1
|
Hamaguchi S, Agata N, Seki M, Namekata I, Tanaka H. Developmental Changes in the Excitation-Contraction Mechanisms of the Ventricular Myocardium and Their Sympathetic Regulation in Small Experimental Animals. J Cardiovasc Dev Dis 2024; 11:267. [PMID: 39330325 PMCID: PMC11432613 DOI: 10.3390/jcdd11090267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 09/28/2024] Open
Abstract
The developmental changes in the excitation-contraction mechanisms of the ventricular myocardium of small animals (guinea pig, rat, mouse) and their sympathetic regulation will be summarized. The action potential duration monotonically decreases during pre- and postnatal development in the rat and mouse, while in the guinea pig it decreases during the fetal stage but turns into an increase just before birth. Such changes can be attributed to changes in the repolarizing potassium currents. The T-tubule and the sarcoplasmic reticulum are scarcely present in the fetal cardiomyocyte, but increase during postnatal development. This causes a developmental shift in the Ca2+ handling from a sarcolemma-dependent mechanism to a sarcoplasmic reticulum-dependent mechanism. The sensitivity for beta-adrenoceptor-mediated positive inotropy decreases during early postnatal development, which parallels the increase in sympathetic nerve innervation. The alpha-adrenoceptor-mediated inotropy in the mouse changes from positive in the neonate to negative in the adult. This can be explained by the change in the excitation-contraction mechanism mentioned above. The shortening of the action potential duration enhances trans-sarcolemmal Ca2+ extrusion by the Na+-Ca2+ exchanger. The sarcoplasmic reticulum-dependent mechanism of contraction in the adult allows Na+-Ca2+ exchanger activity to cause negative inotropy, a mechanism not observed in neonatal myocardium. Such developmental studies would provide clues towards a more comprehensive understanding of cardiac function.
Collapse
Affiliation(s)
| | | | | | | | - Hikaru Tanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi 274-8510, Japan; (S.H.); (N.A.); (M.S.); (I.N.)
| |
Collapse
|
2
|
Beserra SS, Santos-Miranda A, Sarmento JO, Miranda VM, Roman-Campos D. Effects of amiodarone on rodent ventricular cardiomyocytes: Novel perspectives from a cellular model of Long QT Syndrome Type 3. Life Sci 2020; 255:117814. [PMID: 32439300 DOI: 10.1016/j.lfs.2020.117814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
AIMS Amiodarone (AMIO) is currently used in medical practice to reverse ventricular tachycardia. Here we determine the effects of AMIO in the electromechanical properties of isolated left ventricle myocyte (LVM) from mice and guinea pig and in a cellular model of Long QT Syndrome Type 3 (LQTS-3) using anemone neurotoxin 2 (ATX II), which induces increase of late sodium current in LVM. MAIN METHODS AND KEY FINDINGS Using patch-clamp technique, fluorescence imaging to detect cellular Ca2+ transient and sarcomere detection systems we evaluate the effect of AMIO in healthy LVM. AMIO produced a significant reduction in the percentage of sarcomere shortening (0.1, 1 and 10 μM) in a range of pacing frequencies, however, without significant attenuation of Ca2+ transient. Also, 10 μM of AMIO caused the opposite effect on action potential repolarization of mouse and guinea pig LVM. When LVM from mouse and guinea pig were paced in a range of pacing frequencies and exposed to ATX (10 nM), AMIO (10 μM) was only able to abrogate electromechanical arrhythmias in LVM from guinea pig at lower pacing frequency. SIGNIFICANCE AMIO has negative inotropic effect with opposite effect on action potential waveform in mouse and guinea pig LVM. Furthermore, the antiarrhythmic action of AMIO in LQTS-3 is species and frequency-dependent, which indicates that AMIO may be beneficial for some types of arrhythmias related to late sodium current.
Collapse
Affiliation(s)
- Samuel Santos Beserra
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicina, Federal University of Sao Paulo, Brazil
| | - Artur Santos-Miranda
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicina, Federal University of Sao Paulo, Brazil
| | - Jaqueline Oliveira Sarmento
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicina, Federal University of Sao Paulo, Brazil
| | - Victor Martins Miranda
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicina, Federal University of Sao Paulo, Brazil
| | - Danilo Roman-Campos
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicina, Federal University of Sao Paulo, Brazil.
| |
Collapse
|
3
|
Hardy MEL, Pervolaraki E, Bernus O, White E. Dynamic Action Potential Restitution Contributes to Mechanical Restitution in Right Ventricular Myocytes From Pulmonary Hypertensive Rats. Front Physiol 2018; 9:205. [PMID: 29593564 PMCID: PMC5859380 DOI: 10.3389/fphys.2018.00205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/23/2018] [Indexed: 11/21/2022] Open
Abstract
We investigated the steepened dynamic action potential duration (APD) restitution of rats with pulmonary artery hypertension (PAH) and right ventricular (RV) failure and tested whether the observed APD restitution properties were responsible for negative mechanical restitution in these myocytes. PAH and RV failure were provoked in male Wistar rats by a single injection of monocrotaline (MCT) and compared with saline-injected animals (CON). Action potentials were recorded from isolated RV myocytes at stimulation frequencies between 1 and 9 Hz. Action potential waveforms recorded at 1 Hz were used as voltage clamp profiles (action potential clamp) at stimulation frequencies between 1 and 7 Hz to evoke rate-dependent currents. Voltage clamp profiles mimicking typical CON and MCT APD restitution were applied and cell shortening simultaneously monitored. Compared with CON myocytes, MCT myocytes were hypertrophied; had less polarized diastolic membrane potentials; had action potentials that were triggered by decreased positive current density and shortened by decreased negative current density; APD was longer and APD restitution steeper. APD90 restitution was unchanged by exposure to the late Na+-channel blocker (5 μM) ranolazine or the intracellular Ca2+ buffer BAPTA. Under AP clamp, stimulation frequency-dependent inward currents were smaller in MCT myocytes and were abolished by BAPTA. In MCT myocytes, increasing stimulation frequency decreased contraction amplitude when depolarization duration was shortened, to mimic APD restitution, but not when depolarization duration was maintained. We present new evidence that the membrane potential of PAH myocytes is less stable than normal myocytes, being more easily perturbed by external currents. These observations can explain increased susceptibility to arrhythmias. We also present novel evidence that negative APD restitution is at least in part responsible for the negative mechanical restitution in PAH myocytes. Thus, our study links electrical restitution remodeling to a defining mechanical characteristic of heart failure, the reduced ability to respond to an increase in demand.
Collapse
Affiliation(s)
- Matthew E L Hardy
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Eleftheria Pervolaraki
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Olivier Bernus
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom.,IHU Liryc, L'institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, U1045, Bordeaux, France.,Centre de Recherche Cardio-Thoracique de Bordeaux, Institut National de la Santé et de la Recherche Médicale, U1045, Bordeaux, France
| | - Ed White
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Ryanodine receptors are part of the myospryn complex in cardiac muscle. Sci Rep 2017; 7:6312. [PMID: 28740084 PMCID: PMC5524797 DOI: 10.1038/s41598-017-06395-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/12/2017] [Indexed: 01/28/2023] Open
Abstract
The Cardiomyopathy-associated gene 5 (Cmya5) encodes myospryn, a large tripartite motif (TRIM)-related protein found predominantly in cardiac and skeletal muscle. Cmya5 is an expression biomarker for a number of diseases affecting striated muscle and may also be a schizophrenia risk gene. To further understand the function of myospryn in striated muscle, we searched for additional myospryn paralogs. Here we identify a novel muscle-expressed TRIM-related protein minispryn, encoded by Fsd2, that has extensive sequence similarity with the C-terminus of myospryn. Cmya5 and Fsd2 appear to have originated by a chromosomal duplication and are found within evolutionarily-conserved gene clusters on different chromosomes. Using immunoaffinity purification and mass spectrometry we show that minispryn co-purifies with myospryn and the major cardiac ryanodine receptor (RyR2) from heart. Accordingly, myospryn, minispryn and RyR2 co-localise at the junctional sarcoplasmic reticulum of isolated cardiomyocytes. Myospryn redistributes RyR2 into clusters when co-expressed in heterologous cells whereas minispryn lacks this activity. Together these data suggest a novel role for the myospryn complex in the assembly of ryanodine receptor clusters in striated muscle.
Collapse
|
5
|
Murenzi E, Toltin AC, Symington SB, Morgan MM, Clark JM. Evaluation of microtransplantation of rat brain neurolemma into Xenopus laevis oocytes as a technique to study the effect of neurotoxicants on endogenous voltage-sensitive ion channels. Neurotoxicology 2016; 60:260-273. [PMID: 27063102 DOI: 10.1016/j.neuro.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
Abstract
Microtransplantation of mammalian brain neurolemma into the plasma membrane of Xenopus oocytes is used to study ion channels in their native form as they appear in the central nervous system. Use of microtransplanted neurolemma is advantageous for various reasons: tissue can be obtained from various sources and at different developmental stages; ion channels and receptors are present in their native configuration in their proper lipid environment along with appropriate auxiliary subunits; allowing the evaluation of numerous channelpathies caused by neurotoxicants in an ex vivo state. Here we show that Xenopus oocytes injected with post-natal day 90 (PND90) rat brain neurolemma fragments successfully express functional ion channels. Using a high throughput two electrode voltage clamp (TEVC) electrophysiological system, currents that were sensitive to tetrodotoxin, ω-conotoxin MVIIC, and tetraethylammonium were detected, indicating the presence of multiple voltage-sensitive ion channels (voltage-sensitive sodium (VSSC), calcium and potassium channels, respectively). The protein expression pattern for nine different VSSC isoforms (Nav1.1-Nav1.9) was determined in neurolemma using automated western blotting, with the predominant isoforms expressed being Nav1.2 and Nav1.6. VSSC were also successfully detected in the plasma membrane of Xenopus oocytes microtransplanted with neurolemma. Using this approach, a "proof-of-principle" experiment was conducted where a well-established structure-activity relationship between the neurotoxicant, 1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) and its non-neurotoxic metabolite, 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (DDE) was examined. A differential sensitivity of DDT and DDE on neurolemma-injected oocytes was determined where DDT elicited a concentration-dependent increase in TTX-sensitive inward sodium current upon pulse-depolarization whereas DDE resulted in no significant effect. Additionally, DDT resulted in a slowing of sodium channel inactivation kinetics whereas DDE was without effect. These results are consistent with the findings obtained using heterologous expression of single isoforms of rat brain VSSCs in Xenopus oocytes and with many other electrophysiological approaches, validating the use of the microtransplantation procedure as a toxicologically-relevant ex vivo assay. Once fully characterized, it is likely that this approach could be expanded to study the role of environmental toxicants and contaminants on various target tissues (e.g. neural, reproductive, developmental) from many species.
Collapse
Affiliation(s)
- Edwin Murenzi
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, United States; Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States.
| | - Abigail C Toltin
- Department of Biology and Biomedical Science, Salve Regina University, Newport, RI, United States.
| | - Steven B Symington
- Department of Biology and Biomedical Science, Salve Regina University, Newport, RI, United States.
| | - Molly M Morgan
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States.
| | - John M Clark
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, United States; Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
6
|
Martínez-Ladrón de Guevara E, Pérez-Hernández N, Villalobos-López MÁ, Pérez-Ishiwara DG, Salas-Benito JS, Martínez Martínez A, Hernández-García V. The Actions of Lyophilized Apple Peel on the Electrical Activity and Organization of the Ventricular Syncytium of the Hearts of Diabetic Rats. J Diabetes Res 2016; 2016:8178936. [PMID: 26839897 PMCID: PMC4709627 DOI: 10.1155/2016/8178936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/27/2015] [Accepted: 09/29/2015] [Indexed: 11/17/2022] Open
Abstract
This study was designed to examine the effects of lyophilized red delicious apple peel (RDP) on the action potentials (APs) and the input resistance-threshold current relationship. The experiments were performed on isolated papillary heart muscles from healthy male rats, healthy male rats treated with RDP, diabetic male rats, and diabetic male rats treated with RDP. The preparation was superfused with oxygenated Tyrode's solution at 37°C. The stimulation and the recording of the APs, the input resistance, and the threshold current were made using conventional electrophysiological methods. The RDP presented no significant effect in normal rats. Equivalent doses in diabetic rats reduced the APD and ARP. The relationship between input resistance and threshold current established an inverse correlation. The results indicate the following: (1) The functional structure of the cardiac ventricular syncytium in healthy rats is heterogeneous, in terms of input resistance and threshold current. Diabetes further accentuates the heterogeneity. (2) As a consequence, conduction block occurs and increases the possibility of reentrant arrhythmias. (3) These modifications in the ventricular syncytium, coupled with the increase in the ARP, are the adequate substrate so that, with diabetes, the heart becomes more arrhythmogenic. (4) RDP decreases the APD, the ARP, and most syncytium irregularity caused by diabetes.
Collapse
Affiliation(s)
| | - Nury Pérez-Hernández
- National School of Medicine and Homeopathy, National Polytechnic Institute, 07320 Mexico City, DF, Mexico
| | | | | | - Juan Santiago Salas-Benito
- National School of Medicine and Homeopathy, National Polytechnic Institute, 07320 Mexico City, DF, Mexico
| | | | - Vicente Hernández-García
- Institute of Biomedical Sciences, Autonomous University of Ciudad Juárez, 32310 Ciudad Juárez, CHIH, Mexico
- *Vicente Hernández-García:
| |
Collapse
|
7
|
Ren AJ, Liang Q, Wang R, Ji HY, Wu Y, Shi JS, Lin L, Yuan WJ. Effects of Salusin-β on action potential and ionic currents in ventricular myocytes of rats. Acta Physiol (Oxf) 2013; 207:166-72. [PMID: 22846709 DOI: 10.1111/j.1748-1716.2012.02475.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/17/2012] [Accepted: 07/23/2012] [Indexed: 12/01/2022]
Abstract
AIM Salusin-β is a regulatory peptide that exerts negative inotropic effect on ventricular muscle, but its electrophysiological effects on ventricular myocytes are still unknown. METHODS Action potential and channel currents such as sodium current (I(N) (a) ), transient outward potassium current (I(to) ), steady-state potassium current (I(sus) ), sodium-calcium exchange current (I(N) (aCa) ) and inward rectifier potassium current (I(K) (1) ) were measured in ventricular myocytes isolated from 12 to 16 weeks rats by whole-cell voltage-clamp techniques. RESULTS Salusin-β dose-dependently shortened the duration of action potential in rat ventricular myocytes. Furthermore, salusin-β significantly inhibited I(N) (aCa) and increased I(to) , but did not affect I(N) (a) , I(sus) and I(K) (1) . CONCLUSION These results suggest that the effect of salusin-β on action potential may be partly attributed to a decrease in inward currents and an increase in outward currents.
Collapse
Affiliation(s)
- An-Jing Ren
- Department of Pathophysiology; Second Military Medical University; Shanghai; China
| | | | - Rong Wang
- Department of Physiology and Neurobiology; Ningxia Medical University; Yinchuan; China
| | - Hai-Yu Ji
- Department of Physiology and Neurobiology; Ningxia Medical University; Yinchuan; China
| | - Yi Wu
- Department of Physiology and Neurobiology; Ningxia Medical University; Yinchuan; China
| | - Jing-Song Shi
- Department of Endocrinology; Nanjing Military General Hospital; Nanjing; China
| | - Li Lin
- Department of Physiology; Second Military Medical University; Shanghai; China
| | | |
Collapse
|
8
|
Krishna A, Valderrábano M, Palade PT, W J. Multiphysics model of a rat ventricular myocyte: a voltage-clamp study. Theor Biol Med Model 2012; 9:48. [PMID: 23171697 PMCID: PMC3585474 DOI: 10.1186/1742-4682-9-48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The objective of this study is to develop a comprehensive model of the electromechanical behavior of the rat ventricular myocyte to investigate the various factors influencing its contractile response. METHODS Here, we couple a model of Ca2 + dynamics described in our previous work, with a well-known model of contractile mechanics developed by Rice, Wang, Bers and de Tombe to develop a composite multiphysics model of excitation-contraction coupling. This comprehensive cell model is studied under voltage clamp (VC) conditions, since it allows to focus our study on the elaborate Ca2 + signaling system that controls the contractile mechanism. RESULTS We examine the role of various factors influencing cellular contractile response. In particular, direct factors such as the amount of activator Ca2 + available to trigger contraction and the type of mechanical load applied (resulting in isosarcometric, isometric or unloaded contraction) are investigated. We also study the impact of temperature (22 to 38°C) on myofilament contractile response. The critical role of myofilament Ca2 + sensitivity in modulating developed force is likewise studied, as is the indirect coupling of intracellular contractile mechanism with the plasma membrane via the Na + /Ca2 + exchanger (NCX). Finally, we demonstrate a key linear relationship between the rate of contraction and relaxation, which is shown here to be intrinsically coupled over the full range of physiological perturbations. CONCLUSIONS Extensive testing of the composite model elucidates the importance of various direct and indirect modulatory influences on cellular twitch response with wide agreement with measured data on all accounts. Thus, the model provides mechanistic insights into whole-cell responses to a wide variety of testing approaches used in studies of cardiac myofilament contractility that have appeared in the literature over the past several decades.
Collapse
Affiliation(s)
- Abhilash Krishna
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, 77005, USA
| | - Miguel Valderrábano
- Methodist Hospital Research Institute, Methodist DeBakey Heart & Vascular Center, 6565 Fannin Street, Houston, 77030, USA
| | - Philip T Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, 72205, USA
| | - John W
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, 77005, USA
| |
Collapse
|
9
|
Kavak S. Effects of Insulin on Altered Mechanical and Electrical Papillary Muscle Activities of Diabetic Rats. J Membr Biol 2012; 246:31-7. [DOI: 10.1007/s00232-012-9499-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/18/2012] [Indexed: 10/27/2022]
|
10
|
COMMUNICATION. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1984.tb16957.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Noble D. Successes and failures in modeling heart cell electrophysiology. Heart Rhythm 2011; 8:1798-803. [PMID: 21699872 DOI: 10.1016/j.hrthm.2011.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/09/2011] [Indexed: 11/15/2022]
Abstract
Mathematical models of the electrical activity of the heart using equations for protein ion channels and other transporters began with the Noble 1962 model. These models then developed over a period of about 50 years. Cell types in all regions have been modeled and now are available for download from the CellML website (www.cellml.org). Simulation is a necessary tool of analysis in attempting to understand biological complexity. We often learn as much from the failures as from the successes of mathematical models. It is the iterative interaction between experiment and simulation that is important.
Collapse
Affiliation(s)
- Denis Noble
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK.
| |
Collapse
|
12
|
|
13
|
Effects of rosiglitazone on altered electrical left ventricular papillary muscle activities of diabetic rat. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:415-21. [DOI: 10.1007/s00210-007-0234-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 11/23/2007] [Indexed: 10/22/2022]
|
14
|
Abstract
Intracellular pH (pHi) in sheep cardiac Purkinje fibres is controlled by sarcolemmal Na+/H+ and Cl-/HCO3- exchange. At normal pHo (7.4), Na+/H+ exchange mediates an acid efflux whenever pHi falls and Cl-/HCO3- exchange mediates an equivalent acid influx in response to a rise in pHi. Intracellular pH is also influenced by Ca2+i, which can activate force development leading to the anaerobic production of lactic acid. This is evident after an increase in stimulation rate which reversibly reduces both pHi and extracellular surface pH (pHs). Rate-dependent pHi changes are inhibited following inhibition of glycolysis, indicating that they are caused by accumulation of lactic acid. In some cases, the efflux of lactic acid may provide a faster method for recovery of pHi from a metabolic acidosis than that provided by Na+/H+ exchange. Finally, direct pHi measurement in isolated mammalian ventricular myocytes suggests that the intrinsic intracellular buffering power (beta) of ventricular tissue may be considerably lower than previously believed. An accurate knowledge of beta is essential for calculating net membrane fluxes of acid equivalents from changes in pHi.
Collapse
|
15
|
Noble D. From the Hodgkin-Huxley axon to the virtual heart. J Physiol 2007; 580:15-22. [PMID: 17023502 PMCID: PMC2075428 DOI: 10.1113/jphysiol.2006.119370] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 09/27/2006] [Indexed: 11/08/2022] Open
Abstract
Experimentally based models of the heart have been developed since 1960, starting with the discovery and modelling of potassium channels. The early models were based on extensions of the Hodgkin-Huxley nerve impulse equations. The first models including calcium balance and signalling were made in the 1980s and have now reached a high degree of physiological detail. During the 1990s these cell models have been incorporated into anatomically detailed tissue and organ models to create the first virtual organ, the Virtual Heart. With over 40 years of interaction between simulation and experiment, the models are now sufficiently refined to begin to be of use in drug development.
Collapse
Affiliation(s)
- Denis Noble
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
16
|
Tanaka H, Namekata I, Takeda K, Kazama A, Shimizu Y, Moriwaki R, Hirayama W, Sato A, Kawanishi T, Shigenobu K. Unique excitation–contraction characteristics of mouse myocardium as revealed by SEA0400, a specific inhibitor of Na+–Ca2+ exchanger. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:526-34. [PMID: 16003546 DOI: 10.1007/s00210-005-1051-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2004] [Accepted: 02/21/2005] [Indexed: 10/25/2022]
Abstract
The functional role of the sodium-calcium exchanger in mouse ventricular myocardium was evaluated with a newly developed specific inhibitor, SEA0400. Contractile force and action potential configuration were measured in isolated ventricular tissue preparations, and cell shortening and Ca2+ transients were measured in indo-1-loaded isolated ventricular cardiomyocytes. SEA0400 increased the contractile force, cell shortening and Ca2+ transient amplitude, and shortened the late plateau phase of the action potential. alpha-adrenergic stimulation by phenylephrine produced a sustained decrease in contractile force, cell shortening and Ca2+ transient amplitude, which were all inhibited by SEA0400. Increasing the contraction frequency resulted in a decrease in contractile force in the absence of drugs (negative staircase phenomenon). This frequency-dependent decrease was attenuated by SEA0400 and enhanced by phenylephrine. Phenylephrine increased the Ca2+ sensitivity of contractile proteins in isolated ventricular cardiomyocytes, while SEA0400 had no effect. These results provide the first pharmacological evidence in the mouse ventricular myocardium that inward current generated by Ca2+ extrusion through the sodium-calcium exchanger during the Ca2+ transient contributes to the action potential late plateau, that alpha-adrenoceptor-mediated negative inotropy is produced by enhanced Ca2+ extrusion through the sodium-calcium exchanger, and that the negative staircase phenomenon can be explained by increased Ca2+ extrusion through the sodium-calcium exchanger at higher contraction frequencies.
Collapse
Affiliation(s)
- Hikaru Tanaka
- Department of Pharmacology, Toho University School of Pharmaceutical Sciences, Miyama 2-2-1 Funabashi, Chiba, 274-8510 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Missan S, McDonald TF. Cardiac Na+-Ca2+ exchanger current induced by tyrphostin tyrosine kinase inhibitors. Br J Pharmacol 2004; 143:943-51. [PMID: 15545291 PMCID: PMC1575963 DOI: 10.1038/sj.bjp.0706011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tyrosine kinase (TK) inhibitors genistein and tyrphostin A23 (A23) inhibited Ca(2+) currents in guinea-pig ventricular myocytes investigated under standard whole-cell conditions (K(+)-free Tyrode's superfusate; EGTA-buffered (pCa-10.5) Cs(+) dialysate). However, the inhibitors (100 microM) also induced membrane currents that reversed between -40 and 0 mV, and the objective of the present study was to characterize these currents. Genistein-induced current behaved like Cl(-) current, and was unaffected by either the addition of divalent cations (0.5 mM Cd(2+); 3 mM Ni(2+)) that block the Na(+)-Ca(2+) exchanger (NCX), or the removal of external Na(+) and Ca(2+). A23-induced current was independent of Cl(-) driving force, and strongly suppressed by addition of Cd(2+) and Ni(2+), and by removal of either external Na(+) or Ca(2+). These and other results suggested that A23 activated an NCX current driven by submembrane Na(+) and Ca(2+) concentrations higher than those in the bulk cytoplasm. Improved control of intracellular Na(+) and Ca(2+) concentrations was obtained by suppressing cation influx (10 microM verapamil) and raising dialysate Na(+) to 7 mM and dialysate pCa to 7. Under these conditions, stimulation by A23 was described by the Hill equation with EC(50) 68 +/- 4 microM and coefficient 1.1, tyrphostin A25 was as effective as A23, and TK-inactive tyrphostin A1 was ineffective. Phosphotyrosyl phosphatase inhibitor orthovanadate (1 mM) antagonized the action of 100 microM A23. The results suggest that activation of cardiac NCX by A23 is due to inhibition of genistein-insensitive TK.
Collapse
Affiliation(s)
- Sergey Missan
- Department of Physiology and Biophysics, Dalhousie University, 5859 University Avenue, Halifax, Nova Scotia, Canada B3H 4H7.
| | | |
Collapse
|
18
|
Abstract
Models of the heart have been developed since 1960, starting with the discovery and modeling of potassium channels. The first models of calcium balance were made in the 1980s and have now reached a high degree of physiological detail. During the 1990s, these cell models were incorporated into anatomically detailed tissue and organ models.
Collapse
Affiliation(s)
- Denis Noble
- University Laboratory of Physiology Oxford OX1 3PT, UK.
| |
Collapse
|
19
|
Pacher P, Kecskemeti V. Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns? Curr Pharm Des 2004; 10:2463-2475. [PMID: 15320756 PMCID: PMC2493295 DOI: 10.2174/1381612043383872] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cardiovascular toxicity of older generation of tricyclic antidepressants (e.g. imipramine, desipramine, amitriptyline, clomipramine) and neuroleptics (e.g. haloperidol, droperidol, thioridazine, pimozide) is well established. These drugs inhibit cardiovascular Na(+), Ca(2+) and K(+) channels often leading to life-threatening arrhythmia. To overcome the toxicity of old generation of antidepressants and antipsychotics, selective serotonin reuptake inhibitor antidepressants (SSRIs: fluoxetine, fluvoxamine, paroxetine, sertraline, citalopram, venlafaxin) and several new antipsychotics (e.g. clozapine, olanzapine, risperidone, sertindole, aripiprazole, ziprasidone, quetiapine) were introduced during the past decade. Although these new compounds are not more effective in treating psychiatric disorders than older medications, they gained incredible popularity since they have been reported to have fewer and more benign side effect profile (including cardiovascular) than predecessors. Surprisingly, an increasing number of case reports have demonstrated that the use of SSRIs and new antipsychotics (e.g. clozapine, olanzapine, risperidone, sertindole, aripiprazole, ziprasidone, quetiapine) is associated with cases of arrhythmias, prolonged QTc interval on electrocardiogram (ECG) and orthostatic hypotension in patients lacking cardiovascular disorders, raising new concerns about the putative cardiovascular safety of these compounds. In agreement with these clinical reports these new compounds indeed show marked cardiovascular depressant effects in different mammalian and human cardiovascular preparations by inhibiting cardiac and vascular Na(+), Ca(2+) and K(+) channels. Taken together, these results suggest that the new generation of antidepressants and antipsychotics also have clinically important cardiac as well as vascular effects. Clinicians should be more vigilant about these potential adverse reactions and ECG control may be suggested during therapy, especially in patients with cardiovascular disorders. The primary goal of this review is to shed light on the recently observed clinically important cardiovascular effects of new antidepressants and antipsychotics and discuss the mechanism beyond this phenomenon.
Collapse
Affiliation(s)
- Pal Pacher
- National Institutes of Health, National Institute on Alcohol Abuse & Alcoholism, Laboratory Physiologic Studies, Bethesda, MD 20892-8115, USA
- Department of Pharmacology and Pharmacotherapy, Semmelweis University of Medicine, Faculty of Medicines, Budapest Hungary
| | - Valeria Kecskemeti
- Department of Pharmacology and Pharmacotherapy, Semmelweis University of Medicine, Faculty of Medicines, Budapest Hungary
| |
Collapse
|
20
|
Mace LC, Palmer BM, Brown DA, Jew KN, Lynch JM, Glunt JM, Parsons TA, Cheung JY, Moore RL. Influence of age and run training on cardiac Na+/Ca2+ exchange. J Appl Physiol (1985) 2003; 95:1994-2003. [PMID: 12882992 DOI: 10.1152/japplphysiol.00551.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effects of age and training on myocardial Na+/Ca2+ exchange were examined in young sedentary (YS; 14-15 mo), aged sedentary (AS; 27-31 mo), and aged trained (AT; 8- to 11-wk treadmill run training) male Fischer Brown Norway rats. Whole heart performance and isolated cardiocyte Na+/Ca2+ exchange characteristics were measured. At the whole heart level, a small but significant slowing of late isovolumic left ventricular (LV) relaxation, which may be indicative of altered Na+/Ca2+ exchange activity, was seen in hearts from AS rats. This subtle impairment in relaxation was not observed in hearts from AT rats. At the single-cardiocyte level, late action potential duration was prolonged, resting membrane potential was more positive, and overshoot potential was greater in cardiocytes from AS rats than from YS rats (P < 0.05). Training did not influence any of these age-related action potential characteristics. In electrically paced cardiocytes, neither shortening nor intracellular Ca2+ concentration ([Ca2+]i) dynamics was influenced by age or training. Similarly, neither age nor training influenced the rate of [Ca2+]i clearance via forward (Nain+ /Caout2+) Na+/Ca2+ exchange after caffeine-induced Ca2+ release from the sarcoplasmic reticulum or cardiac Na+/Ca2+ exchanger protein (NCX1) expression. However, when whole cell patch-clamp techniques combined with fluorescence microscopy were used to evaluate the ability of Na+/Ca2+ exchange to alter cytosolic [Ca2+] ([Ca2+]c) under conditions where membrane potential (Vm) and internal and external [Na+] and [Ca2+] could be controlled, we observed age-associated increases in forward Na+/Ca2+ exchange-mediated [Ca2+]c clearance (P < 0.05) that were not influenced by training. The age-related increase in forward Na+/Ca2+ exchange activity provides a hypothetical explanation for the late action potential prolongation observed in this study.
Collapse
Affiliation(s)
- Lisa C Mace
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado 80309-0354, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Takamatsu H, Nagao T, Ichijo H, Adachi-Akahane S. L-type Ca2+ channels serve as a sensor of the SR Ca2+ for tuning the efficacy of Ca2+-induced Ca2+ release in rat ventricular myocytes. J Physiol 2003; 552:415-24. [PMID: 14561825 PMCID: PMC2343391 DOI: 10.1113/jphysiol.2003.050823] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/04/2003] [Accepted: 07/30/2003] [Indexed: 11/08/2022] Open
Abstract
In cardiac excitation-contraction coupling, Ca2+-induced Ca2+ release (CICR) from ryanodine receptors (RyRs), triggered by Ca2+ entry through the nearby L-type Ca2+ channel, induces Ca2+-dependent inactivation (CDI) of the Ca2+ channel. Aiming at elucidating the physiological role of CDI produced by CICR (CICR-dependent CDI), we investigated the contribution of the CICR-dependent CDI to action potential (AP) waveform and the amount of Ca2+-influx through Ca2+ channels during AP in rat ventricular myocytes. The elimination of the CICR-dependent CDI, by depletion of the SR Ca2+ with thapsigargin, significantly prolonged AP duration (APD). APD changed in parallel with the magnitude of CICR during the recovery of the SR Ca2+ content after transient depletion by caffeine. Such CICR-dependent change of APD persisted under the highly Ca2+ buffered condition where the Ca2+ signalling was restricted to nanoscale domains. Blockers of the Ca2+-dependent Cl- channel or the BK channel did not affect AP waveform. The amount of Ca2+-influx through Ca2+ channels during the SR-depleted type AP waveform, measured in the SR-depleted myocyte, was increased by 40 % over that during the SR-intact type AP waveform measured in the SR-intact myocyte. The protein kinase A stimulation further enhanced the Ca2+-influx during AP under the SR-depleted condition to 70 % of that under the SR-intact condition. These results indicate that the CICR-dependent CDI of L-type Ca2+ channels, under control of the privileged cross-signalling between L-type Ca2+ channels and RyRs, play important roles for monitoring and tuning the SR Ca2+ content via changes of AP waveform and the amount of Ca2+-influx during AP in ventricular myocytes.
Collapse
Affiliation(s)
- Hajime Takamatsu
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences,University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
22
|
Matsuoka S, Sarai N, Kuratomi S, Ono K, Noma A. Role of individual ionic current systems in ventricular cells hypothesized by a model study. THE JAPANESE JOURNAL OF PHYSIOLOGY 2003; 53:105-23. [PMID: 12877767 DOI: 10.2170/jjphysiol.53.105] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Individual ion channels or exchangers are described with a common set of equations for both the sinoatrial node pacemaker and ventricular cells. New experimental data are included, such as the new kinetics of the inward rectifier K+ channel, delayed rectifier K+ channel, and sustained inward current. The gating model of Shirokov et al. (J Gen Physiol 102: 1005-1030, 1993) is used for both the fast Na+ and L-type Ca2+ channels. When combined with a contraction model (Negroni and Lascano: J Mol Cell Cardiol 28: 915-929, 1996), the experimental staircase phenomenon of contraction is reconstructed. The modulation of the action potential by varying the external Ca2+ and K+ concentrations is well simulated. The conductance of I(CaL) dominates membrane conductance during the action potential so that an artificial increase of I(to), I(Kr), I(Ks), or I(KATP) magnifies I(CaL) amplitude. Repolarizing current is provided sequentially by I(Ks), I(Kr), and I(K1). Depression of ATP production results in the shortening of action potential through the activation of I(KATP). The ratio of Ca2+ released from SR over Ca2+ entering via I(CaL) (Ca2+ gain = approximately 15) in excitation-contraction coupling well agrees with the experimental data. The model serves as a predictive tool in generating testable hypotheses.
Collapse
Affiliation(s)
- Satoshi Matsuoka
- Department of Physiology and Biophysics, Kyoto University Graduate School of Medicine, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
23
|
Alseikhan BA, DeMaria CD, Colecraft HM, Yue DT. Engineered calmodulins reveal the unexpected eminence of Ca2+ channel inactivation in controlling heart excitation. Proc Natl Acad Sci U S A 2002; 99:17185-90. [PMID: 12486220 PMCID: PMC139290 DOI: 10.1073/pnas.262372999] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2002] [Indexed: 11/18/2022] Open
Abstract
Engineered calmodulins (CaMs), rendered Ca2+-insensitive by mutations, function as dominant negatives in heterologous systems, and have revealed mechanisms of ion channel modulation by Ca2+/CaM. The use of these CaMs in native mammalian cells now emerges as a strategy to unmask the biology of such Ca2+ feedback. Here, we developed recombinant adenoviruses bearing engineered CaMs to facilitate their expression in adult heart cells, where Ca2+ regulation may be essential for moment-to-moment control of the heartbeat. Engineered CaMs not only eliminated the Ca2+-dependent inactivation of native calcium channels, but exposed an unexpectedly large impact of removing such feedback: the unprecedented (4- to 5-fold) prolongation of action potentials. This striking result recasts the basic paradigm for action-potential control and illustrates the promise of virally delivered engineered CaM to investigate the biology of numerous other CaM-signaling pathways.
Collapse
Affiliation(s)
- Badr A Alseikhan
- Calcium Signals Laboratory, Program in Molecular and Cellular Systems Physiology, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Mathematical models of the heart have developed over a period of about 40 years. Cell types in all regions of the heart have been modelled and they are now being incorporated into anatomically detailed models of the whole organ. This combination is leading to the creation of the first 'virtual organ,' which is being used in drug discovery and testing, and in simulating the action of devices, such as cardiac defibrillators. Simulation is a necessary tool of analysis in attempting to understand biological complexity. We often learn as much from the failures as from the successes of mathematical models. It is the iterative interaction between experiment and simulation that is important. Examples are given where this process has been instrumental in some of the major advances in the field.
Collapse
Affiliation(s)
- Denis Noble
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
25
|
Cooper PJ, Ward ML, Hanley PJ, Denyer GR, Loiselle DS. Metabolic consequences of a species difference in Gibbs free energy of Na+/Ca2+ exchange: rat versus guinea pig. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1221-9. [PMID: 11247848 DOI: 10.1152/ajpregu.2001.280.4.r1221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Gibbs free energy of the sarcolemmal Na+/Ca2+ exchanger (DeltaG(Na/Ca)) determines its net Ca2+ flux. We tested the hypothesis that a difference of diastolic DeltaG(Na/Ca) exists between rat and guinea pig myocardium. We measured the suprabasal rate of oxygen consumption (VO2) of arrested Langendorff-perfused hearts of both species, manipulating DeltaG(Na/Ca) by reduction of extracellular Na+ concentration, [Na+](o). Hill equations fitted to the resulting VO2-[Na+](o) relationships yielded Michaelis constant (K(m)) values of 67 and 25 mM for rat and guinea pig, respectively. We developed and tested a simple thermodynamic model that attributes this difference of K(m) values to a 7.84 kJ/mol difference of DeltaG(Na/Ca). The model predicts that reversal of Na+/Ca2+ exchange, leading to diastolic Ca2+ influx, should occur at a value of [Na+](o) about three times higher in rat myocardium. We verified this quantitative prediction using fura 2 fluorescence to index intracellular Ca2+ concentration in isolated ventricular trabeculae at 37 degrees C. The postulated difference in free energy of Na+/Ca2+ exchange explains a number of reported disparities of Ca2+ handling at rest between rat and guinea pig myocardia.
Collapse
Affiliation(s)
- P J Cooper
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
26
|
Nishimaru K, Kobayashi M, Matsuda T, Tanaka Y, Tanaka H, Shigenobu K. alpha-Adrenoceptor stimulation-mediated negative inotropism and enhanced Na(+)/Ca(2+) exchange in mouse ventricle. Am J Physiol Heart Circ Physiol 2001; 280:H132-41. [PMID: 11123227 DOI: 10.1152/ajpheart.2001.280.1.h132] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms underlying the negative inotropic response to alpha-adrenoceptor stimulation in adult mouse ventricular myocardium were studied. In isolated ventricular tissue, phenylephrine (PE), in the presence of propranolol, decreased contractile force by approximately 40% of basal value. The negative inotropic response was similarly observed under low extracellular Ca(2+) concentration ([Ca(2+)](o)) conditions but was significantly smaller under high-[Ca(2+)](o) conditions and was not observed under low-[Na(+)](o) conditions. The negative inotropic response was not affected by nicardipine, ryanodine, ouabain, or dimethylamiloride (DMA), inhibitors of L-type Ca(2+) channel, Ca(2+) release channel, Na(+)-K(+) pump, or Na(+)/H(+) exchanger, respectively. KB-R7943, an inhibitor of Na(+)/Ca(2+) exchanger, suppressed the negative inotropic response mediated by PE. PE reduced the magnitude of postrest contractions. PE caused a decrease in duration of the late plateau phase of action potential and a slight increase in resting membrane potential; time courses of these effects were similar to that of the negative inotropic effect. In whole cell voltage-clamped myocytes, PE increased the L-type Ca(2+) and Na(+)/Ca(2+) exchanger currents but had no effect on the inwardly rectifying K(+), transient outward K(+), or Na(+)-K(+)-pump currents. These results suggest that the sustained negative inotropic response to alpha-adrenoceptor stimulation of adult mouse ventricular myocardium is mediated by enhancement of Ca(2+) efflux through the Na(+)/Ca(2+) exchanger.
Collapse
Affiliation(s)
- K Nishimaru
- Department of Pharmacology, Toho University School of Pharmaceutical Sciences, Chiba 274-8510, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Espinosa L, Chouabe C, Morales A, Lachuer J, Georges B, Fatemi M, Terrenoire C, Tourneur Y, Bonvallet R. Increased sodium-calcium exchange current in right ventricular cell hypertrophy induced by simulated high altitude in adult rats. J Mol Cell Cardiol 2000; 32:639-53. [PMID: 10756120 DOI: 10.1006/jmcc.2000.1106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ventricular hypertrophy is associated with an increase in action potential (AP) duration which is potentially arrhythmogenic. The implication of the Na-Ca exchange current (I(Na-Ca)) in the lengthening of the AP is controversial. The role of this current in the increased duration of the low plateau of the AP in hypertrophied adult rat ventricular myocytes by simulated chronic high-altitude exposure ( approximately 4500 m) was evaluated. Electrophysiological experiments were carried out on isolated right ventricular myocytes from exposed and control rats with the perforated patch or the conventional whole-cell technique in current or in voltage clamp condition. With the two techniques, a significant increase of the low plateau duration was observed in hypertrophied myocytes as compared to controls. The low plateau in hypertrophied myocytes was depressed when Na was replaced by Li and was no longer recorded when intracellular Ca was buffered with EGTA. Inward tail currents, evoked either on repolarization to -80 mV following a depolarizing pulse to +10 mV or by interrupted AP technique, were greater in hypertrophied than in control myocytes and were abolished when Na was replaced by Li or when intracellular Ca was buffered with EGTA, indicating an increased Na-Ca exchange activity. The Li-sensitive current-voltage curves, obtained by a voltage clamp ramp protocol with an intracellular calcium buffered solution, were not significantly different in both hypertrophied and control myocytes, suggesting no modification in the density of the Na-Ca exchange protein. This was corroborated by the lack of difference in NCX1 mRNA levels between right ventricles from control and exposed rats. We conclude that increased duration of the low plateau of rat ventricular AP in altitude cardiac hypertrophy may be attributed to an increase of the inward I(Na-Ca). This augmented I(Na-Ca)may result from a modification in the intracellular Ca homeostasis.
Collapse
Affiliation(s)
- L Espinosa
- UMR CNRS 5578, Physiologie des Régulations Energétiques, Cellulaires et Moléculaires, Campus La Doua, Villeurbanne, 69622, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cui Y, Galione A, Terrar DA. Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle. Biochem J 1999; 342 ( Pt 2):269-73. [PMID: 10455010 PMCID: PMC1220460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Actions of photoreleased cADP-ribose (cADPR), a novel regulator of calcium-induced calcium release (CICR) from ryanodine-sensitive stores, were investigated in cardiac myocytes. Photoreleased cADPR caused an increase in the magnitude of whole-cell calcium transients studied in mammalian cardiac ventricular myocytes (both guinea-pig and rat) using confocal microscopy). Approx. 15 s was required following photorelease of cADPR for the development of its maximal effect. Photoreleased cADPR also increased the frequency of calcium 'sparks', which are thought to be elementary events which make up the whole-cell calcium transient, and were studied in rat myocytes, but had little or no effect on spark characteristics (amplitude, rise time, decay time and distance to half amplitude). The potentiating effects of photoreleased cADPR on both whole-cell transients and the frequency of calcium sparks were prevented by cytosolic application of the antagonist 8-amino-cADPR (5 microM). These experiments, therefore, provide the first evidence in any cell type for an effect of cADPR on calcium sparks, and are the first to show the actions of photoreleased cADPR on whole-cell calcium transients in mammalian cells. The observations are consistent with the effects of cADPR in enhancing the calcium sensitivity of CICR from the sarcoplasmic reticulum in cardiac ventricular myocytes, leading to an increase in the probability of occurrence of calcium sparks and to an increase in whole-cell calcium transients. The slow time-course for development of the full effect on whole-cell calcium transients might be taken to indicate that the influence of cADPR on CICR may involve complex molecular interactions rather than a simple direct action of cADPR on the ryanodine-receptor channels.
Collapse
Affiliation(s)
- Y Cui
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K
| | | | | |
Collapse
|
29
|
Rakovic S, Cui Y, Iino S, Galione A, Ashamu GA, Potter BV, Terrar DA. An antagonist of cADP-ribose inhibits arrhythmogenic oscillations of intracellular Ca2+ in heart cells. J Biol Chem 1999; 274:17820-7. [PMID: 10364226 DOI: 10.1074/jbc.274.25.17820] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oscillations of Ca2+ in heart cells are a major underlying cause of important cardiac arrhythmias, and it is known that Ca2+-induced release of Ca2+ from intracellular stores (the sarcoplasmic reticulum) is fundamental to the generation of such oscillations. There is now evidence that cADP-ribose may be an endogenous regulator of the Ca2+ release channel of the sarcoplasmic reticulum (the ryanodine receptor), raising the possibility that cADP-ribose may influence arrhythmogenic mechanisms in the heart. 8-Amino-cADP-ribose, an antagonist of cADP-ribose, suppressed oscillatory activity associated with overloading of intracellular Ca2+ stores in cardiac myocytes exposed to high doses of the beta-adrenoreceptor agonist isoproterenol or the Na+/K+-ATPase inhibitor ouabain. The oscillations suppressed by 8-amino-cADP-ribose included intracellular Ca2+ waves, spontaneous action potentials, after-depolarizations, and transient inward currents. Another antagonist of cADP-ribose, 8-bromo-cADP-ribose, was also effective in suppressing isoproterenol-induced oscillatory activity. Furthermore, in the presence of ouabain under conditions in which there was no arrhythmogenesis, exogenous cADP-ribose was found to be capable of triggering spontaneous contractile and electrical activity. Because enzymatic machinery for regulating the cytosolic cADP-ribose concentration is present within the cell, we propose that 8-amino-cADP-ribose and 8-bromo-cADP-ribose suppress cytosolic Ca2+ oscillations by antagonism of endogenous cADP-ribose, which sensitizes the Ca2+ release channels of the sarcoplasmic reticulum to Ca2+.
Collapse
Affiliation(s)
- S Rakovic
- University Department Of Pharmacology, Oxford University Oxford OX1 3QT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
30
|
Pacher P, Ungvári Z, Nánási PP, Kecskeméti V. Electrophysiological changes in rat ventricular and atrial myocardium at different stages of experimental diabetes. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 166:7-13. [PMID: 10372973 DOI: 10.1046/j.1365-201x.1999.00538.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Action potential configuration in ventricular and atrial myocardium, as well as rate-dependent changes in ventricular action potential duration (APD) were studied and compared in healthy and diabetic rats. Diabetes was induced by a single injection of streptozotocin (STZ, 65 mg kg(-1) i.v.). Conventional microelectrode techniques were applied to record action potentials after the establishment of diabetes (2, 6, 10 and 18 weeks after STZ-treatment). Untreated age-matched animals were used as controls. Both depolarization and repolarization were significantly retarded following STZ-treatment. However, the time course of development of diabetic changes in atrial and ventricular myocardium was different. APD was significantly lengthened from week 2 of diabetes in ventricular, but only from week 6 in atrial preparations. In atrial myocardium, lengthening of APD was more pronounced at early rather than late phases of repolarization. The maximum rate of depolarization (Vmax) was significantly reduced from the 6th week of diabetes in both preparations. No differences were observed in action potential amplitude (except at week 18) and in the resting membrane potential in diabetic rats. Diabetic ventricular preparations showed a positive APD-frequency relationship at any level of repolarization, in contrast to control muscles, where APD25 and APD50 values lengthened. But APD75 and APD90 values were not changed significantly with increase in the pacing frequency. The results indicate that development of diabetic alterations are not fully identical in atrial and ventricular myocardium of the rat, probably owing to differences in density and kinetics of ionic currents responsible for atrial and ventricular action potentials.
Collapse
Affiliation(s)
- P Pacher
- Department of Pharmacology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|
31
|
Pacher P, Ungvari Z, Kecskemeti V. Electrophysiological effects of homocysteine in isolated rat right ventricular papillary muscles and left atria. GENERAL PHARMACOLOGY 1999; 32:439-443. [PMID: 10323484 DOI: 10.1016/s0306-3623(98)00213-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is clinical and epidemiological evidence that elevated plasma homocysteine (Hcy) levels are associated with increased myocardial infarction mortality; however, very little is known about Hcy's direct cardiac effects. Thus, we aimed to characterize the cellular electrophysiologic effects of Hcy, a sulfur-containing amino acid in isolated rat hearts. A conventional microelectrode technique was used in left atria and right ventricular papillary muscles. At concentrations higher than 10(6) M, Hcy significantly decreased the maximum rate of rise of the depolarization phase (Vmax) in both cardiac preparations in a dose-dependent manner. Hcy at 10(-4)-5 x 10(-4) M concentrations increased the action potential duration (APD) at late stages of repolarization (at 75% and 90% of APD) both in atria and in ventricles. There was a slight decrease in action potential amplitude in ventricular papillary muscles and atria at concentrations higher that 10(-5) M. The resting membrane potential and the early repolarization phase (APD25 and APD50) remained unchanged in every preparation studied at all concentrations of Hcy administered. The present data suggest that homocysteine may decrease the Na+ channel activity in in vitro cardiac preparations. reserved.
Collapse
Affiliation(s)
- P Pacher
- Department of Pharmacology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | |
Collapse
|
32
|
Leblanc N, Chartier D, Gosselin H, Rouleau JL. Age and gender differences in excitation-contraction coupling of the rat ventricle. J Physiol 1998; 511 ( Pt 2):533-48. [PMID: 9706029 PMCID: PMC2231134 DOI: 10.1111/j.1469-7793.1998.533bh.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The objective of this study was to determine potential post-pubertal gender-specific differences in the contractility of papillary muscles, the electrophysiological properties and Ca2+ transients of freshly dissociated ventricular myocytes from the rat heart. 2. The contractions of rat papillary muscles from 2- to 14-month-old male and female rats were studied under isometric and isotonic conditions (29 degrees C). While the hearts of young (2-4 months) male and female rats displayed a similar contractile profile, papillary muscles of female rats aged 6 months and older exhibited smaller isometric and isotonic contractions, smaller maximal rates of tension and shortening development and decline (+/-DT/dt and +/-DL/dt) velocities during both the onset and relaxation phases, and shorter contractions than age-matched males. 3. To explore the possible cellular basis accounting for these differences, action potentials and macroscopic currents were recorded from freshly dissociated myocytes using the whole-cell patch clamp technique (35 C). Action potentials from male and female myocytes of 3- and 9-month-old rats did not vary as a function of age or gender. Consistent with these results, the magnitude (expressed in pA pF-1), voltage-dependence and kinetics of the inward rectifier (IK1), transient outward (Ito) and sustained (IK) K+ currents displayed little, if any dependence on age or gender. 4. L-type Ca2+ current (ICa(L)) measured in caesium-loaded myocytes (35 C) from male and female rats of 3, 6 and 9 months of age exhibited similar characteristics. In contrast, while Ca2+ transients measured with indo-1 were similar between 3-month-old male and female rat myocytes, Ca2+ transients of 10-month-old female myocytes were significantly reduced and showed a diminished rate of relaxation in comparison with those recorded in male rats of similar age. 5. These results suggest that important gender-related changes in excitation-contraction coupling occur following puberty, probably due to differences in Ca2+ handling capabilities at the level of the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- N Leblanc
- Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada H1T 1C8
| | | | | | | |
Collapse
|
33
|
Tanaka H, Sekine T, Nishimaru K, Shigenobu K. Role of sarcoplasmic reticulum in myocardial contraction of neonatal and adult mice. Comp Biochem Physiol A Mol Integr Physiol 1998; 120:431-8. [PMID: 9787828 DOI: 10.1016/s1095-6433(98)10043-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Changes in action potential parameters by and inotropic responses to nicardipine, verapamil, ryanodine and cyclopiazonic acid were examined in isolated ventricular myocardial preparations from neonatal and adult mice. The action potential of both neonatal and adult mice had a unique configuration with little evidence of a plateau at depolarized membrane potential; the action potential duration was significantly larger in neonatal preparations. Nicardipine had no effect on action potential parameters in the adult while it significantly shortened the action potential duration at 50% repolarization in the neonate. Ryanodine significantly shortened the action potential duration at 80% repolarization at both ages: the shortening was significantly larger in the adult when compared with the neonate. The contraction of ventricular preparations from adult mice were relatively resistant to nicardipine and verapamil. Nicardipine or verapamil, even at 10(-5) M, only decreased the contractile force to 70% of control values; the decrease was much less than that reported in other experimental species such as chick, guinea pig or rabbit. In the neonate, 10(-5) M nicardipine or verapamil decreased the contractile force to 30% of control values. Ryanodine had a potent negative inotropic effect both in the neonate and adult; the effect was significantly larger in the adult. Cyclopiazonic acid produced a decrease in contractile force and prolongation of the time required for relaxation; both effects were significantly larger in the adult. These results suggest that the contraction of the adult mouse myocardium is highly dependent on SR function and less dependent on transsarcolemmal Ca2+ influx when compared with the myocardium of the neonatal mouse and that of other species.
Collapse
Affiliation(s)
- H Tanaka
- Department of Pharmacology, Toho University School of Pharmaceutical Sciences, Chiba, Japan.
| | | | | | | |
Collapse
|
34
|
Szigligeti P, Bányász T, Magyar J, Szigeti G, Papp Z, Varró A, Nánási PP. Intracellular calcium and electrical restitution in mammalian cardiac cells. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 163:139-47. [PMID: 9648632 DOI: 10.1046/j.1365-201x.1998.00362.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of calcium current and changes in intracellular calcium concentration ([Ca2+]i) in regulation of action potential duration (APD) during electrical restitution process was studied in mammalian ventricular preparations. Properly timed action potentials were recorded from multicellular preparations and isolated cardiomyocytes using conventional microelectrodes and EGTA-containing patch pipettes. APD increased monotonically in canine and guinea pig ventricular preparations with increasing diastolic interval (DI), while in rabbit papillary muscles the restitution process was biphasic: APD first lengthened, then shortened as the DI increased. When the restitution process was studied in single cardiomyocytes using EGTA-containing patch pipettes, the restitution pattern was similar in the three species studied. Similarly, no difference was observed in the recovery time constant of calcium current (/Ca-L) measured under these conditions in voltage clamped myocytes. Loading the myocytes with the [Ca2+]i-chelator BAPTA-AM had adverse effects in rabbit and canine cells. In rabbit myocytes steady-state APD lengthened and the late shortening component of restitution was abolished in BAPTA-loaded cells. In canine myocytes BAPTA-load shortened steady-state APD markedly, and during restitution, APD decreased with increasing DI. The late shortening component of restitution, observed in untreated rabbit preparations, was greatly reduced after nifedipine treatment, but remained preserved in the presence of 4-aminopyridine or nicorandil. Beat to beat changes in APD, peak/Ca-L and [Ca2+]i, measured using the fluorescent dye, Fura-2, were monitored in rabbit ventricular myocytes after a 1-min period of rest. In these cells, the shortening of APD was accompanied by a gradual reduction of the peak/Ca-L and elevation of diastolic [Ca2+]i during the initial eight post-rest action potentials. It is concluded that elevation of [Ca2+]i shortens, while reduction of [Ca2+]i lengthens APD in rabbit, but not in canine ventricular myocytes. These differences may probably be related to different distributions of [Ca2+]i-dependent ion currents and/or to differences in calcium handling between the two species.
Collapse
Affiliation(s)
- P Szigligeti
- Department of Physiology, University Medical School of Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
35
|
Akita M, Kuwahara M, Tsubone H, Sugano S. ECG changes during furosemide-induced hypokalemia in the rat. J Electrocardiol 1998; 31:45-9. [PMID: 9533377 DOI: 10.1016/s0022-0736(98)90006-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrolyte abnormalities have become an increasingly important cause of arrhythmias owing to the widespread use of high-potency diuretics. Hypokalemia is one of the common complications of diuretic use. Although some studies of hypokalemia induced by furosemide as well as of potassium-deficient diets in the rat have been reported, the electrocardiographic (ECG) changes during hypokalemia in the rat are poorly understood. This study was designed to examine such changes. For this purpose, hypokalemia was induced by furosemide administration, and the diagnostic criteria for ECG manifestations of hypokalemia were determined. During hypokalemia, conduction in most parts of the heart was suppressed to an extent depending on plasma potassium concentration. Prolongation of the QT interval was also observed, which agrees with findings in humans and dogs. Furthermore, prolonged durations of the P wave and QRS complex were observed during hypokalemia in the rat. The extent of alteration of the PR interval induced by hypokalemia was less significant than that of P wave and QRS complex durations. These results suggest that the excitabilities of the myocardium in the atria and ventricles may be affected by extracellular potassium level rather than by the atrioventricular conduction system in the rat. Wave amplitude, except that of the P wave, was decreased by severe hypokalemia. These changes were not dependent on the plasma potassium concentration. Typical T wave changes observed with hypokalemia in humans and dogs did not occur in the rat. The ECG manifestations of acute hypokalemia in the rat did not include the typical T wave changes seen in species with ST-segment type ECGs; however, other ECG parameter changes occurring with hypokalemia were qualitatively similar to those in other species. These results may be useful for testing the toxicity of potassium-depleting drugs in the rat.
Collapse
Affiliation(s)
- M Akita
- Department of Comparative Pathophysiology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
36
|
Iino S, Cui Y, Galione A, Terrar DA. Actions of cADP-ribose and its antagonists on contraction in guinea pig isolated ventricular myocytes. Influence of temperature. Circ Res 1997; 81:879-84. [PMID: 9351463 DOI: 10.1161/01.res.81.5.879] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although it is becoming widely accepted that cADP-ribose (cADPR) can regulate calcium release from the endoplasmic reticulum in sea urchin eggs and in a variety of mammalian cell types, it remains controversial whether this substance might influence calcium release during excitation-contraction coupling in cardiac muscle. We have investigated possible actions of cADPR in intact cells isolated from guinea pig ventricle, paying particular attention to the possible influence of temperature. At 36 degrees C, myocyte contraction was influenced by cytosolic application of cADPR in a concentration-dependent manner (showing an approximately 30% increase in contraction with 5 mumol/L cADPR applied via a patch pipette in myocytes stimulated to fire action potentials at 1 Hz). Calcium transients measured with fura 2 were also increased by 5 mumol/L cADPR. Antagonists of cADPR reduced contraction at 36 degrees C (by approximately 35% with either 50 mumol/L 8-Br-cADPR or 5 mumol/L 8-amino-cADPR applied via the patch pipette). At room temperature (approximately 20 degrees C to 24 degrees C), no significant effects on contraction were detected with either cADPR or its antagonists. At 36 degrees C, treatment of the cells with a mixture of 2 mumol/L ryanodine and 1 mumol/L thapsigargin to suppress function of the sarcoplasmic reticulum stores of calcium prevented the action of 5 mumol/L cADPR applied via a patch pipette. These observations are consistent with an action of cytosolic cADPR to enhance calcium-induced calcium release from the sarcoplasmic reticulum in guinea pig ventricular myocytes at 36 degrees C. The observed influence of temperature under the conditions of our experiments is one factor that might help to account for failure to detect actions of cADPR and its analogues in some previous studies.
Collapse
Affiliation(s)
- S Iino
- Department of Pharmacology, University of Oxford, U.K
| | | | | | | |
Collapse
|
37
|
Janvier NC, McMorn SO, Harrison SM, Taggart P, Boyett MR. The role of Na(+)-Ca2+ exchange current in electrical restitution in ferret ventricular cells. J Physiol 1997; 504 ( Pt 2):301-14. [PMID: 9365905 PMCID: PMC1159911 DOI: 10.1111/j.1469-7793.1997.301be.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The mechanisms underlying electrical restitution (recovery of action potential duration after a preceding beat) were investigated in ferret ventricular cells. The time to 80% recovery (t80) of action potential duration was approximately 204 ms. 2. At a holding potential of -80 mV, the Ca2+ current (ICa) reactivated and the delayed rectifier K+ current (IK) deactivated very rapidly (t80: approximately 32 and approximately 93 ms, respectively). The kinetics of both currents are too fast to account for electrical restitution alone. 3. The putative inward Na(+)-Ca2+ exchange current (INa-Ca) produced by the Na(+)-Ca2+ exchanger in response to the intracellular Ca2+ transient reprimed (t80: 189 ms) with the same time course as mechanical restitution (recovery of contraction) and with a similar time course to electrical restitution. 4. Substantial reduction of inward INa-Ca, by buffering intracellular Ca2+ with the acetyl methyl ester form of BAPTA, shortened the action potential and greatly altered the electrical restitution curve. Subsequent addition of nifedipine (to block ICa) or 4-aminopyridine (4-AP) (to block the transient outward current, ITO) further altered the electrical restitution curve. 5. Any time-dependent current that contributes to the action potential is likely to affect the time course of electrical restitution. Although ICa, IK and ITO were previously thought to be the only currents involved in electrical restitution, we conclude that inward INa-Ca also plays an important role.
Collapse
Affiliation(s)
- N C Janvier
- Department of Physiology, University of Leeds, UK
| | | | | | | | | |
Collapse
|
38
|
Janvier NC, Harrison SM, Boyett MR. The role of inward Na(+)-Ca2+ exchange current in the ferret ventricular action potential. J Physiol 1997; 498 ( Pt 3):611-25. [PMID: 9051574 PMCID: PMC1159179 DOI: 10.1113/jphysiol.1997.sp021887] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Inward Na(+)-Ca2+ exchange current (iNaCa) was either blocked in ferret ventricular cells by replacing extracellular Na+ with Li+ or substantially reduced by the almost complete elimination of the Ca2+ transient by buffering intracellular Ca2+ with the acetoxymethyl ester form of BAPTA (BAPTA AM). 2. During square wave voltage clamp pulses to 0 mV, replacing extracellular Na+ with Li+ or buffering intracellular Ca2+ with BAPTA AM resulted in the loss of a transient inward current. This current was increased by the application of isoprenaline (expected to increase the underlying Ca2+ transient) and displayed the voltage-dependent characteristics of inward iNaCa. 3. Replacing extracellular Na+ with Li+ or buffering intracellular Ca2+ caused a significant shortening of the action potential (at -65 mV, 44 +/- 2% with Li+ and 20 +/- 2% with BAPTA AM). The shortening can be explained by changes in iNaCa. 4. The action potential clamp technique was used to measure the BAPTA-sensitive current (putative iNaCa) and the Ca2+ current (ica; measured using nifedipine) during the action potential. Under control conditions, the inward BAPTA-sensitive current makes approximately the same contribution as iCa during much of the action potential plateau. These results suggest an important role for inward iNaCa in the ferret ventricular action potential.
Collapse
Affiliation(s)
- N C Janvier
- Department of Physiology, University of Leeds, UK
| | | | | |
Collapse
|
39
|
Satoh H. Electrophysiological actions of ryanodine on single rabbit sinoatrial nodal cells. GENERAL PHARMACOLOGY 1997; 28:31-8. [PMID: 9112074 DOI: 10.1016/s0306-3623(96)00182-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Effects of ryanodine on the action potentials and the ionic currents in spontaneously beating single rabbit sinoatrial (SA) nodal cells were examined using current-clamp and whole-cell voltage-clamp techniques. 2. Cumulative administrations of ryanodine (10(-8) to 10(-4) M) caused a negative chronotropic effect in a concentration-dependent manner; the effect was not modified by atropine (10(-7) M). At 10(-6) M, ryanodine increased the action potential amplitude and the maximum rate of depolarization, and prolonged the duration of action potentials, significantly. The maximum diastolic potential was unaffected. 3. No arrhythmia occurred in the presence of ryanodine (10(-6) M) alone, but addition of either caffeine (10 mM) or high Ca2+ (10.8 mM) elicited arrhythmias. The incidence increased with an increase in extracellular Ca2+ concentration. 4. Ryanodine, at 10(-6) M, enhanced the Ca2+ current but, at 10(-5) M, inhibited it. Ryanodine inhibited the delayed rectifier K+ current and the hyperpolarization-activated inward current in a concentration-dependent manner. 5. In addition, ryanodine actually elevated the cytosolic Ca2+ level in the SA nodal cells loaded with Ca(2+)-sensitive fluorescent dye (fura-2). 6. These results indicate that ryanodine modulates the ionic currents (presumably dependent on cellular Ca2+ concentration), suggesting similar pharmacological properties to caffeine.
Collapse
Affiliation(s)
- H Satoh
- Department of Pharmacology, Nara Medical University, Japan
| |
Collapse
|
40
|
Rakovic S, Galione A, Ashamu GA, Potter BV, Terrar DA. A specific cyclic ADP-ribose antagonist inhibits cardiac excitation-contraction coupling. Curr Biol 1996; 6:989-96. [PMID: 8805333 DOI: 10.1016/s0960-9822(02)00643-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Cyclic ADP-ribose (cADPR) has been shown to act as a potent cytosolic mediator in a variety of tissues, regulating the release of Ca2+ from intracellular stores by a mechanism that involves ryanodine receptors. There is controversy over the effects of cADPR in cardiac muscle, although one possibility is that endogenous cADPR increases the Ca2+ sensitivity of Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum. We investigated this possibility using 8-amino-cADPR, which has been found to antagonize the Ca2+-releasing effects of cADPR on sea urchin egg microsomes and in mammalian cells (Purkinje neurons, Jurkat T cells, smooth muscle and PC12 cells). RESULTS In intact cardiac myocytes isolated from guinea-pig ventricle, cytosolic injection of 8-amino-cADPR substantially reduced contractions and Ca2+ transients accompanying action potentials (stimulated at 1Hertz). These reductions were not seen with injection of HEPES buffer, with heat-inactivated 8-amino-cADPR, or in cells pretreated with ryanodine (2 microM) to suppress sarcoplasmic reticulum function before injection of the 8-amino-cADPR. L-type Ca2+ currents and the extent of Ca2+ loading of the sarcoplasmic reticulum were not reduced by 8-amino-cADPR. CONCLUSIONS These observations are consistent with the hypothesis that endogenous cADPR plays an important role during normal contraction of cardiac myocytes. One possibility is that cADPR sensitizes the CICR mechanism to Ca2+, an action antagonized by 8-amino-cADPR (leading to reduced Ca2+ transients and contractions). A direct effect of 8-amino-cADPR on CICR cannot be excluded, but observations with caffeine are not consistent with a non-selective block of release channels.
Collapse
Affiliation(s)
- S Rakovic
- University Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK
| | | | | | | | | |
Collapse
|
41
|
Tanaka H, Noguchi K, Shigenobu K. Myocardial action potential prolongation by calcium channel activation under calcium free-EGTA condition in rats: developmental and regional variations. GENERAL PHARMACOLOGY 1995; 26:39-43. [PMID: 7536175 DOI: 10.1016/0306-3623(94)00169-n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. Prolongation of action potentials upon the addition of isoproterenol, forskolin, isobutylmethyl-xanthine (IBMX) and dibutyril cAMP (dbcAMP) under Ca-free EGTA condition was examined in isolated myocardial preparations from neonatal and adult rats, whose action potential configuration greatly differ. 2. The prolongation of the action potential was previously suggested to be produced by persistent sodium influx through calcium channel due to the lack of calcium-mediated inactivation of calcium channels under such experimental condition. 3. Preparations used were papillary muscles and free walls of the right and left ventricles from neonatal and adult rats. 4. In adult preparations, the prolongation produced by isoproterenol, forskolin and IBMX in the right free wall was smaller than those in the other three regions, while no regional difference was observed with dbcAMP. 5. The degree of prolongation by all of the four drugs were smaller in the neonate than in the adult. No regional difference was observed with any of the drugs in the neonate. 6. Our present results suggest that contribution of calcium-mediated inactivation of calcium channels to the repolarization of rat myocardium may increase postnatally to produce the developmental shortening of its action potential. Also, regional difference in the cAMP related mechanisms may appear postnatally.
Collapse
Affiliation(s)
- H Tanaka
- Department of Pharmacology, Toho University School of Pharmaceutical Sciences, Chiba, Japan
| | | | | |
Collapse
|
42
|
Le Guennec JV, Noble D. Effects of rapid changes of external Na+ concentration at different moments during the action potential in guinea-pig myocytes. J Physiol 1994; 478 Pt 3:493-504. [PMID: 7965859 PMCID: PMC1155669 DOI: 10.1113/jphysiol.1994.sp020268] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. A rapid solution-changing system using a solenoid was set up. The half-time for changing the external solution surrounding a ventricular cardiac cell was 7.2 +/- 1.4 ms, whereas the time needed to change 90% of this solution was 48.5 +/- 7.9 ms. This rapid switching system was used to reduce the external sodium concentration at different moments during the action potential (recorded using the whole-cell method) to 50% of its original value. This was performed in order to investigate the effect on the shape and duration of the action potential of modifying the activity of the sodium-calcium exchanger. 2. A diminution of the action potential duration was seen irrespective of the substitute used for reducing the NaCl concentration from 140 to 70 mM. The magnitude of this diminution depended on the presence or absence of EGTA (5 mM) in the pipette solution and also on the moment during the action potential at which the NaCl substitution occurred. 3. Some differences were observed depending on whether the NaCl substitute used was lithium chloride or choline chloride. When choline chloride or N-methyl-D-glucamine was used as the NaCl substitute, the amplitude of the action potential was slightly reduced (by 2-5 mV) when the solution was changed 40 ms before the action potential was triggered. This reduction was never observed when LiCl was used as the NaCl substitute. 4. The effects on the shape of the action potential of changing from a solution containing 140 mM NaCl to one containing 70 mM NaCl and 70 mM LiCl were much more rapid when these changes occurred at a later stage during the action potential. The rate of repolarization was more than doubled when the change occurred at a late stage of the action potential but was hardly changed at the beginning of the plateau. 5. These experiments confirm the role of the sodium-calcium exchange current in determining the duration of the mammalian ventricular action potential. However, it is also possible that the sodium background current plays a significant role in determining the shape of the action potential.
Collapse
Affiliation(s)
- J V Le Guennec
- University Laboratory of Physiology, University of Oxford
| | | |
Collapse
|
43
|
Tanaka H, Noguchi K, Shigenobu K. Myocardial action potential prolongation by calcium channel activation under calcium-free EGTA condition in guinea pigs and rats. GENERAL PHARMACOLOGY 1994; 25:475-80. [PMID: 7926594 DOI: 10.1016/0306-3623(94)90201-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
1. Prolongation of action potentials upon the addition of isoproterenol or dbcAMP under Ca-free EGTA condition were observed in isolated myocardial preparations from both the guinea pig and the rat, whose action potential configuration greatly differ. The degree of prolongation was greater in the rat than in the guinea pig. 2. The prolongation of the action potential was rapidly reversed upon the addition of calcium ion and was dose-dependently suppressed by the addition of calcium antagonists. The sensitivity to nicardipine of this action potential was tenfold higher than of the so-called slow response action potentials. The duration of the prolonged action potential was dependent on the external sodium concentration, but was not affected by tetrodotoxin. 3. Thus, it was demonstrated in intact myocardia that sodium ion may persistently pass through the calcium channel to prolong the action potential when it is activated under the condition where the calcium-mediated inactivation of calcium channels is removed. 4. Contribution of calcium-mediated inactivation of calcium channels to the repolarization of normal myocardium may be larger in the rat than in the guinea pig.
Collapse
Affiliation(s)
- H Tanaka
- Department of Pharmacology, Toho University School of Pharmaceutical Sciences, Chiba, Japan
| | | | | |
Collapse
|
44
|
Coulombe A, Momtaz A, Richer P, Swynghedauw B, Coraboeuf E. Reduction of calcium-independent transient outward potassium current density in DOCA salt hypertrophied rat ventricular myocytes. Pflugers Arch 1994; 427:47-55. [PMID: 8058475 DOI: 10.1007/bf00585941] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Saline-drinking, left-nephrectomized rats made hypertensive by deoxycorticosterone acetate (DOCA) pellet implantation at the time of surgery develop a cardiac hypertrophy, which becomes maximal after 6-7 weeks. The hypertrophy results in a marked increase in the amplitude and duration of both the early and the late component of the ventricular action potential plateau recorded in the isolated perfused rat heart. The 4-aminopyridine(4-AP)-sensitive calcium-independent transient outward potassium current was markedly depressed in hypertrophied ventricular myocytes resulting in a highly significant decrease in current density (from 19.9 +/- 3.5 to 6.4 +/- 3.1 pA/pF at +60 mV). Activation/voltage and steady-state inactivation/voltage relationships were moderately although non-significantly shifted towards negative potentials. The steady-state outward current measured at the end of 1-s depolarizing pulses was not significantly changed in hypertrophied myocytes. 4-AP induced a smaller increase in plateau amplitude and duration in hypertrophied rather than in control hearts, a point that is well explained by the depression of the transient outward current resulting from hypertrophy. We also demonstrated that a complete recovery of both cell capacitance and transient outward current amplitude occurs in myocytes from saline-drinking rats studied 13 weeks after DOCA pellet implantation, showing that hypertrophy regresses as a result of pellet elimination. Several mechanisms can be involved in the observed phenomena, including the possibility that the expression of potassium channels responsible for the transient outward current is not enhanced by hypertrophy in contrast with what occurs in the case of calcium channels.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Coulombe
- Laboratoire de Physiologie Cellulaire, URA CNRS 1121, Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
45
|
White E, Connors SP, Gill EW, Terrar DA. The positive inotropic effect of compound II, a novel analogue of sotalol, on guinea-pig papillary muscles and single ventricular myocytes. Br J Pharmacol 1993; 110:95-8. [PMID: 8220918 PMCID: PMC2176007 DOI: 10.1111/j.1476-5381.1993.tb13776.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Compound II is a novel analogue of sotalol which has been reported to be free of beta-adrenoceptor and L-type calcium channel blocking actions. The effects of compound II on the contraction of guinea-pig papillary muscles (at 2 microM) and single ventricular myocytes (at 100 nM) were investigated. 2. Exposure to compound II caused a significant increase in the contraction of both preparations. 3. Compound II prolonged the action potential of the single myocytes and increased the magnitude of the Ca-activated current which was used as a qualitative indicator of the intracellular calcium transient. 4. The ratio of first/steady state Ca-activated currents evoked by short action potentials was not modified. This may indicate that compound II does not influence the normal functioning of the sarcoplasmic reticulum stores. 5. The observations are consistent with the hypothesis that action potential prolongation by compound II reduces Ca2+ extrusion via the Na-Ca exchange. This in turn allows increased uptake of calcium into the sarcoplasmic reticulum stores so that more calcium is available for release by subsequent action potentials, leading to an increase in intracellular calcium transients and contractions.
Collapse
Affiliation(s)
- E White
- University Department of Pharmacology, Oxford
| | | | | | | |
Collapse
|
46
|
Cannings I, Harrison S, White E, Boyett M. The effect of a range of alcohols on the contraction of guinea-pig ventricular myocytes. Eur J Pharmacol 1993; 248:213-6. [PMID: 8223968 DOI: 10.1016/0926-6917(93)90046-s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previous results have shown that ethanol and some anaesthetics have a negative inotropic effect on the heart. This study was undertaken to investigate the influence of a range on n-alcohols (with chain lengths from 2 to 8) on contractility in guinea-pig ventricular myocytes. The results demonstrate that the negative inotropic action of alcohols increases dramatically as the chain length increases. The concentration required to reduce the magnitude of contraction to 50% of control (IC50) was 274 mM, 26 mM, 1.4 mM and 235 microM for ethanol, butanol, hexanol and octanol, respectively. The relationship between the logarithm of IC50 and chain length was linear for all the alcohols tested (up to a chain length of 8).
Collapse
Affiliation(s)
- I Cannings
- Department of Physiology, University of Leeds, UK
| | | | | | | |
Collapse
|
47
|
Varro A, Hester S, Papp JG. Caffeine-induced decreases in the inward rectifier potassium and the inward calcium currents in rat ventricular myocytes. Br J Pharmacol 1993; 109:895-7. [PMID: 8401940 PMCID: PMC2175721 DOI: 10.1111/j.1476-5381.1993.tb13702.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The effects of high (20 mM) concentrations of caffeine were studied on the transmembrane voltage and currents in rat single ventricular myocytes by the whole cell configuration of the patch clamp technique. Rapid application of caffeine released Ca2+ from the sarcoplasmic reticulum and induced a Ni(2+)-sensitive transient inward current with concomitant change of the transmembrane voltage from -72.6 +/- 0.4 to -68.0 +/- 0.6 mV (n = 4). Maintained application of caffeine lengthened the action potential duration (APD90) from 66.7 +/- 16.9 to 135.1 +/- 34.1 ms (n = 4) and depressed the amplitude of both the inward rectifier potassium and the inward calcium currents. It is concluded that these effects of caffeine should be recognized when it is used as a tool to study electromechanical coupling.
Collapse
Affiliation(s)
- A Varro
- Department of Pharmacology, Albert Szent-Györgyi Medical University, Szeged, Hungary
| | | | | |
Collapse
|
48
|
Lakatta EG, Guarnieri T. Spontaneous myocardial calcium oscillations: are they linked to ventricular fibrillation? J Cardiovasc Electrophysiol 1993; 4:473-89. [PMID: 8269314 DOI: 10.1111/j.1540-8167.1993.tb01285.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The physiological oscillation of cytosolic [Ca2+] that underlies each heart beat is generated by the sarcoplasmic reticulum (SR) in response to an action potential (AP) and occurs relatively synchronously within and among cells. When the myocardial cell and SR Ca2+ loading become sufficiently high, the SR can also generate spontaneous, i.e., not triggered by sarcolemmal depolarization, Ca2+ oscillations (S-CaOs). The purpose of this review is to describe properties of S-CaOs in individual cells, myocardial tissue, and the intact heart, and to examine the evidence that may link S-CaOs to the initiation or maintenance of ventricular fibrillation (VF). The SR Ca2+ release that generates S-CaOs occurs locally within cells and spreads within the cell via Ca(2+)-induced Ca2+ release. The localized increase in cytosolic [Ca2+] due to S-CaOs may equal that induced by an AP and causes oscillatory sarcolemmal depolarizations of cells in which it occurs. These oscillatory depolarizations are due to Ca2+ activation of the Na/Ca exchanger and of nonspecific cation channels. Asynchronous occurrence of diastolic S-CaOs among cells within the myocardium causes inhomogeneity of diastolic SR Ca2+ loading; this leads to inhomogeneity of the systolic cytosolic [Ca2+] transient levels in response to a subsequent AP, which leads to heterogeneity of AP repolarization, due to heterogeneous Ca2+ modulation of the Na/Ca exchanger, nonspecific cation channels, and of the L-type Ca2+ channel. In a tissue in which asynchronous S-CaOs are occurring in diastole, the subsequent AP temporarily synchronizes SR Ca2+ loading and release within and among cells. Varying extents of synchronized S-CaOs then begin to occur during the subsequent diastole. The partial synchronization of this diastolic S-CaOs among cells within myocardial tissue produces aftercontractions and diastolic depolarizations. When S-CaOs are sufficiently synchronized, the resultant depolarizations summate and can be sufficient to trigger a spontaneous AP.S-CaOs occurrence within some cells during a long AP plateau also modulates the removal of voltage inactivation of L-type Ca2+ channels and increases the likelihood for "early afterdepolarizations" to occur in myocardial tissue. S-CaOs have an apparent modulatory role in the initiation of VF in the Ca2+ overload model and in the reflow period following ischemia. Likewise, in non-a priori Ca2+ overloaded hearts, S-CaOs modulate the threshold for VF induction (induced typically by alternating current) but may not be essential for VF induction.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | | |
Collapse
|
49
|
Connors SP, Gill EW, Terrar DA. Actions and mechanisms of action of novel analogues of sotalol on guinea-pig and rabbit ventricular cells. Br J Pharmacol 1992; 106:958-65. [PMID: 1393293 PMCID: PMC1907682 DOI: 10.1111/j.1476-5381.1992.tb14442.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. The actions and mechanisms of action of novel analogues of sotalol which prolong cardiac action potentials were investigated in guinea-pig and rabbit isolated ventricular cells. 2. In guinea-pig and rabbit cells the compounds significantly prolonged action potential duration at 20% and 90% repolarization levels without affecting resting membrane potential. In guinea-pig but not rabbit cells there was an increase in action potential amplitude and in rabbit cells there was no change in the shape or position of the 'notch' in the action potential. 3. Possible mechanisms of action were studied in more detail in the case of compound II (1-(4-methanesulphonamidophenoxy)-3-(N-methyl 3,4 dichlorophenylethylamino)-2-propanol). Prolongation of action potential duration continued to occur in the presence of nisoldipine, and calcium currents recorded under voltage-clamp conditions were not reduced by compound II (1 microM). Action potential prolongation by compound II was also unaffected in the presence of 10 microM tetrodotoxin. 4. Compound II (1 microM) did not influence IK1 assessed from the current during ramp changes in membrane potential (20 mV s-1) over the range -90 to -10 mV. 5. Compound II (1 microM) blocked time-dependent delayed rectifier potassium current (IK) activated by step depolarizations and recorded as an outward tail following repolarization. When a submaximal concentration (50 nM) was applied there was no change in the apparent reversal potential of IK.6. Submaximal concentrations of compound II were without effect on activation of IK with time at a membrane potential of + 40 mV, and no changes were detected in the time constants of the two components of IK decay over the range of potentials - 60 to 0 mV. Compound 11 (50 nM) appeared to cause a small shift in the activation of IK with membrane potential (an apparent shift of approximately 10mV in the depolarizing direction at the mid-point of the curve).7. Log dose-response curves for action potential prolongation and for blockade of IK by compound II were similar. The IC50 for compound II was approximately 30 nM.8. It is concluded that this novel series of compounds prolongs action potential duration, and that in the case of compound II the evidence supports a potent selective effect on the time-dependent potassium current IK, an effect which can account for this prolongation.
Collapse
Affiliation(s)
- S P Connors
- University Department of Pharmacology, Oxford
| | | | | |
Collapse
|
50
|
Bouchard RA, Bose D. Contribution of sarcolemmal sodium-calcium exchange and intracellular calcium release to force development in isolated canine ventricular muscle. J Gen Physiol 1992; 99:931-60. [PMID: 1640221 PMCID: PMC2216627 DOI: 10.1085/jgp.99.6.931] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The aim of this work was to determine the relationship between peak twitch amplitude and sarcoplasmic reticulum (SR) Ca2+ content during changes of stimulation frequency in isolated canine ventricle, and to estimate the extent to which these changes were dependent upon sarcolemmal Na(+)-Ca2+ exchange. In physiological [Na+]o, increased stimulation frequency in the 0.2-2-Hz range resulted in a positive inotropic effect characterized by an increase in peak twitch amplitude and a decrease in the duration of contraction, measured as changes in isometric force development or unloaded cell shortening in intact muscle and isolated single cells, respectively. Action potentials recorded from single cells indicated that the inotropic effect was associated with a progressive decrease of action potential duration and a marked reduction in average time spent by the cell near the resting potential during the stimulus train. The frequency-dependent increase of peak twitch force was correlated with an increase of Ca2+ uptake into and release from the SR. This was estimated indirectly using the phasic contractile response to rapid (less than 1 s) lowering of perfusate temperature from 37 degrees C to 0-2 degrees C and changes of twitch amplitude resulting from perturbations in the pattern of electrical stimulation. Lowering [Na+]o from 140 to 70 mM resulted in an increase of contractile strength, which was accompanied by a similar increase of apparent SR Ca2+ content, both of which could be abolished by exposure to ryanodine (1 x 10(-8) M), caffeine (3 x 10(-3) M), or nifedipine (2 x 10(-6) M). Increased stimulation frequency in 70 mM [Na+]o resulted in a negative contractile staircase, characterized by a graded decrease of peak isometric force development or unloaded cell shortening. SR Ca2+ content estimated under identical conditions remained unaltered. Rate constants derived from mechanical restitution studies implied that the depressant effect of increased stimulation frequency in 70 mM [Na+]o was not a consequence of a decreased rate of refilling of a releasable pool of Ca2+ within the cell. These results demonstrate that frequency-dependent changes of contractile strength and intracellular Ca2+ loading in 140 mM [Na+]o require the presence of a functional sarcolemmal Na(+)-Ca2+ exchange process. The possibility that the negative staircase in 70 mM [Na+]o is related to inhibition of Ca(2+)-induced release of Ca2+ from the SR by various cellular mechanisms is discussed.
Collapse
Affiliation(s)
- R A Bouchard
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|