1
|
Zhang X, Lee MD, Buckley C, Hollenberg MD, Wilson C, McCarron JG. Endothelial PAR2 activation evokes resistance artery relaxation. J Cell Physiol 2023; 238:776-789. [PMID: 36791026 PMCID: PMC10952239 DOI: 10.1002/jcp.30973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Protease-activated receptor-1 & -2 (PAR1 and PAR2) are expressed widely in cardiovascular tissues including endothelial and smooth muscle cells. PAR1 and PAR2 may regulate blood pressure via changes in vascular contraction or relaxation mediated by endothelial Ca2+ signaling, but the mechanisms are incompletely understood. By using single-cell Ca2+ imaging across hundreds of endothelial cells in intact blood vessels, we explored PAR-mediated regulation of blood vessel function using PAR1 and PAR2 activators. We show that PAR2 activation evoked multicellular Ca2+ waves that propagated across the endothelium. The PAR2-evoked Ca2+ waves were temporally distinct from those generated by muscarinic receptor activation. PAR2 activated distinct clusters of endothelial cells, and these cells were different from those activated by muscarinic receptor stimulation. These results indicate that distinct cell clusters facilitate spatial segregation of endothelial signal processing. We also demonstrate that PAR2 is a phospholipase C-coupled receptor that evokes Ca2+ release from the IP3 -sensitive store in endothelial cells. A physiological consequence of this PAR2 signaling system is endothelium-dependent relaxation. Conversely, PAR1 activation did not trigger endothelial cell Ca2+ signaling nor relax or contract mesenteric arteries. Neither did PAR1 activators alter the response to PAR2 or muscarinic receptor activation. Collectively, these results suggest that endothelial PAR2 but not PAR1 evokes mesenteric artery relaxation by evoking IP3 -mediated Ca2+ release from the internal store. Sensing mediated by PAR2 receptors is distributed to spatially separated clusters of endothelial cells.
Collapse
Affiliation(s)
- Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Matthew D. Lee
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Morley D. Hollenberg
- Department of Physiology and Pharmacology and Department of MedicineUniversity of Calgary Cumming School of MedicineCalgaryAlbertaCanada
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - John G. McCarron
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| |
Collapse
|
2
|
Nishimoto R, Kodama C, Yamashita H, Hattori F. Human Induced Pluripotent Stem Cell-Derived Keratinocyte-Like Cells for Research on Protease-Activated Receptor 2 in Nonhistaminergic Cascades of Atopic Dermatitis . J Pharmacol Exp Ther 2023; 384:248-253. [PMID: 36351795 DOI: 10.1124/jpet.122.001412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022] Open
Abstract
Keratinocytes are the most abundant cells in the epidermis, and as part of the frontline immunologic defense system, keratinocytes function as a barrier to exogenous attacks. Protease-activated receptor 2 (PAR2) is expressed in human keratinocytes and activated in several inflammatory conditions, such as atopic dermatitis (AD). In this study, we demonstrated the differentiation of human induced pluripotent stem cell into keratinocytes by the improved, robust differentiation procedure and confirmed that human induced pluripotent stem cell-derived keratinocyte-like cells (iKera) express PAR2, which is activated by external addition of the ligand peptide and trypsin. The activation of PAR2 led to the release of calcium from intracellular calcium storage, followed by the release of the proinflammatory cytokine tumor necrosis factor α Moreover, PAR2 antagonist I-191 (CAS No. 1690172-25-8) inhibited calcium release in a dose-dependent manner. This is the first study to demonstrate that iKera expresses a functional PAR2 protein. Furthermore, our results indicate crosstalk between the PAR2- and IL-4-mediated inflammatory axes in iKera, suggesting that iKera can be used as a platform for a broad range of mechanism-targeted drug screening in AD. SIGNIFICANCE STATEMENT: This is the first study to provide evidence that human induced pluripotent stem cell-derived keratinocyte-like cells (iKera) express functional protease-activated receptor 2 (PAR2). Furthermore, this study demonstrated in iKera that the IL-4 inflammatory axis can crosstalk with the PAR2-mediated inflammatory axis in keratinocytes. To the best of our knowledge, this is the first report to indicate that iKera can be used for research and as a drug screening platform for atopic dermatitis.
Collapse
Affiliation(s)
- Rio Nishimoto
- Innovative Regenerative Medicine, Kansai Medical University, Graduate School of Medicine, Osaka, Japan (R.N., C.K., H.Y., F.H.) and Osaka College of High-Technology, Osaka, Japan (R.N., C.K.)
| | - Chinatsu Kodama
- Innovative Regenerative Medicine, Kansai Medical University, Graduate School of Medicine, Osaka, Japan (R.N., C.K., H.Y., F.H.) and Osaka College of High-Technology, Osaka, Japan (R.N., C.K.)
| | - Hiromi Yamashita
- Innovative Regenerative Medicine, Kansai Medical University, Graduate School of Medicine, Osaka, Japan (R.N., C.K., H.Y., F.H.) and Osaka College of High-Technology, Osaka, Japan (R.N., C.K.)
| | - Fumiyuki Hattori
- Innovative Regenerative Medicine, Kansai Medical University, Graduate School of Medicine, Osaka, Japan (R.N., C.K., H.Y., F.H.) and Osaka College of High-Technology, Osaka, Japan (R.N., C.K.)
| |
Collapse
|
3
|
Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev 2023; 103:717-785. [PMID: 35901239 PMCID: PMC9662810 DOI: 10.1152/physrev.00044.2021] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022] Open
Abstract
Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
Collapse
Affiliation(s)
- Chloe J Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| |
Collapse
|
4
|
Riccio D, Andersen HH, Arendt-Nielsen L. Mild Skin Heating Evokes Warmth Hyperknesis Selectively for Histaminergic and Serotoninergic Itch in Humans. Acta Derm Venereol 2022; 102:adv00649. [PMID: 35083491 PMCID: PMC9558757 DOI: 10.2340/actadv.v102.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic itch can severely affect quality of life. Patients report that their chronic itch can be exacerbated by exposure to warm conditions (“warmth hyperknesis”). The aim of this mechanistic study was to investigate the effect of mild heating of the skin in humans on various experimental models of itch. A total of 18 healthy subjects were recruited to the study. Itch was provoked by histamine, serotonin, or cowhage in 3 different sessions. The provoked area was heated with an infrared lamp, and the skin temperature was either not altered, or was increased by 4°C or 7°C. Subsequent to induction of itch, the itch intensity was recorded for 10 min while the skin was heated continuously throughout the entire period of itch induction. Heating the skin resulted in a significant increase in itch intensity when provoked by histamine or serotonin. It is possible that thermoception and pruriception interact and selectively produce a higher itch intensity in histaminergic and serotoninergic itch.
Collapse
Affiliation(s)
| | | | - Lars Arendt-Nielsen
- Faculty of Medicine, Aalborg University, Fredrik Bajers Vej, D3-212, DK-9220 Aalborg East, Denmark.
| |
Collapse
|
5
|
Lucena F, McDougall JJ. Protease Activated Receptors and Arthritis. Int J Mol Sci 2021; 22:9352. [PMID: 34502257 PMCID: PMC8430764 DOI: 10.3390/ijms22179352] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
The catabolic and destructive activity of serine proteases in arthritic joints is well known; however, these enzymes can also signal pain and inflammation in joints. For example, thrombin, trypsin, tryptase, and neutrophil elastase cleave the extracellular N-terminus of a family of G protein-coupled receptors and the remaining tethered ligand sequence then binds to the same receptor to initiate a series of molecular signalling processes. These protease activated receptors (PARs) pervade multiple tissues and cells throughout joints where they have the potential to regulate joint homeostasis. Overall, joint PARs contribute to pain, inflammation, and structural integrity by altering vascular reactivity, nociceptor sensitivity, and tissue remodelling. This review highlights the therapeutic potential of targeting PARs to alleviate the pain and destructive nature of elevated proteases in various arthritic conditions.
Collapse
Affiliation(s)
| | - Jason J. McDougall
- Departments of Pharmacology and Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
6
|
Oliveira KA, Torquato RJS, Lustosa DCGG, Ribeiro T, Nascimento BWL, de Oliveira LCG, Juliano MA, Paschoalin T, Lemos VS, Araujo RN, Pereira MH, Tanaka AS. Proteolytic activity of Triatoma infestans saliva associated with PAR-2 activation and vasodilation. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200098. [PMID: 33747067 PMCID: PMC7939238 DOI: 10.1590/1678-9199-jvatitd-2020-0098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Triatoma infestans (Hemiptera: Reduviidae) is a
hematophagous insect and the main vector of Trypanosoma
cruzi (Kinetoplastida: Trypanosomatidae). In the present study,
the authors investigated whether a serine protease activity from the saliva
of T. infestans has a role in vasomotor modulation, and in
the insect-blood feeding by cleaving and activating protease-activated
receptors (PARs). Methods T. infestans saliva was chromatographed as previously
reported for purification of triapsin, a serine protease. The cleavage
activity of triapsin on PAR peptides was investigated based on FRET
technology. Mass spectrometry was used to analyze the sites of PAR-2 peptide
cleaved by triapsin. NO measurements were performed using the DAN assay
(2,3-diaminonapthalene). The vasorelaxant activity of triapsin was measured
in vessels with or without functional endothelium pre-contracted with
phenylephrine (3 µM). Intravital microscopy was used to assess the effect of
triapsin on mouse skin microcirculation. Results Triapsin was able to induce hydrolysis of PAR peptides and showed a higher
preference for cleavage of the PAR-2 peptide. Analysis by mass spectrometry
confirmed a single cleavage site, which corresponds to the activation site
of the PAR-2 receptor. Triapsin induced dose-dependent NO release in
cultured human umbilical vein endothelial cells (HUVECs), reaching a maximum
effect at 17.58 nM. Triapsin purified by gel-filtration chromatography
(10-16 to 10-9 M) was applied cumulatively to
mouse mesenteric artery rings and showed a potent endothelium-dependent
vasodilator effect (EC30 = 10-12 M). Nitric oxide
seems to be partially responsible for this vasodilator effect because L-NAME
(L-NG-nitroarginine methyl ester 300 µM), a nitric oxide synthetase
inhibitor, did not abrogate the vasodilation activated by triapsin.
Anti-PAR-2 antibody completely inhibited vasodilation observed in the
presence of triapsin activity. Triapsin activity also induced an increase in
the mouse ear venular diameter. Conclusion Data from this study suggest a plausible association between triapsin
activity mediated PAR-2 activation and vasodilation caused by T.
infestans saliva.
Collapse
Affiliation(s)
- Karla A Oliveira
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, PI, Brazil
| | - Ricardo J S Torquato
- Department of Biochemistry, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Daniela C G Garcia Lustosa
- Department of Pharmacology, Institute of Biomedical Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Tales Ribeiro
- Department of Parasitology, Institute of Biomedical Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Bruno W L Nascimento
- Department of Parasitology, Institute of Biomedical Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lilian C G de Oliveira
- Department of Biophysics, National Institute of Pharmacology and Molecular Biology (INFAR), Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Maria A Juliano
- Department of Biophysics, National Institute of Pharmacology and Molecular Biology (INFAR), Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Thaysa Paschoalin
- Department of Biophysics, National Institute of Pharmacology and Molecular Biology (INFAR), Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Virginia S Lemos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ricardo N Araujo
- Department of Parasitology, Institute of Biomedical Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,National Institute of Science and Technology in Molecular Entomology (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Marcos H Pereira
- Department of Parasitology, Institute of Biomedical Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,National Institute of Science and Technology in Molecular Entomology (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Aparecida S Tanaka
- Department of Biochemistry, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil.,National Institute of Science and Technology in Molecular Entomology (INCT-EM), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Daci A, Da Dalt L, Alaj R, Shurdhiqi S, Neziri B, Ferizi R, Danilo Norata G, Krasniqi S. Rivaroxaban improves vascular response in LPS-induced acute inflammation in experimental models. PLoS One 2020; 15:e0240669. [PMID: 33301454 PMCID: PMC7728205 DOI: 10.1371/journal.pone.0240669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Rivaroxaban (RVX) was suggested to possess anti-inflammatory and vascular tone modulatory effects. The goal of this study was to investigate whether RVX impacts lipopolysaccharide (LPS)-induced acute vascular inflammatory response. Male rats were treated with 5 mg/kg RVX (oral gavage) followed by 10 mg/kg LPS i.p injection. Circulating levels of IL-6, MCP-1, VCAM-1, and ICAM-1 were measured in plasma 6 and 24 hours after LPS injection, while isolated aorta was used for gene expression analysis, immunohistochemistry, and vascular tone evaluation. RVX pre-treatment significantly reduced LPS mediated increase after 6h and 24h for IL-6 (4.4±2.2 and 2.8±1.7 fold), MCP-1 (1.4±1.5 and 1.3±1.4 fold) VCAM-1 (1.8±2.0 and 1.7±2.1 fold). A similar trend was observed in the aorta for iNOS (5.5±3.3 and 3.3±1.9 folds reduction, P<0.01 and P<0.001, respectively), VCAM-1 (1.3±1.2 and 1.4±1.3 fold reduction, P<0.05), and MCP-1 (3.9±2.2 and 1.9±1.6 fold reduction, P<0.01). Moreover, RVX pre-treatment, improved LPS-induced PE contractile dysfunction in aortic rings (Control vs LPS, Emax reduction = 35.4 and 31.19%, P<0.001; Control vs LPS+RVX, Emax reduction = 10.83 and 11.48%, P>0.05, respectively), resulting in 24.5% and 19.7% change in maximal constriction in LPS and LPS+RVX respectively. These data indicate that RVX pre-treatment attenuates LPS-induced acute vascular inflammation and contractile dysfunction.
Collapse
Affiliation(s)
- Armond Daci
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Lorenzo Da Dalt
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rame Alaj
- Cardiovascular Surgery Clinic, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Shpejtim Shurdhiqi
- Cardiovascular Surgery Clinic, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Burim Neziri
- Institute of Pathophysiology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Rrahman Ferizi
- Department of Premedical Courses-Biology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Giuseppe Danilo Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Centro SISA per lo Studio dell’Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Shaip Krasniqi
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- * E-mail:
| |
Collapse
|
8
|
Hara T, Phuong PT, Fukuda D, Yamaguchi K, Murata C, Nishimoto S, Yagi S, Kusunose K, Yamada H, Soeki T, Wakatsuki T, Imoto I, Shimabukuro M, Sata M. Protease-Activated Receptor-2 Plays a Critical Role in Vascular Inflammation and Atherosclerosis in Apolipoprotein E-Deficient Mice. Circulation 2019; 138:1706-1719. [PMID: 29700120 DOI: 10.1161/circulationaha.118.033544] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The coagulation system is closely linked with vascular inflammation, although the underlying mechanisms are still obscure. Recent studies show that protease-activated receptor (PAR)-2, a major receptor of activated factor X, is expressed in both vascular cells and leukocytes, suggesting that PAR-2 may contribute to the pathogenesis of inflammatory diseases. Here we investigated the role of PAR-2 in vascular inflammation and atherogenesis. METHODS We generated apolipoprotein E-deficient ( ApoE-/-) mice lacking systemic PAR-2 expression ( PAR-2-/- ApoE-/-). ApoE-/- mice, which lack or express PAR-2 only in bone marrow (BM) cells, were also generated by BM transplantation. Atherosclerotic lesions were investigated after 20 weeks on a Western-type diet by histological analyses, quantitative reverse transcription polymerase chain reaction, and Western blotting. In vitro experiments using BM-derived macrophages were performed to confirm the proinflammatory roles of PAR-2. The association between plasma activated factor X level and the severity of coronary atherosclerosis was also examined in humans who underwent coronary intervention. RESULTS PAR-2-/- ApoE-/- mice showed reduced atherosclerotic lesions in the aortic arch ( P<0.05) along with features of stabilized atherosclerotic plaques, such as less lipid deposition ( P<0.05), collagen loss ( P<0.01), macrophage accumulation ( P<0.05), and inflammatory molecule expression ( P<0.05) compared with ApoE-/- mice. Systemic PAR2 deletion in ApoE-/-mice significantly decreased the expression of inflammatory molecules in the aorta. The results of BM transplantation experiments demonstrated that PAR-2 in hematopoietic cells contributed to atherogenesis in ApoE-/- mice. PAR-2 deletion did not alter metabolic parameters. In vitro experiments demonstrated that activated factor X or a specific peptide agonist of PAR-2 significantly increased the expression of inflammatory molecules and lipid uptake in BM-derived macrophages from wild-type mice compared with those from PAR-2-deficient mice. Activation of nuclear factor-κB signaling was involved in PAR-2-associated vascular inflammation and macrophage activation. In humans who underwent coronary intervention, plasma activated factor X level independently correlated with the severity of coronary atherosclerosis as determined by Gensini score ( P<0.05) and plaque volume ( P<0.01). CONCLUSIONS PAR-2 signaling activates macrophages and promotes vascular inflammation, increasing atherosclerosis in ApoE-/- mice. This signaling pathway may also participate in atherogenesis in humans.
Collapse
Affiliation(s)
- Tomoya Hara
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Pham Tran Phuong
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Daiju Fukuda
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan.,Cardio-Diabetes Medicine (D.F., M.Shimabukuro), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Koji Yamaguchi
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Chie Murata
- Human Genetics (C.M., I.I.), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Sachiko Nishimoto
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | | | - Kenya Kusunose
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Hirotsugu Yamada
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Takeshi Soeki
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Tetsuzo Wakatsuki
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Issei Imoto
- Human Genetics (C.M., I.I.), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Michio Shimabukuro
- Cardio-Diabetes Medicine (D.F., M.Shimabukuro), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Masataka Sata
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
9
|
Hagras MM, Kamel FO. Effect of Protease-Activated Receptor-2-Activating Peptide on Guinea Pig Airway Resistance and Isolated Tracheal Strips. J Microsc Ultrastruct 2019; 8:7-13. [PMID: 32166058 PMCID: PMC7045621 DOI: 10.4103/jmau.jmau_55_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022] Open
Abstract
Purpose: Protease-activated receptors (PARs) are a family of G-protein-coupled receptors distributed in a number of tissues. PAR-2 is expressed on airway epithelium and smooth muscles and overexpressed under pathological conditions, such as asthma and chronic obstructive pulmonary disease. However, the role of PAR-2 in airways has not yet been defined. In this study, we investigated the role of PAR-2-activating peptide (SLIGRL) on histamine-induced bronchoconstriction and the mechanisms underlying the bronchoprotective effect both in vivo and in vitro. Materials and Methods: The effect of SLIGRL was tested in vivo using histamine-induced bronchoconstriction in the guinea pig and in vitro using isolated tracheal spiral strips. Results: In vivo pretreatment with SLIGRL significantly reduced the histamine-induced increased bronchoconstriction. Neither propranolol nor vagotomy abolished the inhibitory effect of SLIGRL. Furthermore, indomethacin or glibenclamide did not antagonize the inhibitory response to SLIGRL. In isolated tracheal spiral strips in vitro, SLIGRL did not affect the contractile response to acetylcholine or potassium chloride; however, histamine-induced contraction was inhibited in a dose-dependent manner. Conclusion: Our data demonstrate the protective effect of SLIGRL in airways; however, this effect appears to be mediated independently of prostanoids, nitric oxide, circulating adrenaline, ATP-sensitive K + channels, and vagal stimulation.
Collapse
Affiliation(s)
- Magda M Hagras
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Fatemah O Kamel
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Heuberger DM, Schuepbach RA. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb J 2019; 17:4. [PMID: 30976204 PMCID: PMC6440139 DOI: 10.1186/s12959-019-0194-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Inflammatory diseases have become increasingly prevalent with industrialization. To address this, numerous anti-inflammatory agents and molecular targets have been considered in clinical trials. Among molecular targets, protease-activated receptors (PARs) are abundantly recognized for their roles in the development of chronic inflammatory diseases. In particular, several inflammatory effects are directly mediated by the sensing of proteolytic activity by PARs. PARs belong to the seven transmembrane domain G protein-coupled receptor family, but are unique in their lack of physiologically soluble ligands. In contrast with classical receptors, PARs are activated by N-terminal proteolytic cleavage. Upon removal of specific N-terminal peptides, the resulting N-termini serve as tethered activation ligands that interact with the extracellular loop 2 domain and initiate receptor signaling. In the classical pathway, activated receptors mediate signaling by recruiting G proteins. However, activation of PARs alternatively lead to the transactivation of and signaling through receptors such as co-localized PARs, ion channels, and toll-like receptors. In this review we consider PARs and their modulators as potential therapeutic agents, and summarize the current understanding of PAR functions from clinical and in vitro studies of PAR-related inflammation.
Collapse
Affiliation(s)
- Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Surgical Research Division, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Pulakazhi Venu VK, Saifeddine M, Mihara K, El-Daly M, Belke D, Dean JLE, O'Brien ER, Hirota SA, Hollenberg MD. Heat shock protein-27 and sex-selective regulation of muscarinic and proteinase-activated receptor 2-mediated vasodilatation: differential sensitivity to endothelial NOS inhibition. Br J Pharmacol 2018. [PMID: 29532457 DOI: 10.1111/bph.14200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Previously, we demonstrated that exogenous heat shock protein 27 (HSP27/gene, HSPB1) treatment of human endothelial progenitor cells (EPCs) increases the synthesis and secretion of VEGF, improves EPC-migration/re-endothelialization and decreases neo-intima formation, suggesting a role for HSPB1 in regulating EPC function. We hypothesized that HSPB1 also affects mature endothelial cells (ECs) to alter EC-mediated vasoreactivity in vivo. Our work focused on endothelial NOS (eNOS)/NO-dependent relaxation induced by ACh and the coagulation pathway-activated receptor, proteinase-activated receptor 2 (PAR2). EXPERIMENTAL APPROACH Aorta rings from male and female wild-type, HSPB1-null and HSPB1 overexpressing (HSPB1o/e) mice were contracted with phenylephrine, and NOS-dependent relaxation responses to ACh and PAR2 agonist, 2-furoyl-LIGRLO-NH2 , were measured without and with L-NAME and ODQ, either alone or in combination to block NO synthesis/action. Tissues from female HSPB1-null mice were treated in vitro with recombinant HSP27 and then used for bioassay as above. Furthermore, oestrogen-specific effects were evaluated using a bioassay of aorta isolated from ovariectomized mice. KEY RESULTS Relative to males, HSPB1-null female mice exhibited an increased L-NAME-resistant relaxation induced by activation of either PAR2 or muscarinic ACh receptors that was blocked in the concurrent presence of both L-NAME and ODQ. mRNAs (qPCR) for eNOS and ODQ-sensitive guanylyl-cyclase were increased in females versus males. Treatment of isolated aorta tissue with HSPB1 improved tissue responsiveness in the presence of L-NAME. Ovariectomy did not affect NO sensitivity, supporting an oestrogen-independent role for HSPB1. CONCLUSIONS AND IMPLICATIONS HSPB1 can regulate intact vascular endothelial function to affect NO-mediated vascular relaxation, especially in females.
Collapse
Affiliation(s)
- Vivek Krishna Pulakazhi Venu
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada.,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Mahmoud Saifeddine
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Koichiro Mihara
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Mahmoud El-Daly
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Darrell Belke
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Jonathan L E Dean
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Edward R O'Brien
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Simon A Hirota
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada.,Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| |
Collapse
|
12
|
Ramachandran R, Altier C, Oikonomopoulou K, Hollenberg MD. Proteinases, Their Extracellular Targets, and Inflammatory Signaling. Pharmacol Rev 2016; 68:1110-1142. [PMID: 27677721 DOI: 10.1124/pr.115.010991] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Given that over 2% of the human genome codes for proteolytic enzymes and their inhibitors, it is not surprising that proteinases serve many physiologic-pathophysiological roles. In this context, we provide an overview of proteolytic mechanisms regulating inflammation, with a focus on cell signaling stimulated by the generation of inflammatory peptides; activation of the proteinase-activated receptor (PAR) family of G protein-coupled receptors (GPCR), with a mechanism in common with adhesion-triggered GPCRs (ADGRs); and by proteolytic ion channel regulation. These mechanisms are considered in the much wider context that proteolytic mechanisms serve, including the processing of growth factors and their receptors, the regulation of matrix-integrin signaling, and the generation and release of membrane-tethered receptor ligands. These signaling mechanisms are relevant for inflammatory, neurodegenerative, and cardiovascular diseases as well as for cancer. We propose that the inflammation-triggering proteinases and their proteolytically generated substrates represent attractive therapeutic targets and we discuss appropriate targeting strategies.
Collapse
Affiliation(s)
- Rithwik Ramachandran
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Christophe Altier
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Katerina Oikonomopoulou
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Morley D Hollenberg
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| |
Collapse
|
13
|
Mrozkova P, Palecek J, Spicarova D. The role of protease-activated receptor type 2 in nociceptive signaling and pain. Physiol Res 2016; 65:357-67. [PMID: 27070742 DOI: 10.33549/physiolres.933269] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Protease-activated receptors (PARs) belong to the G-protein-coupled receptor family, that are expressed in many body tissues especially in different epithelial cells, mast cells and also in neurons and astrocytes. PARs play different physiological roles according to the location of their expression. Increased evidence supports the importance of PARs activation during nociceptive signaling and in the development of chronic pain states. This short review focuses on the role of PAR2 receptors in nociceptive transmission with the emphasis on the modulation at the spinal cord level. PAR2 are cleaved and subsequently activated by endogenous proteases such as tryptase and trypsin. In vivo, peripheral and intrathecal administration of PAR2 agonists induces thermal and mechanical hypersensitivity that is thought to be mediated by PAR2-induced release of pronociceptive neuropeptides and modulation of different receptors. PAR2 activation leads also to sensitization of transient receptor potential channels (TRP) that are crucial for nociceptive signaling and modulation. PAR2 receptors may play an important modulatory role in the development and maintenance of different pathological pain states and could represent a potential target for new analgesic treatments.
Collapse
Affiliation(s)
- P Mrozkova
- Department of Functional Morphology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | |
Collapse
|
14
|
Characterization and Functions of Protease-Activated Receptor 2 in Obesity, Diabetes, and Metabolic Syndrome: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3130496. [PMID: 27006943 PMCID: PMC4781943 DOI: 10.1155/2016/3130496] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/26/2016] [Indexed: 12/16/2022]
Abstract
Proteinase-activated receptor 2 (PAR2) is a cell surface receptor activated by serine proteinases or specific synthetic compounds. Interest in PAR2 as a pharmaceutical target for various diseases is increasing. Here we asked two questions relevant to endothelial dysfunction and diabetes: How is PAR2 function affected in blood vessels? What role does PAR2 have in promoting obesity, diabetes, and/or metabolic syndrome, specifically via the endothelium and adipose tissues? We conducted a systematic review of the published literature in PubMed and Scopus (July 2015; search terms: par2, par-2, f2lr1, adipose, obesity, diabetes, and metabolic syndrome). Seven studies focused on PAR2 and vascular function. The obesity, diabetes, or metabolic syndrome animal models differed amongst studies, but each reported that PAR2-mediated vasodilator actions were preserved in the face of endothelial dysfunction. The remaining studies focused on nonvascular functions and provided evidence supporting the concept that PAR2 activation promoted obesity. Key studies showed that PAR2 activation regulated cellular metabolism, and PAR2 antagonists inhibited adipose gain and metabolic dysfunction in rats. We conclude that PAR2 antagonists for treatment of obesity indeed show early promise as a therapeutic strategy; however, endothelial-specific PAR2 functions, which may offset mechanisms that produce vascular dysfunction in diabetes, warrant additional study.
Collapse
|
15
|
Maruyama K, Kagota S, McGuire JJ, Wakuda H, Yoshikawa N, Nakamura K, Shinozuka K. Enhanced Nitric Oxide Synthase Activation via Protease-Activated Receptor 2 Is Involved in the Preserved Vasodilation in Aortas from Metabolic Syndrome Rats. J Vasc Res 2016; 52:232-43. [DOI: 10.1159/000442415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/09/2015] [Indexed: 11/19/2022] Open
|
16
|
Abstract
Proteinase-activated receptors (PARs) are a family of G protein-coupled receptor that are activated by extracellular cleavage of the receptor in the N-terminal domain. This slicing of the receptor exposes a tethered ligand which binds to a specific docking point on the receptor surface to initiate intracellular signalling. PARs are expressed by numerous tissues in the body, and they are involved in various physiological and pathological processes such as food digestion, tissue remodelling and blood coagulation. This chapter will summarise how serine proteinases activate PARs leading to the development of pain in several chronic pain conditions. The potential of PARs as a drug target for pain relief is also discussed.
Collapse
Affiliation(s)
- Jason J McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management and Perioperative Medicine, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2,
| | | |
Collapse
|
17
|
Kim YH, Ahn DS, Joeng JH, Chung S. Suppression of peripheral sympathetic activity underlies protease-activated receptor 2-mediated hypotension. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:489-95. [PMID: 25598663 PMCID: PMC4296038 DOI: 10.4196/kjpp.2014.18.6.489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/02/2014] [Accepted: 09/23/2014] [Indexed: 11/15/2022]
Abstract
Protease-activated receptor (PAR)-2 is expressed in endothelial cells and vascular smooth muscle cells. It plays a crucial role in regulating blood pressure via the modulation of peripheral vascular tone. Although some reports have suggested involvement of a neurogenic mechanism in PAR-2-induced hypotension, the accurate mechanism remains to be elucidated. To examine this possibility, we investigated the effect of PAR-2 activation on smooth muscle contraction evoked by electrical field stimulation (EFS) in the superior mesenteric artery. In the present study, PAR-2 agonists suppressed neurogenic contractions evoked by EFS in endothelium-denuded superior mesenteric arterial strips but did not affect contraction elicited by the external application of noradrenaline (NA). However, thrombin, a potent PAR-1 agonist, had no effect on EFS-evoked contraction. Additionally, ω-conotoxin GVIA (CgTx), a selective N-type Ca2+ channel (ICa-N) blocker, significantly inhibited EFS-evoked contraction, and this blockade almost completely occluded the suppression of EFS-evoked contraction by PAR-2 agonists. Finally, PAR-2 agonists suppressed the EFS-evoked overflow of NA in endothelium-denuded rat superior mesenteric arterial strips and this suppression was nearly completely occluded by ω-CgTx. These results suggest that activation of PAR-2 may suppress peripheral sympathetic outflow by modulating activity of ICa-N which are located in peripheral sympathetic nerve terminals, which results in PAR-2-induced hypotension.
Collapse
Affiliation(s)
- Young-Hwan Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Duck-Sun Ahn
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Ji-Hyun Joeng
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Seungsoo Chung
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
18
|
Kim YH, Ahn DS, Kim MO, Joeng JH, Chung S. Protease-activated receptor 2 activation inhibits N-type Ca2+ currents in rat peripheral sympathetic neurons. Mol Cells 2014; 37:804-11. [PMID: 25410909 PMCID: PMC4255100 DOI: 10.14348/molcells.2014.0167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/02/2014] [Accepted: 09/17/2014] [Indexed: 11/27/2022] Open
Abstract
The protease-activated receptor (PAR)-2 is highly expressed in endothelial cells and vascular smooth muscle cells. It plays a crucial role in regulating blood pressure via the modulation of peripheral vascular tone. Although several mechanisms have been suggested to explain PAR-2-induced hypotension, the precise mechanism remains to be elucidated. To investigate this possibility, we investigated the effects of PAR-2 activation on N-type Ca(2+) currents (I(Ca-N)) in isolated neurons of the celiac ganglion (CG), which is involved in the sympathetic regulation of mesenteric artery vascular tone. PAR-2 agonists irreversibly diminished voltage-gated Ca(2+) currents (I(Ca)), measured using the patch-clamp method, in rat CG neurons, whereas thrombin had little effect on I(Ca). This PAR-2-induced inhibition was almost completely prevented by ω-CgTx, a potent N-type Ca(2+) channel blocker, suggesting the involvement of N-type Ca(2+) channels in PAR-2-induced inhibition. In addition, PAR-2 agonists inhibited I(Ca-N) in a voltage-independent manner in rat CG neurons. Moreover, PAR-2 agonists reduced action potential (AP) firing frequency as measured using the current-clamp method in rat CG neurons. This inhibition of AP firing induced by PAR-2 agonists was almost completely prevented by ω-CgTx, indicating that PAR-2 activation may regulate the membrane excitability of peripheral sympathetic neurons through modulation of N-type Ca(2+) channels. In conclusion, the present findings demonstrate that the activation of PAR-2 suppresses peripheral sympathetic outflow by modulating N-type Ca(2+) channel activity, which appears to be involved in PAR-2-induced hypotension, in peripheral sympathetic nerve terminals.
Collapse
Affiliation(s)
- Young-Hwan Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752,
Korea
| | - Duck-Sun Ahn
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752,
Korea
| | | | - Ji-Hyun Joeng
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752,
Korea
| | - Seungsoo Chung
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752,
Korea
| |
Collapse
|
19
|
Carroll IM, Ringel-Kulka T, Ferrier L, Wu MC, Siddle JP, Bueno L, Ringel Y. Fecal protease activity is associated with compositional alterations in the intestinal microbiota. PLoS One 2013; 8:e78017. [PMID: 24147109 PMCID: PMC3798377 DOI: 10.1371/journal.pone.0078017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/16/2013] [Indexed: 12/23/2022] Open
Abstract
Objective Intestinal proteases carry out a variety of functions in the gastrointestinal (GI) tract. Studies have reported that elevated enteric proteases in patients with GI disease can alter intestinal physiology, however the origin (human vs. microbial) of elevated proteases in patients with GI disease is unclear. Aim The aim of this study was to investigate the association between protease activity and the microbiota in human fecal samples. Design In order to capture a wide range of fecal protease (FP) activity stool samples were collected from 30 IBS patients and 24 healthy controls. The intestinal microbiota was characterized using 454 high throughput pyro-sequencing of the 16S rRNA gene. The composition and diversity of microbial communities were determined and compared using the Quantitative Insights Into Microbial Ecology (QIIME) pipeline. FP activity levels were determined using an ELISA-based method. FP activity was ranked and top and bottom quartiles (n=13 per quartile) were identified as having high and low FP activity, respectively. Results The overall diversity of the intestinal microbiota displayed significant clustering separation (p = 0.001) between samples with high vs. low FP activity. The Lactobacillales, Lachnospiraceae, and Streptococcaceae groups were positively associated with FP activity across the entire study population, whilst the Ruminococcaceae family and an unclassified Coriobacteriales family were negatively associated with FP activity. Conclusions These data demonstrate significant associations between specific intestinal bacterial groups and fecal protease activity and provide a basis for further causative studies investigating the role of enteric microbes and GI diseases.
Collapse
Affiliation(s)
- Ian M. Carroll
- Division of Gastroenterology and Hepatology, Department of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Tamar Ringel-Kulka
- Gillings School of Global Public Health, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Laurent Ferrier
- INRA, UMR1331 Toxalim, Neuro-Gastroenterology & Nutrition group, Toulouse, France
| | - Michael C. Wu
- Department of Biostatistics, Gillings School of Global Public Health, the University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jennica P. Siddle
- Division of Gastroenterology and Hepatology, Department of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lionel Bueno
- INRA, UMR1331 Toxalim, Neuro-Gastroenterology & Nutrition group, Toulouse, France
| | - Yehuda Ringel
- Division of Gastroenterology and Hepatology, Department of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Wang S, Dai Y, Kobayashi K, Zhu W, Kogure Y, Yamanaka H, Wan Y, Zhang W, Noguchi K. Potentiation of the P2X3 ATP receptor by PAR-2 in rat dorsal root ganglia neurons, through protein kinase-dependent mechanisms, contributes to inflammatory pain. Eur J Neurosci 2012; 36:2293-301. [PMID: 22616675 DOI: 10.1111/j.1460-9568.2012.08142.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proinflammatory agents trypsin and mast cell tryptase cleave and activate protease-activated receptor-2 (PAR-2), which is expressed on sensory nerves and causes neurogenic inflammation. P2X3 is a subtype of the ionotropic receptors for adenosine 5'-triphosphate (ATP), and is mainly localized on nociceptors. Here, we show that a functional interaction of the PAR-2 and P2X3 in primary sensory neurons could contribute to inflammatory pain. PAR-2 activation increased the P2X3 currents evoked by α, β, methylene ATP in dorsal root ganglia (DRG) neurons. Application of inhibitors of either protein kinase C (PKC) or protein kinase A (PKA) suppressed this potentiation. Consistent with this, a PKC or PKA activator mimicked the PAR-2-mediated potentiation of P2X3 currents. In the in vitro phosphorylation experiments, application of a PAR-2 agonist failed to establish phosphorylation of the P2X3 either on the serine or the threonine site. In contrast, application of a PAR-2 agonist induced trafficking of the P2X3 from the cytoplasm to the plasma membrane. These findings indicate that PAR-2 agonists may potentiate the P2X3, and the mechanism of this potentiation is likely to be a result of translocation, but not phosphorylation. The functional interaction between P2X3 and PAR-2 was also confirmed by detection of the α, β, methylene-ATP-evoked extracellular signal-regulated kinases (ERK) activation, a marker of neuronal signal transduction in DRG neurons, and pain behavior. These results demonstrate a functional interaction of the protease signal with the ATP signal, and a novel mechanism through which protease released in response to tissue inflammation might trigger the sensation to pain through P2X3 activation.
Collapse
Affiliation(s)
- Shenglan Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100088, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee H, Hamilton JR. Physiology, pharmacology, and therapeutic potential of protease-activated receptors in vascular disease. Pharmacol Ther 2012; 134:246-59. [DOI: 10.1016/j.pharmthera.2012.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/09/2023]
|
22
|
Huang ZJ, Li HC, Cowan AA, Liu S, Zhang YK, Song XJ. Chronic compression or acute dissociation of dorsal root ganglion induces cAMP-dependent neuronal hyperexcitability through activation of PAR2. Pain 2012; 153:1426-1437. [PMID: 22541444 DOI: 10.1016/j.pain.2012.03.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 03/04/2012] [Accepted: 03/23/2012] [Indexed: 02/07/2023]
Abstract
Chronic compression (CCD) or dissociation of dorsal root ganglion (DRG) can induce cyclic adenosine monophosphate (cAMP)-dependent DRG neuronal hyperexcitability and behaviorally expressed hyperalgesia. Here, we report that protease-activated receptor 2 (PAR2) activation after CCD or dissociation mediates the increase of cAMP activity and protein kinase A (PKA) and cAMP-dependent hyperexcitability and hyperalgesia in rats. CCD and dissociation, as well as trypsin (a PAR2 activator) treatment, increased level of cAMP concentration, mRNA, and protein expression for PKA subunits PKA-RII and PKA-c and protein expression of PAR2, in addition to producing neuronal hyperexcitability and, in CCD rats, thermal hyperalgesia. The increased expression of PAR2 was colocalized with PKA-c subunit. A PAR2 antagonistic peptide applied before and/or during the treatment, prevented or largely diminished the increased activity of cAMP and PKA, neuronal hyperexcitability, and thermal hyperalgesia. However, posttreatment with the PAR2 antagonistic peptide failed to alter either hyperexcitability or hyperalgesia. In contrast, an adenylyl cyclase inhibitor, SQ22536, administrated after dissociation or CCD, successfully suppressed hyperexcitability and hyperalgesia, in vitro and/or in vivo. Trypsin-induced increase of the intracellular calcium [Ca(2+)](i) was prevented in CCD or dissociation DRG neurons. These alterations were further confirmed by knockdown of PAR2 with siRNA. In addition, trypsin and PAR2 agonistic peptide-induced increase of cAMP was prevented by inhibition of PKC, but not Gαs. These findings suggest that PAR2 activation is critical to induction of nerve injury-induced neuronal hyperexcitability and cAMP-PKA activation. Inhibiting PAR2 activation may be a potential target for preventing/suppressing development of neuropathic pain.
Collapse
Affiliation(s)
- Zhi-Jiang Huang
- Department of Neurobiology, Parker University Research Institute, Dallas, TX, USA Neuroscience Research Institute, Peking University, Beijing 100191, China
| | | | | | | | | | | |
Collapse
|
23
|
Ruan YC, Zhou W, Chan HC. Regulation of smooth muscle contraction by the epithelium: role of prostaglandins. Physiology (Bethesda) 2011; 26:156-70. [PMID: 21670162 DOI: 10.1152/physiol.00036.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As an analog to the endothelium situated next to the vascular smooth muscle, the epithelium is emerging as an important regulator of smooth muscle contraction in many vital organs/tissues by interacting with other cell types and releasing epithelium-derived factors, among which prostaglandins have been demonstrated to play a versatile role in governing smooth muscle contraction essential to the physiological and pathophysiological processes in a wide range of organ systems.
Collapse
Affiliation(s)
- Ye Chun Ruan
- School of Life Science, Sun Yat-sen University, China
| | | | | |
Collapse
|
24
|
Anti-Inflammatory mechanisms of the proteinase-activated receptor 2-inhibiting peptide in human synovial cells. J Biomed Sci 2011; 18:43. [PMID: 21682866 PMCID: PMC3135512 DOI: 10.1186/1423-0127-18-43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/17/2011] [Indexed: 02/04/2023] Open
Abstract
Background Osteoarthritis (OA) is a degenerative joint disease which affects the entire joint structure, including the synovial membrane. Disease progression was shown to involve inflammatory changes mediated by proteinase-activated receptor (PAR)-2. Previous studies demonstrated that PAR-2 messenger (m)RNA and protein levels increased in OA synovial cells, suggesting that PAR-2 is a potential therapeutic target of the disease. Methods We designed a PAR-2-inhibiting peptide (PAR2-IP) by changing an isoleucine residue in the PAR-2-activating peptide (PAR2-AP), SLIGKV, to alanine, generating the SLAGKV peptide. We used it to test PAR-2-mediated inflammatory responses, including the expressions of cyclooxygenase (COX)-2 and matrix metalloproteinase (MMP)-1 and activation of nuclear factor (NF)-κB in human synovial cells. As a control, expressions of COX-2 and MMP-1 were induced by trypsin at both the mRNA and protein levels. Results The PAR2-AP increased the expression of COX-2 more dramatically than that of MMP-1. When we treated cells with the designed PAR2-IP, the trypsin-induced COX-2 level was completely inhibited at a moderate concentration of the PAR2-IP. With further examination of trypsin-induced NF-κB activation, we observed sufficient inhibitory effects of the PAR2-IP in synoviosarcoma cells and primary synovial cells from OA patients. Conclusions Our study suggests that the PAR2-IP inhibits trypsin-induced NF-κB activation, resulting in a reduction in inflammatory COX-2 expression in synovial cells. Application of PAR2-IP is suggested as a potential therapeutic strategy for OA.
Collapse
|
25
|
Luo JY, Zhong Y, Cao JC, Cui HF. Efficacy of oral colon-specific delivery capsule of low-molecular-weight heparin on ulcerative colitis. Biomed Pharmacother 2010; 65:111-7. [PMID: 21227626 DOI: 10.1016/j.biopha.2010.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 12/07/2010] [Indexed: 01/11/2023] Open
Abstract
Low-molecular-weight heparin has the potential for the treatment of ulcerative colitis, and targeted drug delivery to the colon is important for topical treatment of this disease, so low-molecular-weight heparin oral colon-specific delivery capsule was prepared, and the in vitro and in vivo drug release behavior was investigated. The macroscopical and histological scoring systems, wet colon mass index and myeloperoxidase activity were assessed to evaluate the efficacy of the capsule after administered orally to experimental colitis mice. Serum levels, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and a link factor of blood coagulation and inflammation factor Xa (FXa) were assayed by enzyme-linked immunosorbent assay. The expression of Musashi-1 (as an intestinal stem cell marker) in the colons was assessed by immunohistochemical analysis. The in vitro and in vivo drug release studies clearly indicated that the specific coated capsules were capable of protecting low-molecular-weight heparin from releasing in stomach and small intestine, while specifically delivering at colon. The oral colon-specific delivery capsule of low-molecular-weight heparin could attenuate macroscopic and histological features of colitis. The results showed that low-molecular-weight heparin oral colon-specific delivery capsule significantly decreased the serum levels of TNF-α, IL-6 as well as FXa, while increased the expression of Musashi-1 in colon compared with acetic acid-induced ulcerative colitis model group. The results showed that low-molecular-weight heparin oral colon-specific delivery capsule had the potential for treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Jun-Yong Luo
- Institute of Biochemical and Biotechnological Drugs, Shandong University, Jinan 250012, China
| | | | | | | |
Collapse
|
26
|
Luo J, Cao J, Jiang X, Cui H. Effect of low molecular weight heparin rectal suppository on experimental ulcerative colitis in mice. Biomed Pharmacother 2010; 64:441-5. [PMID: 20359854 DOI: 10.1016/j.biopha.2010.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 01/25/2010] [Indexed: 11/28/2022] Open
Abstract
The objective of this study was to investigate the effect and possible mechanism of rectally administered low molecular weight heparin (LMWH) on experimental ulcerative colitis. LMWH rectal suppository was prepared and its efficacy was studied by macroscopical and histological scoring systems as well as myeloperoxidase activity. Serum levels, including tumor necrosis factor-α (TNFα), interleukin-6 (IL-6) and a link factor of blood coagulation and inflammation factor Xa (FXa) were assayed by enzyme-linked immunosorbent assay. The expression of Musashi-1 (as an intestinal stem cell marker) in the colons was assessed by immunohistochemical analysis. The results showed that LMWH rectal suppository significantly decreased serum levels of TNF-α, IL-6 as well as FXa, while increased the expression of Musashi-1 in colon compared with acetic acid induced ulcerative colitis model group. All these preliminary results indicate LMWH rectal suppository is promising for treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Junyong Luo
- Institute of Biochemical and Biotechnological Drugs, Shandong University, 44,Wenhua Xilu, Jinan 250012, China
| | | | | | | |
Collapse
|
27
|
Inci K, Edebo A, Olbe L, Casselbrant A. Expression of protease-activated-receptor 2 (PAR-2) in human esophageal mucosa. Scand J Gastroenterol 2009; 44:664-71. [PMID: 19263271 DOI: 10.1080/00365520902783683] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The role of duodenal reflux in gastroesophageal reflux disease (GERD) containing bile salts and pancreatic enzymes (with special attention to trypsin) is still under discussion. Proteinase-activated receptors (PARs) are a novel family and PAR-2 is a unique member of this family because it is activated by trypsin. The aim of the present study was to examine the presence and the position of the PAR-2 receptor in human esophageal mucosa in different subgroups of GERD. MATERIAL AND METHODS Distal biopsies taken from healthy controls, patients with erosive reflux disease (ERD), patients with specialized intestinal metaplasia (SIM) and adenocarcinoma were analyzed for the PAR-2 receptor with reverse-transcription polymerase chain reaction (RT-PCR), Western blotting and immunohistochemistry. RESULTS Gene transcripts for the PAR-2 receptor were found in all groups, with increased levels in SIM patients compared to controls. However, this visual pattern was not seen for the protein expression of the PAR-2 receptor showing no apparent quantitative differences between the groups. Immunohistochemistry revealed distinct staining for the PAR-2 receptor in the luminal part of the esophageal epithelium. CONCLUSIONS The localization of the PAR-2 receptor indicates that the receptor can be cleaved and activated by trypsin in duodenogastric esophageal refluxate. The data thus suggest that the trypsin-PAR-2 pathway may be involved in the pathogenesis of GERD.
Collapse
Affiliation(s)
- Kamuran Inci
- Department of Gastrosurgical Research and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
28
|
Helyes Z, Sándor K, Borbély E, Tékus V, Pintér E, Elekes K, Tóth DM, Szolcsányi J, McDougall JJ. Involvement of transient receptor potential vanilloid 1 receptors in protease-activated receptor-2-induced joint inflammation and nociception. Eur J Pain 2009; 14:351-8. [PMID: 19683949 DOI: 10.1016/j.ejpain.2009.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 06/23/2009] [Accepted: 07/21/2009] [Indexed: 02/03/2023]
Abstract
Protease-activated receptor-2 (PAR-2) is a G-protein-coupled receptor activated through proteolytic cleavage. It is localized on epithelial, endothelial and inflammatory cells, as well as on transient receptor potential vanilloid 1 (TRPV1) receptor-expressing neurones. It plays an important role in inflammatory/nociceptive processes. Since there are few reports concerning PAR-2 function in joints, the effects of intraarticular PAR-2 activation on joint pain and inflammation were studied. Secondary hyperalgesia/allodynia, spontaneous weight distribution, swelling and inflammatory cytokine production were measured and the involvement of TRPV1 ion channels was investigated in rats and mice. Injection of the PAR-2 receptor agonist SLIGRL-NH(2) into the knee decreased touch sensitivity and weight bearing of the ipsilateral hindlimb in both species. Secondary mechanical allodynia/hyperalgesia and impaired weight distribution were significantly reduced by the TRPV1 antagonist SB366791 in rats and by the genetic deletion of this receptor in mice. PAR-2 activation did not cause significant joint swelling, but increased IL-1beta concentration which was not influenced by the lack of the TRPV1 channel. For comparison, intraplantar SLIGRL-NH(2) evoked similar primary mechanical hyperalgesia and impaired weight distribution in both WT and TRPV1 deficient mice, but oedema was smaller in the knockouts. The inactive peptide, LRGILS-NH(2), injected into either site did not induce any inflammatory or nociceptive changes. These data provide evidence for a significant role of TRPV1 receptors in secondary mechanical hyperalgesia/allodynia and spontaneous pain induced by PAR-2 receptor activation in the knee joint. Although intraplantar PAR-2 activation-induced oedema is also TRPV1 receptor-mediated, primary mechanical hyperalgesia, impaired weight distribution and IL-1beta production are independent of this channel.
Collapse
Affiliation(s)
- Zs Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, H-7624 Pécs, Szigeti u. 12., Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Maeda S, Maeda S, Shibata S, Chimura N, Fukata T. Molecular cloning of canine protease-activated receptor-2 and its expression in normal dog tissues and atopic skin lesions. J Vet Med Sci 2009; 71:577-82. [PMID: 19498282 DOI: 10.1292/jvms.71.577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protease-activated receptor-2 (PAR-2) belongs to a new G protein-coupled receptor subfamily and is activated by serine proteases. PAR-2 has been demonstrated to play an important role in inflammation and immune response in allergic diseases. In this study, we cloned canine PAR-2 cDNA from the canine kidney by RT-PCR. The canine PAR-2 clone contained a full-length open reading frame encoding 397 amino acids that had 84% and 80% homology with human and mouse homologues, respectively. Canine PAR-2 mRNA was detected in the heart, lung, liver, pancreas, stomach, small intestine, colon, kidney, adrenal gland, spleen, thyroid gland, thymus, skeletal muscle, lymph node, fat and skin of three healthy dogs. The expression pattern of PAR-2 mRNA in canine tissues was similar to that in humans. The expression level of PAR-2 mRNA in skin was not different between the atopic dermatitis (AD) and healthy dogs, suggesting that the level of PAR-2 mRNA transcription may not be associated with development of canine AD. The canine PAR-2 cDNA clone obtained in this study will be useful for further investigation of the immunopathogenesis of canine allergic diseases.
Collapse
Affiliation(s)
- Shingo Maeda
- Department of Veterinary Medicine, Gifu University, Gifu, Japan
| | | | | | | | | |
Collapse
|
30
|
Yoshida N, Yoshikawa T. Basic and translational research on proteinase-activated receptors: implication of proteinase/proteinase-activated receptor in gastrointestinal inflammation. J Pharmacol Sci 2009; 108:415-21. [PMID: 19098387 DOI: 10.1254/jphs.08r31fm] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Recently, the role of serine proteinases in the pathogenesis of inflammation and autoimmune diseases via interaction with the proteinase-activated receptor (PAR) has attracted attention. Activation of PAR has a pro-inflammatory effect through the overproduction of inflammatory cytokines such as interleukin (IL)-6 and IL-8. PAR(2) activation in human esophageal epithelial cells by trypsin induces NFkappaB- and AP-1-dependent IL-8 production in association with activation of p38 MAPK and ERK1/2, suggesting that esophageal inflammation may be induced by PAR(2) activation via reflux of trypsin. It has been also proposed that Helicobacter pylori (H. pylori) induces PAR expression in the gastric epithelial cells and H. pylori-derived serine proteinase promotes IL-8 production via PAR in the epithelial cells. In addition, an increase of PAR-dependent IL-8 production has been observed in H. pylori-infected human gastric mucosa, suggesting an important role for PAR(2) in the modulation of gastric inflammation associated with H. pylori. Recent studies have strongly indicated that tryptase and PAR are implicated in the pathogenesis of inflammatory bowel disease and experimental colitis. We demonstrated that anti-tryptase therapy may become a new therapeutic strategy in human ulcerative colitis. Thus, the role of PAR in the gastrointestinal tract has been gradually clarified, but further investigations are needed because the receptor has a variety of functions.
Collapse
Affiliation(s)
- Norimasa Yoshida
- Department of Gastroenterology, Japanese Red Cross Kyoto Daiichi Hospital, Japan.
| | | |
Collapse
|
31
|
Joo SS, Won TJ, Kim JS, Yoo YM, Tak ES, Park SY, Park HY, Hwang KW, Park SC, Lee DI. Inhibition of Coagulation Activation and Inflammation by a Novel Factor Xa Inhibitor Synthesized from the Earthworm Eisenia andrei. Biol Pharm Bull 2009; 32:253-8. [DOI: 10.1248/bpb.32.253] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Seong Soo Joo
- Research Institute of Veterinary Medicine, Chungbuk National University
| | - Tae Joon Won
- Department of Immunology, College of Pharmacy, Chung-Ang University
| | - Jong Sung Kim
- Department of Immunology, College of Pharmacy, Chung-Ang University
| | - Yeong Min Yoo
- Research Institute of Veterinary Medicine, Chungbuk National University
| | - Eun Sik Tak
- Department of Life Science, Chung-Ang University
| | - So-Young Park
- Environmental Toxico-Genomic & Proteomic Center, College of Medicine, Korea University
| | - Hee Yong Park
- Department of Immunology, College of Pharmacy, Chung-Ang University
| | - Kwang Woo Hwang
- Department of Immunology, College of Pharmacy, Chung-Ang University
| | | | - Do Ik Lee
- Department of Immunology, College of Pharmacy, Chung-Ang University
| |
Collapse
|
32
|
Hollenberg MD, Oikonomopoulou K, Hansen KK, Saifeddine M, Ramachandran R, Diamandis EP. Kallikreins and proteinase-mediated signaling: proteinase-activated receptors (PARs) and the pathophysiology of inflammatory diseases and cancer. Biol Chem 2008; 389:643-51. [PMID: 18627296 DOI: 10.1515/bc.2008.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Proteinases such as thrombin and trypsin can affect tissues by activating a novel family of G protein-coupled proteinase-activated receptors (PARs 1-4) by exposing a 'tethered' receptor-triggering ligand (TL). Work with synthetic TL-derived PAR peptide sequences (PAR-APs) that stimulate PARs 1, 2 and 4 has shown that PAR activation can play a role in many tissues, including the gastrointestinal tract, kidney, muscle, nerve, lung and the central and peripheral nervous systems, and can promote tumor growth and invasion. PARs may play roles in many settings, including cancer, arthritis, asthma, inflammatory bowel disease, neurodegeneration and cardiovascular disease, as well as in pathogen-induced inflammation. In addition to activating or disarming PARs, proteinases can also cause hormone-like effects via PAR-independent mechanisms, such as activation of the insulin receptor. In addition to proteinases of the coagulation cascade, recent data suggest that members of the family of kallikrein-related peptidases (KLKs) represent endogenous PAR regulators. In summary: (1) proteinases are like hormones, signaling in a paracrine and endocrine manner via PARs or other mechanisms; (2) KLKs must now be seen as potential hormone-like PAR regulators in vivo; and (3) PAR-regulating proteinases, their target PARs, and their associated signaling pathways appear to be novel therapeutic targets.
Collapse
Affiliation(s)
- Morley D Hollenberg
- Proteinases and Inflammation Network, Department of Pharmacology and Therapeutics, University of Calgary Faculty of Medicine, Calgary T2N 4N1, AB, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Digestive tract proteases are best known for their proteolytic activity in the digestion of alimentary proteins. However, during the last decade, a possible role of proteases as signalling molecules has been emphasized with the discovery of a novel class of G-protein coupled receptors located on cell membranes that may be activated by proteolytic cleavage of their N-terminal extracellular domain. Type 2 protease-activated receptors (PAR-2) are cleaved by serine-proteases such as trypsin and tryptase. PAR-2 is present in many intestinal cell types and particularly on epithelial cells. Multiple functions have been demonstrated in the gut for PAR-2, including epithelial permeability, mainly the intercellular permeability that is of paramount importance in the equilibrium between the external milieu (digestive contents) and the submucosal immune system. Alterations of both tissue and luminal levels of proteases or serine-protease activity may affect gut permeability and subsequently the immune status of the mucosa. Activation of PAR-2 on epithelial cells may directly affect cytoskeleton contraction by triggering phosphorylation of myosin light chain with subsequent changes in tight junction permeability. Enhanced fecal protease level has been recently reported in both organic (ulcerative colitis) and functional (irritable bowel syndrome) intestinal disorders and may play a role in the pathogenesis of such diseases.
Collapse
Affiliation(s)
- L Bueno
- Neurogastroenterology and Nutrition Unit, INRA, Toulouse, France.
| | | |
Collapse
|
34
|
Hansen KK, Oikonomopoulou K, Li Y, Hollenberg MD. Proteinases, proteinase-activated receptors (PARs) and the pathophysiology of cancer and diseases of the cardiovascular, musculoskeletal, nervous and gastrointestinal systems. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2008; 377:377-92. [PMID: 17952408 DOI: 10.1007/s00210-007-0194-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 09/19/2007] [Indexed: 12/31/2022]
Abstract
Proteinases like thrombin, trypsin and tissue kallikreins are now known to regulate cell signaling by cleaving and activating a novel family of G-protein-coupled proteinase-activated receptors (PARs 1 to 4) via exposure of a 'tethered' receptor-triggering ligand. On their own, short synthetic peptides based on the 'tethered ligand' sequences of the PARs (PAR-APs) can, in the absence of receptor proteolysis, selectively activate PARs 1, 2 and 4 and cause physiological responses both in vitro and in vivo. Using the PAR-APs as probes in vivo, it has been found that PAR activation can affect the vascular, renal, respiratory, gastrointestinal, musculoskeletal and nervous systems (both central and peripheral) and can promote cancer metastasis and invasion. The responses triggered by PARs 1, 2 and 4 are in keeping with an innate immune inflammatory response, ranging from vasodilatation to intestinal inflammation, increased cytokine production and increased nociception. Thus, PARs have been implicated in a number of disease states including cancer and inflammation of the cardiovascular, respiratory, musculoskeletal, gastrointestinal and nervous systems. Furthermore, PAR-regulating proteinases have been implicated in pathogen-induced inflammation. The identities of the proteinases that regulate PARs in these pathological settings in vivo have yet to be explored in depth. In addition to activating or dis-arming PARs, proteinases can also cause hormone-like effects by signaling mechanisms that do not involve the PARs and that may be as important as the activation of PARs. Thus, the working hypotheses of this article are: (1) that proteinases in general must now be considered as 'hormone-like' messengers that can signal either via PARs or other mechanisms and (2) that the PARs themselves, their activating serine proteinases and their associated signaling pathways can be considered as attractive targets for therapeutic drug development.
Collapse
Affiliation(s)
- Kristina K Hansen
- Department of Pharmacology & Therapeutics, Canadian Institutes of Health Research, Proteinases and Inflammation Network, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| | | | | | | |
Collapse
|
35
|
Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol 2007; 153 Suppl 1:S263-82. [PMID: 18059329 DOI: 10.1038/sj.bjp.0707507] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteinases like thrombin, trypsin and tissue kallikreins are now known to regulate cell signaling by cleaving and activating a novel family of G-protein-coupled proteinase-activated receptors (PARs 1-4) via exposure of a tethered receptor-triggering ligand. On their own, short synthetic PAR-selective PAR-activating peptides (PAR-APs) mimicking the tethered ligand sequences can activate PARs 1, 2 and 4 and cause physiological responses both in vitro and in vivo. Using the PAR-APs as sentinel probes in vivo, it has been found that PAR activation can affect the vascular, renal, respiratory, gastrointestinal, musculoskeletal and nervous systems (both central and peripheral nervous system) and can promote cancer metastasis and invasion. In general, responses triggered by PARs 1, 2 and 4 are in keeping with an innate immune inflammatory response, ranging from vasodilatation to intestinal inflammation, increased cytokine production and increased or decreased nociception. Further, PARs have been implicated in a number of disease states, including cancer and inflammation of the cardiovascular, respiratory, musculoskeletal, gastrointestinal and nervous systems. In addition to activating PARs, proteinases can cause hormone-like effects by other signalling mechanisms, like growth factor receptor activation, that may be as important as the activation of PARs. We, therefore, propose that the PARs themselves, their activating serine proteinases and their associated signalling pathways can be considered as attractive targets for therapeutic drug development. Thus, proteinases in general must now be considered as 'hormone-like' messengers that can signal either via PARs or other mechanisms.
Collapse
|
36
|
Saifeddine M, Seymour ML, Xiao YP, Compton SJ, Houle S, Ramachandran R, MacNaughton WK, Simonet S, Vayssettes-Courchay C, Verbeuren TJ, Hollenberg MD. Proteinase-activated receptor-2 activating peptides: distinct canine coronary artery receptor systems. Am J Physiol Heart Circ Physiol 2007; 293:H3279-89. [PMID: 17766477 DOI: 10.1152/ajpheart.00519.2007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In canine coronary artery preparations, the proteinase-activated receptor-2 (PAR2) activating peptides (PAR2-APs) SLIGRL-NH2and 2-furoyl-LIGRLO-NH2caused both an endothelium-dependent relaxation and an endothelium-independent contraction. Relaxation was caused at peptide concentrations 10-fold lower than those causing a contractile response. Although trans-cinnamoyl-LIGRLO-NH2, like other PAR2-APs, caused relaxation, it was inactive as a contractile agonist and instead antagonized the contractile response to SLIGRL-NH2. RT-PCR-based sequencing of canine PAR2revealed a cleavage/activation (indicated by underlines) sequence (SKGR/SLIGKTDSSLQITGKG) that is very similar to the human PAR2sequence (R/SLIGKV). As a synthetic peptide, the canine PAR-AP (SLIGKT-NH2) was a much less potent agonist than either SLIGRL-NH2or 2-furoyl-LIGRLO-NH2, either in the coronary contractile assay or in a Madin-Darby canine kidney (MDCK) cell PAR2calcium signaling assay. In the MDCK signaling assay, the order of potencies was as follows: 2-furoyl-LIGRLO-NH2≫ SLIGRL-NH2= trans-cinnamoyl-LIGRLO-NH2≫ SLIGKT-NH2, as expected for PAR2responses. In the coronary contractile assay, however, the order of potencies was very different: SLIGRL-NH2≫ 2-furoyl-LIGRLO-NH2≫ SLIGKT-NH2, trans-cinnamoyl-LIGRLO-NH2= antagonist. Because of 1) the distinct agonist (relaxant) and antagonist (contractile) activity of trans-cinnamoyl-LIGRLO-NH2in the canine coronary contractile assays, 2) the different concentration ranges over which the peptides caused either relaxation or contraction in the same coronary preparation, and 3) the markedly distinct structure-activity profiles for the PAR-APs in the coronary contractile assay, compared with those for PAR2-mediated MDCK cell calcium signaling, we suggest that the canine coronary tissue possesses a receptor system for the PAR-APs that is distinct from PAR2itself.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Calcium Signaling/drug effects
- Cell Line
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Dogs
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Indomethacin/pharmacology
- Molecular Sequence Data
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- RNA, Messenger/analysis
- Receptor, PAR-1/agonists
- Receptor, PAR-1/metabolism
- Receptor, PAR-2/agonists
- Receptor, PAR-2/genetics
- Receptor, PAR-2/metabolism
- Receptors, Neurokinin-1/metabolism
- Species Specificity
- Structure-Activity Relationship
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/chemistry
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
- Vasodilator Agents/chemistry
- Vasodilator Agents/pharmacology
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Mahmoud Saifeddine
- Department of Pharmacology & Therapeutics, University of Calgary Faculty of Medicine, 3330 Hospital Drive N.W., Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kawabata A, Matsunami M, Sekiguchi F. Gastrointestinal roles for proteinase-activated receptors in health and disease. Br J Pharmacol 2007; 153 Suppl 1:S230-40. [PMID: 17994114 DOI: 10.1038/sj.bjp.0707491] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
It has been almost a decade since the molecular cloning of all four members of the proteinase-activated receptor (PAR) family was completed. This unique family of G protein-coupled receptors (GPCRs) mediates specific cellular actions of various endogenous proteinases including thrombin, trypsin, tryptase, etc. and also certain exogenous enzymes. Increasing evidence has been clarifying the emerging roles played by PARs in health and disease. PARs, particularly PAR1 and PAR2, are distributed throughout the gastrointestinal (GI) tract, modulating various GI functions. One of the most important GI functions of PARs is regulation of exocrine secretion in the salivary glands, pancreas and GI mucosal epithelium. PARs also modulate motility of GI smooth muscle, involving multiple mechanisms. PAR2 appears to play dual roles in pancreatitis and related pain, being pro-inflammatory/pro-nociceptive and anti-inflammatory/anti-nociceptive. Similarly, dual roles for PAR1 and PAR2 have been demonstrated in mucosal inflammation/damage throughout the GI tract. There is also fundamental and clinical evidence for involvement of PAR2 in colonic pain. PARs are thus considered key molecules in regulation of GI functions and targets for development of drugs for treatment of various GI diseases.
Collapse
Affiliation(s)
- A Kawabata
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, Higashi-Osaka, Japan.
| | | | | |
Collapse
|
38
|
Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 2007; 117:1979-87. [PMID: 17571167 PMCID: PMC1888570 DOI: 10.1172/jci30951] [Citation(s) in RCA: 335] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 04/10/2007] [Indexed: 12/17/2022] Open
Abstract
Proinflammatory agents trypsin and mast cell tryptase cleave and activate PAR2, which is expressed on sensory nerves to cause neurogenic inflammation. Transient receptor potential A1 (TRPA1) is an excitatory ion channel on primary sensory nerves of pain pathway. Here, we show that a functional interaction of PAR2 and TRPA1 in dorsal root ganglion (DRG) neurons could contribute to the sensation of inflammatory pain. Frequent colocalization of TRPA1 with PAR2 was found in rat DRG neurons. PAR2 activation increased the TRPA1 currents evoked by its agonists in HEK293 cells transfected with TRPA1, as well as DRG neurons. Application of phospholipase C (PLC) inhibitors or phosphatidylinositol-4,5-bisphosphate (PIP(2)) suppressed this potentiation. Decrease of plasma membrane PIP(2) levels through antibody sequestration or PLC-mediated hydrolysis mimicked the potentiating effects of PAR2 activation at the cellular level. Thus, the increased TRPA1 sensitivity may have been due to activation of PLC, which releases the inhibition of TRPA1 from plasma membrane PIP(2). These results identify for the first time to our knowledge a sensitization mechanism of TRPA1 and a novel mechanism through which trypsin or tryptase released in response to tissue inflammation might trigger the sensation of pain by TRPA1 activation.
Collapse
Affiliation(s)
- Yi Dai
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Shenglan Wang
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Makoto Tominaga
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Satoshi Yamamoto
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Tetsuo Fukuoka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Tomohiro Higashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Kimiko Kobayashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Koichi Obata
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Hiroki Yamanaka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| |
Collapse
|
39
|
Kawabata A, Matsunami M, Tsutsumi M, Ishiki T, Fukushima O, Sekiguchi F, Kawao N, Minami T, Kanke T, Saito N. Suppression of pancreatitis-related allodynia/hyperalgesia by proteinase-activated receptor-2 in mice. Br J Pharmacol 2007; 148:54-60. [PMID: 16520745 PMCID: PMC1617046 DOI: 10.1038/sj.bjp.0706708] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
1 Proteinase-activated receptor-2 (PAR2), a receptor activated by trypsin and tryptase, is abundantly expressed in the gastrointestinal tract including the C-fiber terminal, and might play a role in processing of visceral pain. In the present study, we examined and characterized the roles of PAR2 in pancreatitis-related abdominal hyperalgesia/allodynia in mice. 2 Caerulein, administered i.p. once, caused a small increase in abdominal sensitivity to stimulation with von Frey hairs, without causing pancreatitis, in PAR2-knockout (KO) mice, but not wild-type (WT) mice. 3 Caerulein, given hourly six times in total, caused more profound abdominal hyperalgesia/allodynia in PAR2-KO mice, as compared with WT mice, although no significant differences were detected in the severity of pancreatitis between the KO and WT animals. 4 The PAR2-activating peptide, 2-furoyl-LIGRL-NH(2), coadministered repeatedly with caerulein six times in total, abolished the caerulein-evoked abdominal hyperalgesia/allodynia in WT, but not PAR2-KO, mice. Repeated doses of 2-furoyl-LIGRL-NH(2) moderately attenuated the severity of caerulein-induced pancreatitis in WT animals. 5 Our data from experiments using PAR2-KO mice provide evidence that PAR2 functions to attenuate pancreatitis-related abdominal hyperalgesia/allodynia without affecting pancreatitis itself, although the PAR2AP applied exogenously is not only antinociceptive but also anti-inflammatory.
Collapse
Affiliation(s)
- Atsufumi Kawabata
- Division of Physiology and Pathophysiology, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhu WJ, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Obata K, Wang S, Noguchi K. Agonist of proteinase-activated receptor 2 increases painful behavior produced by alpha, beta-methylene adenosine 5'-triphosphate. Neuroreport 2006; 17:1257-61. [PMID: 16951565 DOI: 10.1097/01.wnr.0000230518.31833.5d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proteinase-activated receptor (PAR) 2 is expressed in a subset of primary afferent neurons and is involved in inflammatory nociception. The P2X3 ion channel is localized on nociceptors of sensory neurons. Using immunohistochemistry, we showed that many P2X3s are co-expressed with the PAR2 in rat dorsal root ganglia neurons. Nocifensive behavior induced by alphabeta-methylene adenosine 5'-triphosphate (ATP) injection to the hind paw was significantly augmented after the application of PAR2 agonists. Fos expression induced by the alphabeta-methylene ATP injection in dorsal horn neurons was also increased after the pre-application of PAR2 agonists. These findings indicate that PAR2 agonists may potentiate the sensitivity of P2X3 ion channel to noxious stimuli, and the interaction between PAR2 and P2X3 may be an important mechanism underlying inflammatory pain.
Collapse
Affiliation(s)
- Wan-Jun Zhu
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Oikonomopoulou K, Hansen KK, Saifeddine M, Vergnolle N, Tea I, Blaber M, Blaber SI, Scarisbrick I, Diamandis EP, Hollenberg MD. Kallikrein-mediated cell signalling: targeting proteinase-activated receptors (PARs). Biol Chem 2006; 387:817-24. [PMID: 16800746 DOI: 10.1515/bc.2006.104] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We tested the hypothesis that human tissue kallikreins (hKs) may regulate signal transduction by cleaving and activating proteinase-activated receptors (PARs). We found that hK5, 6 and 14 cleaved PAR N-terminal peptide sequences representing the cleavage/activation motifs of human PAR1 and PAR2 to yield receptor-activating peptides. hK5, 6 and 14 activated calcium signalling in rat PAR2-expressing (but not background) KNRK cells. Calcium signalling in HEK cells co-expressing human PAR1 and PAR2 was also triggered by hK14 (via PAR1 and PAR2) and hK6 (via PAR2). In isolated rat platelets that do not express PAR1, but signal via PAR4, hK14 also activated PAR-dependent calcium signalling responses and triggered aggregation. The aggregation response elicited by hK14 was in contrast to the lack of aggregation triggered by hK5 and 6. hK14 also caused vasorelaxation in a phenylephrine-preconstricted rat aorta ring assay and triggered oedema in an in vivo model of murine paw inflammation. We propose that, like thrombin and trypsin, the kallikreins must now be considered as important 'hormonal' regulators of tissue function, very likely acting in part via PARs.
Collapse
Affiliation(s)
- Katerina Oikonomopoulou
- Department of Laboratory Medicine and Pathobiology, University of Toronto and Mount Sinai Hospital, Toronto M5G 1X5, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Oikonomopoulou K, Hansen KK, Saifeddine M, Vergnolle N, Tea I, Diamandis EP, Hollenberg MD. Proteinase-mediated cell signalling: targeting proteinase-activated receptors (PARs) by kallikreins and more. Biol Chem 2006; 387:677-85. [PMID: 16800728 DOI: 10.1515/bc.2006.086] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractSerine proteinases, like trypsin, can play a hormone-like role by triggering signal transduction pathways in target cells. In many respects these hormone-like actions of proteinases can now be understood in terms of the pharmacodynamics of the G protein-coupled ‘receptor’ responsible for the cellular actions of thrombin (proteinase-activated receptor-1, or PAR1). PAR1, like the other three members of this receptor family (PAR2, PAR3and PAR4), has a unique mechanism of activation involving the proteolytic unmasking of an N-terminally tethered sequence that can activate the receptor. The selective activation of each PAR by short synthetic peptides representing these sequences has demonstrated that PAR1, PAR2and PAR4play important roles in regulating physiological responses ranging from vasoregulation and cell growth to inflammation and nociception. We hypothesise that the tissue kallikreins may regulate signal transduction via the PARs. Although PARs can account for many of their biological actions, kallikreins may also cause effects by mechanisms not involving the PARs. For instance, trypsin activates the insulin receptor and thrombin can act via a mechanism involving its non-catalytic domains. Based on the data we summarise, we propose that the kallikreins, like thrombin and trypsin, must now be considered as important ‘hormonal’ regulators of tissue function.
Collapse
Affiliation(s)
- Katerina Oikonomopoulou
- Department of Laboratory Medicine and Pathobiology, University of Toronto and Mount Sinai Hospital, Toronto M5G 1X5, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Kawabata A, Kawao N, Kitano T, Matsunami M, Satoh R, Ishiki T, Masuko T, Kanke T, Saito N. Colonic hyperalgesia triggered by proteinase-activated receptor-2 in mice: involvement of endogenous bradykinin. Neurosci Lett 2006; 402:167-72. [PMID: 16644120 DOI: 10.1016/j.neulet.2006.03.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 03/31/2006] [Accepted: 03/31/2006] [Indexed: 01/05/2023]
Abstract
Intracolonic (i.col.) administration of the PAR2-activating peptide (PAR2AP) SLIGRL-NH2 slowly develops visceral hypersensitivity to i.col. capsaicin in ddY mice. Thus, we further analyzed roles of PAR2 in colonic hypersensitivity, using the novel potent PAR2AP, 2-furoyl-LIGRL-NH2 and PAR2-knockout (KO) mice. In ddY mice, i.col. 2-furoyl-LIGRL-NH2 produced delayed (6 h later) facilitation of capsaicin-evoked visceral nociception, an effect being much more potent than SLIGRL-NH2. Such effects were mimicked by i.col. trypsin. In wild-type (WT), but not PAR2-KO, mice of C57BL/6 background, i.col. PAR2 agonists caused delayed facilitation of sensitivity to capsaicin. The PAR2-triggered visceral hypersensitivity was abolished by a bradykinin B2 receptor antagonist, HOE-140. Our data thus provide ultimate evidence for role of PAR2 in colonic hypersensitivity, and suggest involvement of the bradykinin-B2 pathway.
Collapse
Affiliation(s)
- Atsufumi Kawabata
- School of Pharmacy, Kinki University, Higashi-Osaka 577-8502, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Aman M, Hirano K, Nishimura J, Nakano H, Kanaide H. Enhancement of trypsin-induced contraction by in vivo treatment with 17beta-estradiol and progesterone in rat myometrium. Br J Pharmacol 2006; 146:425-34. [PMID: 16056237 PMCID: PMC1576290 DOI: 10.1038/sj.bjp.0706345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We have previously reported that the contractile response to thrombin and trypsin was enhanced in the pregnant rat myometrium. We herein determined whether or not sex hormones contribute to this enhancement and the expression of protease-activated receptors (PARs). The nonpregnant rats received daily injections of either 17beta-estradiol or progesterone, and then the contractile response of the myometrium was examined ex vivo. Treatment with either 17beta-estradiol or progesterone had almost no significant enhancing effect on the high K(+)- or oxytocin-induced contraction. On the other hand, both 17beta-estradiol and progesterone dose-dependently enhanced the contractile response to trypsin. A maximal enhancement was obtained at 25 and 40 mg kg weight(-1) day(-1) for 17beta-estradiol and progesterone, respectively. The extent of the enhancement of the trypsin-induced contraction seen in the sex hormone-treated rats in the present study was comparable to that reported in the pregnant rats. However, the contractile response to thrombin and PAR1/PAR2-AP, SFLLRNP was not enhanced either by progesterone or 17beta-estradiol. PAR2-AP and PAR4-AP failed to induce contraction under any conditions. PAR1 mRNA was scarcely detected in the control myometrium by an RT-PCR analysis, while it slightly increased only in the progesterone-treated rats. Neither PAR2 nor PAR4 mRNA was detected. We thus conclude that the responsiveness to trypsin, but not thrombin, is controlled by sex hormones. A novel type of receptor, other than PAR1, PAR2 or PAR4, is suggested to mediate the trypsin-induced contraction as in the case of the pregnant rat myometrium.
Collapse
Affiliation(s)
- Murasaki Aman
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsuya Hirano
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junji Nishimura
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hitoo Nakano
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideo Kanaide
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Kyushu University COE Program on Lifestyle-Related Diseases, Kyushu University, Fukuoka, Japan
- Author for correspondence:
| |
Collapse
|
45
|
Sekiguchi F, Hasegawa N, Inoshita K, Yonezawa D, Inoi N, Kanke T, Saito N, Kawabata A. Mechanisms for modulation of mouse gastrointestinal motility by proteinase-activated receptor (PAR)-1 and -2 in vitro. Life Sci 2006; 78:950-7. [PMID: 16188279 DOI: 10.1016/j.lfs.2005.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 06/01/2005] [Indexed: 11/25/2022]
Abstract
Proteinase-activated receptor (PAR)-1 or -2 modulates gastrointestinal transit in vivo. To clarify the underlying mechanisms, we characterized contraction/relaxation caused by TFLLR-NH2 and SLIGRL-NH2, PAR-1- and -2-activating peptides, respectively, in gastric and small intestinal (duodenal, jejunal and ileal) smooth muscle isolated from wild-type and PAR-2-knockout mice. Either SLIGRL-NH2 or TFLLR-NH2 caused both relaxation and contraction in the gastrointestinal preparations from wild-type animals. Apamin, a K+ channel inhibitor, tended to enhance the peptide-evoked contraction in some of the gastrointestinal preparations, whereas it inhibited relaxation responses to either peptide completely in the stomach, but only partially in the small intestine. Indomethacin reduced the contraction caused by SLIGRL-NH2 or TFLLR-NH2 in both gastric and ileal preparations, but unaffected apamin-insensitive relaxant effect of either peptide in ileal preparations. Repeated treatment with capsaicin suppressed the contractile effect of either peptide in the stomach, but not clearly in the ileum, whereas it enhanced the apamin-insensitive relaxant effect in ileal preparations. In any gastrointestinal preparations from PAR-2-knockout mice, SLIGRL-NH2 produced no responses. Thus, the inhibitory component in tension modulation by PAR-1 and -2 involves both apamin-sensitive and -insensitive mechanisms in the small intestine, but is predominantly attributable to the former mechanism in the stomach. The excitatory component in the PAR-1 and -2 modulation may be mediated, in part, by activation of capsaicin-sensitive sensory nerves and/or endogenous prostaglandin formation. Our study thus clarifies the multiple mechanisms for gastrointestinal motility modulation by PAR-1 and -2, and also provides ultimate evidence for involvement of PAR-2.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Apamin/pharmacology
- Calcium Channel Blockers/pharmacology
- Capsaicin/pharmacology
- Female
- Gastrointestinal Motility/drug effects
- In Vitro Techniques
- Indomethacin/pharmacology
- Intestines/drug effects
- Isometric Contraction/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Relaxation/drug effects
- Neurons, Afferent/drug effects
- Oligopeptides/pharmacology
- Potassium Channels/drug effects
- Potassium Channels/metabolism
- Prostaglandins/pharmacology
- Receptor, PAR-1/agonists
- Receptor, PAR-1/antagonists & inhibitors
- Receptor, PAR-1/drug effects
- Receptor, PAR-2/agonists
- Receptor, PAR-2/antagonists & inhibitors
- Receptor, PAR-2/drug effects
- Reverse Transcriptase Polymerase Chain Reaction
- Stomach/drug effects
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Division of Physiology and Pathophysiology, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bucci M, Roviezzo F, Cirino G. Protease-activated receptor-2 (PAR2) in cardiovascular system. Vascul Pharmacol 2005; 43:247-53. [PMID: 16183333 DOI: 10.1016/j.vph.2005.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2002] [Accepted: 07/29/2005] [Indexed: 12/22/2022]
Abstract
Vascular system is constituted by a complex and articulate network, e.g. arteries, arterioles, venules and veins, that requires a high degree of coordination between different elemental cell types. Proteinase-activated receptors (PARs) constitute a recent described family of 7-transmembrane G protein-coupled receptors that are activated by proteolysis. In recent years several evidence have been accumulated for an involvement of this receptor in the response to endothelial injury in vitro and in vivo experimental settings suggesting a role for PAR2 in the pathophysiology of cardiovascular system. This review will deal with the role of PAR2 receptor in the cardiovascular system analyzing both in vivo and in vitro published data. In particular this review will deal with the role of this receptor in vascular reactivity, ischemia/reperfusion injury, coronary atherosclerotic lesions and angiogenesis.
Collapse
Affiliation(s)
- Mariarosaria Bucci
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of Naples Federico II via Domenico Montesano 49, 80131 Naples, Italy.
| | | | | |
Collapse
|
47
|
Affiliation(s)
- N Vergnolle
- Mucosal Inflammation Research Group, Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW Calgary, Alberta, Canada T2N4N1.
| |
Collapse
|
48
|
Kawabata A, Oono Y, Yonezawa D, Hiramatsu K, Inoi N, Sekiguchi F, Honjo M, Hirofuchi M, Kanke T, Ishiwata H. 2-Furoyl-LIGRL-NH2, a potent agonist for proteinase-activated receptor-2, as a gastric mucosal cytoprotective agent in mice. Br J Pharmacol 2005; 144:212-9. [PMID: 15655521 PMCID: PMC1575994 DOI: 10.1038/sj.bjp.0706059] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Proteinase-activated receptor-2 (PAR(2)), expressed in capsaicin-sensitive sensory neurons, plays a protective role in gastric mucosa. The present study evaluated gastric mucosal cytoprotective effect of 2-furoyl-LIGRL-NH(2), a novel highly potent PAR(2) agonist, in ddY mice and in wild-type and PAR(2)-knockout mice of C57BL/6 background. 2. Gastric mucosal injury was created by oral administration of HCl/ethanol solution in the mice. The native PAR(2)-activating peptide SLIGRL-NH(2), administered intraperitoneally (i.p.) at 0.3-1 micromol kg(-1) in combination with amastatin, an aminopeptidase inhibitor, but not alone, revealed gastric mucosal protection in ddY mice, which was abolished by ablation of capsaicin-sensitive sensory neurons. 3. I.p. administration of 2-furoyl-LIGRL-NH(2) at 0.1 micromol kg(-1), without combined treatment with amastatin, exhibited gastric mucosal cytoprotective activity in ddY mice, the potency being much greater than SLIGRL-NH(2) in combination with amastatin. This effect was also inhibited by capsaicin pretreatment. 4. Oral administration of 2-furoyl-LIGRL-NH(2) at 0.003-0.03 micromol kg(-1) also protected against gastric mucosal lesion in a capsaicin-reversible manner in ddY mice. 5. I.p. 2-furoyl-LIGRL-NH(2) at 0.1-0.3 micromol kg(-1) caused prompt salivation in anesthetized mice, whereas its oral administration at 0.003-1 micromol kg(-1) was incapable of eliciting salivation. 6. In wild-type, but not PAR(2)-knockout, mice of C57BL/6 background, i.p. administration of 2-furoyl-LIGRL-NH(2) caused gastric mucosal protection. 7. Thus, 2-furoyl-LIGRL-NH(2) is considered a potent and orally available gastric mucosal protective agent. Our data also substantiate a role for PAR(2) in gastric mucosal protection and the selective nature of 2-furoyl-LIGRL-NH(2).
Collapse
Affiliation(s)
- Atsufumi Kawabata
- Division of Physiology and Pathophysiology, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Koawake, Higashi-Osaka 577-8502, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hansen KK, Sherman PM, Cellars L, Andrade-Gordon P, Pan Z, Baruch A, Wallace JL, Hollenberg MD, Vergnolle N. A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc Natl Acad Sci U S A 2005; 102:8363-8. [PMID: 15919826 PMCID: PMC1149409 DOI: 10.1073/pnas.0409535102] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Citrobacter rodentium is a bacterial pathogen that causes a murine infectious colitis equivalent to enterohemorrhagic Escherichia coli infection in humans. Colonic luminal fluid from C. rodentium-infected mice, but not from sham-infected mice, contains active serine proteinases that can activate proteinase-activated receptor-2 (PAR2). We have identified granzyme A and murine trypsins to be present in C. rodentium-infected luminal fluid, as determined by mass spectrometry and Western blot analysis. Inflammatory indices (colonic mucosa macroscopic damage score, increased intestinal wall thickness, granulocyte infiltration, and bacterial translocation from the colonic lumen to peritoneal organs) were all increased in C. rodentium-infected mice, compared with sham-infected mice. Soybean trypsin inhibitor-treated wild-type mice and untreated PAR2-deficient (PAR2-/-) mice (compared with their wild-type littermates) both had substantially reduced levels of C. rodentium-induced inflammation. These data point to an important role for both pathogen-induced host serine proteinases and PAR2 in the setting of infectious colitis.
Collapse
Affiliation(s)
- Kristina K Hansen
- Proteinases and Inflammation Network, Mucosal Inflammation Research Group, Department of Pharmacology, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 2005; 26:1-43. [PMID: 15689571 DOI: 10.1210/er.2003-0025] [Citation(s) in RCA: 369] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Serine proteinases such as thrombin, mast cell tryptase, trypsin, or cathepsin G, for example, are highly active mediators with diverse biological activities. So far, proteinases have been considered to act primarily as degradative enzymes in the extracellular space. However, their biological actions in tissues and cells suggest important roles as a part of the body's hormonal communication system during inflammation and immune response. These effects can be attributed to the activation of a new subfamily of G protein-coupled receptors, termed proteinase-activated receptors (PARs). Four members of the PAR family have been cloned so far. Thus, certain proteinases act as signaling molecules that specifically regulate cells by activating PARs. After stimulation, PARs couple to various G proteins and activate signal transduction pathways resulting in the rapid transcription of genes that are involved in inflammation. For example, PARs are widely expressed by cells involved in immune responses and inflammation, regulate endothelial-leukocyte interactions, and modulate the secretion of inflammatory mediators or neuropeptides. Together, the PAR family necessitates a paradigm shift in thinking about hormone action, to include proteinases as key modulators of biological function. Novel compounds that can modulate PAR function may be potent candidates for the treatment of inflammatory or immune diseases.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Boltzmann Institute for Immunobiology of the Skin, University of Münster, von-Esmarch-Strasse 58, 48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|