1
|
Wei K, Chen T, Fang H, Shen X, Tang Z, Zhao J. Mitochondrial DNA release via the mitochondrial permeability transition pore activates the cGAS-STING pathway, exacerbating inflammation in acute Kawasaki disease. Cell Commun Signal 2024; 22:328. [PMID: 38872145 PMCID: PMC11177463 DOI: 10.1186/s12964-024-01677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Kawasaki disease (KD) is an immune vasculitis of unknown origin, characterized by transient inflammation. The activation of the cGAS-STING pathway, triggered by mitochondrial DNA (mtDNA) release, has been implicated in the onset of KD. However, its specific role in the progression of inflammation during KD's acute phase remains unclear. METHODS We measured mtDNA and 2'3'-cGAMP expression in KD patient serum using RT-qPCR and ELISA. A murine model of KD was induced by injecting Lactobacillus casei cell wall extract (LCWE), after which cGAS-STING pathway activation and inflammatory markers were assessed via immunohistochemistry, western blot, and RT-qPCR. Human umbilical vein endothelial cells (HUVECs) were treated with KD serum and modulators of the cGAS-STING pathway for comparative analysis. Mitochondrial function was evaluated using Mitosox staining, mPTP opening was quantified by fluorescence microscopy, and mitochondrial membrane potential (MMP) was determined with JC-1 staining. RESULTS KD patient serum exhibited increased mtDNA and 2'3'-cGAMP expression, with elevated levels of pathway-related proteins and inflammatory markers observed in both in vivo and in vitro models. TEM confirmed mitochondrial damage, and further studies demonstrated that inhibition of mPTP opening reduced mtDNA release, abrogated cGAS-STING pathway activation, and mitigated inflammation. CONCLUSION These findings indicate that mtDNA released through the mPTP is a critical activator of the cGAS-STING pathway, contributing significantly to KD-associated inflammation. Targeting mtDNA release or the cGAS-STING pathway may offer novel therapeutic approaches for KD management.
Collapse
Affiliation(s)
- Ke Wei
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
- Research Institute of Comparative Medicine, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Tao Chen
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Hao Fang
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xianjuan Shen
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Jianmei Zhao
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
2
|
Cohen MV, Downey JM. Initial Despair and Current Hope of Identifying a Clinically Useful Treatment of Myocardial Reperfusion Injury: Insights Derived from Studies of Platelet P2Y 12 Antagonists and Interference with Inflammation and NLRP3 Assembly. Int J Mol Sci 2024; 25:5477. [PMID: 38791515 PMCID: PMC11122283 DOI: 10.3390/ijms25105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Myocardial necrosis following the successful reperfusion of a coronary artery occluded by thrombus in a patient presenting with ST-elevation myocardial infarction (STEMI) continues to be a serious problem, despite the multiple attempts to attenuate the necrosis with agents that have shown promise in pre-clinical investigations. Possible reasons include confounding clinical risk factors, the delayed application of protective agents, poorly designed pre-clinical investigations, the possible effects of routinely administered agents that might unknowingly already have protected the myocardium or that might have blocked protection, and the biological differences of the myocardium in humans and experimental animals. A better understanding of the pathobiology of myocardial infarction is needed to stem this reperfusion injury. P2Y12 receptor antagonists minimize platelet aggregation and are currently part of the standard treatment to prevent thrombus formation and propagation in STEMI protocols. Serendipitously, these P2Y12 antagonists also dramatically attenuate reperfusion injury in experimental animals and are presumed to provide a similar protection in STEMI patients. However, additional protective agents are needed to further diminish reperfusion injury. It is possible to achieve additive protection if the added intervention protects by a mechanism different from that of P2Y12 antagonists. Inflammation is now recognized to be a critical factor in the complex intracellular response to ischemia and reperfusion that leads to tissue necrosis. Interference with cardiomyocyte inflammasome assembly and activation has shown great promise in attenuating reperfusion injury in pre-clinical animal models. And the blockade of the executioner protease caspase-1, indeed, supplements the protection already seen after the administration of P2Y12 antagonists. Importantly, protective interventions must be applied in the first minutes of reperfusion, if protection is to be achieved. The promise of such a combination of protective strategies provides hope that the successful attenuation of reperfusion injury is attainable.
Collapse
Affiliation(s)
- Michael V. Cohen
- The Departments of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA;
- The Departments of Medicine, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA
| | - James M. Downey
- The Departments of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA;
| |
Collapse
|
3
|
Chen Z, Tan X, Jin T, Wang Y, Dai L, Shen G, Zhang C, Qu L, Long L, Shen C, Cao X, Wang J, Li H, Yue X, Shi C. Pharmaceutical Manipulation of Mitochondrial F0F1-ATP Synthase Enables Imaging and Protection of Myocardial Ischemia/Reperfusion Injury Through Stress-induced Selective Enrichment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307880. [PMID: 38093654 PMCID: PMC10916578 DOI: 10.1002/advs.202307880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/26/2023] [Indexed: 02/17/2024]
Abstract
To rescue ischemic myocardium from progressing to myocardial infarction, timely identification of the infarct size and reperfusion is crucial. However, fast and accurate identification, as well as the targeted protection of injured cardiomyocytes following ischemia/reperfusion (I/R) injury, remain significantly challenging. Here, a near infrared heptamethine dye IR-780 is shown that has the potential to quickly monitor the area at risk following I/R injury by selectively entering the cardiomyocytes of the at-risk heart tissues. Preconditioning with IR-780 or timely IR-780 administration before reperfusion significantly protects the heart from ischemia and oxidative stress-induced cell death, myocardial remodeling, and heart failure in both rat and pig models. Furthermore, IR-780 can directly bind to F0F1-ATP synthase of cardiomyocytes, rapidly decrease the mitochondrial membrane potential, and subsequently slow down the mitochondrial energy metabolism, which induces the mitochondria into a "quiescent state" and results in mitochondrial permeability transition pore inhibition by preventing mitochondrial calcium overload. Collectively, the findings show the feasibility of IR-780-based imaging and protection strategy for I/R injury in a preclinical context and indicate that moderate mitochondrial function depression is a mode of action that can be targeted in the development of cardioprotective reagents.
Collapse
Affiliation(s)
- Zelin Chen
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Xu Tan
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Taotao Jin
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Yu Wang
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Linyong Dai
- Department of UrologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqing401120China
| | - Gufang Shen
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Can Zhang
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Langfan Qu
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Lei Long
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Chongxing Shen
- Department of UrologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqing401120China
| | - Xiaohui Cao
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Jianwu Wang
- Department of UrologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqing401120China
| | - Huijuan Li
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| | - Xiaofeng Yue
- Department of UrologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqing401120China
| | - Chunmeng Shi
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| |
Collapse
|
4
|
Harris AC, Sun J, Jacobs KM. Concussive Head Trauma Deranges Axon Initial Segment Function in Axotomized and Intact Layer 5 Pyramidal Neurons. J Neurotrauma 2024; 41:244-270. [PMID: 37650832 PMCID: PMC11074420 DOI: 10.1089/neu.2022.0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The axon initial segment (AIS) is a critical locus of control of action potential (AP) generation and neuronal information synthesis. Concussive traumatic brain injury gives rise to diffuse axotomy, and the majority of neocortical axonal injury arises at the AIS. Consequently, concussive traumatic brain injury might profoundly disrupt the functional specialization of this region. To investigate this hypothesis, one and two days after mild central fluid percussion injury in Thy1-YFP-H mice, we recorded high-resolution APs from axotomized and adjacent intact layer 5 pyramidal neurons and applied a second derivative (2o) analysis to measure the AIS- and soma-regional contributions to the AP upstroke. All layer 5 pyramidal neurons recorded from sham animals manifested two stark 2o peaks separated by a negative intervening slope. In contrast, within injured mice, we discovered a subset of axotomized layer 5 pyramidal neurons in which the AIS-regional 2o peak was abolished, a functional perturbation associated with diminished excitability, axonal sprouting and distention of the AIS as assessed by staining for ankyrin-G. Our analysis revealed an additional subpopulation of both axotomized and intact layer 5 pyramidal neurons that manifested a melding together of the AIS- and soma-regional 2o peaks, suggesting a more subtle aberration of sodium channel function and/or translocation of the AIS initiation zone closer to the soma. When these experiments were repeated in animals in which cyclophilin-D was knocked out, these effects were ameliorated, suggesting that trauma-induced AIS functional perturbation is associated with mitochondrial calcium dysregulation.
Collapse
Affiliation(s)
- Alan C. Harris
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jianli Sun
- Delaware Center for Neuroscience Research, Delaware State University, Dover, Delaware, USA
| | - Kimberle M. Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
5
|
Chen S, Zhou A, Yan W. HMGB1 Promotes Accelerated Fracture Healing in Traumatic Brain Injury through PINK1/Parkin-Mediated Mitochondrial Autophagy. Biol Pharm Bull 2024; 47:2143-2153. [PMID: 39710383 DOI: 10.1248/bpb.b24-00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
We aimed to investigate the mechanism of high mobility group box 1 (HMGB1) in the accelerated fracture healing process during Traumatic brain injury (TBI). The lateral ventricles of mice in the TBI model group were injected with adenovirus-packaged short hairpin RNA (shRNA)-HMGB1 or overexpressing (ov)-HMGB1 vector. We found HMGB1 levels were higher in bone tissue at the fracture end of TBI combined with fracture model mice. Compared with the TBI combined with fracture model mice, the mice in the ov-HMGB1 group healed faster and the expression levels of mitochondrial autophagy-related proteins were higher. Compared to the ov-HMGB1 group, mice in the ov-HMGB1 + autophagy inhibitor cyclosporin A (CsA) and ov-HMGB1 + shRNA-phosphatase and tensin homolog-induced kinase 1 (PINK1) groups showed slower healing and lower expression of mitochondrial autophagy-associated proteins. The expression of osteocalcin (OCN), SOX9, and bone morphogenetic protein (BMP)-2 in bone tissue at the fracture end of the ov-HMGB1 + shRNA-PINK1 group was lower than that in the ov-HMGB1 group. The mRNA expression levels of chondrogenic differentiation markers in bone tissue at the fracture end of the ov-HMGB1 + shRNA-PINK1 group were lower than those in the ov-HMGB1 group. Fracture healing was accelerated during TBI, especially when HMGB1 was highly expressed, and HMGB1 promote accelerated fracture healing during TBI through PINK1/Parkin-mediated mitochondrial autophagy.
Collapse
Affiliation(s)
- Shiyang Chen
- Department of Orthopaedics, Chongqing People's Hospital (Currently known as Chongqing General Hospital, Chongqing University)
| | - Aiguo Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University
| | - Wenlong Yan
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University
| |
Collapse
|
6
|
Ravingerova T, Adameova A, Lonek L, Farkasova V, Ferko M, Andelova N, Kura B, Slezak J, Galatou E, Lazou A, Zohdi V, Dhalla NS. Is Intrinsic Cardioprotection a Laboratory Phenomenon or a Clinically Relevant Tool to Salvage the Failing Heart? Int J Mol Sci 2023; 24:16497. [PMID: 38003687 PMCID: PMC10671596 DOI: 10.3390/ijms242216497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases, especially ischemic heart disease, as a leading cause of heart failure (HF) and mortality, will not reduce over the coming decades despite the progress in pharmacotherapy, interventional cardiology, and surgery. Although patients surviving acute myocardial infarction live longer, alteration of heart function will later lead to HF. Its rising incidence represents a danger, especially among the elderly, with data showing more unfavorable results among females than among males. Experiments revealed an infarct-sparing effect of ischemic "preconditioning" (IPC) as the most robust form of innate cardioprotection based on the heart's adaptation to moderate stress, increasing its resistance to severe insults. However, translation to clinical practice is limited by technical requirements and limited time. Novel forms of adaptive interventions, such as "remote" IPC, have already been applied in patients, albeit with different effectiveness. Cardiac ischemic tolerance can also be increased by other noninvasive approaches, such as adaptation to hypoxia- or exercise-induced preconditioning. Although their molecular mechanisms are not yet fully understood, some noninvasive modalities appear to be promising novel strategies for fighting HF through targeting its numerous mechanisms. In this review, we will discuss the molecular mechanisms of heart injury and repair, as well as interventions that have potential to be used in the treatment of patients.
Collapse
Affiliation(s)
- Tanya Ravingerova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Adriana Adameova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 10 Odbojárov St., 832 32 Bratislava, Slovakia
| | - Lubomir Lonek
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Miroslav Ferko
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Natalia Andelova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Jan Slezak
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Eleftheria Galatou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
- Department of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
| | - Vladislava Zohdi
- Department of Anatomy, Faculty of Medicine, Comenius University in Bratislava, 24 Špitalska, 813 72 Bratislava, Slovakia;
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC 3800, Australia
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada;
| |
Collapse
|
7
|
Deng RM, Zhou J. The role of PI3K/AKT signaling pathway in myocardial ischemia-reperfusion injury. Int Immunopharmacol 2023; 123:110714. [PMID: 37523969 DOI: 10.1016/j.intimp.2023.110714] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Myocardial ischemia has a high incidence and mortality rate, and reperfusion is currently the standard intervention. However, reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MIRI). There are currently no effective clinical treatments for MIRI. The PI3K/Akt signaling pathway is involved in cardiovascular health and disease and plays an important role in reducing myocardial infarct size and restoring cardiac function after MIRI. Activation of the PI3K/Akt pathway provides myocardial protection through synergistic upregulation of antioxidant, anti-inflammatory, and autophagy activities and inhibition of mitochondrial dysfunction and cardiomyocyte apoptosis. Many studies have shown that PI3K/Akt has a significant protective effect against MIRI. Here, we reviewed the molecular regulation of PI3K/Akt in MIRI and summarized the molecular mechanism by which PI3K/Akt affects MIRI, the effects of ischemic preconditioning and ischemic postconditioning, and the role of related drugs or activators targeting PI3K/Akt in MIRI, providing novel insights for the formulation of myocardial protection strategies. This review provides evidence of the role of PI3K/Akt activation in MIRI and supports its use as a therapeutic target.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Juan Zhou
- Department of thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
8
|
Chapa-Dubocq XR, Rodríguez-Graciani KM, Escobales N, Javadov S. Mitochondrial Volume Regulation and Swelling Mechanisms in Cardiomyocytes. Antioxidants (Basel) 2023; 12:1517. [PMID: 37627512 PMCID: PMC10451443 DOI: 10.3390/antiox12081517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrion, known as the "powerhouse" of the cell, regulates ion homeostasis, redox state, cell proliferation and differentiation, and lipid synthesis. The inner mitochondrial membrane (IMM) controls mitochondrial metabolism and function. It possesses high levels of proteins that account for ~70% of the membrane mass and are involved in the electron transport chain, oxidative phosphorylation, energy transfer, and ion transport, among others. The mitochondrial matrix volume plays a crucial role in IMM remodeling. Several ion transport mechanisms, particularly K+ and Ca2+, regulate matrix volume. Small increases in matrix volume through IMM alterations can activate mitochondrial respiration, whereas excessive swelling can impair the IMM topology and initiates mitochondria-mediated cell death. The opening of mitochondrial permeability transition pores, the well-characterized phenomenon with unknown molecular identity, in low- and high-conductance modes are involved in physiological and pathological increases of matrix volume. Despite extensive studies, the precise mechanisms underlying changes in matrix volume and IMM structural remodeling in response to energy and oxidative stressors remain unknown. This review summarizes and discusses previous studies on the mechanisms involved in regulating mitochondrial matrix volume, IMM remodeling, and the crosstalk between these processes.
Collapse
Affiliation(s)
| | | | | | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (N.E.)
| |
Collapse
|
9
|
de Ridder I, Kerkhofs M, Lemos FO, Loncke J, Bultynck G, Parys JB. The ER-mitochondria interface, where Ca 2+ and cell death meet. Cell Calcium 2023; 112:102743. [PMID: 37126911 DOI: 10.1016/j.ceca.2023.102743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria contact sites are crucial to allow Ca2+ flux between them and a plethora of proteins participate in tethering both organelles together. Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a pivotal role at such contact sites, participating in both ER-mitochondria tethering and as Ca2+-transport system that delivers Ca2+ from the ER towards mitochondria. At the ER-mitochondria contact sites, the IP3Rs function as a multi-protein complex linked to the voltage-dependent anion channel 1 (VDAC1) in the outer mitochondrial membrane, via the chaperone glucose-regulated protein 75 (GRP75). This IP3R-GRP75-VDAC1 complex supports the efficient transfer of Ca2+ from the ER into the mitochondrial intermembrane space, from which the Ca2+ ions can reach the mitochondrial matrix through the mitochondrial calcium uniporter. Under physiological conditions, basal Ca2+ oscillations deliver Ca2+ to the mitochondrial matrix, thereby stimulating mitochondrial oxidative metabolism. However, when mitochondrial Ca2+ overload occurs, the increase in [Ca2+] will induce the opening of the mitochondrial permeability transition pore, thereby provoking cell death. The IP3R-GRP75-VDAC1 complex forms a hub for several other proteins that stabilize the complex and/or regulate the complex's ability to channel Ca2+ into the mitochondria. These proteins and their mechanisms of action are discussed in the present review with special attention for their role in pathological conditions and potential implication for therapeutic strategies.
Collapse
Affiliation(s)
- Ian de Ridder
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Martijn Kerkhofs
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Fernanda O Lemos
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Jens Loncke
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium.
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium.
| |
Collapse
|
10
|
Hedya S, Charlton A, Leitch AC, Aljehani FA, Pinker B, Wright MC, Abdelghany TM. The methylimidazolium ionic liquid M8OI is a substrate for OCT1 and p-glycoprotein-1 in rat. Toxicol In Vitro 2023; 88:105550. [PMID: 36603777 DOI: 10.1016/j.tiv.2022.105550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
The methylimidazolium ionic liquid M8OI was recently found to be present in both the environment and man. In this study, M8OI disposition and toxicity were examined in an established rat progenitor-hepatocyte model. The progenitor B-13 cell was approx. 13 fold more sensitive to the toxic effects of M8OI than the hepatocyte B-13/H cell. However, this difference in sensitivity was not associated with a difference in metabolic capacities. M8OI toxicity was significantly decreased in a dose-dependent manner by co-addition of the OCT1 (SLC22A1) inhibitor clonidine, but not by OCT2 or OCT3 inhibitors in B-13 cells. M8OI toxicity was also dose-dependently increased by the co-addition of p-glycoprotein-1 (ABCB1B, multi drug resistant protein 1 (MDR1)) substrates/inhibitors. Excretion of B-13-loaded fluorophore Hoechst 33342 was also inhibited by the p-glycoproteins substrate cyclosporin A and by M8OI in a dose-dependent manner. Comparing levels of OCT and p-glycoprotein transcripts and proteins in B-13 and B-13/H cells suggest that the lower sensitivity to M8OI in B-13/H cells is predominantly associated with their higher expression of p-glycoprotein-1. These data together therefore suggest that a determinant in M8OI toxicity in rats is the expression and activity of the p-glycoprotein-1 transporter.
Collapse
Affiliation(s)
- Shireen Hedya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt; Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Alex Charlton
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 8QB, United Kingdom
| | - Alistair C Leitch
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Fahad A Aljehani
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom; Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Benjamin Pinker
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Matthew C Wright
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom.
| | - Tarek M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt; Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom; School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE24HH, United Kingdom
| |
Collapse
|
11
|
Jahandiez V, Pillot B, Bidaux G, Bolbos R, Stevic N, Wiart M, Ovize M, Argaud L, Cour M. Reassessment of mitochondrial cyclophilin D as a target for improving cardiac arrest outcomes in the era of therapeutic hypothermia. Transl Res 2022; 249:37-48. [PMID: 35691543 DOI: 10.1016/j.trsl.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 10/31/2022]
Abstract
Uncertainty exists regarding whether cyclophilin D (CypD), a mitochondrial matrix protein that plays a key role in ischemia-reperfusion injury, can be a pharmacological target for improving outcomes after cardiac arrest (CA), especially when therapeutic hypothermia is used. Using CypD knockout mice (CypD-/-), we investigated the effects of loss of CypD on short-term and medium-term outcomes after CA. CypD-/- mice or their wild-type (WT) littermates underwent either 5 minute CA followed by resuscitation with and/or without hypothermia at 33°C-34°C (targeted temperature reached within minutes after resuscitation), or a sham procedure. Brain and cardiac injury were assessed using echocardiography, neurological scores, MRI and biomarkers. Seven day survival was compared using Kaplan-Meier estimates. The rate of restoration of spontaneous circulation was significantly higher in CypD-/- mice (with shorter cardiac massage duration) than in WT mice (P < 0.05). Loss of CypD significantly attenuated CA-induced release of troponin and S100ß protein, and limited myocardial dysfunction at 150 minutes after CA. Loss of CypD combined with hypothermia led to the best neurological and MRI scores at 24 hours and highest survival rates at 7 days compared to other groups (P < 0.05). In animals successfully resuscitated, loss of CypD had no benefits on day 7 survival while hypothermia was highly protective. Pharmacological inhibition of CypD with cyclosporine A combined with hypothermia provided similar day 7 survival than loss of CypD combined with hypothermia. CypD is a viable target to improve success of cardiopulmonary resuscitation but its inhibition is unlikely to improve long-term outcomes, unless therapeutic hypothermia is associated.
Collapse
Affiliation(s)
- Vincent Jahandiez
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive, Réanimation, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, Lyon, France; INSERM UMR 1060, CarMeN, IRIS, Lyon, France
| | | | | | - Radu Bolbos
- CNRS-UMS3453, CERMEP, Imagerie du Vivant, Département ANIMAGE, Bron, France
| | - Neven Stevic
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive, Réanimation, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, Lyon, France; INSERM UMR 1060, CarMeN, IRIS, Lyon, France
| | | | | | - Laurent Argaud
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive, Réanimation, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, Lyon, France; INSERM UMR 1060, CarMeN, IRIS, Lyon, France
| | - Martin Cour
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive, Réanimation, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, Lyon, France; INSERM UMR 1060, CarMeN, IRIS, Lyon, France.
| |
Collapse
|
12
|
Elezaby A, Dexheimer R, Sallam K. Cardiovascular effects of immunosuppression agents. Front Cardiovasc Med 2022; 9:981838. [PMID: 36211586 PMCID: PMC9534182 DOI: 10.3389/fcvm.2022.981838] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Immunosuppressive medications are widely used to treat patients with neoplasms, autoimmune conditions and solid organ transplants. Key drug classes, namely calcineurin inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and purine synthesis inhibitors, have direct effects on the structure and function of the heart and vascular system. In the heart, immunosuppressive agents modulate cardiac hypertrophy, mitochondrial function, and arrhythmia risk, while in vasculature, they influence vessel remodeling, circulating lipids, and blood pressure. The aim of this review is to present the preclinical and clinical literature examining the cardiovascular effects of immunosuppressive agents, with a specific focus on cyclosporine, tacrolimus, sirolimus, everolimus, mycophenolate, and azathioprine.
Collapse
Affiliation(s)
- Aly Elezaby
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Ryan Dexheimer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Karim Sallam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Karim Sallam
| |
Collapse
|
13
|
CHEN SP, HU TH, ZHOU Q, CHEN TP, YIN D, HE H, HUANG Q, HE M. Luteoloside protects the vascular endothelium against iron overload injury via the ROS/ADMA/DDAH II/eNOS/NO pathway. Chin J Nat Med 2022; 20:22-32. [DOI: 10.1016/s1875-5364(21)60110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/03/2022]
|
14
|
Wan M, Huang L, Liu J, Liu F, Chen G, Ni H, Xiong G, Liao X, Lu H, Xiao J, Tao Q, Cao Z. Cyclosporine A Induces Cardiac Developmental Toxicity in Zebrafish by Up-Regulation of Wnt Signaling and Oxidative Stress. Front Pharmacol 2021; 12:747991. [PMID: 34867350 PMCID: PMC8633111 DOI: 10.3389/fphar.2021.747991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/22/2021] [Indexed: 12/03/2022] Open
Abstract
Due to the widely application of Cyclosporine A (CsA) as an immunosuppressant in clinic, it is necessary to study its potential toxicity. Therefore, we used zebrafish as a model animal to evaluate the toxicity of CsA on embryonic development. Exposure of zebrafish embryos to CsA at concentrations of 5 mg/L, 10 mg/L, and 15 mg/L from 12 hpf to 72 hpf resulted in abnormal embryonic development, including cardiac malformation, pericardial edema, decreased heart rate, decreased blood flow velocity, deposition at yolk sac, shortened body length, and increased distance between venous sinus and arterial bulb (SV-BA). The expression of genes related to cardiac development was disordered, and the apoptotic genes were up-regulated. Oxidative stress level was up-regulated and accumulated in pericardium in a dose-dependent manner. Astaxanthin (ATX) treatment could significantly alleviate zebrafish heart defects. CsA induced up-regulation of Wnt signaling in zebrafish, and IWR-1, an inhibitor of Wnt signaling pathway, could effectively rescue the heart defects induced by CsA. Together, our study indicated that CsA induced cardiac developmental toxicity in zebrafish larvae through up-regulating oxidative stress and Wnt signaling, contributing to a more comprehensive evaluation of the safety of the drug.
Collapse
Affiliation(s)
- Mengqi Wan
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Ling Huang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Jieping Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Guilan Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Huiwen Ni
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Qiang Tao
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| |
Collapse
|
15
|
Liu C, Ma N, Guo Z, Zhang Y, Zhang J, Yang F, Su X, Zhang G, Xiong X, Xing Y. Relevance of mitochondrial oxidative stress to arrhythmias: Innovative concepts to target treatments. Pharmacol Res 2021; 175:106027. [PMID: 34890774 DOI: 10.1016/j.phrs.2021.106027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
Cardiac arrhythmia occurs frequently worldwide, and in severe cases can be fatal. Mitochondria are the power plants of cardiomyocytes. In recent studies, mitochondria under certain stimuli produced excessive reactive oxygen species (ROS), which affect the normal function of cardiomyocytes through ion channels and related proteins. Mitochondrial oxidative stress (MOS) plays a key role in diseases with multifactorial etiopathogenesis, such as arrhythmia; MOS can lead to arrhythmias such as atrial fibrillation and ventricular tachycardia. This review discusses the mechanisms of arrhythmias caused by MOS, particularly of ROS produced by mitochondria. MOS can cause arrhythmias by affecting the activities of Ca2+-related proteins, the mitochondrial permeability transition pore protein, connexin 43, hyperpolarization-activated cyclic nucleotide-gated potassium channel 4, and ion channels. Based on these mechanisms, we discuss possible new treatments for arrhythmia. Targeted treatments focusing on mitochondria may reduce the progression of arrhythmias, as well as the occurrence of severe arrhythmias, and may be effective for personalized disease prevention.
Collapse
Affiliation(s)
- Can Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ning Ma
- Dezhou Second People's Hospital, Dezhou 253000, China
| | - Ziru Guo
- Xingtai People's Hospital, Xingtai 054001, China
| | - Yijun Zhang
- The First Affiliated Hospital, Hebei North University, Zhangjiakou 075000, China
| | - Jianzhen Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoxia Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xingjiang Xiong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
16
|
Sylenko AV, Shlykov SG, Babich LG, Chunikhin ОY, Kosterin SO. Regulation of ionized calcium concentration in mitochondria matrix in the absence of exogenous Са(2+). UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Role of Oxidative Stress in Reperfusion following Myocardial Ischemia and Its Treatments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6614009. [PMID: 34055195 PMCID: PMC8149218 DOI: 10.1155/2021/6614009] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/21/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Myocardial ischemia is a disease with high morbidity and mortality, for which reperfusion is currently the standard intervention. However, the reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MI/RI). Oxidative stress is one of the most important pathological mechanisms in reperfusion injury, which causes apoptosis, autophagy, inflammation, and some other damage in cardiomyocytes through multiple pathways, thus causing irreversible cardiomyocyte damage and cardiac dysfunction. This article reviews the pathological mechanisms of oxidative stress involved in reperfusion injury and the interventions for different pathways and targets, so as to form systematic treatments for oxidative stress-induced myocardial reperfusion injury and make up for the lack of monotherapy.
Collapse
|
18
|
Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K + channels and their implications for disease mechanisms. Pharmacol Ther 2021; 227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The field of mitochondrial ion channels underwent a rapid development during the last decade, thanks to the molecular identification of some of the nuclear-encoded organelle channels and to advances in strategies allowing specific pharmacological targeting of these proteins. Thereby, genetic tools and specific drugs aided definition of the relevance of several mitochondrial channels both in physiological as well as pathological conditions. Unfortunately, in the case of mitochondrial K+ channels, efforts of genetic manipulation provided only limited results, due to their dual localization to mitochondria and to plasma membrane in most cases. Although the impact of mitochondrial K+ channels on human diseases is still far from being genuinely understood, pre-clinical data strongly argue for their substantial role in the context of several pathologies, including cardiovascular and neurodegenerative diseases as well as cancer. Importantly, these channels are druggable targets, and their in-depth investigation could thus pave the way to the development of innovative small molecules with huge therapeutic potential. In the present review we summarize the available experimental evidence that mechanistically link mitochondrial potassium channels to the above pathologies and underline the possibility of exploiting them for therapy.
Collapse
Affiliation(s)
| | - Luigi Leanza
- Department of Biology, University of Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Italy
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Italy.
| |
Collapse
|
19
|
Mitochondria and Pharmacologic Cardiac Conditioning-At the Heart of Ischemic Injury. Int J Mol Sci 2021; 22:ijms22063224. [PMID: 33810024 PMCID: PMC8004818 DOI: 10.3390/ijms22063224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Pharmacologic cardiac conditioning increases the intrinsic resistance against ischemia and reperfusion (I/R) injury. The cardiac conditioning response is mediated via complex signaling networks. These networks have been an intriguing research field for decades, largely advancing our knowledge on cardiac signaling beyond the conditioning response. The centerpieces of this system are the mitochondria, a dynamic organelle, almost acting as a cell within the cell. Mitochondria comprise a plethora of functions at the crossroads of cell death or survival. These include the maintenance of aerobic ATP production and redox signaling, closely entwined with mitochondrial calcium handling and mitochondrial permeability transition. Moreover, mitochondria host pathways of programmed cell death impact the inflammatory response and contain their own mechanisms of fusion and fission (division). These act as quality control mechanisms in cellular ageing, release of pro-apoptotic factors and mitophagy. Furthermore, recently identified mechanisms of mitochondrial regeneration can increase the capacity for oxidative phosphorylation, decrease oxidative stress and might help to beneficially impact myocardial remodeling, as well as invigorate the heart against subsequent ischemic insults. The current review highlights different pathways and unresolved questions surrounding mitochondria in myocardial I/R injury and pharmacological cardiac conditioning.
Collapse
|
20
|
Hassan Adel SM, Sheikhi MA, Dorra M. An investigation of the effectiveness of oral cyclosporine on perioperative myocardial injury (PMI) in patients who undergo the surgical procedure of coronary artery bypass graft (CABG): A Randomized Controlled Clinical Trial. J Family Med Prim Care 2021; 10:675-680. [PMID: 34041060 PMCID: PMC8138422 DOI: 10.4103/jfmpc.jfmpc_1598_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/29/2020] [Accepted: 12/26/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Routine clinical strategies for the prevention of myocardial infarction (MI) during the surgical procedure of CABG include cross-clamp fibrillation and cardioplegia have failed to decrease the risk of perioperative myocardial injury (PMI). Cyclosporine-A (CsA) might be able to prevent mitochondrial dysfunction and PMI. Methods: In the present clinical trial, patients were divided into two groups (Case receive 2.5 mg/kg CsA and Control receive a placebo) randomly. Moreover, patients were controlled by placebo through a double-blind, single-center trial 4-12 h before anesthesia. Perioperative blood tests include bilirubin, complete blood count, the amount of hemoglobin in whole blood, liver transaminases, and glomerular filtration rate (GFR). Blood samples were taken before surgery and at 24, 48, and 72 h after surgery and serum Troponin-I and CK-MB levels were determined in all blood samples using ELISA. Results: There were no significant differences between the two groups in the results of routine pre-operative blood results, intraoperative variables, and baseline characteristics (P > 0.05). There are significant correlations between cross clamp time and cTnI and CKMB levels in patients taking CsA. In patients with both diabetes and hypertension, postsurgical cTnI and CKMB levels decrease significantly in CsA compared to placebo group on 24, 48, and 72 h (P < 0.05). Moreover, patients with old MI, both postsurgical cTnI and CKMB levels decrease significantly in CsA compared to placebo group on 24 h and 48 h (P < 0.05). Conclusions: In patients with a long cross-clamping period, using an oral CSA single dose before conducting CABG surgery, the risk of PMI could be decreased. Also, oral CsA has protective effect for CABG in diabetic patients with hypertension.
Collapse
Affiliation(s)
| | - Mohammad Ali Sheikhi
- Department of Cardiac Surgery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marziyeh Dorra
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
21
|
Pathania YS. Cyclosporine: hope for severe COVID-19? BMJ Support Palliat Care 2021:bmjspcare-2020-002681. [PMID: 33455917 DOI: 10.1136/bmjspcare-2020-002681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/06/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Yashdeep Singh Pathania
- Department of Dermatology, Venereology and Leprology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
22
|
Gendron A, Lan Linh Tran N, Laloy J, Brusini R, Rachet A, Gobeaux F, Nicolas V, Chaminade P, Abreu S, Desmaële D, Varna M. New Nanoparticle Formulation for Cyclosporin A: In Vitro Assessment. Pharmaceutics 2021; 13:pharmaceutics13010091. [PMID: 33445646 PMCID: PMC7828155 DOI: 10.3390/pharmaceutics13010091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/02/2023] Open
Abstract
Cyclosporin A (CsA) is a molecule with well-known immunosuppressive properties. As it also acts on the opening of mitochondrial permeability transition pore (mPTP), CsA has been evaluated for ischemic heart diseases (IHD). However, its distribution throughout the body and its physicochemical characteristics strongly limit the use of CsA for intravenous administration. In this context, nanoparticles (NPs) have emerged as an opportunity to circumvent the above-mentioned limitations. We have developed in our laboratory an innovative nanoformulation based on the covalent bond between squalene (Sq) and cyclosporin A to avoid burst release phenomena and increase drug loading. After a thorough characterization of the bioconjugate, we proceeded with a nanoprecipitation in aqueous medium in order to obtain SqCsA NPs of well-defined size. The SqCsA NPs were further characterized using dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryoTEM), and high-performance liquid chromatography (HPLC), and their cytotoxicity was evaluated. As the goal is to employ them for IHD, we evaluated the cardioprotective capacity on two cardiac cell lines. A strong cardioprotective effect was observed on cardiomyoblasts subjected to experimental hypoxia/reoxygenation. Further research is needed in order to understand the mechanisms of action of SqCsA NPs in cells. This new formulation of CsA could pave the way for possible medical application.
Collapse
Affiliation(s)
- Amandine Gendron
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
| | - Natalie Lan Linh Tran
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| | - Julie Laloy
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| | - Romain Brusini
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
| | - Aurélie Rachet
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Frédéric Gobeaux
- CEA, CNRS, NIMBE, Université Paris-Saclay, CEA-Saclay, 91191 Gif sur Yvette, France;
| | - Valérie Nicolas
- Ingénierie et Plateformes au Service de l’Innovation (IPSIT), UMS IPSIT Université Paris-Saclay—US 31 INSERM—UMS 3679 CNRS, Plate-forme d’imagerie cellulaire MIPSIT, 92290 Châtenay-Malabry, France;
| | - Pierre Chaminade
- Lipides: Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (P.C.); (S.A.)
| | - Sonia Abreu
- Lipides: Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (P.C.); (S.A.)
| | - Didier Desmaële
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
| | - Mariana Varna
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
- Correspondence: ; Tel.: +33-0146835721
| |
Collapse
|
23
|
de Almeida SMV, Santos Soares JC, Dos Santos KL, Alves JEF, Ribeiro AG, Jacob ÍTT, da Silva Ferreira CJ, Dos Santos JC, de Oliveira JF, de Carvalho Junior LB, de Lima MDCA. COVID-19 therapy: What weapons do we bring into battle? Bioorg Med Chem 2020; 28:115757. [PMID: 32992245 PMCID: PMC7481143 DOI: 10.1016/j.bmc.2020.115757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Urgent treatments, in any modality, to fight SARS-CoV-2 infections are desired by society in general, by health professionals, by Estate-leaders and, mainly, by the scientific community, because one thing is certain amidst the numerous uncertainties regarding COVID-19: knowledge is the means to discover or to produce an effective treatment against this global disease. Scientists from several areas in the world are still committed to this mission, as shown by the accelerated scientific production in the first half of 2020 with over 25,000 published articles related to the new coronavirus. Three great lines of publications related to COVID-19 were identified for building this article: The first refers to knowledge production concerning the virus and pathophysiology of COVID-19; the second regards efforts to produce vaccines against SARS-CoV-2 at a speed without precedent in the history of science; the third comprehends the attempts to find a marketed drug that can be used to treat COVID-19 by drug repurposing. In this review, the drugs that have been repurposed so far are grouped according to their chemical class. Their structures will be presented to provide better understanding of their structural similarities and possible correlations with mechanisms of actions. This can help identifying anti-SARS-CoV-2 promising therapeutic agents.
Collapse
Affiliation(s)
- Sinara Mônica Vitalino de Almeida
- Laboratório de Biologia Molecular, Universidade de Pernambuco, Garanhuns, PE, Brazil; Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - José Cleberson Santos Soares
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Keriolaine Lima Dos Santos
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Amélia Galdino Ribeiro
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Íris Trindade Tenório Jacob
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Jamerson Ferreira de Oliveira
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Maria do Carmo Alves de Lima
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
24
|
Forini F, Canale P, Nicolini G, Iervasi G. Mitochondria-Targeted Drug Delivery in Cardiovascular Disease: A Long Road to Nano-Cardio Medicine. Pharmaceutics 2020; 12:E1122. [PMID: 33233847 PMCID: PMC7699942 DOI: 10.3390/pharmaceutics12111122] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) represents a major threat for human health. The available preventive and treatment interventions are insufficient to revert the underlying pathological processes, which underscores the urgency of alternative approaches. Mitochondria dysfunction plays a key role in the etiopathogenesis of CVD and is regarded as an intriguing target for the development of innovative therapies. Oxidative stress, mitochondrial permeability transition pore opening, and excessive fission are major noxious pathways amenable to drug therapy. Thanks to the advancements of nanotechnology research, several mitochondria-targeted drug delivery systems (DDS) have been optimized with improved pharmacokinetic and biocompatibility, and lower toxicity and antigenicity for application in the cardiovascular field. This review summarizes the recent progress and remaining obstacles in targeting mitochondria as a novel therapeutic option for CVD. The advantages of nanoparticle delivery over un-targeted strategies are also discussed.
Collapse
Affiliation(s)
- Francesca Forini
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| | - Paola Canale
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
- Department of Biology, University of Pisa, Via Volta 4 bis, 56126 Pisa, Italy
| | - Giuseppina Nicolini
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| | - Giorgio Iervasi
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| |
Collapse
|
25
|
Molyvdas A, Matalon S. Cyclosporine: an old weapon in the fight against coronaviruses. Eur Respir J 2020; 56:2002484. [PMID: 32732332 PMCID: PMC7397953 DOI: 10.1183/13993003.02484-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Coronaviruses have been known to cause respiratory infections in humans and intestinal infections in other mammals. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is the seventh virus of the Coronaviridae family that is known to infect humans. Until 2002, four Coronaviruses infecting humans were described (HCoV-NL63, HCoV-229E, HCoV-OC43 and HKU1). These viruses caused only mild respiratory diseases in immunocompetent hosts. Since 2002, three highly pathogenic viruses from this family have been identified. SARS-CoV (also referred to as SARS-CoV-1) is an enveloped, positive-sense, single-stranded RNA virus which infects the epithelial cells within the lungs. The virus enters the host cell by binding to angiotensin-converting enzyme 2 (ACE2) [1]. It infects humans, bats and palm civets [1]. Cyclosporine inhibits the replication of coronaviruses and could potentially suppress the cytokine storm associated with coronavirus infections https://bit.ly/39x2PSt
Collapse
Affiliation(s)
- Adam Molyvdas
- Depts of Anesthesiology and Perioperative Medicine, Division of Translational and Molecular Biomedicine and Pulmonary Injury and Repair Center, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - Sadis Matalon
- Depts of Anesthesiology and Perioperative Medicine, Division of Translational and Molecular Biomedicine and Pulmonary Injury and Repair Center, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| |
Collapse
|
26
|
He B, Li QY, Wu YY, Ruan JL, Teng XM, Li DJ, Tang CL. Cyclosporin A protects JEG-3 cells against oxidative stress-induced apoptosis by inhibiting the p53 and JNK/p38 signaling pathways. Reprod Biol Endocrinol 2020; 18:100. [PMID: 33046085 PMCID: PMC7549196 DOI: 10.1186/s12958-020-00658-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Trophoblast cells are required for the establishment of pregnancy and fetal development. Apoptosis is an essential feature for trophoblast invasion. Uncontrolled trophoblast apoptosis is related to some complicate pregnancies. Oxidative stress (OS) is an important inducer of trophoblast apoptosis. Cyclosporin A (CsA) has been shown to promote the activity of trophoblast cells and reduce OS-induced oxidative injury. We investigated the role and mechanism of CsA in oxidative stress-induced trophoblast cell apoptosis. METHODS JEG-3 cells were cocultured with H2O2 and CsA. Cell viability and morphology were measured by MTT assay and DAPI staining. Cell apoptosis was tested with annexin V/PI staining. The expression of Bcl-2-associated X protein (Bax), B-cell lymphoma/leukemia-2 (Bcl-2), cleaved poly (ADP-ribose) polymerase (PARP) and pro-caspase-3 was assayed by western blotting. The protein expression and phosphorylation of p53 and mitogen-activated protein kinase (MAPK) kinases (JNK, ERK1/2 and p38) were examined by western blotting. RESULTS CsA increased the viability, alleviated morphological injury and reduced cell apoptosis of the H2O2-treated JEG-3 cells. CsA also attenuated the activation of p53, decreased the expression of Bax and cleavage of PARP, and increased the expression of Bcl-2 and pro-caspase-3 in the JEG-3 treated with H2O2. Furthermore, CsA reduced the activation of JNK and P38 but had no significant effect on the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in the H2O2-treated JEG-3 cells. Promoting the activation of JNK and p38 impaired the protective effect of CsA on OS-induced trophoblast apoptosis. CONCLUSIONS These results suggested that CsA protected trophoblast cells from OS-induced apoptosis via the inhibition of the p53 and JNK/p38 signaling pathways.
Collapse
Affiliation(s)
- Bin He
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Qi Yue Li
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Yuan Yuan Wu
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Jing Ling Ruan
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Xiao Ming Teng
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Da Jin Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200011, China
| | - Chuan Ling Tang
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| |
Collapse
|
27
|
Natarajan GK, Glait L, Mishra J, Stowe DF, Camara AKS, Kwok WM. Total Matrix Ca 2+ Modulates Ca 2+ Efflux via the Ca 2+/H + Exchanger in Cardiac Mitochondria. Front Physiol 2020; 11:510600. [PMID: 33041851 PMCID: PMC7526510 DOI: 10.3389/fphys.2020.510600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial Ca2+ handling is accomplished by balancing Ca2+ uptake, primarily via the Ru360-sensitive mitochondrial calcium uniporter (MCU), Ca2+ buffering in the matrix and Ca2+ efflux mainly via Ca2+ ion exchangers, such as the Na+/Ca2+ exchanger (NCLX) and the Ca2+/H+ exchanger (CHE). The mechanism of CHE in cardiac mitochondria is not well-understood and its contribution to matrix Ca2+ regulation is thought to be negligible, despite higher expression of the putative CHE protein, LETM1, compared to hepatic mitochondria. In this study, Ca2+ efflux via the CHE was investigated in isolated rat cardiac mitochondria and permeabilized H9c2 cells. Mitochondria were exposed to (a) increasing matrix Ca2+ load via repetitive application of a finite CaCl2 bolus to the external medium and (b) change in the pH gradient across the inner mitochondrial membrane (IMM). Ca2+ efflux at different matrix Ca2+ loads was revealed by inhibiting Ca2+ uptake or reuptake with Ru360 after increasing number of CaCl2 boluses. In Na+-free experimental buffer and with Ca2+ uptake inhibited, the rate of Ca2+ efflux and steady-state free matrix Ca2+ [mCa2+]ss increased as the number of administered CaCl2 boluses increased. ADP and cyclosporine A (CsA), which are known to increase Ca2+ buffering while maintaining a constant [mCa2+]ss, decreased the rate of Ca2+ efflux via the CHE, with a significantly greater decrease in the presence of ADP. ADP also increased Ca2+ buffering rate and decreased [mCa2+]ss. A change in the pH of the external medium to a more acidic value from 7.15 to 6.8∼6.9 caused a twofold increase in the Ca2+ efflux rate, while an alkaline change in pH from 7.15 to 7.4∼7.5 did not change the Ca2+ efflux rate. In addition, CHE activation was associated with membrane depolarization. Targeted transient knockdown of LETM1 in permeabilized H9c2 cells modulated Ca2+ efflux. The results indicate that Ca2+ efflux via the CHE in cardiac mitochondria is modulated by acidic buffer pH and by total matrix Ca2+. A mechanism is proposed whereby activation of CHE is sensitive to changes in both the matrix Ca2+ buffering system and the matrix free Ca2+ concentration.
Collapse
Affiliation(s)
- Gayathri K Natarajan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lyall Glait
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jyotsna Mishra
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States.,Research Service, Veteran Affairs Medical Center, Milwaukee, WI, United States
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
28
|
Hausenloy DJ, Schulz R, Girao H, Kwak BR, De Stefani D, Rizzuto R, Bernardi P, Di Lisa F. Mitochondrial ion channels as targets for cardioprotection. J Cell Mol Med 2020; 24:7102-7114. [PMID: 32490600 PMCID: PMC7339171 DOI: 10.1111/jcmm.15341] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/31/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction (AMI) and the heart failure (HF) that often result remain the leading causes of death and disability worldwide. As such, new therapeutic targets need to be discovered to protect the myocardium against acute ischaemia/reperfusion (I/R) injury in order to reduce myocardial infarct (MI) size, preserve left ventricular function and prevent the onset of HF. Mitochondrial dysfunction during acute I/R injury is a critical determinant of cell death following AMI, and therefore, ion channels in the inner mitochondrial membrane, which are known to influence cell death and survival, provide potential therapeutic targets for cardioprotection. In this article, we review the role of mitochondrial ion channels, which are known to modulate susceptibility to acute myocardial I/R injury, and we explore their potential roles as therapeutic targets for reducing MI size and preventing HF following AMI.
Collapse
Affiliation(s)
- Derek J. Hausenloy
- Cardiovascular & Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart Research Institute SingaporeNational Heart CentreSingaporeSingapore
- Yong Loo Lin School of MedicineNational University SingaporeSingaporeSingapore
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Cardiovascular Research CenterCollege of Medical and Health SciencesAsia UniversityTaichung CityTaiwan
| | - Rainer Schulz
- Institute of PhysiologyJustus‐Liebig University GiessenGiessenGermany
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Centre of CoimbraCACCCoimbraPortugal
| | - Brenda R. Kwak
- Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
| | - Diego De Stefani
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Rosario Rizzuto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Paolo Bernardi
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CNR Neuroscience InstitutePadovaItaly
| | - Fabio Di Lisa
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CNR Neuroscience InstitutePadovaItaly
| |
Collapse
|
29
|
Li J, Sun D, Li Y. Novel Findings and Therapeutic Targets on Cardioprotection of Ischemia/ Reperfusion Injury in STEMI. Curr Pharm Des 2020; 25:3726-3739. [PMID: 31692431 DOI: 10.2174/1381612825666191105103417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Acute ST-segment elevation myocardial infarction (STEMI) remains a leading cause of morbidity and mortality around the world. A large number of STEMI patients after the infarction gradually develop heart failure due to the infarcted myocardium. Timely reperfusion is essential to salvage ischemic myocardium from the infarction, but the restoration of coronary blood flow in the infarct-related artery itself induces myocardial injury and cardiomyocyte death, known as ischemia/reperfusion injury (IRI). The factors contributing to IRI in STEMI are complex, and microvascular obstruction, inflammation, release of reactive oxygen species, myocardial stunning, and activation of myocardial cell death are involved. Therefore, additional cardioprotection is required to prevent the heart from IRI. Although many mechanical conditioning procedures and pharmacological agents have been identified as effective cardioprotective approaches in animal studies, their translation into the clinical practice has been relatively disappointing due to a variety of reasons. With new emerging data on cardioprotection in STEMI over the past few years, it is mandatory to reevaluate the effectiveness of "old" cardioprotective interventions and highlight the novel therapeutic targets and new treatment strategies of cardioprotection.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Danghui Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Cour M, Ovize M, Argaud L. Cyclosporine A: a valid candidate to treat COVID-19 patients with acute respiratory failure? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:276. [PMID: 32487139 PMCID: PMC7265662 DOI: 10.1186/s13054-020-03014-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Martin Cour
- Hospices Civils de Lyon, Service de Médecine Intensive-Réanimation, Hôpital Edouard Herriot, 5, place d'Arsonval, 69437, Lyon Cedex 03, France.,INSERM UMR1060 (CarMeN), Université de Lyon, Lyon, France
| | - Michel Ovize
- INSERM UMR1060 (CarMeN), Université de Lyon, Lyon, France.,Hospices Civils de Lyon, Centre d'Investigation Clinique de Lyon, Université de Lyon, Lyon, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Service de Médecine Intensive-Réanimation, Hôpital Edouard Herriot, 5, place d'Arsonval, 69437, Lyon Cedex 03, France. .,INSERM UMR1060 (CarMeN), Université de Lyon, Lyon, France.
| |
Collapse
|
31
|
Zhou Q, Chen S, Li H, Yang B, Chen T, Hu T, Yin D, He H, He M. Tetramethylpyrazine alleviates iron overload damage in vascular endothelium via upregulating DDAHII expression. Toxicol In Vitro 2020; 65:104817. [PMID: 32135237 DOI: 10.1016/j.tiv.2020.104817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022]
Abstract
Iron overload causes vascular endothelium damage. It has been thought to relate excessive reactive oxygen species (ROS) generation. Tetramethylpyrazine (TMP), an active ingredient of Ligusticum chuanxiong Hort, protects various cells by inhibiting oxidative stress and cascade reaction of apoptosis. However, whether TMP can increase DDAHII activity and expression against endothelial cell damage induced by iron overload, and the protective mechanism has not been elucidated. In this study, 50 μM iron dextran and 25 μM TMP were used to co-treat HUVECs for 48 h. TMP could increase cell viability and decrease LDH activity, enhance DDAHII expression and activity, p-eNOS/eNOS ratio, NO content, and reduce ADMA level. TMP also showed a strong antioxidant activity with inhibited ROS generation and oxidative stress. Moreover, TMP attenuated mitochondrial membrane potential loss, inhibited mitochondrial permeability transition pore openness, and decreased apoptosis induced by iron overload. While mentioned above, the protective effects of TMP were abolished with the addition of pAD/DDAHII-shRNA. The effects of TMP against iron overload were similar to the positive control groups, L-arginine, a competitive substrate of ADMA, or edaravone, free radical scavenger. These results signify that TMP alleviated iron overload damage in vascular endothelium via ROS/ADMA/ DDAHII/eNOS/NO pathway.
Collapse
Affiliation(s)
- Qing Zhou
- Jiangxi Provincial Institute of Hypertension, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shuping Chen
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Hongwei Li
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Bin Yang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Tianpeng Chen
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Tianhong Hu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Dong Yin
- Jiangxi Provincial Key Laboratory of Molecular Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang 330006, China
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China.
| | - Ming He
- Jiangxi Provincial Institute of Hypertension, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| |
Collapse
|
32
|
Jang HS, Noh MR, Jung EM, Kim WY, Southekal S, Guda C, Foster KW, Oupicky D, Ferrer FA, Padanilam BJ. Proximal tubule cyclophilin D regulates fatty acid oxidation in cisplatin-induced acute kidney injury. Kidney Int 2020; 97:327-339. [PMID: 31733829 PMCID: PMC6983334 DOI: 10.1016/j.kint.2019.08.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022]
Abstract
Regardless of the etiology, acute kidney injury involves aspects of mitochondrial dysfunction and ATP depletion. Fatty acid oxidation is the preferred energy source of the kidney and is inhibited during acute kidney injury. A pivotal role for the mitochondrial matrix protein, cyclophilin D in regulating overall cell metabolism is being unraveled. We hypothesize that mitochondrial interaction of proximal tubule cyclophilin D and the transcription factor PPARα modulate fatty acid beta-oxidation in cisplatin-induced acute kidney injury. Cisplatin injury resulted in histological and functional damage in the kidney with downregulation of fatty acid oxidation genes and increase of intrarenal lipid accumulation. However, proximal tubule-specific deletion of cyclophilin D protected the kidneys from the aforementioned effects. Mitochondrial translocation of PPARα, its binding to cyclophilin D, and sequestration led to inhibition of its nuclear translocation and transcription of PPARα-regulated fatty acid oxidation genes during cisplatin-induced acute kidney injury. Genetic or pharmacological inhibition of cyclophilin D preserved nuclear expression and transcriptional activity of PPARα and prevented the impairment of fatty acid oxidation and intracellular lipid accumulation. Docking analysis identified potential binding sites between PPARα and cyclophilin D. Thus, our results indicate that proximal tubule cyclophilin D elicits impaired mitochondrial fatty acid oxidation via mitochondrial interaction between cyclophilin D and PPARα. Hence, targeting their interaction may be a potential therapeutic strategy to prevent energy depletion, lipotoxicity and cell death in cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Hee-Seong Jang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | - Mi Ra Noh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Siddesh Southekal
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kirk W Foster
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fernando A Ferrer
- Department of Surgery, Children's Hospital and Medical Center, Omaha, Nebraska, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
33
|
Antonucci S, Di Sante M, Sileikyte J, Deveraux J, Bauer T, Bround MJ, Menabò R, Paillard M, Alanova P, Carraro M, Ovize M, Molkentin JD, Cohen M, Forte MA, Bernardi P, Di Lisa F, Murphy E. A novel class of cardioprotective small-molecule PTP inhibitors. Pharmacol Res 2019; 151:104548. [PMID: 31759087 DOI: 10.1016/j.phrs.2019.104548] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023]
Abstract
Ischemia/reperfusion (I/R) injury is mediated in large part by opening of the mitochondrial permeability transition pore (PTP). Consequently, inhibitors of the PTP hold great promise for the treatment of a variety of cardiovascular disorders. At present, PTP inhibition is obtained only through the use of drugs (e.g. cyclosporine A, CsA) targeting cyclophilin D (CyPD) which is a key modulator, but not a structural component of the PTP. This limitation might explain controversial findings in clinical studies. Therefore, we investigated the protective effects against I/R injury of small-molecule inhibitors of the PTP (63 and TR002) that do not target CyPD. Both compounds exhibited a dose-dependent inhibition of PTP opening in isolated mitochondria and were more potent than CsA. Notably, PTP inhibition was observed also in mitochondria devoid of CyPD. Compounds 63 and TR002 prevented PTP opening and mitochondrial depolarization induced by Ca2+ overload and by reactive oxygen species in neonatal rat ventricular myocytes (NRVMs). Remarkably, both compounds prevented cell death, contractile dysfunction and sarcomeric derangement induced by anoxia/reoxygenation injury in NRVMs at sub-micromolar concentrations, and were more potent than CsA. Cardioprotection was observed also in adult mouse ventricular myocytes and human iPSc-derived cardiomyocytes, as well as ex vivo in perfused hearts. Thus, this study demonstrates that 63 and TR002 represent novel cardioprotective agents that inhibit PTP opening independent of CyPD targeting.
Collapse
Affiliation(s)
| | - Moises Di Sante
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Justina Sileikyte
- Vollum Institute, and Department of Physiology and Pharmacology, Portland, OR, USA
| | - Jordan Deveraux
- Vollum Institute, and Department of Physiology and Pharmacology, Portland, OR, USA
| | - Tyler Bauer
- Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Michael J Bround
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Roberta Menabò
- Department of Biomedical Sciences, University of Padova, Padova, Italy; National Research Council of Italy (CNR), Padova, Italy
| | - Melanie Paillard
- CarMeN Laboratory, University Claude Bernard Lyon 1, INSA Lyon, Oullins, France
| | - Petra Alanova
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Department of Developmental Cardiology, Institute of Physiology CAS, Prague, Czech Republic
| | - Michela Carraro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Michel Ovize
- CarMeN Laboratory, University Claude Bernard Lyon 1, INSA Lyon, Oullins, France
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA; Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael Cohen
- Vollum Institute, and Department of Physiology and Pharmacology, Portland, OR, USA
| | - Michael A Forte
- Vollum Institute, and Department of Physiology and Pharmacology, Portland, OR, USA
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy; National Research Council of Italy (CNR), Padova, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova, Italy; National Research Council of Italy (CNR), Padova, Italy.
| | | |
Collapse
|
34
|
Oliveira ACC, Módolo NSP, Domingues MAC, Schwingel PA. Effects of cyclosporine on ischemia-reperfusion injuries in rat kidneys. An experimental model. Acta Cir Bras 2019; 34:e201900806. [PMID: 31618406 PMCID: PMC6802942 DOI: 10.1590/s0102-865020190080000006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/28/2019] [Indexed: 11/30/2022] Open
Abstract
Purpose To assess Cyclosporine A (CsA) therapy at an intraperitoneal dose of 15 mg.kg
-1 in a rodent model of non-septic renal ischemia. Methods Twenty male Wistar rats were randomized to receive CsA therapy or none
therapy before undergoing 30 minutes of renal ischemia followed by
reperfusion. Additionally, 10 rats were randomized to undergo the same
surgical procedure of the aforementioned animals with neither ischemia nor
CsA therapy. Twelve hours after kidney ischemia, the left kidneys were
evaluated for histological injury according to Park’s criteria. Serum
creatinine (Cr), urea nitrogen (Ur) and sodium levels were obtained at
different times of the experimental protocol. Results Rodents in the CsA group showed negative results (p<0.05) in serum
variables (Cr: 0.41±0.05mg/dL vs . 4.17±1.25mg/dL; Ur:
40.90±3.98mg/dL vs . 187.70±22.93mg/dL) even the non CsA or
control group (Cr: 0.35±0.07mg/dL vs . 3.80±1.20mg/dL; Ur:
40.10±4.70mg/dL vs . 184.50±49.80mg/dL). The negative
results were also verified in histological evaluation, CsA group had 50% in
the very severe grade of lesion, 10% in the severe and 40% in the moderate
to severe whereas the control group had 90% in the very severe grade. Conclusion CsA was incapable of preventing the deleterious effects of
ischemia-reperfusion injury in rat kidneys.
Collapse
Affiliation(s)
- Antonio Carlos Cerqueira Oliveira
- MSc, Department of Anesthesiology and Surgery , Complexo Hospitalar Universitário Professor Edgard Santos (HUPES), Universidade Federal da Bahia (UFBA), Salvador - BA , Brazil . Conception and design of the study; acquisition, analysis and interpretation of data; technical procedures; manuscript writing; final approval
| | - Norma Sueli Pinheiro Módolo
- PhD, Full Professor, Department of Anesthesiology , Faculdade de Medicina de Botucatu (FMB), Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu - SP , Brazil . Conception and design of the stusy, analysis and interpretation of data, manuscript preparation, critical revision, final approval
| | - Maria Aparecida Custódio Domingues
- PhD, Assistant Professor, Department of Pathology , FMB , UNESP , Botucatu - SP , Brazil . Conception and design of the study, analysis and interpretation of data, manuscript preparation and writing
| | - Paulo Adriano Schwingel
- PhD, Associate Professor, Human Performance Research Laboratory (LAPEDH), Universidade de Peranambuco (UPE), Petrolina - PE , Brazil . Analysis and interpretation of data, manuscript writing, critical revision, final approval
| |
Collapse
|
35
|
Oleaga C, Jalilvand G, Legters G, Martin C, Ekman G, McAleer CW, Long CJ, Hickman JJ. A human in vitro platform for the evaluation of pharmacology strategies in cardiac ischemia. APL Bioeng 2019; 3:036103. [PMID: 31431939 PMCID: PMC6692160 DOI: 10.1063/1.5089237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiac ischemic events increase the risk for arrhythmia, heart attack, heart failure, and death and are the leading mortality condition globally. Reperfusion therapy is the first line of treatment for this condition, and although it significantly reduces mortality, cardiac ischemia remains a significant threat. New therapeutic strategies are under investigation to improve the ischemia survival rate; however, the current preclinical models to validate these fail to predict the human outcome. We report the development of a functional human cardiac in vitro system for the study of conduction velocity under ischemic conditions. The system is a bioMEMs platform formed by human iPSC derived cardiomyocytes patterned on microelectrode arrays and maintained in serum-free conditions. Electrical activity changes of conduction velocity, beat frequency, and QT interval (the QT-interval measures the period from onset of depolarization to the completion of repolarization) or action potential length can be evaluated over time and under the stress of ischemia. The optimized protocol induces >80% reduction in conduction velocity, after a 4 h depletion period, and a partial recovery after 72 h of oxygen and nutrient reintroduction. The sensitivity of the platform for pharmacological interventions was challenged with a gap junction modulator (ZP1609), known to prevent or delay the depression of conduction velocity induced by ischemic metabolic stress. ZP1609 significantly improved the drastic drop in conduction velocity and enabled a greater recovery. This model represents a new preclinical platform for studying cardiac ischemia with human cells, which does not rely on biomarker analysis and has the potential for screening novel cardioprotective drugs with readouts that are closer to the measured clinical parameters.
Collapse
Affiliation(s)
- Carlota Oleaga
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32826, USA
| | - Golareh Jalilvand
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32826, USA
| | - Gregg Legters
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32826, USA
| | - Candace Martin
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32826, USA
| | - Gail Ekman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32826, USA
| | | | | | - James J. Hickman
- Author to whom correspondence should be addressed:. Tel.: +1 407-823-1925
| |
Collapse
|
36
|
Naryzhnaya NV, Maslov LN, Oeltgen PR. Pharmacology of mitochondrial permeability transition pore inhibitors. Drug Dev Res 2019; 80:1013-1030. [PMID: 31823411 DOI: 10.1002/ddr.21593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Natalia V. Naryzhnaya
- Laboratory of Experimental CardiologyCardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science Tomsk Russia
| | - Leonid N. Maslov
- Laboratory of Experimental CardiologyCardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science Tomsk Russia
| | - Peter R. Oeltgen
- Department of PathologyUniversity of Kentucky College of Medicine Lexington Kentucky
| |
Collapse
|
37
|
O'Rourke SA, Dunne A, Monaghan MG. The Role of Macrophages in the Infarcted Myocardium: Orchestrators of ECM Remodeling. Front Cardiovasc Med 2019; 6:101. [PMID: 31417911 PMCID: PMC6685361 DOI: 10.3389/fcvm.2019.00101] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Myocardial infarction is the most common form of acute cardiac injury attributing to heart failure. While there have been significant advances in current therapies, mortality and morbidity remain high. Emphasis on inflammation and extracellular matrix remodeling as key pathological factors has brought to light new potential therapeutic targets including macrophages which are central players in the inflammatory response following myocardial infarction. Blood derived and tissue resident macrophages exhibit both a pro- and anti-inflammatory phenotype, essential for removing injured tissue and facilitating repair, respectively. Sustained activation of pro-inflammatory macrophages evokes extensive remodeling of cardiac tissue through secretion of matrix proteases and activation of myofibroblasts. As the heart continues to employ methods of remodeling and repair, a destructive cycle prevails ultimately leading to deterioration of cardiac function and heart failure. This review summarizes not only the traditionally accepted role of macrophages in the heart but also recent advances that have deepened our understanding and appreciation of this dynamic cell. We discuss the role of macrophages in normal and maladaptive matrix remodeling, as well as studies to date which have aimed to target the inflammatory response in combatting excessive matrix deposition and subsequent heart failure.
Collapse
Affiliation(s)
- Sinead A O'Rourke
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland.,School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Michael G Monaghan
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials for BioEngineering Research (AMBER) Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
38
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
39
|
Hausenloy DJ, Chilian W, Crea F, Davidson SM, Ferdinandy P, Garcia-Dorado D, van Royen N, Schulz R, Heusch G. The coronary circulation in acute myocardial ischaemia/reperfusion injury: a target for cardioprotection. Cardiovasc Res 2019; 115:1143-1155. [PMID: 30428011 PMCID: PMC6529918 DOI: 10.1093/cvr/cvy286] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/15/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
The coronary circulation is both culprit and victim of acute myocardial infarction. The rupture of an epicardial atherosclerotic plaque with superimposed thrombosis causes coronary occlusion, and this occlusion must be removed to induce reperfusion. However, ischaemia and reperfusion cause damage not only in cardiomyocytes but also in the coronary circulation, including microembolization of debris and release of soluble factors from the culprit lesion, impairment of endothelial integrity with subsequently increased permeability and oedema formation, platelet activation and leucocyte adherence, erythrocyte stasis, a shift from vasodilation to vasoconstriction, and ultimately structural damage to the capillaries with eventual no-reflow, microvascular obstruction (MVO), and intramyocardial haemorrhage (IMH). Therefore, the coronary circulation is a valid target for cardioprotection, beyond protection of the cardiomyocyte. Virtually all of the above deleterious endpoints have been demonstrated to be favourably influenced by one or the other mechanical or pharmacological cardioprotective intervention. However, no-reflow is still a serious complication of reperfused myocardial infarction and carries, independently from infarct size, an unfavourable prognosis. MVO and IMH can be diagnosed by modern imaging technologies, but still await an effective therapy. The current review provides an overview of strategies to protect the coronary circulation from acute myocardial ischaemia/reperfusion injury. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Collapse
Affiliation(s)
- Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, UK
- The National Institute of Health Research, University College London Hospitals Biomedical Research Centre, Research & Development, London, UK
- Department of Cardiology, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - William Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, USA
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, F. Policlinico Gemelli—IRCCS, Università Cattolica Sacro Cuore, Roma, Italy
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - David Garcia-Dorado
- Department of Cardiology, Vascular Biology and Metabolism Area, Vall d’Hebron University Hospital and Research Institute (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
- Instituto CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Niels van Royen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| |
Collapse
|
40
|
Cyclosporine A as a Cardioprotective Agent During Donor Heart Retrieval, Storage, or Transportation: Benefits and Limitations. Transplantation 2019; 103:1140-1151. [DOI: 10.1097/tp.0000000000002629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Michels da Silva D, Langer H, Graf T. Inflammatory and Molecular Pathways in Heart Failure-Ischemia, HFpEF and Transthyretin Cardiac Amyloidosis. Int J Mol Sci 2019; 20:ijms20092322. [PMID: 31083399 PMCID: PMC6540104 DOI: 10.3390/ijms20092322] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Elevated pro-inflammatory biomarkers and cytokines are associated with morbidity and mortality in heart failure (HF). Preclinical and clinical studies have shown multiple inflammatory mechanisms causing cardiac remodeling, dysfunction and chronic failure. Therapeutics in trials targeting the immune response in heart failure and its effects did not result in evident benefits regarding clinical endpoints and mortality. This review elaborates pathways of immune cytokines in pathogenesis and worsening of heart failure in clinical and cellular settings. Besides the well-known mechanisms of immune activation and inflammation in atherosclerosis causing ischemic cardiomyopathy or myocarditis, attention is focused on other mechanisms leading to heart failure such as transthyretin (TTR) amyloidosis or heart failure with preserved ejection fraction. The knowledge of the pathogenesis in heart failure and amyloidosis on a molecular and cellular level might help to highlight new disease defining biomarkers and to lead the way to new therapeutic targets.
Collapse
Affiliation(s)
- Diana Michels da Silva
- Department of Cardiology, Angiology and Intensive Care, Medicine Medical Clinic II, University Heart Center Lübeck, 23562 Lübeck, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany.
| | - Harald Langer
- Department of Cardiology, Angiology and Intensive Care, Medicine Medical Clinic II, University Heart Center Lübeck, 23562 Lübeck, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany.
| | - Tobias Graf
- Department of Cardiology, Angiology and Intensive Care, Medicine Medical Clinic II, University Heart Center Lübeck, 23562 Lübeck, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany.
| |
Collapse
|
42
|
Yu H, Kalogeris T, Korthuis RJ. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic Biol Med 2019; 135:182-197. [PMID: 30849489 PMCID: PMC6503659 DOI: 10.1016/j.freeradbiomed.2019.02.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells line the inner surface of the entire cardiovascular system as a single layer and are involved in an impressive array of functions, ranging from the regulation of vascular tone in resistance arteries and arterioles, modulation of microvascular barrier function in capillaries and postcapillary venules, and control of proinflammatory and prothrombotic processes, which occur in all segments of the vascular tree but can be especially prominent in postcapillary venules. When tissues are subjected to ischemia/reperfusion (I/R), the endothelium of resistance arteries and arterioles, capillaries, and postcapillary venules become dysfunctional, resulting in impaired endothelium-dependent vasodilator and enhanced endothelium-dependent vasoconstrictor responses along with increased vulnerability to thrombus formation, enhanced fluid filtration and protein extravasation, and increased blood-to-interstitium trafficking of leukocytes in these functionally distinct segments of the microcirculation. The number of capillaries open to flow upon reperfusion also declines as a result of I/R, which impairs nutritive perfusion. All of these pathologic microvascular events involve the formation of reactive species (RS) derived from molecular oxygen and/or nitric oxide. In addition to these effects, I/R-induced RS activate NLRP3 inflammasomes, alter connexin/pannexin signaling, provoke mitochondrial fission, and cause release of microvesicles in endothelial cells, resulting in deranged function in arterioles, capillaries, and venules. It is now apparent that this microvascular dysfunction is an important determinant of the severity of injury sustained by parenchymal cells in ischemic tissues, as well as being predictive of clinical outcome after reperfusion therapy. On the other hand, RS production at signaling levels promotes ischemic angiogenesis, mediates flow-induced dilation in patients with coronary artery disease, and instigates the activation of cell survival programs by conditioning stimuli that render tissues resistant to the deleterious effects of prolonged I/R. These topics will be reviewed in this article.
Collapse
Affiliation(s)
- Hong Yu
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ted Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA.
| |
Collapse
|
43
|
Cour M, Jahandiez V, Bochaton T, Venet F, Ovize M, Monneret G, Argaud L. Cyclosporine A prevents ischemia-reperfusion-induced lymphopenia after out-of-hospital cardiac arrest: A predefined sub-study of the CYRUS trial. Resuscitation 2019; 138:129-131. [PMID: 30878374 DOI: 10.1016/j.resuscitation.2019.02.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Martin Cour
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Réanimation Médicale, F-69437, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, F-69373, Lyon, France; INSERM, U1060 CarMeN, F-69373, Lyon, France.
| | - Vincent Jahandiez
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Réanimation Médicale, F-69437, Lyon, France; INSERM, U1060 CarMeN, F-69373, Lyon, France.
| | - Thomas Bochaton
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, F-69373, Lyon, France; INSERM, U1060 CarMeN, F-69373, Lyon, France.
| | - Fabienne Venet
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, F-69373, Lyon, France; Hospices Civils de Lyon, Hôpital Edouard Herriot, Laboratoire d'Immunologie Clinique, F-69437, Lyon, France.
| | - Michel Ovize
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, F-69373, Lyon, France; INSERM, U1060 CarMeN, F-69373, Lyon, France.
| | - Guillaume Monneret
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, F-69373, Lyon, France; Hospices Civils de Lyon, Hôpital Edouard Herriot, Laboratoire d'Immunologie Clinique, F-69437, Lyon, France.
| | - Laurent Argaud
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Réanimation Médicale, F-69437, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, F-69373, Lyon, France; INSERM, U1060 CarMeN, F-69373, Lyon, France.
| |
Collapse
|
44
|
Dong Y, Xu W, Liu C, Liu P, Li P, Wang K. Reactive Oxygen Species Related Noncoding RNAs as Regulators of Cardiovascular Diseases. Int J Biol Sci 2019; 15:680-687. [PMID: 30745854 PMCID: PMC6367576 DOI: 10.7150/ijbs.30464] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) are a class of reactive molecules that have been implicated in a variety of cardiovascular diseases, accompanied by disorder of multiple signaling events. As cardiomyocytes maintain abundant of mitochondria, which supply the major source of endogenous ROS, oxidative damage to mitochondria often drives apoptotic cell death and initiates cardiac pathology. In recent years, non-coding RNAs (ncRNAs) have received much attention to uncover their roles in regulating gene expression during those pathological events in the heart, such as myocardial infarction, cardiac hypertrophy, and heart failure. Emerging evidences have highlighted that different ROS levels in response to diverse cardiac stresses result in differential expression of ncRNAs, subsequently altering the expression of pathogenetic genes. However, the knowledge about the ncRNA-linked ROS regulatory mechanisms in cardiac pathologies is still largely unexplored. In this review, we summarize the connections that exist among ROS, ncRNAs, and cardiac diseases to understand the interactions among the molecular entities underlying cardiac pathological events in the hopes of guiding novel therapies for heart diseases in the future.
Collapse
Affiliation(s)
- Yanhan Dong
- Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Wenhua Xu
- Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Cuiyun Liu
- Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Peijun Liu
- Biochemistry Department No.2 Middle School Qingdao Shandong P.R. China 266000
| | - Peifeng Li
- Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Kun Wang
- Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| |
Collapse
|
45
|
Xiao Y, Karam C, Yi J, Zhang L, Li X, Yoon D, Wang H, Dhakal K, Ramlow P, Yu T, Mo Z, Ma J, Zhou J. ROS-related mitochondrial dysfunction in skeletal muscle of an ALS mouse model during the disease progression. Pharmacol Res 2018; 138:25-36. [PMID: 30236524 PMCID: PMC6263743 DOI: 10.1016/j.phrs.2018.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
In amyotrophic lateral sclerosis (ALS), mitochondrial dysfunction and oxidative stress form a vicious cycle that promotes neurodegeneration and muscle wasting. To quantify the disease-stage-dependent changes of mitochondrial function and their relationship to the generation of reactive oxygen species (ROS), we generated double transgenic mice (G93A/cpYFP) that carry human ALS mutation SOD1G93A and mt-cpYFP transgenes, in which mt-cpYFP detects dynamic changes of ROS-related mitoflash events at individual mitochondria level. Compared with wild type mice, mitoflash activity in the SOD1G93A (G93A) mouse muscle showed an increased flashing frequency prior to the onset of ALS symptom (at the age of 2 months), whereas the onset of ALS symptoms (at the age of 4 months) is associated with drastic changes in the kinetics property of mitoflash signal with prolonged full duration at half maximum (FDHM). Elevated levels of cytosolic ROS in skeletal muscle derived from the SOD1G93A mice were confirmed with fluorescent probes, MitoSOX™ Red and ROS Brite™570. Immunoblotting analysis of subcellular mitochondrial fractionation of G93A muscle revealed an increased expression level of cyclophilin D (CypD), a regulatory component of the mitochondrial permeability transition pore (mPTP), at the age of 4 months but not at the age of 2 months. Transient overexpressing of SOD1G93A in skeletal muscle of wild type mice directly promoted mitochondrial ROS production with an enhanced mitoflash activity in the absence of motor neuron axonal withdrawal. Remarkably, the SOD1G93A-induced mitoflash activity was attenuated by the application of cyclosporine A (CsA), an inhibitor of CypD. Similar to the observation with the SOD1G93A transgenic mice, an increased expression level of CypD was also detected in skeletal muscle following transient overexpression of SOD1G93A. Overall, this study reveals a disease-stage-dependent change in mitochondrial function that is associated with CypD-dependent mPTP opening; and the ALS mutation SOD1G93A directly contributes to mitochondrial dysfunction in the absence of motor neuron axonal withdrawal.
Collapse
Affiliation(s)
- Yajuan Xiao
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Rush University School of Medicine, Chicago, IL, USA
| | - Chehade Karam
- Rush University School of Medicine, Chicago, IL, USA
| | - Jianxun Yi
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Rush University School of Medicine, Chicago, IL, USA
| | - Lin Zhang
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Zunyi Medical College, Zunyi, China
| | - Xuejun Li
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Dosuk Yoon
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Huan Wang
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Kamal Dhakal
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Paul Ramlow
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Tian Yu
- Zunyi Medical College, Zunyi, China
| | - Zhaohui Mo
- 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Jianjie Ma
- Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Jingsong Zhou
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Rush University School of Medicine, Chicago, IL, USA.
| |
Collapse
|
46
|
Panahi M, Papanikolaou A, Torabi A, Zhang JG, Khan H, Vazir A, Hasham MG, Cleland JGF, Rosenthal NA, Harding SE, Sattler S. Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition. Cardiovasc Res 2018; 114:1445-1461. [PMID: 30010800 PMCID: PMC6106100 DOI: 10.1093/cvr/cvy145] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/26/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Following a myocardial infarction (MI), the immune system helps to repair ischaemic damage and restore tissue integrity, but excessive inflammation has been implicated in adverse cardiac remodelling and development towards heart failure (HF). Pre-clinical studies suggest that timely resolution of inflammation may help prevent HF development and progression. Therapeutic attempts to prevent excessive post-MI inflammation in patients have included pharmacological interventions ranging from broad immunosuppression to immunomodulatory approaches targeting specific cell types or factors with the aim to maintain beneficial aspects of the early post-MI immune response. These include the blockade of early initiators of inflammation including reactive oxygen species and complement, inhibition of mast cell degranulation and leucocyte infiltration, blockade of inflammatory cytokines, and inhibition of adaptive B and T-lymphocytes. Herein, we provide a systematic review on post-MI immunomodulation trials and a meta-analysis of studies targeting the inflammatory cytokine Interleukin-1. Despite an enormous effort into a significant number of clinical trials on a variety of targets, a striking heterogeneity in study population, timing and type of treatment, and highly variable endpoints limits the possibility for meaningful meta-analyses. To conclude, we highlight critical considerations for future studies including (i) the therapeutic window of opportunity, (ii) immunological effects of routine post-MI medication, (iii) stratification of the highly diverse post-MI patient population, (iv) the potential benefits of combining immunomodulatory with regenerative therapies, and at last (v) the potential side effects of immunotherapies.
Collapse
Affiliation(s)
- Mona Panahi
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| | - Angelos Papanikolaou
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| | - Azam Torabi
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | - Ji-Gang Zhang
- The Jackson Laboratory, 600 Main Street, Bar Harbor, USA
| | - Habib Khan
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | - Ali Vazir
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | | | - John G F Cleland
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | - Nadia A Rosenthal
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
- The Jackson Laboratory, 600 Main Street, Bar Harbor, USA
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| |
Collapse
|
47
|
Hausenloy DJ, Botker HE, Engstrom T, Erlinge D, Heusch G, Ibanez B, Kloner RA, Ovize M, Yellon DM, Garcia-Dorado D. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur Heart J 2018; 38:935-941. [PMID: 27118196 PMCID: PMC5381598 DOI: 10.1093/eurheartj/ehw145] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Affiliation(s)
- Derek J Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore.,The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK.,National Institute of Health Research University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
| | - Hans Erik Botker
- Department of Cardiology, Aarhus University Hospital Skejby, DK-8200 Aarhus N, Denmark
| | - Thomas Engstrom
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - David Erlinge
- Department of Cardiology, Lund University, Lund, Sweden
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, USA.,Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France.,UMR 1060 (CarMeN), Université Claude Bernard, Lyon, France
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK.,National Institute of Health Research University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
| | - David Garcia-Dorado
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma, Pg Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
48
|
Rahman FA, Abdullah SS, Manan WZWA, Tan LTH, Neoh CF, Ming LC, Chan KG, Lee LH, Goh BH, Salmasi S, Wu DBC, Khan TM. Efficacy and Safety of Cyclosporine in Acute Myocardial Infarction: A Systematic Review and Meta-Analysis. Front Pharmacol 2018; 9:238. [PMID: 29970999 PMCID: PMC6018391 DOI: 10.3389/fphar.2018.00238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 03/02/2018] [Indexed: 11/18/2022] Open
Abstract
There are various studies that have addressed the use of Cyclosporine among patients with acute myocardial infarction (AMI). However, to date there is hardly any concise and systematically structured evidence that debate on the efficacy and safety of Cyclosporine in AMI patients. The aim of this review is to systematically summarize the overall evidence from published trials, and to conduct a meta-analysis in order to determine the efficacy and safety of Cyclosporine vs. placebo or control among patients with AMI. All randomized control trial (RCT) published in English language from January 2000 to August 2017 were included for the systematic review and meta-analysis. A total of six RCTs met the inclusion and were hence included in the systematic review and meta-analysis. Based on the performed meta-analysis, no significant difference was found between Cyclosporine and placebo in terms of left ventricular ejection fraction (LVEF) improvement (mean difference 1.88; 95% CI −0.99 to 4.74; P = 0.2), mortality rate (OR 1.01; 95% Cl 0.60 to 1.67, P = 0.98) and recurrent MI occurrence (OR 0.65; 95% Cl 0.29 to 1.45, P = 0.29), with no evidence of heterogeneity, when given to patients with AMI. Cyclosporine also did not significantly lessen the rate of rehospitalisation in AMI patients when compared to placebo (OR 0.91; 95% Cl 0.58 to 1.42, P = 0.68), with moderate heterogeneity (I2 = 46%). There was also no significant improvement in heart failure events between Cyclosporine and placebo in AMI patients (OR 0.63; 95% Cl 0.31 to 1.29, P = 0.21; I2 = 80%). No serious adverse events were reported in Cyclosporine group across all studies suggesting that Cyclosporine is well tolerated when given to patients with AMI. The use of Cyclosporine in this group of patients, however, did not result in better clinical outcomes vs. placebo at improving LVEF, mortality rate, recurrent MI, rehospitalisation and heart failure event.
Collapse
Affiliation(s)
- Firdaus A Rahman
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
| | - Siti S Abdullah
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
| | | | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University, Bandar Sunway, Malaysia
| | - Chin-Fen Neoh
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
| | - Long Chiau Ming
- School of Pharmacy, KPJ Healthcare University College, Nilai, Malaysia
| | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China.,Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University, Bandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.,School of Pharmacy, Monash University, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University, Bandar Sunway, Malaysia.,Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-being Cluster, Global Asia in the 21st Century Platform, Monash University, Bandar Sunway, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University, Bandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.,School of Pharmacy, Monash University, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University, Bandar Sunway, Malaysia.,Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-being Cluster, Global Asia in the 21st Century Platform, Monash University, Bandar Sunway, Malaysia
| | - Shahrzad Salmasi
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Tahir M Khan
- School of Pharmacy, Monash University, Bandar Sunway, Malaysia.,Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-being Cluster, Global Asia in the 21st Century Platform, Monash University, Bandar Sunway, Malaysia.,Institute of Pharmaceutical Science, University of Veterinary and Animal Science, Lahore, Pakistan
| |
Collapse
|
49
|
Woidy M, Muntau AC, Gersting SW. Inborn errors of metabolism and the human interactome: a systems medicine approach. J Inherit Metab Dis 2018; 41:285-296. [PMID: 29404805 PMCID: PMC5959957 DOI: 10.1007/s10545-018-0140-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/01/2018] [Accepted: 01/10/2018] [Indexed: 12/14/2022]
Abstract
The group of inborn errors of metabolism (IEM) displays a marked heterogeneity and IEM can affect virtually all functions and organs of the human organism; however, IEM share that their associated proteins function in metabolism. Most proteins carry out cellular functions by interacting with other proteins, and thus are organized in biological networks. Therefore, diseases are rarely the consequence of single gene mutations but of the perturbations caused in the related cellular network. Systematic approaches that integrate multi-omics and database information into biological networks have successfully expanded our knowledge of complex disorders but network-based strategies have been rarely applied to study IEM. We analyzed IEM on a proteome scale and found that IEM-associated proteins are organized as a network of linked modules within the human interactome of protein interactions, the IEM interactome. Certain IEM disease groups formed self-contained disease modules, which were highly interlinked. On the other hand, we observed disease modules consisting of proteins from many different disease groups in the IEM interactome. Moreover, we explored the overlap between IEM and non-IEM disease genes and applied network medicine approaches to investigate shared biological pathways, clinical signs and symptoms, and links to drug targets. The provided resources may help to elucidate the molecular mechanisms underlying new IEM, to uncover the significance of disease-associated mutations, to identify new biomarkers, and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Mathias Woidy
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Søren W Gersting
- Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Lindwurmstrasse 4, 80336, Munich, Germany.
| |
Collapse
|
50
|
Hwang IC, Kim JY, Kim JH, Lee JE, Seo JY, Lee JW, Park J, Yang HM, Kim SH, Cho HJ, Kim HS. Therapeutic Potential of a Novel Necrosis Inhibitor, 7-Amino-Indole, in Myocardial Ischemia-Reperfusion Injury. Hypertension 2018; 71:1143-1155. [PMID: 29661840 PMCID: PMC5959205 DOI: 10.1161/hypertensionaha.117.09405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/04/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Opening of mitochondrial permeability transition pore and Ca2+ overload are main contributors to myocardial ischemia–reperfusion injury, which paradoxically causes a wide variety of myocardial damage. We investigated the protective role of a novel necrosis inhibitor (NecroX-7; NecX) against myocardial ischemia–reperfusion injury using in vitro and in vivo models. H9C2 rat cardiomyoblasts and neonatal cardiomyocytes were exposed to hypoxia–reoxygenation stress after pre-treatment with NecX, vitamin C, a combination of vitamin C and E, N-acetylcysteine, an apoptosis inhibitor (Z-VAD-fmk), or cyclosporine A. The main mechanism of cell death after hypoxia–reoxygenation stress was not apoptosis but necrosis, which was prevented by NecX. Protective effect of NecX was based on its potent reactive oxygen species scavenging activity, especially on mitochondrial reactive oxygen species. NecX preserved mitochondrial membrane potential through prevention of Ca2+ influx and inhibition of mitochondrial permeability transition pore opening, which was more potent than that by cyclosporine A. Using Sprague-Dawley rats exposed to myocardial ischemia for 45 minutes followed by reperfusion, we compared therapeutic efficacies of NecX with cyclosporine A, vitamin C, a combination of vitamin C and E, and 5% dextrose, each administered 5 minutes before reperfusion. NecX markedly inhibited myocardial necrosis and reduced fibrotic area to a greater extent than did cyclosporine A and other treated groups. In addition, NecX preserved systolic function and prevented pathological dilatory remodeling of left ventricle. The novel necrosis inhibitor has a significant protective effect against myocardial ischemia–reperfusion injury through inhibition of mitochondrial permeability transition pore opening, indicating that it is a promising candidate for cardioprotective adjunctive measure on top of reperfusion therapy.
Collapse
Affiliation(s)
- In-Chang Hwang
- From the Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-H.K., J.P., H.-M.Y., H.-J.C., H.-S.K.).,National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.).,Strategic Center of Cell and Bio Therapy for Heart, Diabetes, and Cancer, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-Y.K., J.-E.L., J.-W.L., H.-M.Y., H.-J.C., H.-S.K.)
| | - Ju-Young Kim
- From the Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-H.K., J.P., H.-M.Y., H.-J.C., H.-S.K.).,National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.).,Strategic Center of Cell and Bio Therapy for Heart, Diabetes, and Cancer, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-Y.K., J.-E.L., J.-W.L., H.-M.Y., H.-J.C., H.-S.K.)
| | - Ji-Hyun Kim
- National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.)
| | - Joo-Eun Lee
- National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.).,Strategic Center of Cell and Bio Therapy for Heart, Diabetes, and Cancer, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-Y.K., J.-E.L., J.-W.L., H.-M.Y., H.-J.C., H.-S.K.)
| | - Ji-Yun Seo
- National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.).,Strategic Center of Cell and Bio Therapy for Heart, Diabetes, and Cancer, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-Y.K., J.-E.L., J.-W.L., H.-M.Y., H.-J.C., H.-S.K.)
| | - Jae-Won Lee
- National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.)
| | - Jonghanne Park
- From the Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-H.K., J.P., H.-M.Y., H.-J.C., H.-S.K.).,National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.)
| | - Han-Mo Yang
- From the Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-H.K., J.P., H.-M.Y., H.-J.C., H.-S.K.).,National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.).,Strategic Center of Cell and Bio Therapy for Heart, Diabetes, and Cancer, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-Y.K., J.-E.L., J.-W.L., H.-M.Y., H.-J.C., H.-S.K.)
| | - Soon-Ha Kim
- R&D Campus, LG Chem/Ltd., Daejeon, Republic of Korea (S.-H.K.)
| | - Hyun-Jai Cho
- From the Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-H.K., J.P., H.-M.Y., H.-J.C., H.-S.K.).,National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.).,Strategic Center of Cell and Bio Therapy for Heart, Diabetes, and Cancer, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-Y.K., J.-E.L., J.-W.L., H.-M.Y., H.-J.C., H.-S.K.)
| | - Hyo-Soo Kim
- From the Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-H.K., J.P., H.-M.Y., H.-J.C., H.-S.K.) .,National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.).,and Department of Molecular Medicine and Biopharmaceutical Science, Seoul National University, Republic of Korea (H.-S.K.).,R&D Campus, LG Chem/Ltd., Daejeon, Republic of Korea (S.-H.K.)
| |
Collapse
|