1
|
Shi L, Liu Y, Qi X, Cao R, Zhu Y, Shan JR, Hao EJ, Jin Y, Feng X. Rapid access to azetidines via allylation of azabicyclo[1.1.0]butanes by dual copper/photoredox catalysis. Chem Commun (Camb) 2025; 61:6352-6355. [PMID: 40171609 DOI: 10.1039/d5cc00232j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Recently, the strain-release-driven synthesis of N1/C3 functionalized azetidines from azabicyclo[1.1.0]butanes has generated significant interest in the fields of medicinal and synthetic chemistry. This paper presents a mild and efficient dual copper/photoredox-catalyzed multi-component allylation of azabicyclo[1.1.0]butanes using a radical-relay strategy. This strategy enables the synthesis of C3 quaternary center-containing azetidines via a radical relay mechanism with a high yield of 91%. The method's utility is highlighted by late-stage derivatization of bioactive molecules, demonstrating exceptional functional group compatibility.
Collapse
Affiliation(s)
- Lei Shi
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China.
| | - Yonghong Liu
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
| | - Xuehan Qi
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
| | - Renxu Cao
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
| | - Yihe Zhu
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China.
| | - Jing-Ran Shan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Er-Jun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China.
| | - Yunhe Jin
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
| |
Collapse
|
2
|
Lyothier I, Diethelm S, Pothier J, Sifferlen T, Pozzi D, Richard-Bildstein S, Siendt H, Fretz H, Boss C, Wyder L, Jeay S, de Kanter R, Gnerre C, Lehembre F, Meyer DS, Corminboeuf O. Discovery of Novel Aminopyrimidines as Selective EP2 Receptor Antagonists. ChemMedChem 2025:e2500119. [PMID: 40192484 DOI: 10.1002/cmdc.202500119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/30/2025] [Indexed: 04/19/2025]
Abstract
EP2 is a G-protein coupled receptor that is activated by prostaglandin E2 (PGE2). Signaling through the EP2 receptor has been shown to play a key role in various processes involved in diseases such as immune disorders or cancer. A new class of selective EP2 antagonists with an attractive in vitro and in vivo profile has been identified. The amide bond in the original screening hit is replaced by various alternatives. The introduction of an aminopyrimidine scaffold results in excellent potency. Improvement of physicochemical and ADME properties is achieved by incorporation of a carboxylic acid moiety, resulting in lead compound 29 exhibiting drug-like properties.
Collapse
Affiliation(s)
- Isabelle Lyothier
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Stefan Diethelm
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Julien Pothier
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Thierry Sifferlen
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Davide Pozzi
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Sylvia Richard-Bildstein
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Hervé Siendt
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Heinz Fretz
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Christoph Boss
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Lorenza Wyder
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Sébastien Jeay
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Ruben de Kanter
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Carmela Gnerre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - François Lehembre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Dominique S Meyer
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Olivier Corminboeuf
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| |
Collapse
|
3
|
Lyothier I, Diethelm S, Pothier J, Sifferlen T, Pozzi D, Richard-Bildstein S, Siendt H, Fretz H, Boss C, Wyder L, Jeay S, de Kanter R, Gnerre C, Lehembre F, Meyer DS, Corminboeuf O. Discovery of ACT-1002-4271 as a Dual Prostaglandin E2 Receptor 2/Prostaglandin E2 Receptor 4 Antagonist with In Vivo Anti-Tumor Efficacy. ChemMedChem 2025:e2500120. [PMID: 40192498 DOI: 10.1002/cmdc.202500120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/30/2025] [Indexed: 04/22/2025]
Abstract
Prostaglandin E2 (PGE2) signaling via receptors prostaglandin E2 receptor 2 (EP2) and prostaglandin E2 receptor 4 (EP4) is involved in various aspects of cancer and has been shown to promote tumor progression, metastasis, and immune evasion. Inhibition of PGE2 signaling by blockade of the EP2 and EP4 receptors has the potential to counteract the tumor-promoting effects of PGE2. Herein, the discovery of compound 30 (ACT-1002-4271), a dual EP2/EP4 antagonist with single-digit nanomolar potency on both receptors, is presented. The medicinal chemistry strategy is based on fine-tuning of the substitution pattern on an EP2 selective starting point to achieve dual EP2/EP4 antagonism. ACT-1002-4271 demonstrated significant antitumor efficacy in an experimental mammary tumour-6 mouse model when administered subcutaneously.
Collapse
Affiliation(s)
- Isabelle Lyothier
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Stefan Diethelm
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Julien Pothier
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Thierry Sifferlen
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Davide Pozzi
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Sylvia Richard-Bildstein
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Hervé Siendt
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Heinz Fretz
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Christoph Boss
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Lorenza Wyder
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Sébastien Jeay
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Ruben de Kanter
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Carmela Gnerre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - François Lehembre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Dominique S Meyer
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Olivier Corminboeuf
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| |
Collapse
|
4
|
Wang C, Yu T, Wang Y, Xu M, Wang J, Zhao Y, Wan Q, Wang L, Yang J, Zhou J, Li B, Yu Y, Shen Y. Targeting the EP2 receptor ameliorates inflammatory bowel disease in mice by enhancing the immunosuppressive activity of T reg cells. Mucosal Immunol 2025; 18:418-430. [PMID: 39746548 DOI: 10.1016/j.mucimm.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Inflammatory bowel diseases (IBDs) are characterized by unrestrained innate and adaptive immune responses and compromised intestinal epithelial barrier integrity. Regulatory T (Treg) cells are crucial for maintaining self-tolerance and immune homeostasis in intestinal tissues. Prostaglandin E2 (PGE2), a bioactive lipid compound derived from arachidonic acid, can modulate T cell functions in a receptor subtype-specific manner. However, whether PGE2 regulates Treg cell function and contributes to IBD pathogenesis remains unclear. Here, we found that the PGE2 receptor subtype 2 (EP2) is highly expressed in Treg cells. Treg cell-specific deletion of EP2 resulted in increased Treg cell numbers, and enhanced granzyme B(GzmB) expression and immunosuppressive capacity of Treg cells in mice. Adoptive transfer of EP2-deficient Treg cells attenuated naïve CD4+ T cell transfer-induced colitis in Rag1-/- mice. Mice with EP2-deficient Treg cells were protected from 2,4,6-trinitrobenzene sulfonic acid (TNBS)- and dextran sodium sulfate (DSS)-induced colitis. Pharmacological blockage of EP2 with PF-04418948 markedly alleviated DSS-induced colitis in mice in a Treg-dependent manner. Mechanistically, activation of EP2 suppressed Treg cell function, at least in part, through reduction of GzmB expression via PKA-mediated inhibition of NF-κB signaling. Thus, we identified the PGE2/EP2 axis as a key negative modulator of Treg cell function, suggesting EP2 inhibition as a potential therapeutic strategy for IBD treatment.
Collapse
MESH Headings
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Mice
- Inflammatory Bowel Diseases/immunology
- Inflammatory Bowel Diseases/metabolism
- Inflammatory Bowel Diseases/etiology
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors
- Mice, Knockout
- Disease Models, Animal
- Dextran Sulfate
- Colitis/chemically induced
- Colitis/immunology
- Dinoprostone/metabolism
- Mice, Inbred C57BL
- Adoptive Transfer
- Immune Tolerance
- Humans
- Granzymes/metabolism
- Signal Transduction
- Trinitrobenzenesulfonic Acid
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tingting Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuexin Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mengtong Xu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingjing Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Zhao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiangyou Wan
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lu Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jie Zhou
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bin Li
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
5
|
Cheng Z, Zhang Y, Du L, Wang W, Chai X, He M, Zhang H, Wu D, Lu J, Zhang S, Feng B, Yang L, Liu M, Lu W. Subtle Structural Modifications Spanning from EP4 Antagonism to EP2/EP4 Dual Antagonism: A Novel Class of Thienocyclic-Based Derivatives. J Med Chem 2025; 68:1587-1607. [PMID: 39757828 DOI: 10.1021/acs.jmedchem.4c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The development of dual prostaglandin E2 receptors 2/4 (EP2/EP4) antagonists represents an attractive strategy for cancer immunotherapy. Herein, a series of 4,7-dihydro-5H-thieno[2,3-c]pyran derivatives with potent EP2/EP4 dual antagonism were discovered by fine-tuned structural modifications. The biphenyl side chain was found to be the key pharmacophore for the transition from EP4 antagonism to EP2/EP4 dual antagonism. The introduction of large sterically hindered segments posed challenges on obtaining EP2 potency, while having minimal impact on EP4 potency. Molecular dynamics simulations verified that the EP2 pocket is relatively narrow compared to EP4, and the key residues surrounding the EP2 pocket impose spatial restrictions on the entry of antagonists. Representative compound 29 (CZY-1068) significantly reduced PGE2-induced expression of immunosuppression-related genes in macrophages. Notably, compound 29 elicited robust antitumor efficacy in the syngeneic MC38 tumor model. Taken together, this study provides a proof-of-concept for obtaining novel potent dual EP2/EP4 antagonists based on rational structural modifications.
Collapse
Affiliation(s)
- Zhiyuan Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yao Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Limin Du
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaolei Chai
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mengxian He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hankun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Deyan Wu
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Sen Zhang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Bo Feng
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- University Engineering Research Center of Oncolytic & Nanosystem Development, Nanning, Guangxi 530021, China
| |
Collapse
|
6
|
Gao X, Cui Y, Zhang G, Ruzbarsky JJ, Wang B, Layne JE, Xiao X, Huard J. Targeting EP2 Receptor Improves Muscle and Bone Health in Dystrophin -/-/Utrophin -/- Double-Knockout Mice. Cells 2025; 14:116. [PMID: 39851544 PMCID: PMC11763967 DOI: 10.3390/cells14020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 01/12/2025] [Indexed: 01/26/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophin-/-utrophin-/- (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target. We found that Ep2, Ep4, Cox-2, 15-Pgdh mRNA, and PGE2 were significantly increased in DKO-Hom mice compared to wild-type (WT) mice. The EP2 and EP4 receptors were mainly expressed in CD68+ macrophages and were significantly increased in the muscle tissues of both dystrophin-/- (mdx) and DKO-Hom mice compared to WT mice. Osteogenic and osteoclastogenic gene expression in skeletal muscle also increased in DKO-Hom mice, which correlates with severe muscle heterotopic ossification (HO). Treatment of DKO-Hom mice with the EP2 antagonist PF04418948 for 2 weeks increased body weight and reduced HO and muscle pathology by decreasing both total macrophages (CD68+) and senescent macrophages (CD68+P21+), while increasing endothelial cells (CD31+). PF04418948 also increased bone volume/total volume (BV/TV), the trabecular thickness (Tb.Th) of the tibia trabecular bone, and the cortical bone thickness of both the femur and tibia without affecting spine trabecular bone microarchitecture. In summary, our results indicate that targeting EP2 improves muscle pathology and improves bone mass in DKO mice.
Collapse
MESH Headings
- Animals
- Dystrophin/metabolism
- Dystrophin/deficiency
- Dystrophin/genetics
- Mice, Knockout
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Utrophin/metabolism
- Utrophin/deficiency
- Utrophin/genetics
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Bone and Bones/drug effects
- Osteogenesis/drug effects
- Osteogenesis/genetics
- Macrophages/metabolism
- Macrophages/drug effects
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/genetics
- Male
- Mice, Inbred mdx
- Disease Models, Animal
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Xueqin Gao
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (J.J.R.); (J.E.L.)
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.C.); (G.Z.)
| | - Yan Cui
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.C.); (G.Z.)
| | - Greg Zhang
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.C.); (G.Z.)
| | - Joseph J. Ruzbarsky
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (J.J.R.); (J.E.L.)
| | - Bing Wang
- Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Pittsburgh VA Healthcare System, Pittsburgh, PA 15240, USA
| | - Jonathan E. Layne
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (J.J.R.); (J.E.L.)
| | - Xiang Xiao
- Glassell School of Art, The Museum of Fine Arts, Houston, TX 77006, USA;
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (J.J.R.); (J.E.L.)
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.C.); (G.Z.)
| |
Collapse
|
7
|
Gutierrez Cruz A, Borhani Peikani M, Beaulac TD, Mutafova-Yambolieva VN. Prostaglandins Differentially Regulate the Constitutive and Mechanosensitive Release of Soluble Nucleotidases in the Urinary Bladder Mucosa. Int J Mol Sci 2024; 26:131. [PMID: 39795990 PMCID: PMC11720413 DOI: 10.3390/ijms26010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The urothelium and lamina propria (LP) contribute to sensations of bladder fullness by releasing multiple mediators, including prostaglandins (PGs) and adenosine 5'-triphosphate (ATP), that activate or modulate functions of cells throughout the bladder wall. Mediators that are simultaneously released in response to bladder distention likely influence each other's mechanisms of release and action. This study investigated whether PGs could alter the extracellular hydrolysis of ATP by soluble nucleotidases (s-NTDs) released in the LP of nondistended or distended bladders. Using an ex vivo murine detrusor-free bladder model to access the LP during bladder filling and a sensitive HPLC-FLD detection methodology, we evaluated the decrease in ATP and the increase in adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), and adenosine by s-NTDs released in the LP. Endogenous PGE2 increased the spontaneous but not the distention-induced release of s-NTD via EP2 and EP3 prostanoid receptors, whereas exogenous PGE2 increased the spontaneous s-NTD release via EP3, EP4, and FP receptors and the distention-induced s-NTD release via EP1-4 and FP receptors. Endogenous PGF2α, PGD2, and PGI2 did not change the s-NTD release. Exogenous PGD2 increased the spontaneous s-NTD release via DP2 receptors and the distention-induced s-NTD release via DP1 and DP2 receptors. Exogenous PGF2α increased the spontaneous but not the distention-induced release of s-NTD via FP receptors. It is possible that higher concentrations of PGE2, PGF2α, and PGD2 (as expected in inflammation, bladder pain syndrome, or overactive bladder) potentiate the release of s-NTDs and the consecutive degradation of ATP as a safeguard mechanism to prevent the development of excessive bladder excitability and overactivity by high amounts of extracellular ATP.
Collapse
|
8
|
Jin Z, Jiang C, Cho EB, Bahraminejad S, Han J, Hao J, Liu J, Yu Y, Jiang J. Suppressing the Inflammatory Prostaglandin Signaling after Thrombotic Stroke Ameliorates Ischemic Brain Injury and Facilitates Poststroke Recovery. ACS Pharmacol Transl Sci 2024; 7:4056-4068. [PMID: 39698290 PMCID: PMC11650728 DOI: 10.1021/acsptsci.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Acute cerebral ischemia is a leading cause of death and disability, particularly among old adults. The narrow therapeutic window and risk of hemorrhagic transformation largely limit patient eligibility for the current treatment. The neuroinflammatory signaling pathway involving the prostaglandin E2 (PGE2) receptor subtype EP2 has now been clarified to contribute to the secondary neurotoxicity following ischemic stroke. We previously demonstrated the feasibility of pharmacologically targeting EP2 for ischemic stroke using an EP2 antagonist in a mouse model of transient middle cerebral artery occlusion. Herein, we evaluated the effects of a second-generation EP2 antagonist with improved potency and selectivity in a mouse model of thrombotic stroke, the most common type of stroke. We found that the EP2 antagonist, when administered hours after an ischemic stroke induced within motor and somatosensory cortices by photoactivation of a light-sensitive dye Rose Bengal, reduced cortical infarction in a dose-dependent manner. EP2 inhibition also improved the poststroke body weight recovery and reduced neurological impairments in locomotor and cognitive functions, revealed by a panel of behavioral tests. These broad benefits support the feasibility of targeting the PGE2/EP2 axis-mediated neuroinflammatory pathway as a novel strategy to alleviate the ischemic brain injury caused by thrombotic occlusion and accelerate poststroke recovery.
Collapse
Affiliation(s)
- Zhen Jin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Chenyao Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Eun Bee Cho
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Sina Bahraminejad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Juqian Han
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiukuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Jiawang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
9
|
Nazabal A, Mendiguren A, Pineda J. Pharmacological characterization of prostaglandin E 2 EP2 and EP4 receptors in male rat locus coeruleus neurons ex vivo. Biochem Pharmacol 2024; 230:116602. [PMID: 39510196 DOI: 10.1016/j.bcp.2024.116602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
The inflammatory mediator prostaglandin E2 (PGE2) binds to Gs-coupled EP2 and EP4 receptors. These receptors are located in the locus coeruleus (LC), the principal noradrenergic nucleus in the brain, but their functional role remains unknown. In this study, the PGE2 EP2 and EP4 receptors in LC cells from male rat brain slices were pharmacologically characterized by single-unit extracellular electrophysiology. The EP2 receptor agonists butaprost (0.01-10 μM) and treprostinil (0.03-10 µM) and the EP4 receptor agonists rivenprost (0.01 nM-1 µM) and TCS2510 (0.20 nM-2 µM) increased the firing rate of LC neurons in a concentration-dependent manner. The EP2 receptor antagonist PF-04418948 (10 nM) hindered the excitatory effect of butaprost and treprostinil while the EP4 receptor antagonist L-161,982 (30 and 300 nM) blocked the excitatory effect caused by rivenprost and TCS2510. The effects of butaprost and rivenprost were prevented by extracellular sodium replacement but were not modified by the protein kinase A (PKA) activator 8-Br-cAMP (1 mM) or the inhibitor H-89 (10 μM). However, the Gβγ subunit blocker gallein (20 μM) hindered the stimulatory effect of butaprost while the Gαs subunit inhibitor NF449 (10 µM) prevented that of rivenprost. Finally, rivenprost-induced stimulation (30 nM) was not occluded by butaprost (1 µM). In conclusion, activation of EP2 and EP4 receptors excites LC noradrenergic neurons through sodium-dependent currents via different G protein subunits in male rat brain slices. EP2 and EP4 in the LC may constitute pharmacological targets for the treatment of pain, fever, drug addiction, anxiety and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Amaia Nazabal
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/ EHU), E-48940 Leioa, Bizkaia, Spain.
| | - Aitziber Mendiguren
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/ EHU), E-48940 Leioa, Bizkaia, Spain.
| | - Joseba Pineda
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/ EHU), E-48940 Leioa, Bizkaia, Spain.
| |
Collapse
|
10
|
Xiao L, De Jesus DF, Ju CW, Wei JB, Hu J, DiStefano-Forti A, Tsuji T, Cero C, Männistö V, Manninen SM, Wei S, Ijaduola O, Blüher M, Cypess AM, Pihlajamäki J, Tseng YH, He C, Kulkarni RN. m 6A mRNA methylation in brown fat regulates systemic insulin sensitivity via an inter-organ prostaglandin signaling axis independent of UCP1. Cell Metab 2024; 36:2207-2227.e9. [PMID: 39255799 PMCID: PMC11891809 DOI: 10.1016/j.cmet.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 05/13/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Abstract
Brown adipose tissue (BAT) regulates systemic metabolism by releasing signaling lipids. N6-methyladenosine (m6A) is the most prevalent and abundant post-transcriptional mRNA modification and has been reported to regulate BAT adipogenesis and energy expenditure. Here, we demonstrate that the absence of m6A methyltransferase-like 14 (METTL14) modifies the BAT secretome to improve systemic insulin sensitivity independent of UCP1. Using lipidomics, we identify prostaglandin E2 (PGE2) and prostaglandin F2a (PGF2a) as BAT-secreted insulin sensitizers. PGE2 and PGF2a inversely correlate with insulin sensitivity in humans and protect mice from high-fat-diet-induced insulin resistance by suppressing specific AKT phosphatases. Mechanistically, METTL14-mediated m6A promotes the decay of PTGES2 and CBR1, the genes encoding PGE2 and PGF2a biosynthesis enzymes, in brown adipocytes via YTHDF2/3. Consistently, BAT-specific knockdown of Ptges2 or Cbr1 reverses the insulin-sensitizing effects in M14KO mice. Overall, these findings reveal a novel biological mechanism through which m6A-dependent regulation of the BAT secretome regulates systemic insulin sensitivity.
Collapse
Affiliation(s)
- Ling Xiao
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, BIDMC, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Dario F De Jesus
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, BIDMC, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Cheng-Wei Ju
- Department of Chemistry, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Jiang Bo Wei
- Department of Chemistry, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Jiang Hu
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, BIDMC, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Ava DiStefano-Forti
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, BIDMC, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, BIDMC, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Cheryl Cero
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Suvi M Manninen
- Institute of Public Health and Clinical Nutrition, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Siying Wei
- Section of Islet Cell and Regenerative Biology, and CRISPR Screen Core Laboratory, Joslin Diabetes Center, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
| | - Oluwaseun Ijaduola
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, BIDMC, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, BIDMC, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Chuan He
- Department of Chemistry, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, BIDMC, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Fang C, Ren P, He Y, Wang Y, Yao S, Zhao C, Li X, Zhang X, Li J, Li M. Spinster homolog 2/S1P signaling ameliorates macrophage inflammatory response to bacterial infections by balancing PGE 2 production. Cell Commun Signal 2024; 22:463. [PMID: 39350143 PMCID: PMC11440679 DOI: 10.1186/s12964-024-01851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Mitochondria play a crucial role in shaping the macrophage inflammatory response during bacterial infections. Spinster homolog 2 (Spns2), responsible for sphingosine-1-phosphate (S1P) secretion, acts as a key regulator of mitochondrial dynamics in macrophages. However, the link between Spns2/S1P signaling and mitochondrial functions remains unclear. METHODS Peritoneal macrophages were isolated from both wild-type and Spns2 knockout rats, followed by non-targeted metabolomics and RNA sequencing analysis to identify the potential mediators through which Spns2/S1P signaling influences the mitochondrial functions in macrophages. Various agonists and antagonists were used to modulate the activation of Spns2/S1P signaling and its downstream pathways, with the underlying mechanisms elucidated through western blotting. Mitochondrial functions were assessed using flow cytometry and oxygen consumption assays, as well as morphological analysis. The impact on inflammatory response was validated through both in vitro and in vivo sepsis models, with the specific role of macrophage-expressed Spns2 in sepsis evaluated using Spns2flox/floxLyz2-Cre mice. Additionally, the regulation of mitochondrial functions by Spns2/S1P signaling was confirmed using THP-1 cells, a human monocyte-derived macrophage model. RESULTS In this study, we unveil prostaglandin E2 (PGE2) as a pivotal mediator involved in Spns2/S1P-mitochondrial communication. Spns2/S1P signaling suppresses PGE2 production to support malate-aspartate shuttle activity. Conversely, excessive PGE2 resulting from Spns2 deficiency impairs mitochondrial respiration, leading to intracellular lactate accumulation and increased reactive oxygen species (ROS) generation through E-type prostanoid receptor 4 activation. The overactive lactate-ROS axis contributes to the early-phase hyperinflammation during infections. Prolonged exposure to elevated PGE2 due to Spns2 deficiency culminates in subsequent immunosuppression, underscoring the dual roles of PGE2 in inflammation throughout infections. The regulation of PGE2 production by Spns2/S1P signaling appears to depend on the coordinated activation of multiple S1P receptors rather than any single one. CONCLUSIONS These findings emphasize PGE2 as a key effector of Spns2/S1P signaling on mitochondrial dynamics in macrophages, elucidating the mechanisms through which Spns2/S1P signaling balances both early hyperinflammation and subsequent immunosuppression during bacterial infections.
Collapse
Affiliation(s)
- Chao Fang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Pan Ren
- Department of Burns and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yejun He
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yitian Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shuting Yao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Congying Zhao
- Department of Burns and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xueyong Li
- Department of Burns and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xi Zhang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jinqing Li
- Department of Burns, Plastic and Wound Repair Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Mingkai Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
12
|
Ricciotti E, Tang SY, Mrčela A, Das US, Lordan R, Joshi R, Ghosh S, Aoyama J, McConnell R, Yang J, Grant GR, FitzGerald GA. Disruption of the PGE 2 synthesis / response pathway restrains atherogenesis in programmed cell death-1 (Pd-1) deficient hyperlipidemic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601762. [PMID: 39005376 PMCID: PMC11244953 DOI: 10.1101/2024.07.02.601762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Immune checkpoint inhibitors (ICIs) that target programmed cell death 1 (PD-1) have revolutionized cancer treatment by enabling the restoration of suppressed T-cell cytotoxic responses. However, resistance to single-agent ICIs limits their clinical utility. Combinatorial strategies enhance their antitumor effects, but may also enhance the risk of immune related adverse effects of ICIs. Prostaglandin (PG) E2, formed by the sequential action of the cyclooxygenase (COX) and microsomal PGE synthase (mPGES-1) enzymes, acting via its E prostanoid (EP) receptors, EPr2 and EPr4, promotes lymphocyte exhaustion, revealing an additional target for ICIs. Thus, COX inhibitors and EPr4 antagonists are currently being combined with ICIs potentially to enhance antitumor efficacy in clinical trials. However, given the cardiovascular (CV) toxicity of COX inhibitors, such combinations may increase the risk particularly of CV AEs. Here, we compared the impact of distinct approaches to disruption of the PGE2 synthesis /response pathway - global or myeloid cell specific depletion of mPges-1 or global depletion of Epr4 - on the accelerated atherogenesis in Pd-1 deficient hyperlipidemic (Ldlr-/-) mice. All strategies restrained the atherogenesis. While depletion of mPGES-1 suppresses PGE2 biosynthesis, reflected by its major urinary metabolite, PGE2 biosynthesis was increased in mice lacking EPr4, consistent with enhanced expression of aortic Cox-1 and mPges-1. Deletions of mPges-1 and Epr4 differed in their effects on immune cell populations in atherosclerotic plaques; the former reduced neutrophil infiltration, while the latter restrained macrophages and increased the infiltration of T-cells. Consistent with these findings, chemotaxis by bone-marrow derived macrophages from Epr4-/- mice was impaired. Epr4 depletion also resulted in extramedullary lymphoid hematopoiesis and inhibition of lipoprotein lipase activity (LPL) with coincident spelenomegaly, leukocytosis and dyslipidemia. Targeting either mPGES-1 or EPr4 may restrain lymphocyte exhaustion while mitigating CV irAEs consequent to PD-1 blockade.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
- Department of Systems Pharmacology and Translational Therapeutics
| | - Soon Yew Tang
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Antonijo Mrčela
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Ujjalkumar S. Das
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Robin Joshi
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Soumita Ghosh
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Justin Aoyama
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Ryan McConnell
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Jianing Yang
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
- Department of Genetics, University of Pennsylvania
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine
- Department of Medicine Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
13
|
Kantarci H, Elvira PD, Thottumkara AP, O'Connell EM, Iyer M, Donovan LJ, Dugan MQ, Ambiel N, Granados A, Zeng H, Saw NL, Brosius Lutz A, Sloan SA, Gray EE, Tran KV, Vichare A, Yeh AK, Münch AE, Huber M, Agrawal A, Morri M, Zhong H, Shamloo M, Anderson TA, Tawfik VL, Du Bois J, Zuchero JB. Schwann cell-secreted PGE 2 promotes sensory neuron excitability during development. Cell 2024; 187:4690-4712.e30. [PMID: 39142281 PMCID: PMC11967275 DOI: 10.1016/j.cell.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.
Collapse
Affiliation(s)
- Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pablo D Elvira
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Emma M O'Connell
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren J Donovan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Micaela Quinn Dugan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Hong Zeng
- Transgenic, Knockout and Tumor model Center (TKTC), Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Brosius Lutz
- Department of Obstetrics and Gynecology, University Hospital, Bern, Switzerland
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erin E Gray
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Khanh V Tran
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aditi Vichare
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashley K Yeh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Max Huber
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Anthony Anderson
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Guo M, Hu P, Xie J, Tang K, Hu S, Sun J, He Y, Li J, Lu W, Liu H, Liu M, Yi Z, Peng S. Remodeling the immune microenvironment for gastric cancer therapy through antagonism of prostaglandin E2 receptor 4. Genes Dis 2024; 11:101164. [PMID: 38560505 PMCID: PMC10980949 DOI: 10.1016/j.gendis.2023.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 04/04/2024] Open
Abstract
Gastric cancer is highly prevalent among digestive tract tumors. Due to the intricate nature of the gastric cancer immune microenvironment, there is currently no effective treatment available for advanced gastric cancer. However, there is promising potential for immunotherapy targeting the prostaglandin E2 receptor subtype 4 (EP4) in gastric cancer. In our previous study, we identified a novel small molecule EP4 receptor antagonist called YY001. Treatment with YY001 alone demonstrated a significant reduction in gastric cancer growth and inhibited tumor metastasis to the lungs in a mouse model. Furthermore, administration of YY001 stimulated a robust immune response within the tumor microenvironment, characterized by increased infiltration of antigen-presenting cells, T cells, and M1 macrophages. Additionally, our research revealed that YY001 exhibited remarkable synergistic effects when combined with the PD-1 antibody and the clinically targeted drug apatinib, rather than fluorouracil. These findings suggest that YY001 holds great promise as a potential therapeutic strategy for gastric cancer, whether used as a standalone treatment or in combination with other drugs.
Collapse
Affiliation(s)
- Mengmeng Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Pan Hu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiayi Xie
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kefu Tang
- Prenatal Diagnosis Center, Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Shixiu Hu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jialiang Sun
- Fengxian Hospital Affiliated to Southern Medical University, Shanghai 201400, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jing Li
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huirong Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shihong Peng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Yuyao Biotech Co., Ltd., Shanghai 200241, China
| |
Collapse
|
15
|
Parchem K, Letsiou S, Petan T, Oskolkova O, Medina I, Kuda O, O'Donnell VB, Nicolaou A, Fedorova M, Bochkov V, Gladine C. Oxylipin profiling for clinical research: Current status and future perspectives. Prog Lipid Res 2024; 95:101276. [PMID: 38697517 DOI: 10.1016/j.plipres.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Oxylipins are potent lipid mediators with increasing interest in clinical research. They are usually measured in systemic circulation and can provide a wealth of information regarding key biological processes such as inflammation, vascular tone, or blood coagulation. Although procedures still require harmonization to generate comparable oxylipin datasets, performing comprehensive profiling of circulating oxylipins in large studies is feasible and no longer restricted by technical barriers. However, it is essential to improve and facilitate the biological interpretation of complex oxylipin profiles to truly leverage their potential in clinical research. This requires regular updating of our knowledge about the metabolism and the mode of action of oxylipins, and consideration of all factors that may influence circulating oxylipin profiles independently of the studied disease or condition. This review aims to provide the readers with updated and necessary information regarding oxylipin metabolism, their different forms in systemic circulation, the current limitations in deducing oxylipin cellular effects from in vitro bioactivity studies, the biological and technical confounding factors needed to consider for a proper interpretation of oxylipin profiles.
Collapse
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdańsk, Poland; Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic.
| | - Sophia Letsiou
- Department of Biomedical Sciences, University of West Attica, Ag. Spiridonos St. Egaleo, 12243 Athens, Greece.
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Olga Oskolkova
- Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010 Graz, Austria.
| | - Isabel Medina
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain.
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Anna Nicolaou
- School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany.
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010 Graz, Austria.
| | - Cécile Gladine
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France.
| |
Collapse
|
16
|
Santiso A, Heinemann A, Kargl J. Prostaglandin E2 in the Tumor Microenvironment, a Convoluted Affair Mediated by EP Receptors 2 and 4. Pharmacol Rev 2024; 76:388-413. [PMID: 38697857 DOI: 10.1124/pharmrev.123.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/05/2024] Open
Abstract
The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.
Collapse
Affiliation(s)
- Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
17
|
Babalola KT, Arora M, Ganugula R, Agarwal SK, Mohan C, Kumar MNVR. Leveraging Lymphatic System Targeting in Systemic Lupus Erythematosus for Improved Clinical Outcomes. Pharmacol Rev 2024; 76:228-250. [PMID: 38351070 PMCID: PMC10877736 DOI: 10.1124/pharmrev.123.000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024] Open
Abstract
The role of advanced drug delivery strategies in drug repositioning and minimizing drug attrition rates, when applied early in drug discovery, is poised to increase the translational impact of various therapeutic strategies in disease prevention and treatment. In this context, drug delivery to the lymphatic system is gaining prominence not only to improve the systemic bioavailability of various pharmaceutical drugs but also to target certain specific diseases associated with the lymphatic system. Although the role of the lymphatic system in lupus is known, very little is done to target drugs to yield improved clinical benefits. In this review, we discuss recent advances in drug delivery strategies to treat lupus, the various routes of drug administration leading to improved lymph node bioavailability, and the available technologies applied in other areas that can be adapted to lupus treatment. Moreover, this review also presents some recent findings that demonstrate the promise of lymphatic targeting in a preclinical setting, offering renewed hope for certain pharmaceutical drugs that are limited by efficacy in their conventional dosage forms. These findings underscore the potential and feasibility of such lymphatic drug-targeting approaches to enhance therapeutic efficacy in lupus and minimize off-target effects of the pharmaceutical drugs. SIGNIFICANCE STATEMENT: The World Health Organization estimates that there are currently 5 million humans living with some form of lupus. With limited success in lupus drug discovery, turning to effective delivery strategies with existing drug molecules, as well as those in the early stage of discovery, could lead to better clinical outcomes. After all, effective delivery strategies have been proven to improve treatment outcomes.
Collapse
Affiliation(s)
- K T Babalola
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - M Arora
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - R Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - S K Agarwal
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - C Mohan
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
18
|
Corminboeuf O, Diethelm S, Zumbrunn C, Lyothier I, Niggli N, Gnerre C, Jeay S, Lehembre F, Boss C. Design of Dual EP2/EP4 Antagonists through Scaffold Merging of Selective Inhibitors. ChemMedChem 2024; 19:e202300606. [PMID: 37983645 DOI: 10.1002/cmdc.202300606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Prostaglandin E2 (PGE2) plays a key role in various stages of cancer. PGE2 signals through the EP2 and the EP4 receptors, promoting tumorigenesis, metastasis, and/or immune suppression. Dual inhibition of both the EP2 and the EP4 receptors has the potential to counteract the effect of PGE2 and to result in antitumor efficacy. We herein disclose for the first time the structure of dual EP2/EP4 antagonists. By merging the scaffolds of EP2 selective and EP4 selective inhibitors, we generated a new chemical series of compounds blocking both receptors with comparable potency. In vitro and in vivo profiling suggests that the newly identified compounds are promising lead structures for further development into dual EP2/EP4 antagonists for use in cancer therapy.
Collapse
Affiliation(s)
- Olivier Corminboeuf
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Stefan Diethelm
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Cornelia Zumbrunn
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Isabelle Lyothier
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Nadja Niggli
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Carmela Gnerre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Sébastien Jeay
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - François Lehembre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Christoph Boss
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| |
Collapse
|
19
|
Nazabal A, Mendiguren A, Pineda J. Inhibition of rat locus coeruleus neurons by prostaglandin E 2 EP3 receptors: pharmacological characterization ex vivo. Front Pharmacol 2023; 14:1290605. [PMID: 38035000 PMCID: PMC10684765 DOI: 10.3389/fphar.2023.1290605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Prostaglandin E2 (PGE2) is an inflammatory mediator synthesized by the brain constitutive cyclooxygenase enzyme. PGE2 binds to G protein-coupled EP1-4 receptors (EP1 to Gq, EP2,4 to Gs, and EP3 to Gi/o). EP2, EP3 and EP4 receptors are expressed in the locus coeruleus (LC), the main noradrenergic nucleus in the brain. EP3 receptors have been explored in the central nervous system, although its role regulating the locus coeruleus neuron activity has not been pharmacologically defined. Our aim was to characterize the function of EP3 receptors in neurons of the LC. Thus, we studied the effect of EP3 receptor agonists on the firing activity of LC cells in rat brain slices by single-unit extracellular electrophysiological techniques. The EP3 receptor agonist sulprostone (0.15 nM-1.28 µM), PGE2 (0.31 nM-10.2 µM) and the PGE1 analogue misoprostol (0.31 nM-2.56 µM) inhibited the firing rate of LC neurons in a concentration-dependent manner (EC50 = 15 nM, 110 nM, and 51 nM, respectively). The EP3 receptor antagonist L-798,106 (3-10 µM), but not the EP2 (PF-04418948, 3-10 µM) or EP4 (L-161,982, 3-10 µM) receptor antagonists, caused rightward shifts in the concentration-effect curves for the EP3 receptor agonists. Sulprostone-induced effect was attenuated by the Gi/o protein blocker pertussis toxin (pertussis toxin, 500 ng ml-1) and the inhibitors of inwardly rectifying potassium channels (GIRK) BaCl2 (300 µM) and SCH-23390 (15 µM). In conclusion, LC neuron firing activity is regulated by EP3 receptors, presumably by an inhibitory Gi/o protein- and GIRK-mediated mechanism.
Collapse
|
20
|
Xie W, Zhang C, Gao Q, Liu Y, Zhang H, Weng Q. Seasonal expressions of COX-1, COX-2, and EP4 in the scent glands of muskrats ( Ondatra zibethicus). Am J Physiol Regul Integr Comp Physiol 2023; 325:R238-R247. [PMID: 37358350 DOI: 10.1152/ajpregu.00113.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Prostaglandins (PGs) serve as signaling molecules that regulate various physiological processes, including inflammation, immune response, blood clotting, and reproduction. The aim of this study was to investigate the immunolocalizations and expression patterns of prostaglandin-E2 (PGE2), cyclooxygenase (COX)-1, and COX-2, as well as its receptor subtypes 4 (EP4) in the scent glands of muskrats (Ondatra zibethicus) during the breeding and nonbreeding periods. There were significant seasonal differences in the scent glandular mass, with higher values in the breeding season and relatively low in the nonbreeding season. PGE2, EP4, COX-1, and COX-2 have been immunolocalized in the scent glandular and epithelial cells in both breeding and nonbreeding seasons, whereas no immunostaining was observed in the interstitial cells. The protein and mRNA expression levels of EP4, COX-1, and COX-2 were higher in the scent glands of the breeding season than those of the nonbreeding season. The mean mRNA levels of EP4, COX-1, and COX-2 were positively correlated with the scent glandular weights. The circulating follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), and PGE2, as well as scent glandular PGE2 and dihydrotestosterone (DHT) concentrations, were also significantly higher in the breeding season. In addition, the transcriptomic study in the scent glands identified that differentially expressed genes might be related to fatty carboxylic monocarboxylic acid, steroidogenic-related pathways, and prostanoid metabolic processes. These findings suggested that prostaglandin-E2 might play an essential autocrine or paracrine role in regulating seasonal changes in the scent glandular functions of the muskrats.
Collapse
Affiliation(s)
- Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chaoran Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingjing Gao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuning Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
21
|
Wang J, Zhi Z, Ding J, Jia N, Hu Y, Cai J, Li H, Tang J, Tang W, Mao X. Suppression of PGE2/EP2 signaling alleviates Hirschsprung disease by upregulating p38 mitogen-activated protein kinase activity. J Mol Med (Berl) 2023; 101:1125-1139. [PMID: 37522903 DOI: 10.1007/s00109-023-02353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/11/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital disorder caused by the failure of enteric neural crest cells (ENCCs) to colonize the distal bowel, resulting in absence of enteric nervous system. While a range of molecules and signaling pathways have been found to contribute to HSCR development, the risk factors and pathogenesis of this disease in many patients remain unknown. We previously demonstrated that increased activity of the prostaglandin E2 (PGE2)/PGE2 receptor subtype EP2 pathway can be a risk factor for HSCR. In this study, an Ednrb-deficient mouse model of HSCR was generated and used to investigate if PGE2/EP2 pathway could be a potential therapeutic target for HSCR. We found that downregulation of PGE2/EP2 signaling by siRNA-mediated ablation of a PGE2 synthase or pharmacologic blockage of EP2 enhanced ENCC colonization in the distal bowel of Ednrb-/- mice and alleviated their HSCR-like symptoms. Furthermore, blockage of EP2 was shown to promote ENCC migration through upregulating p38 mitogen-activated protein kinase activity, which was downregulated in the colon of Ednrb-/- mice and in the distal aganglionic bowel of HSCR patients. These data provide evidence that maternal exposure during embryonic development to an environment with dysregulated activation of the PGE2/EP2 pathway may predispose genetically susceptible offspring to HSCR, and avoidance or early disruption of maternal events (e.g. inflammation) that possibly enhance PGE2/EP2 signaling during pregnancy would reduce the occurrence and severity of this disease. KEY MESSAGES : Knockdown of PTGES alleviates HSCR severity in Ednrb-/- mice. Blockage of EP2-mediated PGE2 signaling alleviates HSCR severity in Ednrb-/- mice. Blockage of EP2-mediated PGE2 signaling promotes ENCC migration via enhancing p38 activity.
Collapse
Affiliation(s)
- Jiao Wang
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zhengke Zhi
- Department of Pediatric Surgery, Childrens Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, China
| | - Jie Ding
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Na Jia
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Yuqing Hu
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jiali Cai
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hongxing Li
- Department of Pediatric Surgery, Childrens Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, China
| | - Jie Tang
- Department of Pediatric Surgery, Childrens Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, China
| | - Weibing Tang
- Department of Pediatric Surgery, Childrens Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, China.
| | - Xiaohua Mao
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210096, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
22
|
Hsu CM, Lin HB, Hou XZ, Tapales RVPP, Shih CK, Miñoza S, Tsai YS, Tsai ZN, Chan CL, Liao HH. Azetidines with All-Carbon Quaternary Centers: Merging Relay Catalysis with Strain Release Functionalization. J Am Chem Soc 2023; 145:19049-19059. [PMID: 37589099 DOI: 10.1021/jacs.3c06710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Given the importance and beneficial characteristics of decorated azetidines in medicinal chemistry, efficient strategies for their synthesis are highly sought after. Herein, we report a facile synthesis of the elusive all-carbon quaternary-center-bearing azetidines. By adopting a well-orchestrated polar-radical relay strategy, ring strain release of bench-stable benzoylated 1-azabicyclo[1.1.0]butane (ABB) can be harnessed for nickel-catalyzed Suzuki Csp2-Csp3 cross-coupling with commercially available boronic acids in broad scope (>50 examples), excellent functional group tolerance, and gram-scale utility. Preliminary mechanistic studies provided insights into the underlying mechanism, wherein the ring opening of ABB with a catalytic quantity of bromide accounts for the conversion of ABB into a redox-active azetidine, which subsequently engages in the cross-coupling reaction through a radical pathway. The synergistic bromide and nickel catalysis could intriguingly be derived from a single nickel source (NiBr2). Application of the method to modify natural products, biologically relevant molecules, and pharmaceuticals has been successfully achieved as well as the synthesis of melanocortin-1 receptor (MC-1R) agonist and vesicular acetylcholine transporter (VAChT) inhibitor analogues through bioisosteric replacements of piperidine with azetidine moieties, highlighting the potential of the method in drug optimization studies. Aside from the synthesis of azetidines, we demonstrate the ancillary utility of our nickel catalytic system toward the restricted Suzuki cross-coupling of tertiary alkyl bromides with aryl boronic acids to construct all-carbon quaternary centers.
Collapse
Affiliation(s)
- Che-Ming Hsu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Heng-Bo Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Xin-Zhi Hou
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | | | - Chen-Kuei Shih
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Shinje Miñoza
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Yu-Syuan Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Zong-Nan Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Cheng-Lin Chan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Hsuan-Hung Liao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
- Green Hydrogen Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| |
Collapse
|
23
|
Ganesh T. Targeting EP2 Receptor for Drug Discovery: Strengths, Weaknesses, Opportunities, and Threats (SWOT) Analysis. J Med Chem 2023; 66:9313-9324. [PMID: 37458373 PMCID: PMC10388357 DOI: 10.1021/acs.jmedchem.3c00655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Indexed: 07/28/2023]
Abstract
Cyclooxygenase-1 and -2 (COX1 and COX2) derived endogenous ligand prostaglandin-E2 (PGE2) triggers several physiological and pathological conditions. It mediates signaling through four G-protein coupled receptors, EP1, EP2, EP3, and EP4. Among these, EP2 is expressed throughout the body including the brain and uterus. The functional role of EP2 has been extensively studied using EP2 gene knockout mice, cellular models, and selective small molecule agonists and antagonists for this receptor. The efficacy data from in vitro and in vivo animal models indicate that EP2 receptor is a major proinflammatory mediator with deleterious functions in a variety of diseases suggesting a path forward for EP2 inhibitors as the next generation of selective anti-inflammatory and antiproliferative agents. Interestingly in certain diseases, EP2 action is beneficial; therefore, EP2 agonists seem to be clinically useful. Here, we highlight the strengths, weaknesses, opportunities, and potential threats (SWOT analysis) for targeting EP2 receptor for therapeutic development for a variety of unmet clinical needs.
Collapse
Affiliation(s)
- Thota Ganesh
- Department of Pharmacology and Chemical
Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
24
|
Xiao L, De Jesus DF, Ju CW, Wei JB, Hu J, DiStefano-Forti A, Tsuji T, Cero C, Männistö V, Manninen SM, Wei S, Ijaduola O, Blüher M, Cypess AM, Pihlajamäki J, Tseng YH, He C, Kulkarni RN. m 6 A mRNA Methylation in Brown Adipose Tissue Regulates Systemic Insulin Sensitivity via an Inter-Organ Prostaglandin Signaling Axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542169. [PMID: 37292780 PMCID: PMC10245942 DOI: 10.1101/2023.05.26.542169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brown adipose tissue (BAT) has the capacity to regulate systemic metabolism through the secretion of signaling lipids. N6-methyladenosine (m 6 A) is the most prevalent and abundant post-transcriptional mRNA modification and has been reported to regulate BAT adipogenesis and energy expenditure. In this study, we demonstrate that the absence of m 6 A methyltransferase-like 14 (METTL14), modifies the BAT secretome to initiate inter-organ communication to improve systemic insulin sensitivity. Importantly, these phenotypes are independent of UCP1-mediated energy expenditure and thermogenesis. Using lipidomics, we identified prostaglandin E2 (PGE2) and prostaglandin F2a (PGF2a) as M14 KO -BAT-secreted insulin sensitizers. Notably, circulatory PGE2 and PGF2a levels are inversely correlated with insulin sensitivity in humans. Furthermore, in vivo administration of PGE2 and PGF2a in high-fat diet-induced insulin-resistant obese mice recapitulates the phenotypes of METTL14 deficient animals. PGE2 or PGF2a improves insulin signaling by suppressing the expression of specific AKT phosphatases. Mechanistically, METTL14-mediated m 6 A installation promotes decay of transcripts encoding prostaglandin synthases and their regulators in human and mouse brown adipocytes in a YTHDF2/3-dependent manner. Taken together, these findings reveal a novel biological mechanism through which m 6 A-dependent regulation of BAT secretome regulates systemic insulin sensitivity in mice and humans. Highlights Mettl14 KO -BAT improves systemic insulin sensitivity via inter-organ communication; PGE2 and PGF2a are BAT-secreted insulin sensitizers and browning inducers;PGE2 and PGF2a sensitize insulin responses through PGE2-EP-pAKT and PGF2a-FP-AKT axis; METTL14-mediated m 6 A installation selectively destabilizes prostaglandin synthases and their regulator transcripts; Targeting METTL14 in BAT has therapeutic potential to enhance systemic insulin sensitivity. Abstract Figure
Collapse
|
25
|
Gu M, Yu Y, Xue M, Jiang J, Cai J. The discovery of cyclic γ-AApeptides as the promising ligands targeting EP2. Bioorg Med Chem Lett 2023; 87:129255. [PMID: 36965536 PMCID: PMC10141659 DOI: 10.1016/j.bmcl.2023.129255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
EP2 is a G protein-coupled receptor for prostaglandin E2 (PGE2) derived from cell membrane-released arachidonic acid upon various harmful and injurious stimuli. It is commomly upregulated in tumors and injured brain tissues, as its activation by PGE2 is widely believed to be involved in the pathophysiological mechanisms underlying these conditions via promoting pro-inflammatory reactions. Herein, we report the discovery of two novel macrocyclic peptidomimetics based on the screening of a cyclic γ-AApeptides combinatorial library. These two cyclic γ-AApeptides showed excellent binding affinity with the EP2 protein, and they may lead to the development of novel therapeutic agents and/or molecular probes to modulate the PGE2/EP2 signaling.
Collapse
Affiliation(s)
- Meng Gu
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Menglin Xue
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| |
Collapse
|
26
|
Kourpa A, Schulz A, Mangelsen E, Kaiser-Graf D, Koppers N, Stoll M, Rothe M, Bader M, Purfürst B, Kunz S, Gladytz T, Niendorf T, Bachmann S, Mutig K, Bolbrinker J, Panáková D, Kreutz R. Studies in Zebrafish and Rat Models Support Dual Blockade of EP2 and EP4 (Prostaglandin E 2 Receptors Type 2 and 4) for Renoprotection in Glomerular Hyperfiltration and Albuminuria. Hypertension 2023; 80:771-782. [PMID: 36715011 DOI: 10.1161/hypertensionaha.122.20392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Glomerular hyperfiltration (GH) is an important mechanism in the development of albuminuria in hypertension. Upregulation of COX2 (cyclooxygenase 2) and prostaglandin E2 (PGE2) was linked to podocyte damage in GH. We explored the potential renoprotective effects of either separate or combined pharmacological blockade of EP2 (PGE2 receptor type 2) and EP4 (PGE2 receptor type 4) in GH. METHODS We conducted in vivo studies in a transgenic zebrafish model (Tg[fabp10a:gc-EGFP]) suitable for analysis of glomerular filtration barrier function and a genetic rat model with GH, albuminuria, and upregulation of PGE2. Similar pharmacological interventions and primary outcome analysis on albuminuria phenotype development were conducted in both model systems. RESULTS Stimulation of zebrafish embryos with PGE2 induced an albuminuria-like phenotype, thus mimicking the suggested PGE2 effects on glomerular filtration barrier dysfunction. Both separate and combined blockade of EP2 and EP4 reduced albuminuria phenotypes in zebrafish and rat models. A significant correlation between albuminuria and podocyte damage in electron microscopy imaging was identified in the rat model. Dual blockade of both receptors showed a pronounced synergistic suppression of albuminuria. Importantly, this occurred without changes in arterial blood pressure, glomerular filtration rate, or tissue oxygenation in magnetic resonance imaging, while RNA sequencing analysis implicated a potential role of circadian clock genes. CONCLUSIONS Our findings confirm a role of PGE2 in the development of albuminuria in GH and support the renoprotective potential of combined pharmacological blockade of EP2 and EP4 receptors. These data support further translational research to explore this therapeutic option and a possible role of circadian clock genes.
Collapse
Affiliation(s)
- Aikaterini Kourpa
- Institute of Clinical Pharmacology and Toxicology (A.K., A.S., E.M., D.K.-G., J.B., R.K.), Charité-Universitätsmedizin Berlin, Germany.,Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.K., M.B., B.P., S.K., T.G., T.N., D.P.)
| | - Angela Schulz
- Institute of Clinical Pharmacology and Toxicology (A.K., A.S., E.M., D.K.-G., J.B., R.K.), Charité-Universitätsmedizin Berlin, Germany
| | - Eva Mangelsen
- Institute of Clinical Pharmacology and Toxicology (A.K., A.S., E.M., D.K.-G., J.B., R.K.), Charité-Universitätsmedizin Berlin, Germany
| | - Debora Kaiser-Graf
- Institute of Clinical Pharmacology and Toxicology (A.K., A.S., E.M., D.K.-G., J.B., R.K.), Charité-Universitätsmedizin Berlin, Germany
| | - Nils Koppers
- Genetic Epidemiology, Institute for Human Genetics, Westfälische Wilhelms University, Münster, Germany (N.K., M.S.)
| | - Monika Stoll
- Genetic Epidemiology, Institute for Human Genetics, Westfälische Wilhelms University, Münster, Germany (N.K., M.S.)
| | | | - Michael Bader
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.K., M.B., B.P., S.K., T.G., T.N., D.P.).,German Center for Cardiovascular Research, Partner Site Berlin, Germany (M.B.).,Charité-Universitätsmedizin Berlin, Germany (M.B.).,Institute for Biology, University of Lübeck, Germany (M.B.)
| | - Bettina Purfürst
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.K., M.B., B.P., S.K., T.G., T.N., D.P.)
| | - Severine Kunz
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.K., M.B., B.P., S.K., T.G., T.N., D.P.)
| | - Thomas Gladytz
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.K., M.B., B.P., S.K., T.G., T.N., D.P.)
| | - Thoralf Niendorf
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.K., M.B., B.P., S.K., T.G., T.N., D.P.)
| | - Sebastian Bachmann
- Institute of Vegetative Anatomy (S.B.), Charité-Universitätsmedizin Berlin, Germany
| | - Kerim Mutig
- Institute of Translational Physiology (K.M.), Charité-Universitätsmedizin Berlin, Germany
| | - Juliane Bolbrinker
- Institute of Clinical Pharmacology and Toxicology (A.K., A.S., E.M., D.K.-G., J.B., R.K.), Charité-Universitätsmedizin Berlin, Germany
| | - Daniela Panáková
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.K., M.B., B.P., S.K., T.G., T.N., D.P.)
| | - Reinhold Kreutz
- Institute of Clinical Pharmacology and Toxicology (A.K., A.S., E.M., D.K.-G., J.B., R.K.), Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
27
|
O’Boyle NM, Helesbeux JJ, Meegan MJ, Sasse A, O’Shaughnessy E, Qaisar A, Clancy A, McCarthy F, Marchand P. 30th Annual GP 2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2023; 16:432. [PMID: 36986531 PMCID: PMC10056312 DOI: 10.3390/ph16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.
Collapse
Affiliation(s)
- Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Elizabeth O’Shaughnessy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alina Qaisar
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Aoife Clancy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Florence McCarthy
- School of Chemistry and ABCRF, University College Cork, T12 K8AF Cork, Ireland
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| |
Collapse
|
28
|
Robb CT, Zhou Y, Felton JM, Zhang B, Goepp M, Jheeta P, Smyth DJ, Duffin R, Vermeren S, Breyer R, Narumiya S, McSorley HJ, Maizels RM, Schwarze JKJ, Rossi AG, Yao C. Metabolic regulation by prostaglandin E 2 impairs lung group 2 innate lymphoid cell responses. Allergy 2023; 78:714-730. [PMID: 36181709 PMCID: PMC10952163 DOI: 10.1111/all.15541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) play a critical role in asthma pathogenesis. Non-steroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NERD) is associated with reduced signaling via EP2, a receptor for prostaglandin E2 (PGE2 ). However, the respective roles for the PGE2 receptors EP2 and EP4 (both share same downstream signaling) in the regulation of lung ILC2 responses has yet been deciphered. METHODS The roles of PGE2 receptors EP2 and EP4 on ILC2-mediated lung inflammation were investigated using genetically modified mouse lines and pharmacological approaches in IL-33-induced lung allergy model. The effects of PGE2 receptors and downstream signals on ILC2 metabolic activation and effector function were examined using in vitro cell cultures. RESULTS Deficiency of EP2 rather than EP4 augments IL-33-induced mouse lung ILC2 responses and eosinophilic inflammation in vivo. In contrast, exogenous agonism of EP4 and EP2 or inhibition of phosphodiesterase markedly restricts IL-33-induced lung ILC2 responses. Mechanistically, PGE2 directly suppresses IL-33-dependent ILC2 activation through the EP2/EP4-cAMP pathway, which downregulates STAT5 and MYC pathway gene expression and ILC2 energy metabolism. Blocking glycolysis diminishes IL-33-dependent ILC2 responses in mice where endogenous PG synthesis or EP2 signaling is blocked but not in mice with intact PGE2 -EP2 signaling. CONCLUSION We have defined a mechanism for optimal suppression of mouse lung ILC2 responses by endogenous PGE2 -EP2 signaling which underpins the clinical findings of defective EP2 signaling in patients with NERD. Our findings also indicate that exogenously targeting the PGE2 -EP4-cAMP and energy metabolic pathways may provide novel opportunities for treating the ILC2-initiated lung inflammation in asthma and NERD.
Collapse
Affiliation(s)
- Calum T. Robb
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - You Zhou
- Systems Immunity University Research Institute and Division of Infection and ImmunityCardiff UniversityCardiffUK
| | - Jennifer M. Felton
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Birong Zhang
- Systems Immunity University Research Institute and Division of Infection and ImmunityCardiff UniversityCardiffUK
| | - Marie Goepp
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Privjyot Jheeta
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Danielle J. Smyth
- Division of Cell Signaling and Immunology, School of Life SciencesWellcome Trust Building, University of DundeeDundeeUK
| | - Rodger Duffin
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Sonja Vermeren
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Richard M. Breyer
- Department of Veterans AffairsTennessee Valley Health AuthorityNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research and Department of Drug Discovery Medicine, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Henry J. McSorley
- Division of Cell Signaling and Immunology, School of Life SciencesWellcome Trust Building, University of DundeeDundeeUK
| | - Rick M. Maizels
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Jürgen K. J. Schwarze
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Adriano G. Rossi
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| |
Collapse
|
29
|
Varvel NH, Amaradhi R, Espinosa-Garcia C, Duddy S, Franklin R, Banik A, Alemán-Ruiz C, Blackmer-Raynolds L, Wang W, Honore T, Ganesh T, Dingledine R. Preclinical development of an EP2 antagonist for post-seizure cognitive deficits. Neuropharmacology 2023; 224:109356. [PMID: 36460083 PMCID: PMC9894535 DOI: 10.1016/j.neuropharm.2022.109356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Cognitive comorbidities can substantially reduce quality of life in people with epilepsy. Inflammation is a component of all chronic diseases including epilepsy, as well as acute events like status epilepticus (SE). Neuroinflammation is the consequence of several broad signaling cascades including cyclooxygenase-2 (COX-2)-associated pathways. Activation of the EP2 receptor for prostaglandin E2 appears responsible for blood-brain barrier leakage and much of the inflammatory reaction, neuronal injury and cognitive deficit that follows seizure-provoked COX-2 induction in brain. Here we show that brief exposure of mice to TG11-77, a potent, selective, orally available and brain permeant EP2 antagonist, eliminates the profound cognitive deficit in Y-maze performance after SE and reduces delayed mortality and microgliosis, with a minimum effective i.p. dose (as free base) of 8.8 mg/kg. All in vitro studies required to submit an investigational new drug (IND) application for TG11-77 have been completed, and non-GLP dose range-finding toxicology in the rat identified no overt, organ or histopathology signs of toxicity after 7 days of oral administration at 1000 mg/kg/day. Plasma exposure in the rat was dose-linear between 15 and 1000 mg/kg dosing. TG11-77 thus appears poised to continue development towards the initial clinical test of the hypothesis that EP2 receptor modulation after SE can provide the first preventive treatment for one of the chief comorbidities of epilepsy.
Collapse
Affiliation(s)
- Nicholas H Varvel
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Radhika Amaradhi
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Claudia Espinosa-Garcia
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Steven Duddy
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Ronald Franklin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Avijit Banik
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Carlos Alemán-Ruiz
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Lisa Blackmer-Raynolds
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Wenyi Wang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Tage Honore
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia.
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia.
| |
Collapse
|
30
|
Tyler JL, Noble A, Aggarwal VK. Four-Component Strain-Release-Driven Synthesis of Functionalized Azetidines. Angew Chem Int Ed Engl 2022; 61:e202214049. [PMID: 36300572 PMCID: PMC10099845 DOI: 10.1002/anie.202214049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/06/2022]
Abstract
Despite the favorable properties that azetidine rings can engender on drug-compounds, methods for the diversity-oriented synthesis of azetidine-based structures are significantly underdeveloped. Herein, we report the successful realization of a multicomponent [1,2]-Brook rearrangement/strain-release-driven anion relay sequence and its application to the modular synthesis of substituted azetidines. The rapidity of the reaction, as confirmed by in situ infra-red spectroscopy, leverages the strain-release ring-opening of azabicyclo[1.1.0]butane to drive the equilibrium of the Brook rearrangement. The three electrophilic coupling partners, added sequentially to azabicyclo[1.1.0]butyl-lithium, could be individually varied to access a diverse compound library. The utility of this methodology was demonstrated in a 4-step synthesis of the EP2 receptor antagonist PF-04418948.
Collapse
Affiliation(s)
- Jasper L Tyler
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
31
|
Chen J, Deng JC, Zemans RL, Bahmed K, Kosmider B, Zhang M, Peters-Golden M, Goldstein DR. Age-induced prostaglandin E 2 impairs mitochondrial fitness and increases mortality to influenza infection. Nat Commun 2022; 13:6759. [PMID: 36351902 PMCID: PMC9643978 DOI: 10.1038/s41467-022-34593-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
Aging impairs the immune responses to influenza A virus (IAV), resulting in increased mortality to IAV infections in older adults. However, the factors within the aged lung that compromise host defense to IAV remain unknown. Using a murine model and human samples, we identified prostaglandin E2 (PGE2), as such a factor. Senescent type II alveolar epithelial cells (AECs) are overproducers of PGE2 within the aged lung. PGE2 impairs the proliferation of alveolar macrophages (AMs), critical cells for defense against respiratory pathogens, via reduction of oxidative phosphorylation and mitophagy. Importantly, blockade of the PGE2 receptor EP2 in aged mice improves AM mitochondrial function, increases AM numbers and enhances survival to IAV infection. In conclusion, our study reveals a key mechanism that compromises host defense to IAV, and possibly other respiratory infections, with aging and suggests potential new therapeutic or preventative avenues to protect against viral respiratory disease in older adults.
Collapse
Affiliation(s)
- Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jane C Deng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rachel L Zemans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, 19140, USA
| | - Beata Kosmider
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, 19140, USA
| | - Min Zhang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marc Peters-Golden
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
- Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
32
|
Gao Y, Wang JB. Commentary: Indirect action pattern: A remote and cross-organ pharmacological mechanism for drug innovation. Acta Pharm Sin B 2022; 12:3448-3450. [PMID: 35967286 PMCID: PMC9366289 DOI: 10.1016/j.apsb.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Jia-bo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
33
|
Rieg AD, Suleiman S, Anker C, Bünting NA, Verjans E, Spillner J, Kalverkamp S, von Stillfried S, Braunschweig T, Uhlig S, Martin C. Platelet-derived growth factor (PDGF)-BB regulates the airway tone via activation of MAP2K, thromboxane, actin polymerisation and Ca 2+-sensitisation. Respir Res 2022; 23:189. [PMID: 35841089 PMCID: PMC9287894 DOI: 10.1186/s12931-022-02101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PDGFR-inhibition by the tyrosine kinase inhibitor (TKI) nintedanib attenuates the progress of idiopathic pulmonary fibrosis (IPF). However, the effects of PDGF-BB on the airway tone are almost unknown. We studied this issue and the mechanisms beyond, using isolated perfused lungs (IPL) of guinea pigs (GPs) and precision-cut lung slices (PCLS) of GPs and humans. METHODS IPL: PDGF-BB was perfused after or without pre-treatment with the TKI imatinib (perfused/nebulised) and its effects on the tidal volume (TV), the dynamic compliance (Cdyn) and the resistance were studied. PCLS (GP) The bronchoconstrictive effects of PDGF-BB and the mechanisms beyond were evaluated. PCLS (human): The bronchoconstrictive effects of PDGF-BB and the bronchorelaxant effects of imatinib were studied. All changes of the airway tone were measured by videomicroscopy and indicated as changes of the initial airway area. RESULTS PCLS (GP/human): PDGF-BB lead to a contraction of airways. IPL: PDGF-BB decreased TV and Cdyn, whereas the resistance did not increase significantly. In both models, inhibition of PDGFR-(β) (imatinib/SU6668) prevented the bronchoconstrictive effect of PDGF-BB. The mechanisms beyond PDGF-BB-induced bronchoconstriction include activation of MAP2K and TP-receptors, actin polymerisation and Ca2+-sensitisation, whereas the increase of Ca2+ itself and the activation of EP1-4-receptors were not of relevance. In addition, imatinib relaxed pre-constricted human airways. CONCLUSIONS PDGFR regulates the airway tone. In PCLS from GPs, this regulatory mechanism depends on the β-subunit. Hence, PDGFR-inhibition may not only represent a target to improve chronic airway disease such as IPF, but may also provide acute bronchodilation in asthma. Since asthma therapy uses topical application. This is even more relevant, as nebulisation of imatinib also appears to be effective.
Collapse
Affiliation(s)
- Annette D Rieg
- Department of Anaesthesiology, Medical Faculty RWTH-Aachen, Aachen, Germany.
| | - Said Suleiman
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Carolin Anker
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Nina A Bünting
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Eva Verjans
- Department of Paediatrics, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Jan Spillner
- Department of Cardiac and Thorax Surgery, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Sebastian Kalverkamp
- Department of Cardiac and Thorax Surgery, Medical Faculty RWTH-Aachen, Aachen, Germany
| | | | - Till Braunschweig
- Institute of Pathology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| |
Collapse
|
34
|
Gao J, Xiong T, Grabauskas G, Owyang C. Mucosal Serotonin Reuptake Transporter Expression in Irritable Bowel Syndrome Is Modulated by Gut Microbiota Via Mast Cell-Prostaglandin E2. Gastroenterology 2022; 162:1962-1974.e6. [PMID: 35167867 PMCID: PMC9117493 DOI: 10.1053/j.gastro.2022.02.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Increased colonic serotonin (5-HT) level and decreased serotonin reuptake transporter (SERT) expression in irritable bowel syndrome (IBS) may contribute to diarrhea and visceral hypersensitivity. We investigated whether mucosal SERT is modulated by gut microbiota via a mast cell-prostaglandin E2 (PGE2) pathway. METHODS C57Bl/6 mice received intracolonic infusion of fecal supernatant (FS) from healthy controls or patients with diarrhea-predominant irritable bowel syndrome (IBS-D). The role of mast cells was studied in mast cell-deficient mice. Colonic organoids and/or mast cells were used for in vitro experiments. SERT expression was measured by quantitative polymerase chain reaction and Western blot. Visceromotor responses to colorectal distension and colonic transit were assessed. RESULTS Intracolonic infusion of IBS-D FS in mice caused an increase in mucosal 5-HT compared with healthy control FS, accompanied by ∼50% reduction in SERT expression. Mast cell stabilizers, cyclooxygenase-2 inhibitors, and PGE2 receptor antagonist prevented SERT downregulation. Intracolonic infusion of IBS-D FS failed to reduce SERT expression in mast cell-deficient (W/Wv) mice. This response was restored by mast cell reconstitution. The downregulation of SERT expression evoked by IBS FS was prevented by lipopolysaccharide (LPS) antagonist LPS from Rhodobacter sphaeroides and a bacterial trypsin inhibitor. In vitro LPS treatment caused increased cyclooxygenase-2 expression and PGE2 release from cultured mouse mast cells. Intracolonic infusion of IBS-D FS in mice reduced colonic transit, increased fecal water content, and increased visceromotor responses to colorectal distension. Ondansetron prevented these changes. CONCLUSIONS Fecal LPS acting in concert with trypsin in patients with IBS-D stimulates mucosal mast cells to release PGE2, which downregulates mucosal SERT, resulting in increased mucosal 5-HT. This may contribute to diarrhea and abdominal pain common in IBS.
Collapse
Affiliation(s)
| | | | | | - Chung Owyang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
35
|
Dedifferentiation of Human Cardiac Myofibroblasts Is Independent of Activation of COX-2/PGE 2 Pathway. Int J Mol Sci 2022; 23:ijms23063023. [PMID: 35328443 PMCID: PMC8952377 DOI: 10.3390/ijms23063023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/24/2021] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
The differentiation of cardiac fibroblasts to myofibroblasts is considered to be a critical step in activation and progression of cardiac fibrosis in heart disease. TGF-β is one of the key cytokines that promotes transition of fibroblasts to myofibroblasts. Dedifferentiation of formed myofibroblasts or reversal of formed myofibroblasts to fibroblasts remains incompletely understood. Prostaglandin E2 (PGE2) has been shown to dedifferentiate human lung myofibroblasts. The role of activation of the COX-2/PGE2 pathway in dedifferentiation of cardiac myofibroblasts remains unknown. Here, we show that phorbol 12-myristate 13-acetate (PMA) but not PGE2 induces dedifferentiation of de novo adult human cardiac myofibroblasts stimulated by TGF-β1 from human cardiac fibroblasts as evidenced by reduced expression of α-smooth muscle actin (α-SMA). PMA remarkably increased endogenous levels of PGE2 in human cardiac myofibroblasts. Pretreatment of myofibroblasts with NS-398, a selective COX-2 inhibitor, and PF-04418948, a selective PGE2 receptor type 2 (EP2) antagonist, had no effect on expression of α-SMA nor abolished the dedifferentiation induced by PMA. Our results indicated that endogenous and exogenous PGE2 has no effects on dedifferentiation of cardiac myofibroblasts. PMA-induced dedifferentiation of cardiac myofibroblast is independent of activation of COX-2 and PGE2 pathway. The mechanism in PMA-induced reversal of cardiac myofibroblasts needs to be explored further.
Collapse
|
36
|
Rovati G, Contursi A, Bruno A, Tacconelli S, Ballerini P, Patrignani P. Antiplatelet Agents Affecting GPCR Signaling Implicated in Tumor Metastasis. Cells 2022; 11:725. [PMID: 35203374 PMCID: PMC8870128 DOI: 10.3390/cells11040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Metastasis requires that cancer cells survive in the circulation, colonize distant organs, and grow. Despite platelets being central contributors to hemostasis, leukocyte trafficking during inflammation, and vessel stability maintenance, there is significant evidence to support their essential role in supporting metastasis through different mechanisms. In addition to their direct interaction with cancer cells, thus forming heteroaggregates such as leukocytes, platelets release molecules that are necessary to promote a disseminating phenotype in cancer cells via the induction of an epithelial-mesenchymal-like transition. Therefore, agents that affect platelet activation can potentially restrain these prometastatic mechanisms. Although the primary adhesion of platelets to cancer cells is mainly independent of G protein-mediated signaling, soluble mediators released from platelets, such as ADP, thromboxane (TX) A2, and prostaglandin (PG) E2, act through G protein-coupled receptors (GPCRs) to cause the activation of more additional platelets and drive metastatic signaling pathways in cancer cells. In this review, we examine the contribution of the GPCRs of platelets and cancer cells in the development of cancer metastasis. Finally, the possible use of agents affecting GPCR signaling pathways as antimetastatic agents is discussed.
Collapse
Affiliation(s)
- Gianenrico Rovati
- Department of Pharmaceutical Sciences, University of Milan, 20122 Milan, Italy;
| | - Annalisa Contursi
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Annalisa Bruno
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Stefania Tacconelli
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Paola Patrignani
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| |
Collapse
|
37
|
Sharma M, Singh V, Sharma R, Koul A, McCarthy ET, Savin VJ, Joshi T, Srivastava T. Glomerular Biomechanical Stress and Lipid Mediators during Cellular Changes Leading to Chronic Kidney Disease. Biomedicines 2022; 10:407. [PMID: 35203616 PMCID: PMC8962328 DOI: 10.3390/biomedicines10020407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperfiltration is an important underlying cause of glomerular dysfunction associated with several systemic and intrinsic glomerular conditions leading to chronic kidney disease (CKD). These include obesity, diabetes, hypertension, focal segmental glomerulosclerosis (FSGS), congenital abnormalities and reduced renal mass (low nephron number). Hyperfiltration-associated biomechanical forces directly impact the cell membrane, generating tensile and fluid flow shear stresses in multiple segments of the nephron. Ongoing research suggests these biomechanical forces as the initial mediators of hyperfiltration-induced deterioration of podocyte structure and function leading to their detachment and irreplaceable loss from the glomerular filtration barrier. Membrane lipid-derived polyunsaturated fatty acids (PUFA) and their metabolites are potent transducers of biomechanical stress from the cell surface to intracellular compartments. Omega-6 and ω-3 long-chain PUFA from membrane phospholipids generate many versatile and autacoid oxylipins that modulate pro-inflammatory as well as anti-inflammatory autocrine and paracrine signaling. We advance the idea that lipid signaling molecules, related enzymes, metabolites and receptors are not just mediators of cellular stress but also potential targets for developing novel interventions. With the growing emphasis on lifestyle changes for wellness, dietary fatty acids are potential adjunct-therapeutics to minimize/treat hyperfiltration-induced progressive glomerular damage and CKD.
Collapse
Affiliation(s)
- Mukut Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Vikas Singh
- Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Arnav Koul
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Ellen T. McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Virginia J. Savin
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65201, USA;
| | - Tarak Srivastava
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri, Kansas City, MO 64108, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| |
Collapse
|
38
|
Amaradhi R, Mohammed S, Banik A, Franklin R, Dingledine R, Ganesh T. Second-Generation Prostaglandin Receptor EP2 Antagonist, TG8-260, with High Potency, Selectivity, Oral Bioavailability, and Anti-Inflammatory Properties. ACS Pharmacol Transl Sci 2022; 5:118-133. [PMID: 35187419 PMCID: PMC8844972 DOI: 10.1021/acsptsci.1c00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 02/08/2023]
Abstract
EP2, a G-protein-coupled prostaglandin-E2 receptor, has emerged as a seminal biological target for drug discovery. EP2 receptor activation is typically proinflammatory; therefore, the development of EP2 antagonists to mitigate the severity and disease pathology in a variety of inflammation-driven central nervous system and peripheral disorders would be a novel strategy. We have recently developed a second-generation EP2 antagonist TG8-260 and shown that it reduces hippocampal neuroinflammation and gliosis after pilocarpine-induced status epilepticus in rats. Here, we present details of synthesis, lead optimization on earlier leads that resulted in TG8-260, potency and selectivity evaluations using cAMP-driven time-resolved fluorescence resonance energy-transfer (TR-FRET) assays and [H3]-PGE2-binding assays, absorption, distribution, metabolism, and excretion (ADME), and pharmacokinetics. TG8-260 (2f) showed Schild K B = 13.2 nM (3.6-fold more potent than the previous lead TG8-69 (1c)) and 500-fold selectivity to EP2 against other prostanoid receptors. Pharmacokinetic data indicated that TG8-260 has a plasma half-life of 2.14 h (PO) and excellent oral bioavailability (77.3%). Extensive ADME tests indicated that TG8-260 is a potent inhibitor of CYP450 enzymes. Further, we show that TG8-260 displays antagonistic activity on the induction of EP2 receptor-mediated inflammatory gene expression in microglia BV2-hEP2 cells; therefore, it can serve as a tool for investigating anti-inflammatory pathways in peripheral inflammatory disease animal models.
Collapse
Affiliation(s)
- Radhika Amaradhi
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, 1510 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Shabber Mohammed
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, 1510 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Avijit Banik
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, 1510 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Ronald Franklin
- Franklin
ADME Consult, LLC, Boulder, Colorado 80303, United States
| | - Raymond Dingledine
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, 1510 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Thota Ganesh
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, 1510 Clifton Road NE, Atlanta, Georgia 30322, United States,. Tel.: 404-727-7393. Fax: 404-727-0365
| |
Collapse
|
39
|
Sanchez-Trincado JL, Pelaez-Prestel HF, Lafuente EM, Reche PA. Human Oral Epithelial Cells Suppress T Cell Function via Prostaglandin E2 Secretion. Front Immunol 2022; 12:740613. [PMID: 35126344 PMCID: PMC8807503 DOI: 10.3389/fimmu.2021.740613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The oral mucosa is constantly exposed to a plethora of stimuli including food antigens, commensal microbiota and pathogens, requiring distinct immune responses. We previously reported that human oral epithelial cells (OECs) suppress immune responses to bacteria, using H413 and TR146 OEC lines and primary OECs in co-culture with dendritic cells (DCs) and T cells (OEC-conditioned cells). OECs reduced DCs expression of CD80/CD86 and IL-12/TNFα release and impaired T cell activation. Here, we further evaluated the immunosuppression by these OECs and investigated the underlying mechanisms. OEC-conditioned DCs did not induce CD4 T cell polarization towards Treg, judging by the absence of FoxP3 expression. OECs also repressed T-bet/IFNγ expression in CD4 and CD8 T cells activated by DCs or anti-CD3/CD28 antibodies. This inhibition depended on OEC:T cell ratio and IFNγ repression occurred at the transcriptional level. Time-lapse experiments showed that OECs inhibited early steps of T cell activation, consistent with OECs inability to suppress T cells stimulated with PMA/ionomycin. Blocking CD40/CD40L, CD58/CD2 and PD-L1/PD-1 interactions with specific antibodies did not disrupt T cell suppression by OECs. However, preventing prostaglandin E2 (PGE2) synthesis or blocking PGE2 binding to the cognate EP2/EP4 receptors, restored IFNγ and TNFα production in OEC-conditioned T cells. Finally, treating OECs with poly(I:C), which simulates viral infections, limited T cell suppression. Overall, these results point to an inherent ability of OECs to suppress immune responses, which can nonetheless be eluded when OECs are under direct assault.
Collapse
|
40
|
Huang Q, Liu X, Guo SW. Changing prostaglandin E2 (PGE 2) signaling during lesional progression and exacerbation of endometriosis by inhibition of PGE 2 receptor EP2 and EP4. Reprod Med Biol 2021; 21:e12426. [PMID: 34938150 PMCID: PMC8660993 DOI: 10.1002/rmb2.12426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose We investigated the change, if any, in prostaglandin E2 (PGE2) signaling in endometriotic lesions of different developmental stages in mouse. In addition, we evaluated the effect of treatment of mice with induced deep endometriosis (DE) with inhibitors of PGE2 receptor subtypes EP2 and EP4 and metformin. Methods Three mouse experimentations were conducted. In Experiment 1, female Balb/C mice were induced with endometriosis or DE and were serially sacrificed after induction. Experiments 2 and 3 evaluated the effect of treatment with EP2 and EP4 inhibitors and metformin, respectively, in mice with induced DE. Immunohistochemistry analysis of COX-2, EP2, and EP4, along with the extent of lesional fibrosis, was evaluated. Results The immunostaining of COX-2, EP2, and EP4 turned from activation to a stall as lesions progressed. Treatment with EP2/EP4 inhibitors in DE mice exacerbated endometriosis-associated hyperalgesia and promoted fibrogenesis in lesions even though it suppressed the PGE2 signaling dose-dependently. In contrast, treatment with metformin resulted in increased PGE2 signaling, concomitant with improved hyperalgesia, and retarded lesional fibrogenesis. Conclusions The PGE2 signaling diminishes as endometriotic lesions progress. Treatment with EP2/EP4 inhibitors in DE mice exacerbates endometriosis, but metformin appears to be promising seemingly through the induction of the PGE2 signaling.
Collapse
Affiliation(s)
- Qingqing Huang
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Third Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xishi Liu
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases Fudan University Shanghai China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases Fudan University Shanghai China
| |
Collapse
|
41
|
Nagano T, Tsuda N, Fujimura K, Ikezawa Y, Higashi Y, Kimura SH. Prostaglandin E 2 increases the expression of cyclooxygenase-2 in cultured rat microglia. J Neuroimmunol 2021; 361:577724. [PMID: 34610503 DOI: 10.1016/j.jneuroim.2021.577724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022]
Abstract
Prostaglandin E2 (PGE2) plays pivotal roles in controlling microglial activation with the EP2 receptor, a PGE2 receptor subtype. Activated microglia are often reported to increase cyclooxygenase (COX)-2 expression, followed by PGE2 production, but it is unclear whether extracellular PGE2 is involved in microglial PGE2 synthesis. In the present study, we report that PGE2 increases COX-2 protein in microglia. In a culture system, PGE2 at 10-6 M for 3 h increased COX-2 and microsomal PGE synthase (mPGES)-1 mRNA levels, and reduced mPGES-2, but did not affect COX-1 or cytosolic PGE synthase (cPGES) in microglia. PGE2 at 10-6 M for 3 h also increased the COX-2 protein level, but did not affect COX-1, mPGES-1, mPGES-2, or cPGES. An EP2 agonist, ONO-AE1-259-01, also increased COX-2 and mPGES-1 mRNA levels, and reduced mPGES-2, but did not affect COX-1 or cPGES, whereas an EP1 agonist, ONO-DI-004, an EP3 agonist, ONO-AE-248, and an EP4 agonist, ONO-AE1-329, had no effect. Similar to PGE2, ONO-AE1-259-01 increased the COX-2 protein level, but did not affect COX-1, mPGES-1, mPGES-2, or cPGES. In addition, the effects of PGE2 were inhibited by an EP2 antagonist, PF-04418948, but not by an EP1 antagonist, ONO-8713, an EP3 antagonist, ONO-AE3-240, or an EP4 antagonist, ONO-AE3-208, at 10-6 M. On the other hand, lipopolysaccharide (LPS) increased PGE2 production, but the LPS-induced PGE2 production was not affected by ONO-8713, PF-04418948, ONO-AE3-240, or ONO-AE3-208. These results indicate that PGE2 increases COX-2 protein in microglia through the EP2 receptor supporting the idea that extracellular PGE2 has a triggering aspect for microglial activation.
Collapse
Affiliation(s)
- Takayuki Nagano
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| | - Naohiko Tsuda
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kenichi Fujimura
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yuji Ikezawa
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yuki Higashi
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shinya H Kimura
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
42
|
Dai L, Wang Q, Lv X, Gao F, Chen Z, Shen Y. Elevated β-secretase 1 expression mediates CD4 + T cell dysfunction via PGE2 signalling in Alzheimer's disease. Brain Behav Immun 2021; 98:337-348. [PMID: 34500034 DOI: 10.1016/j.bbi.2021.08.234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 01/06/2023] Open
Abstract
Circulating CD4+ T cells are dysfunctional in Alzheimer's disease (AD), however, the underlying molecular mechanisms are not clear. In this study, we demonstrate that CD4+ T cells from AD patients and 5xFAD transgenic mice exhibit elevated levels of β-secretase 1 (BACE1). Overexpression of BACE1 in CD4+ T cells potentiated CD4+ T-cell activation and T-cell-dependent immune responses. Mechanistically, BACE1 modulates prostaglandin E2 (PGE2) synthetase-microsomal prostaglandin E synthase 2 (mPGES2)-to promote mPGES2 maturation and PGE2 production, which increases T-cell receptor (TCR) signalling. Moreover, administration of peripheral PGE2 signalling antagonists partially ameliorates CD4+ T cell overactivation and AD pathology in 5xFAD mice. Overall, our results reveal a potential role for BACE1 in mediating CD4+ T-cell dysfunction in AD.
Collapse
Affiliation(s)
- Linbin Dai
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Centre, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Qiong Wang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Centre, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Xinyi Lv
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Centre, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Centre, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Zuolong Chen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Centre, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Centre, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China; Centre for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
43
|
Sluter MN, Hou R, Li L, Yasmen N, Yu Y, Liu J, Jiang J. EP2 Antagonists (2011-2021): A Decade's Journey from Discovery to Therapeutics. J Med Chem 2021; 64:11816-11836. [PMID: 34352171 PMCID: PMC8455147 DOI: 10.1021/acs.jmedchem.1c00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the wake of health disasters associated with the chronic use of cyclooxygenase-2 (COX-2) inhibitor drugs, it has been widely proposed that modulation of downstream prostanoid synthases or receptors might provide more specificity than simply shutting down the entire COX cascade for anti-inflammatory benefits. The pathogenic actions of COX-2 have long been thought attributable to the prostaglandin E2 (PGE2) signaling through its Gαs-coupled EP2 receptor subtype; however, the truly selective EP2 antagonists did not emerge until 2011. These small molecules provide game-changing tools to better understand the EP2 receptor in inflammation-associated conditions. Their applications in preclinical models also reshape our knowledge of PGE2/EP2 signaling as a node of inflammation in health and disease. As we celebrate the 10-year anniversary of this breakthrough, the exploration of their potential as drug candidates for next-generation anti-inflammatory therapies has just begun. The first decade of EP2 antagonists passes, while their future looks brighter than ever.
Collapse
Affiliation(s)
- Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lexiao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiawang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
44
|
Saito S, Ozawa H, Imanishi Y, Sekimizu M, Watanabe Y, Ito F, Ikari Y, Nakahara N, Kameyama K, Ogawa K. Cyclooxygenase-2 expression is associated with chemoresistance through cancer stemness property in hypopharyngeal carcinoma. Oncol Lett 2021; 22:533. [PMID: 34084214 PMCID: PMC8161457 DOI: 10.3892/ol.2021.12794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/20/2021] [Indexed: 01/05/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is one of the two isoforms of COX, an enzyme that catalyzes the conversion of arachidonic acid to prostaglandins. COX-2 is associated with the progression in various types of cancer, and its expression has been associated with a poor prognosis in head and neck squamous cell carcinoma (HNSCC). Furthermore, COX-2 expression has been associated with resistance to anticancer drugs. However, the precise mechanism of COX-2 for chemoresistance in HNSCC has not been fully elucidated. The present study aimed to investigate the effect of COX-2 on cancer stem cell (CSC) property and to reveal its effect on chemoresistance using in vitro and clinicopathological assays in HNSCC cells and tissues. The current study analyzed the immunohistochemical expression levels of COX-2 and clinicopathological factors using matched samples of pretreatment biopsy and surgical specimens from patients with hypopharyngeal carcinoma who underwent tumor resection with preoperative chemotherapy, including docetaxel. Additionally, the chemoresistance to docetaxel with or without a COX-2 inhibitor (celecoxib) was examined in HNSCC cell lines by MTS assays. To evaluate the association of COX-2 expression with stemness property, the expression levels of CSC-associated genes after exposure to celecoxib were assessed by reverse transcription-quantitative PCR. A sphere formation assay was also performed using ultra-low attachment dishes and microscopic imaging. The immunohistochemical analysis of biopsy specimens revealed a negative association between COX-2 expression in biopsy specimens and the pathological effect of induction chemotherapy in surgical specimens. The cell survival rate under exposure to docetaxel was decreased by the addition of celecoxib. COX-2 inhibition led to downregulation of CSC-associated gene expression and sphere formation. The present findings suggested that COX-2 expression may be associated with chemoresistance through the cancer stemness property, and inhibition of COX-2 may enhance chemo-sensitivity in HNSCC. Therefore, COX-2 may be an attractive target for the treatment of HNSCC.
Collapse
Affiliation(s)
- Shin Saito
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yorihisa Imanishi
- Department of Otorhinolaryngology-Head and Neck Surgery, International University of Health and Welfare, Narita, Chiba 286-8582, Japan
| | - Mariko Sekimizu
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshihiro Watanabe
- Department of Otorhinolaryngology-Head and Neck Surgery, International University of Health and Welfare, Narita, Chiba 286-8582, Japan
| | - Fumihiro Ito
- Department of Otorhinolaryngology-Head and Neck Surgery, National Hospital Organization Tokyo Medical Center, Tokyo 152-8902, Japan
| | - Yuichi Ikari
- Department of Otorhinolaryngology-Head and Neck Surgery, Kawasaki Municipal Kawasaki Hospital, Kawasaki, Kanagawa 210-0013, Japan
| | - Nana Nakahara
- Department of Otorhinolaryngology-Head and Neck Surgery, Saitama City Hospital, Saitama 336-8522, Japan
| | - Kaori Kameyama
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
45
|
Prihandoko R, Kaur D, Wiegman CH, Alvarez-Curto E, Donovan C, Chachi L, Ulven T, Tyas MR, Euston E, Dong Z, Alharbi AGM, Kim RY, Lowe JG, Hansbro PM, Chung KF, Brightling CE, Milligan G, Tobin AB. Pathophysiological regulation of lung function by the free fatty acid receptor FFA4. Sci Transl Med 2021; 12:12/557/eaaw9009. [PMID: 32817367 DOI: 10.1126/scitranslmed.aaw9009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 10/22/2019] [Accepted: 07/28/2020] [Indexed: 12/31/2022]
Abstract
Increased prevalence of inflammatory airway diseases including asthma and chronic obstructive pulmonary disease (COPD) together with inadequate disease control by current frontline treatments means that there is a need to define therapeutic targets for these conditions. Here, we investigate a member of the G protein-coupled receptor family, FFA4, that responds to free circulating fatty acids including dietary omega-3 fatty acids found in fish oils. We show that FFA4, although usually associated with metabolic responses linked with food intake, is expressed in the lung where it is coupled to Gq/11 signaling. Activation of FFA4 by drug-like agonists produced relaxation of murine airway smooth muscle mediated at least in part by the release of the prostaglandin E2 (PGE2) that subsequently acts on EP2 prostanoid receptors. In normal mice, activation of FFA4 resulted in a decrease in lung resistance. In acute and chronic ozone models of pollution-mediated inflammation and house dust mite and cigarette smoke-induced inflammatory disease, FFA4 agonists acted to reduce airway resistance, a response that was absent in mice lacking expression of FFA4. The expression profile of FFA4 in human lung was similar to that observed in mice, and the response to FFA4/FFA1 agonists similarly mediated human airway smooth muscle relaxation ex vivo. Our study provides evidence that pharmacological targeting of lung FFA4, and possibly combined activation of FFA4 and FFA1, has in vivo efficacy and might have therapeutic value in the treatment of bronchoconstriction associated with inflammatory airway diseases such as asthma and COPD.
Collapse
Affiliation(s)
- Rudi Prihandoko
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK
| | - Davinder Kaur
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, LE3 9QP, Leicester, UK
| | - Coen H Wiegman
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Elisa Alvarez-Curto
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton, NSW 2305 and The University of Newcastle, Callaghan, NSW 2208, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, and University of Technology Sydney, Faculty of Science, Ultimo NSW 2007, Australia
| | - Latifa Chachi
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, LE3 9QP, Leicester, UK
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Martha R Tyas
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK
| | - Eloise Euston
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK
| | - Zhaoyang Dong
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK
| | - Abdulrahman Ghali M Alharbi
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK.,Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 42353, Saudi Arabia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton, NSW 2305 and The University of Newcastle, Callaghan, NSW 2208, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, and University of Technology Sydney, Faculty of Science, Ultimo NSW 2007, Australia
| | - Jack G Lowe
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton, NSW 2305 and The University of Newcastle, Callaghan, NSW 2208, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, and University of Technology Sydney, Faculty of Science, Ultimo NSW 2007, Australia
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Christopher E Brightling
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, LE3 9QP, Leicester, UK.
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK.
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK.
| |
Collapse
|
46
|
Ouabain Enhances Gap Junctional Intercellular Communication by Inducing Paracrine Secretion of Prostaglandin E2. Int J Mol Sci 2021; 22:ijms22126244. [PMID: 34200582 PMCID: PMC8230150 DOI: 10.3390/ijms22126244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022] Open
Abstract
Ouabain is a cardiac glycoside that has been described as a hormone, with interesting effects on epithelial physiology. We have shown previously that ouabain induces gap junctional intercellular communication (GJIC) in wild, sensitive cells (MDCK-S), but not in cells that have become insensitive (MDCK-I) by modifying their Na+-K+-ATPase. We have also demonstrated that prostaglandin E2 (PGE2) is able to induce increased GJIC by a mechanism other than ouabain, that does not depend on Na+-K+-ATPase. In this work we show, by dye transfer assays, that when MDCK-S and MDCK-I are randomly mixed, to form monolayers, the latter stablish GJIC, because of stimulation by a compound released to the extracellular media, by MDCK-S cells, after treatment with ouabain, as evidenced by the fact that monolayers of only MDCK-I cells, treated with a conditioned medium (CM) that is obtained after incubation of MDCK-S monolayers with ouabain, significantly increase their GJIC. The further finding that either (1) pre-treatment with COX-2 inhibitors or (2) addition to CM of antagonists of EP2 receptor abolish CM's ability to induce GJIC in MDCK-I monolayers indicate that PGE2 is the GJIC-inducing compound. Therefore, these results indicate that, in addition to direct stimulation, mediated by Na+-K+-ATPase, ouabain enhances GJIC indirectly through the paracrine production of PGE2.
Collapse
|
47
|
Biringer RG. A Review of Prostanoid Receptors: Expression, Characterization, Regulation, and Mechanism of Action. J Cell Commun Signal 2021; 15:155-184. [PMID: 32970276 PMCID: PMC7991060 DOI: 10.1007/s12079-020-00585-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Prostaglandin signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and resolution thereof to the perception of pain to cell survival. Disruption of normal prostanoid signaling is implicated in numerous disease states. Prostaglandin signaling is facilitated by G-protein-coupled, prostanoid-specific receptors and the array of associated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of prostanoid receptors with particular emphasis on human isoforms.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL, 34211, USA.
| |
Collapse
|
48
|
Betrie AH, Brock JA, Harraz OF, Bush AI, He GW, Nelson MT, Angus JA, Wright CE, Ayton S. Zinc drives vasorelaxation by acting in sensory nerves, endothelium and smooth muscle. Nat Commun 2021; 12:3296. [PMID: 34075043 PMCID: PMC8169932 DOI: 10.1038/s41467-021-23198-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
Zinc, an abundant transition metal, serves as a signalling molecule in several biological systems. Zinc transporters are genetically associated with cardiovascular diseases but the function of zinc in vascular tone regulation is unknown. We found that elevating cytoplasmic zinc using ionophores relaxed rat and human isolated blood vessels and caused hyperpolarization of smooth muscle membrane. Furthermore, zinc ionophores lowered blood pressure in anaesthetized rats and increased blood flow without affecting heart rate. Conversely, intracellular zinc chelation induced contraction of selected vessels from rats and humans and depolarized vascular smooth muscle membrane potential. We demonstrate three mechanisms for zinc-induced vasorelaxation: (1) activation of transient receptor potential ankyrin 1 to increase calcitonin gene-related peptide signalling from perivascular sensory nerves; (2) enhancement of cyclooxygenase-sensitive vasodilatory prostanoid signalling in the endothelium; and (3) inhibition of voltage-gated calcium channels in the smooth muscle. These data introduce zinc as a new target for vascular therapeutics.
Collapse
Affiliation(s)
- Ashenafi H Betrie
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
- Cardiovascular Therapeutics Unit, Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences; The Institute of Cardiovascular Diseases, Tianjin University, Tianjin; Center for Drug Development, Wannan Medical College, Wuhu, Anhui, China
| | - James A Brock
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Guo-Wei He
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences; The Institute of Cardiovascular Diseases, Tianjin University, Tianjin; Center for Drug Development, Wannan Medical College, Wuhu, Anhui, China
| | - Mark T Nelson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - James A Angus
- Cardiovascular Therapeutics Unit, Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
| | - Christine E Wright
- Cardiovascular Therapeutics Unit, Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
49
|
Ogazon del Toro A, Jimenez L, Serrano Rubi M, Castillo A, Hinojosa L, Martinez Rendon J, Cereijido M, Ponce A. Prostaglandin E2 Enhances Gap Junctional Intercellular Communication in Clonal Epithelial Cells. Int J Mol Sci 2021; 22:5813. [PMID: 34071686 PMCID: PMC8198183 DOI: 10.3390/ijms22115813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Prostaglandins are a group of lipids that produce diverse physiological and pathological effects. Among them, prostaglandin E2 (PGE2) stands out for the wide variety of functions in which it participates. To date, there is little information about the influence of PGE2 on gap junctional intercellular communication (GJIC) in any type of tissue, including epithelia. In this work, we set out to determine whether PGE2 influences GJIC in epithelial cells (MDCK cells). To this end, we performed dye (Lucifer yellow) transfer assays to compare GJIC of MDCK cells treated with PGE2 and untreated cells. Our results indicated that (1) PGE2 induces a statistically significant increase in GJIC from 100 nM and from 15 min after its addition to the medium, (2) such effect does not require the synthesis of new mRNA or proteins subunits but rather trafficking of subunits already synthesized, and (3) such effect is mediated by the E2 receptor, which, in turn, triggers a signaling pathway that includes activation of adenylyl cyclase and protein kinase A (PKA). These results widen the knowledge regarding modulation of gap junctional intercellular communication by prostaglandins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX, México C.P. 07360, Mexico; (A.O.d.T.); (L.J.); (M.S.R.); (A.C.); (L.H.); (J.M.R.); (M.C.)
| |
Collapse
|
50
|
Sandhu HK, Neuman JC, Schaid MD, Davis SE, Connors KM, Challa R, Guthery E, Fenske RJ, Patibandla C, Breyer RM, Kimple ME. Rat prostaglandin EP3 receptor is highly promiscuous and is the sole prostanoid receptor family member that regulates INS-1 (832/3) cell glucose-stimulated insulin secretion. Pharmacol Res Perspect 2021; 9:e00736. [PMID: 33694300 PMCID: PMC7947324 DOI: 10.1002/prp2.736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic elevations in fatty acid metabolites termed prostaglandins can be found in circulation and in pancreatic islets from mice or humans with diabetes and have been suggested as contributing to the β‐cell dysfunction of the disease. Two‐series prostaglandins bind to a family of G‐protein‐coupled receptors, each with different biochemical and pharmacological properties. Prostaglandin E receptor (EP) subfamily agonists and antagonists have been shown to influence β‐cell insulin secretion, replication, and/or survival. Here, we define EP3 as the sole prostanoid receptor family member expressed in a rat β‐cell‐derived line that regulates glucose‐stimulated insulin secretion. Several other agonists classically understood as selective for other prostanoid receptor family members also reduce glucose‐stimulated insulin secretion, but these effects are only observed at relatively high concentrations, and, using a well‐characterized EP3‐specific antagonist, are mediated solely by cross‐reactivity with rat EP3. Our findings confirm the critical role of EP3 in regulating β‐cell function, but are also of general interest, as many agonists supposedly selective for other prostanoid receptor family members are also full and efficacious agonists of EP3. Therefore, care must be taken when interpreting experimental results from cells or cell lines that also express EP3.
Collapse
Affiliation(s)
- Harpreet K Sandhu
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Joshua C Neuman
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael D Schaid
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah E Davis
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelsey M Connors
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Romith Challa
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Erin Guthery
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rachel J Fenske
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Chinmai Patibandla
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Richard M Breyer
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michelle E Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdepartmental Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|