (D.C.); (P.M.); (R.C.)
- IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Aldo Pagano
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.G.); (A.G.); (D.C.); (P.M.); (R.C.)
- IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-010-5737241; Fax: +39-010-5737257
| |
Collapse
|
25
|
Massone S, Ciarlo E, Vella S, Nizzari M, Florio T, Russo C, Cancedda R, Pagano A. NDM29, a RNA polymerase III-dependent non coding RNA, promotes amyloidogenic processing of APP and amyloid β secretion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1170-7. [DOI: 10.1016/j.bbamcr.2012.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/29/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
|
26
|
Bhartiya D, Kapoor S, Jalali S, Sati S, Kaushik K, Sachidanandan C, Sivasubbu S, Scaria V. Conceptual approaches for lncRNA drug discovery and future strategies. Expert Opin Drug Discov 2012; 7:503-13. [DOI: 10.1517/17460441.2012.682055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
27
|
Mescola A, Vella S, Scotto M, Gavazzo P, Canale C, Diaspro A, Pagano A, Vassalli M. Probing cytoskeleton organisation of neuroblastoma cells with single-cell force spectroscopy. J Mol Recognit 2012; 25:270-7. [DOI: 10.1002/jmr.2173] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrea Mescola
- Nanophysics Unit; Italian Institute of Technology; Morego; Genova; Italy
| | - Serena Vella
- Department of Oncology, Biology and Genetics; University of Genova; Genova; Italy
| | - Marco Scotto
- Nanophysics Unit; Italian Institute of Technology; Morego; Genova; Italy
| | - Paola Gavazzo
- Institute of Biophysics; National Research Council; Genova; Italy
| | - Claudio Canale
- Nanophysics Unit; Italian Institute of Technology; Morego; Genova; Italy
| | | | | | - Massimo Vassalli
- Institute of Biophysics; National Research Council; Genova; Italy
| |
Collapse
|