1
|
Wang YT, Wang XL, Lei L, Zhang Y. Efficacy of ginsenoside Rg1 on rodent models of depression: A systematic review and meta-analysis. Psychopharmacology (Berl) 2025; 242:1137-1155. [PMID: 39039242 DOI: 10.1007/s00213-024-06649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/07/2024] [Indexed: 07/24/2024]
Abstract
RATIONALE Depression is a prevalent psychiatric disease, and ginsenoside Rg1 is a bioactive compound extracted from the root of Panax ginseng C.A.Mey. To systematically investigate the effectiveness of Rg1 in rodent models of depression and provide evidence-based references for treating depression. METHODS Electronic searches for rodent studies were performed from inception to October 2022, e.g., PUBMED and EMBASE. Data extraction and quality evaluation were performed for the references, and meta-analysis was performed on the selected data using Review Manager 5.3.5. The outcomes were analyzed via a random-effect model and presented as mean difference (MD) with 95% confidence intervals (CIs). RESULTS A total of 24 studies and 678 animals were included in this meta-analysis. Rg1 remarkably improved depressive-like symptoms of depressed rodents, including the sucrose preference test (25.08, 95% CI: 20.17-30.00, Z = 10.01, P < 0.00001), forced swimming test (MD = -37.69, 95% CI: (-45.18, -30.2); Z = 9.86, P < 0.00001), and the tail suspension test (MD = -22.93, seconds, 95% CI: (-38.49, -7.37); Z = 2.89, P = 0.004). CONCLUSIONS The main antidepressant mechanism of Rg1 was concluded to be the neurotransmitter system, oxidant stress system, and inflammation. Conclusively, this study indicated the possible protective and therapeutic effects of Rg1 for treating depression via multiple mechanisms.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
2
|
Gao L, Wang J, Liu X, Wu L, Ding R, Han X, Wang X, Ma H, Pan J, Zhang X, Wang H, Shang X. Rinsenoside Rg1 and its involvement in Hippo-YAP signaling pathway alleviating symptoms of depressive-like behavior. Sci Rep 2025; 15:14441. [PMID: 40281108 PMCID: PMC12032003 DOI: 10.1038/s41598-025-99587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Ginsenoside Rg1 (G-Rg1) has potential antidepressant effects, but the underlying mechanism remains unclear. Presently, sixty 6-8 week-old male C57BL/6 mice were selected and randomly allocated to control, chronic restraint stress (CRS), CRS and low G-Rg1 administration (CRS + L-Rg1), CRS and high G-Rg1 administration (CRS + H-Rg1), and CRS and fluoxetine administration (CRS + FLX) groups. The component of anxiety in psychic processes and neuropathological changes occurring in dentate gyrus (DG) neurons were evaluated, where PC12 cells were assessed for the expression of G-Rg1. Both cell viability and apoptosis were analyzed. G-Rg1 (5 and 10 mg/kg/day) alleviated the behavioral manifestations of neuropathological processes revealed in DG neurons of CRS-induced mice. Western blotting analysis demonstrated the negative correlation of G-Rg1 level and that of Hipp-YAP signaling pathway components including p-YAP/YAP, p-MST1/MST1, and p-LATS1/LATS1, which were triggered by CRS. Combined therapy with G-Rg1 (10 mM) proved to have an inhibitory effect on PC12 cell viability and apoptosis compared to sole cort treatment. In addition, chronic G-Rg1 also reduced the protein expression levels of Hippo-YAP signaling pathway activated by corticosterone (Cort) including p-YAP/YAP, p-MST1/MST1, and p-LATS1/LATS1. The above mentioned improvements could be implemented due to XMU-MP-1 hampering the processes in Hippo-YAP signaling pathway. Importantly, the changes in synaptic plasticity and apoptosis were thoroughly investigated to determine the role of chronic G-Rg1 in the forementioned processes. In conclusion, chronic G-Rg1 played an important neuroprotective role in either CRS mice or Cort-treated cells associated with the inhibition of Hippo-YAP signaling pathway, which was the core part of decreasing neuronal apoptosis and enhancing synaptic plasticity.
Collapse
Affiliation(s)
- Linyin Gao
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Jiarong Wang
- School of Psychology and Mental Health, Hebei Key Laboratory of Mental Health and Brain Science, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Xiuchang Liu
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lei Wu
- School of Psychology and Mental Health, Hebei Key Laboratory of Mental Health and Brain Science, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Ran Ding
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Xuemei Han
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Xindi Wang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Hao Ma
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Jie Pan
- School of Psychology and Mental Health, Hebei Key Laboratory of Mental Health and Brain Science, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China
| | - Xiujun Zhang
- School of Psychology and Mental Health, Hebei Key Laboratory of Mental Health and Brain Science, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China.
- The Second Xiangya Hospital of Central South University, Chang'sha, 410011, Hunan, China.
| | - Haitao Wang
- School of Psychology and Mental Health, Hebei Key Laboratory of Mental Health and Brain Science, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China.
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China.
- The Second Xiangya Hospital of Central South University, Chang'sha, 410011, Hunan, China.
| | - Xueliang Shang
- School of Psychology and Mental Health, Hebei Key Laboratory of Mental Health and Brain Science, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei, China.
- The Second Xiangya Hospital of Central South University, Chang'sha, 410011, Hunan, China.
| |
Collapse
|
3
|
Mun JH, Jang MJ, Kim WS, Kim SS, Lee B, Moon H, Oh SJ, Ryu CH, Park KS, Cho IH, Hong GS, Choi CW, Lee C, Kim MS. Enhanced Cognitive and Memory Functions via Gold Nanoparticle-Mediated Delivery of Afzelin through Synaptic Modulation Pathways in Alzheimer's Disease Mouse Models. ACS Chem Neurosci 2025; 16:826-843. [PMID: 39976589 DOI: 10.1021/acschemneuro.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Gold nanoparticles (AuNPs) are valuable tools in pharmacological and biological research, offering unique properties for drug delivery in the treatment of neurodegenerative diseases. This study investigates the potential of gold nanoparticles loaded with afzelin, a natural chemical extracted from Ribes fasciculatum, to enhance its therapeutic effects and overcome the limitations of using natural compounds regarding low productivity. We hypothesized that the combined treatment of AuNPs with afzelin (AuNP-afzelin) would remarkably enforce neuroprotective effects compared with the single treatment of afzelin. Central administration of AuNP-afzelin (10 ng of afzelin) indicated improvements in cognition and memory-involved assessments of behavioral tests, comparing single treatments of afzelin (10 or 100 ng of afzelin) in scopolamine-induced AD mice. AuNP-afzelin also performed superior neuroprotective effects of rescuing mature neuronal cells and recovered cholinergic dysfunction compared to afzelin alone, according to further investigations of BDNF-pCREB-pAkt signaling, long-term potentiation, and doublecortin (DCX) expression in the hippocampus. This study highlights the potential of afzelin with gold nanoparticles as a promising therapeutic approach for mitigating cognitive impairments associated with neurodegenerative diseases and offers a new avenue for future research and drug development.
Collapse
Affiliation(s)
- Ju Hee Mun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Jun Jang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Won Seok Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seong-Seop Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - HyunSeon Moon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Cheol-Hui Ryu
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Kyung Su Park
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggi-do Business and Science Accelerator, Suwon 16229, Republic of Korea
| | - Changhyuk Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU Brain Research Center, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Li W, Xu M, Liu Y, Zhang S, Wang J, Zhang Z, Xiao G, Wang R, Zhang J, Xue H. Lactiplantibacillus plantarum GOLDGUT-HNU082 Alleviates CUMS-Induced Depressive-like Behaviors in Mice by Modulating the Gut Microbiota and Neurotransmitter Levels. Foods 2025; 14:813. [PMID: 40077516 PMCID: PMC11898433 DOI: 10.3390/foods14050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Emerging evidence links depressive disorders to the gut microbiota via the gut-brain axis. Probiotics, which are microorganisms that modulate the gut microbiota, have shown promising results in alleviating depression and are increasingly recognized as functional food components with potential health benefits. This study examines the effects of Lactiplantibacillus plantarum GOLDGUT-HNU082 (Lp082), a probiotic strain with potential applications in functional foods, on chronic unpredictable mild stress (CUMS)-induced depression in mice. Behavioral tests, measurements of the neurotransmitters and inflammatory cytokines in the serum and colon tissue, and the metagenomic sequencing of the gut microbiota were used to investigate potential mechanisms. The results demonstrated that Lp082 significantly alleviated depressive-like behaviors in CUMS mice, restored the balance of key neurotransmitters like serotonin (5-HT), reduced the levels of inflammatory cytokines like TNF-α, and enhanced brain neuroplasticity by promoting hippocampal neurogenesis. Additionally, Lp082 altered the composition of the gut microbiota in CUMS mice and promoted the growth of Bifidobacterium, improving metabolic pathways related to neurotransmitter synthesis. These findings indicate that Lp082, as a potential functional food ingredient, alleviates depressive-like behaviors in mice by reshaping the gut microbiota, offering new insights into the use of probiotics in functional foods for mental health management.
Collapse
Affiliation(s)
- Wanggao Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.L.); (M.X.); (Y.L.); (R.W.); (J.Z.)
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Meng Xu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.L.); (M.X.); (Y.L.); (R.W.); (J.Z.)
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yaning Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.L.); (M.X.); (Y.L.); (R.W.); (J.Z.)
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Silu Zhang
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd., Shenzhen 518000, China; (S.Z.); (J.W.); (Z.Z.); (G.X.)
| | - Jun Wang
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd., Shenzhen 518000, China; (S.Z.); (J.W.); (Z.Z.); (G.X.)
| | - Zhizhu Zhang
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd., Shenzhen 518000, China; (S.Z.); (J.W.); (Z.Z.); (G.X.)
| | - Guoxun Xiao
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd., Shenzhen 518000, China; (S.Z.); (J.W.); (Z.Z.); (G.X.)
| | - Ruimin Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.L.); (M.X.); (Y.L.); (R.W.); (J.Z.)
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.L.); (M.X.); (Y.L.); (R.W.); (J.Z.)
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Hui Xue
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.L.); (M.X.); (Y.L.); (R.W.); (J.Z.)
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Cui CH, Shin D, Hurh BS, Im WT. A Novel Ginsenoside-Transforming α-L-Rhamnosidase from Bifidobacterium: Screening, Characterization and Application. Biomolecules 2024; 14:1611. [PMID: 39766318 PMCID: PMC11673932 DOI: 10.3390/biom14121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Despite the rapid advancement of glycosidase biotechnology, ginsenoside-transforming rhamnosidases remain underexplored due to a lack of research. In this study, we aimed to bridge this gap by evaluating eight putative rhamnosidases for their ability to transform ginsenosides. Among them, a novel rhamnosidase (C118) from Bifidobacterium was identified as being efficient at hydrolyzing ginsenoside Re. This enzyme was expressed well in Escherichia coli and exhibited optimal activity at pH of 6.0 and 45 °C. Protein structural predictions revealed that the potential active hydrophobic area near an active pocket may influence the ginsenoside-transforming activities compared to non-active screened rhamnosidases. This enzyme's thermal stability exceeded that of the only previously known ginsenoside-transforming rhamnosidase, BD890. Additionally, the kcat/Km value of C118 was 1.45 times higher than that of BD890. Using recombinant C118 from E. coli, all ginsenoside Re in a PPT-type ginsenoside mixture (2.25 mg/mL) was converted after 12 h of reaction. To the best of our knowledge, this is the most efficient ginsenoside Re-transforming α-L-rhamnosidase reported to date, enhancing our understanding of rhamnosidase-substrate interactions and potentially improving the efficiency and specificity of the conversion process. These findings offer promising implications for the production of pharmacologically active ginsenosides in the pharmaceutical, cosmetic, and functional food industries.
Collapse
Affiliation(s)
- Chang-Hao Cui
- Sempio Fermentation Research Center, Sempio Foods Company, Osong 28156, Republic of Korea; (C.-H.C.); (D.S.)
| | - Doohang Shin
- Sempio Fermentation Research Center, Sempio Foods Company, Osong 28156, Republic of Korea; (C.-H.C.); (D.S.)
| | - Byung-Serk Hurh
- Sempio Fermentation Research Center, Sempio Foods Company, Osong 28156, Republic of Korea; (C.-H.C.); (D.S.)
| | - Wan-Taek Im
- Department of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- AceEMzyme Co., Ltd., Academic Industry Cooperation, Anseong 17579, Republic of Korea
| |
Collapse
|
6
|
Han D, Zhao Z, Mao T, Gao M, Yang X, Gao Y. Ginsenoside Rg1: A Neuroprotective Natural Dammarane-Type Triterpenoid Saponin With Anti-Depressive Properties. CNS Neurosci Ther 2024; 30:e70150. [PMID: 39639753 PMCID: PMC11621566 DOI: 10.1111/cns.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Depression, a widespread mental disorder, presents significant risks to both physical and mental health due to its high rates of recurrence and suicide. Currently, single-target antidepressants typically alleviate depressive symptoms or delay the progression of depression rather than cure it. Ginsenoside Rg1 is one of the main ginsenosides found in Panax ginseng roots. It improves depressive symptoms through various mechanisms, suggesting its potential as a treatment for depression. MATERIALS AND METHODS We evaluated preclinical studies to comprehensively discuss the antidepressant mechanism of ginsenoside Rg1 and review its toxicity and medicinal value. Additionally, pharmacological network and molecular docking analyses were performed to further validate the antidepressant effects of ginsenoside Rg1. RESULTS The antidepressant mechanism of ginsenoside Rg1 may involve various pharmacological mechanisms and pathways, such as inhibiting neuroinflammation and over-activation of microglia, preserving nerve synapse structure, promoting neurogenesis, regulating monoamine neurotransmitter levels, inhibiting hyperfunction of the hypothalamic-pituitary-adrenal axis, and combatting antioxidative stress. Moreover, ginsenoside Rg1 preserves astrocyte gap junction function by regulating connexin43 protein biosynthesis and degradation, contributing to its antidepressant effect. Pharmacological network and molecular docking studies identified five targets (AKT1, STAT3, EGFR, PPARG, and HSP90AA1) as potential molecular regulatory sites of ginsenoside Rg1. CONCLUSIONS Ginsenoside Rg1 may exert its antidepressant effects via various pharmacological mechanisms. In addition, multicenter clinical case-control and molecular targeted studies are required to confirm both the clinical efficacy of ginsenoside Rg1 and its potential direct targets.
Collapse
Affiliation(s)
- Dong Han
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zheng Zhao
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Tinghui Mao
- Department of Organ Transplantation and Hepatobiliary SurgeryThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Man Gao
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xue Yang
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yan Gao
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
7
|
Kim M, Yoon M, Cho S, Kim MJ, Um MY. Rice bran supplement ameliorates chronic restraint stress-induced depression-like behaviors in mice. Food Funct 2024; 15:10600-10613. [PMID: 39310986 DOI: 10.1039/d4fo00718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Depression is emerging as a social and health-related issue worldwide. Rice bran possesses a variety of biological properties; however, its potential efficacy and molecular mechanisms in depression remain unclear. This study investigated the antidepressant effects of rice bran supplement (RBS) in a mouse model of chronic restraint stress (CRS)-induced depression. RBS was administered to mice subjected to CRS for 5 weeks. RBS improved depressive symptoms in CRS-exposed mice, as evidenced by increased sucrose preference and reduced immobility time. It reduced hypothalamic-pituitary-adrenal (HPA) axis-related hormones. Additionally, RBS downregulated the glucocorticoid receptor (GR) pathway and upregulated the ERK-CREB-BDNF pathway in the prefrontal cortex and hippocampus. Furthermore, RBS increased neurotransmitter levels and decreased monoamine oxidase levels in the brain. Molecular docking analysis indicated that γ-oryzanol (ORY) interacts with GR. Moreover, ORY inhibited GR activity in GR-transfected HEK293T cells. The effects of ORY were not significantly altered by treatment with GR antagonist mifepristone or GR siRNA, suggesting ORY functions as a GR antagonist. Additionally, ORY administration improved depressive behaviors in CRS-exposed mice and modulated the imbalance of HPA axis-related hormones in mice. Mechanisms of action in the RBS were partially attributed by ORY, a key component of RBS, suggesting that ORY contributes synergistically to the effect of RBS. Thus, RBS administration could be a promising therapeutic approach to treating CRS-induced depression.
Collapse
Affiliation(s)
- Minji Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea.
- Department of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Minseok Yoon
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea.
| | - Suengmok Cho
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Min Jung Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea.
| | - Min Young Um
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea.
- Department of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
8
|
Nguyen Van K, Kim Dang T, Thanh Nguyen H, Honma S, Dang Hoang V, Thi Thu Vu G. Effect of saponins in Panax notoginseng (Burkill) F. H. Chen on the steroid hormone levels in the chronic unpredictable mild stress model of depression in rats. Nat Prod Res 2024:1-8. [PMID: 38949646 DOI: 10.1080/14786419.2024.2371997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Recent research has indicated that Panax notoginseng saponins (PNS) extracted from the radix of Panax notoginseng (Burkill) F. H. Chen exert antidepressant effects. This study aimed to assess the antidepressive effects of ginsenoside Rg1 and PNS in a depression model induced by chronic unpredictable mild stress (CUMS). Over a period of three weeks, rats were administered ginsenoside Rg1 at a dose of 30 mg/kg and PNS at dosages ranging from 100 to 200 mg/kg body weight per day. To assess how ginsenoside Rg1 and PNS influence depression-like behaviours in rats, various assessments were conducted, including coat state evaluation, forced swim test, and elevated plus maze test. The levels of cortisol and testosterone in serum samples were analysed using the liquid chromatography-electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) method. LC-ESI-MS/MS method provides precise and accurate results. The lower limit of quantification values for cortisol and testosterone were determined as 100 and 2 pg/mL, respectively. Our data demonstrated that both ginsenoside Rg1 and PNS significantly reversed depression-like behaviour in rats by improving coat condition, reducing immobility time in the forced swim test, and increasing time spent in the open arms of the elevated plus maze test. Furthermore, ginsenoside Rg1 and PNS exhibited a regulatory effect on cortisol and testosterone levels in plasma. These findings suggest that ginsenoside Rg1 and PNS may be potential antidepressants in clinical treatment.
Collapse
Affiliation(s)
- Khanh Nguyen Van
- Faculty of Pharmacy, University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Thu Kim Dang
- Faculty of Pharmacy, University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Hai Thanh Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Seijiro Honma
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Vu Dang Hoang
- Faculty of Analytical Chemistry and Drug Testing, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Giang Thi Thu Vu
- Faculty of Pharmaceutics and Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi, Vietnam
| |
Collapse
|
9
|
Zhang J, Yan J, Li S, Chen Q, Lin J, Peng Y, Liu Y, Wang B, Wei X, Sun C, Niu S. GPR55 activation improves anxiety- and depression-like behaviors of mice during methamphetamine withdrawal. Heliyon 2024; 10:e30462. [PMID: 38720745 PMCID: PMC11077030 DOI: 10.1016/j.heliyon.2024.e30462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Methamphetamine is a potent and highly addictive neurotoxic psychostimulant that triggers a spectrum of adverse emotional responses during withdrawal. G-protein coupled receptor 55 (GPR55), a novel endocannabinoid receptor, is closely associated with mood regulation. Herein, we developed a murine model of methamphetamine-induced anxiety- and depressive-like behavior during abstinence which showed a decreased GPR55 expression in the hippocampus. Activation of GPR55 mitigated these behavioral symptoms, concomitantly ameliorating impairments in hippocampal neurogenesis and reducing neuroinflammation. These findings underscore the pivotal role of GPR55 in mediating the neuropsychological consequences of methamphetamine withdrawal, potentially via mechanisms involving the modulation of hippocampal neurogenesis and inflammation.
Collapse
Affiliation(s)
- Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Shuyue Li
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Binbin Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Xinrong Wei
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
| | - Chen Sun
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830011, China
| |
Collapse
|
10
|
Shao J, Qu L, Liu Y, Zhang J, Liu Y, Deng J, Ma X, Fan D. Ginsenoside Rk3 Regulates Tryptophan Metabolism along the Brain-Gut Axis by Targeting Tryptophan Hydroxylase and Remodeling the Intestinal Microenvironment to Alleviate Depressive-Like Behavior in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7100-7120. [PMID: 38488514 DOI: 10.1021/acs.jafc.3c07599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Depression is a neuropsychiatric disease that significantly impacts the physical and mental health of >300 million people worldwide and places a major burden on society. Ginsenosides are the main active ingredient in ginseng and have been proven to have various pharmacological effects on the nervous system. Herein, we investigated the antidepressant effect of ginsenoside Rk3 and its underlying mechanism in a murine model of depression. Rk3 significantly improved depression-like behavior in mice, ameliorated the disturbance of the hypothalamus-pituitary-adrenal axis, and alleviated neuronal damage in the hippocampus and prefrontal cortex of mice. Additionally, Rk3 improved the abnormal metabolism of tryptophan in brain tissue by targeting tryptophan hydroxylase, thereby reducing neuronal apoptosis and synaptic structural damage in the mouse hippocampus and prefrontal cortex. Furthermore, Rk3 reshaped the composition of the gut microbiota of mice and regulated intestinal tryptophan metabolism, which alleviated intestinal barrier damage. Thus, this study provides valuable insights into the role of Rk3 in the tryptophan metabolic cycle along the brain-gut axis, suggesting that Rk3 may have the potential for treating depression.
Collapse
Affiliation(s)
- Jingjing Shao
- Shaanxi Institute of Microbiology, Xiying Road 76, Xi'an, Shaanxi 710043, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yao Liu
- Shaanxi Institute of Microbiology, Xiying Road 76, Xi'an, Shaanxi 710043, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Jingjing Zhang
- Shaanxi Institute of Microbiology, Xiying Road 76, Xi'an, Shaanxi 710043, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| |
Collapse
|
11
|
Zhang J, Song Z, Huo Y, Li G, Lu L, Wei C, Zhang S, Gao X, Jiang X, Xu Y. Engeletin alleviates depressive-like behaviours by modulating microglial polarization via the LCN2/CXCL10 signalling pathway. J Cell Mol Med 2024; 28:e18285. [PMID: 38597406 PMCID: PMC11005460 DOI: 10.1111/jcmm.18285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Microglial polarization and associated inflammatory activity are the key mediators of depression pathogenesis. The natural Smilax glabra rhizomilax derivative engeletin has been reported to exhibit robust anti-inflammatory activity, but no studies to date have examined the mechanisms through which it can treat depressive symptoms. We showed that treatment for 21 days with engeletin significantly alleviated depressive-like behaviours in chronic stress social defeat stress (CSDS) model mice. T1-weighted imaging (T1WI), T2-weighted imaging (T2WI) imaging revealed no significant differences between groups, but the bilateral prefrontal cortex of CSDS mice exhibited significant increases in apparent diffusion coefficient and T2 values relative to normal control mice, with a corresponding reduction in fractional anisotropy, while engeletin reversed all of these changes. CSDS resulted in higher levels of IL-1β, IL-6, and TNF-a production, enhanced microglial activation, and greater M1 polarization with a concomitant decrease in M2 polarization in the mPFC, whereas engeletin treatment effectively abrogated these CSDS-related pathological changes. Engeletin was further found to suppress the LCN2/C-X-C motif chemokine ligand 10 (CXCL10) signalling axis such that adeno-associated virus-induced LCN2 overexpression ablated the antidepressant effects of engeletin and reversed its beneficial effects on the M1/M2 polarization of microglia. In conclusion, engeletin can alleviate CSDS-induced depressive-like behaviours by regulating the LCN2/CXCL10 pathway and thereby altering the polarization of microglia. These data suggest that the antidepressant effects of engeletin are correlated with the polarization of microglia, highlighting a potential avenue for future design of antidepressant strategies that specifically target the microglia.
Collapse
Affiliation(s)
- Jie Zhang
- Department of RadiologyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Zheng Song
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Yanchao Huo
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Guangqiang Li
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Liming Lu
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Chuanmei Wei
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Shuping Zhang
- College of Basic MedicineBinzhou Medical UniversityYantaiShandongP.R. China
| | - Xinfu Gao
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Xingyue Jiang
- Department of RadiologyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Yangyang Xu
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| |
Collapse
|
12
|
Chen X, Du H, Liu Y, Shi T, Li J, Liu J, Zhao L, Liu S. Fully connected-convolutional (FC-CNN) neural network based on hyperspectral images for rapid identification of P. ginseng growth years. Sci Rep 2024; 14:7209. [PMID: 38532030 PMCID: PMC10966043 DOI: 10.1038/s41598-024-57904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
P. ginseng is a precious traditional Chinese functional food, which is used for both medicinal and food purposes, and has various effects such as immunomodulation, anti-tumor and anti-oxidation. The growth year of P. ginseng has an important impact on its medicinal and economic values. Fast and nondestructive identification of the growth year of P. ginseng is crucial for its quality evaluation. In this paper, we propose a FC-CNN network that incorporates spectral and spatial features of hyperspectral images to characterize P. ginseng from different growth years. The importance ranking of the spectra was obtained using the random forest method for optimal band selection. Based on the hyperspectral reflectance data of P. ginseng after radiometric calibration and the images of the best five VNIR bands and five SWIR bands selected, the year-by-year identification of P. ginseng age and its identification experiments for food and medicinal purposes were conducted, and the FC-CNN network and its FCNN and CNN branch networks were tested and compared in terms of their effectiveness in the identification of P. ginseng growth years. It has been experimentally verified that the best year-by-year recognition was achieved by utilizing images from five visible and near-infrared important bands and all spectral curves, and the recognition accuracy of food and medicinal use reached 100%. The FC-CNN network is significantly better than its branching model in the effect of edible and medicinal identification. The results show that for P. ginseng growth year identification, VNIR images have much more useful information than SWIR images. Meanwhile, the FC-CNN network utilizing the spectral and spatial features of hyperspectral images is an effective method for the identification of P. ginseng growth year.
Collapse
Affiliation(s)
- Xingfeng Chen
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hejuan Du
- The School of Information Engineering, Xizang Minzu University, Xianyang, 712089, China
| | - Yun Liu
- The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang, 050000, China
| | - Tingting Shi
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jiaguo Li
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Jun Liu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Limin Zhao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Shu Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
13
|
Yogesh Bhatia N, Mahesh Doshi G. Terazosin produces an antidepressant-like effect in mice exposed to chronic unpredictable mild stress behavioral alteration. Neurosci Lett 2024; 822:137653. [PMID: 38266974 DOI: 10.1016/j.neulet.2024.137653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/19/2023] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Terazosin is an α1-adrenergic receptor antagonist that can relax smooth muscle and is prescribed to treat benign prostatic hyperplasia and, rarely, hypertension. The present study investigated the antidepressant-like actions of terazosin (TZ) in mice. They were first subjected to chronic unpredictable mild stress (CUMS) and then the effects of TZ were assessed using the forced swimming test (FST) and tail suspension test (TST), sucrose preference test (SPT), actophotometer test (APT). The changes in the PGK1 levels, neurotransmitters, and proinflammatory cytokines levels after chronic stress and TZ treatment were examined. It was found that TZ exhibited an antidepressant-like effect in the FST, TST, SPT, and APT. It was effective in the CUMS model of depression. It was also found that TZ treatment reduced the levels of proinflammatory cytokines and elevated the neurotransmitter levels in mice. Results of this study suggest that TZ has antidepressant-like actions in mice models of CUMS induced depression.
Collapse
Affiliation(s)
- Nirav Yogesh Bhatia
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Mahesh Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
14
|
Jiang N, Zhang Y, Yao C, Chen F, Liu Y, Chen Y, Wang Y, Choudhary MI, Liu X. Hemerocallis citrina Baroni ameliorates chronic sleep deprivation-induced cognitive deficits and depressive-like behaviours in mice. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:35-43. [PMID: 38245346 DOI: 10.1016/j.lssr.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 01/22/2024]
Abstract
Sleep deprivation (SD) is common during spaceflight. SD is known to cause cognitive deficits and depression, requiring treatment and prevention. Hemerocallis citrina Baroni (Liliaceae) is a perennial herb with antidepressant, antioxidant, antitumor, anti-inflammatory, and neuroprotective effects.The aim of our study was to investigate the effects of H. citrina extract (HCE) on SD-induced cognitive decline and depression-like behavior and possible neuroinflammation-related mechanisms. HCE (2 g/kg/day, i.g.) or vortioxetine (10 mg/kg/day, i.g.) were given to mice by oral gavage for a total of 28 days during the SD process. HCE treatment was found to ameliorate SD-induced impairment of short- and long-term spatial and nonspatial memory, measured using Y-maze, object recognition, and Morris water maze tests, as well as mitigating SD-induced depression-like behaviors, measured by tail suspension and forced swimming tests. HCE also reduced the levels of inflammatory cytokines (IL-1β, IL-18, and IL-6) in the serum and hippocampus. Furthermore, HCE suppressed SD-induced microglial activation in the prefrontal cortex (PFC) and the CA1 and dentate gyrus (DG) regions of the hippocampus. HCE also inhibited the expression of phosphorylated NF-κB and activation of the NLRP3 inflammasome. In summary, our findings indicated that HCE attenuated SD-induced cognitive impairment and depression-like behavior and that this effect may be mediated by the inhibition of inflammatory progression and microglial activation in the hippocampus, as well as the down-regulation of NF-κB and NLRP3 signaling. The findings of these studies showingTthese results indicate that HCE exerts neuroprotective effects and are consistent with the findings of previous studies, suggesting that HCE is beneficial for the prevention and treatment of cognitive decline and depression in SD.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Fang Chen
- Hunan University of Chinese Medicine, Hunan 410000, China
| | - Yupei Liu
- Hunan University of Chinese Medicine, Hunan 410000, China
| | - Yuzhen Chen
- Hunan University of Chinese Medicine, Hunan 410000, China
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Hunan University of Chinese Medicine, Hunan 410000, China.
| |
Collapse
|
15
|
Wu JJ, Zhang L, Liu D, Xia J, Yang Y, Tang F, Chen L, Ao H, Peng C. Ginsenoside Rg1, lights up the way for the potential prevention of Alzheimer's disease due to its therapeutic effects on the drug-controllable risk factors of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116955. [PMID: 37536646 DOI: 10.1016/j.jep.2023.116955] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, Shen Nong, BenCao Jing, and Compendium of Materia Medica (Bencao Gangmu), Panax ginseng, and its prescriptions have been used for the treatment of dementia, depression, weight loss, Xiaoke disease (similar to diabetes), and vertigo. All these diseases are associated with the drug-controllable risk factors for Alzheimer's disease (AD), including depression, obesity, diabetes, and hypertension. Ginsenoside Rg1, one of the main active ingredients of P. ginseng and its congener Panax notoginseng, possesses therapeutic potentials against AD and associated diseases. This suggests that ginsenoside Rg1 might have the potential for AD prevention and treatment. Although the anti-AD effects of ginsenoside Rg1 have received more attention, a systematic review of its effects on depression, obesity, diabetes, and hypertension is not available. AIM OF THE REVIEW This systematic literature review comprehensively summarized existing literature on the therapeutic potentials of ginsenoside Rg1 in AD prevention for the propose of providing a foundation of future research aimed at enabling the use of such drugs in clinical practice. METHODS Information on ginsenoside Rg1 was collected from relevant published articles identified through a literature search in electronic scientific databases (PubMed, Science Direct, and Google Scholar). The keywords used were "Ginsenoside Rg1," "Panax ginseng," "Source," "Alzheimer's disease," "Brain disorders," "Depression," "Obesity," "Diabetes," and "Hypertension." RESULTS The monomer ginsenoside Rg1 can be relatively easily obtained and has therapeutic potentials against AD. In vitro and in vivo experiments have demonstrated the therapeutic potentials of ginsenoside Rg1 against the drug-controllable risk factors of AD including depression, obesity, diabetes, and hypertension. Thus, ginsenoside Rg1 alleviates diseases resulting from AD risk factors by regulating multiple targets and pathways. CONCLUSIONS Ginsenoside Rg1 has the potentials to prevent AD by alleviating depression, obesity, diabetes, and hypertension.
Collapse
Affiliation(s)
- Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
16
|
Taha M, Mahmoud ME, Al-Kushi AG, Sarhan A, Abdelbagi O, Baokbah TAS, Babateen O, El-Shenbaby I, Qusty NF, Elazab ST. Anxiolytic and antidepressant like effects of Zamzam water in STZ-induced diabetic rats, targeting oxidative stress, neuroinflammation, BDNF/ERK/CREP pathway with modulation of hypothalamo-pituitary-adrenal axis. Front Neurosci 2023; 17:1265134. [PMID: 38105928 PMCID: PMC10722298 DOI: 10.3389/fnins.2023.1265134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Recent studies have reported a strong relationship between diabetes and anxiety- and depression-like behaviors; however, there is a lack of information on the underlying pathophysiology. Alkaline Zamzam water (ZW), which is rich in several trace elements, has neuroprotective properties. This study aimed to investigate the anxiolytic and antidepressant effects of ZW against diabetes-induced behavioral changes and shed light on the possible underlying mechanisms. Methods Forty-eight rats were divided into four experimental groups (n = 12): group I (control group), group II (Zamzam water group), group III (diabetic group), and group IV (diabetic + Zamzam water group). Diabetes was induced by an intraperitoneal injection of 60 mg/kg streptozotocin (STZ). At the end of the experiment, the forced swimming test (FST) was used to assess depression-like effects. The elevated plus maze test (EPMT) and open field test (OFT) were performed to evaluate anxiety-like behavior. Blood levels of the hypothalamic-pituitary-adrenal (HPA) axis were measured, and prefrontal cortex and hippocampal tissue samples were removed for histological, immunohistochemical, ELISA, and Q-PCR analyses. Results ZW significantly decreased the immobility time in the FST, indicating an antidepressant effect (p < 0.001). Additionally, ZW significantly improved the OFT and open field entry (OFE) percentages in the EPMT, increasing center crossing and decreasing grooming and fecal boli in the OFT. This indicated an anxiolytic-like effect in diabetic rats with histological improvement. Interestingly, ZW significantly increased prefrontal cortical and hippocampal levels of antioxidant enzymes and the Nrf2/HO-1 pathway. It also modulated the HPA axis by increasing cortisol and corticotropin-releasing hormone (CRH) levels, with a decrease in ACTH and an increase in monoamine neurotransmitters. Furthermore, diabetic rats that received ZW showed a decrease in the inflammatory markers TNF-α and GFAP by immunohistochemistry and in the mRNA levels of NFκB, IL-1β, and IL6. In addition, ZW downregulated the expression of the BDNF/ERK2/CREP pathway. Conclusion Our results suggested a neuroprotective effect of ZW against diabetes-induced anxiety- and depression-like behaviors and explored the underlying mechanisms. These findings suggest a promising therapeutic strategy for patients with diabetes who experience anxiety and depression.
Collapse
Affiliation(s)
- Medhat Taha
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Anatomy, Al-Qunfudah Medical College, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Mohamed Ezzat Mahmoud
- Histology Department, Damietta Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Abdullah G. Al-Kushi
- Department of Human Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Anas Sarhan
- Department of Internal Medicine, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Omer Abdelbagi
- Department of Pathology, Qunfudah Faculty of Medicine, Umm-Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Tourki A. S. Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Omar Babateen
- Department of Physiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Ibrahim El-Shenbaby
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Naeem F. Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Mattova S, Simko P, Urbanska N, Kiskova T. Bioactive Compounds and Their Influence on Postnatal Neurogenesis. Int J Mol Sci 2023; 24:16614. [PMID: 38068936 PMCID: PMC10706651 DOI: 10.3390/ijms242316614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Since postnatal neurogenesis was revealed to have significant implications for cognition and neurological health, researchers have been increasingly exploring the impact of natural compounds on this process, aiming to uncover strategies for enhancing brain plasticity. This review provides an overview of postnatal neurogenesis, neurogenic zones, and disorders characterized by suppressed neurogenesis and neurogenesis-stimulating bioactive compounds. Examining recent studies, this review underscores the multifaceted effects of natural compounds on postnatal neurogenesis. In essence, understanding the interplay between postnatal neurogenesis and natural compounds could bring novel insights into brain health interventions. Exploiting the therapeutic abilities of these compounds may unlock innovative approaches to enhance cognitive function, mitigate neurodegenerative diseases, and promote overall brain well-being.
Collapse
Affiliation(s)
| | | | | | - Terezia Kiskova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (S.M.); (P.S.); (N.U.)
| |
Collapse
|
18
|
Ge JB, Jiang B, Shi TS, Li WY, Chen WJ, Zhu BL, Qin ZH. Cucurbitacin B Exerts Significant Antidepressant-Like Effects in a Chronic Unpredictable Mild Stress Model of Depression: Involvement of the Hippocampal BDNF-TrkB System. Int J Neuropsychopharmacol 2023; 26:680-691. [PMID: 37603290 PMCID: PMC10586053 DOI: 10.1093/ijnp/pyad052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Although depression has been a serious neuropsychiatric disorder worldwide, current antidepressants used in clinical practice have various weaknesses, including delayed onset and low rates of efficacy. Recently, the development of new antidepressants from natural herbal medicine has become one of the important research hotspots. Cucurbitacin B is a natural compound widely distributed in the Cucurbitaceae and Cruciferae families and has many pharmacological activities. The present study aimed to investigate whether cucurbitacin B possess antidepressant-like effects in mice. METHODS The antidepressant-like effects of cucurbitacin B on mice behaviors were explored using the forced swim test, tail suspension test, open field test, sucrose preference test, and a chronic unpredictable mild stress model of depression together. Then, western blotting and immunofluorescence were used to examine the effects of cucurbitacin B on the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling cascade and neurogenesis in the hippocampus of mice. Furthermore, BDNF-short hairpin RNA, K252a, and p-chlorophenylalanine methyl ester were adopted together to determine the antidepressant mechanism of cucurbitacin B. RESULTS It was found that administration of cucurbitacin B indeed produced notable antidepressant-like effects in mice, which were accompanied with significant promotion in both the hippocampal BDNF-TrkB pathway and neurogenesis. The antidepressant mechanism of cucurbitacin B involves the hippocampal BDNF-TrkB system but not the serotonin system. CONCLUSIONS Cucurbitacin B has the potential to be a novel antidepressant candidate.
Collapse
Affiliation(s)
- Jian-Bin Ge
- Department of Pharmacology and Laboratory of Aging and Nervous Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmacy, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
Wang W, Wang L, Wang L, Li Y, Lan T, Wang C, Chen X, Chen S, Yu S. Ginsenoside-Rg1 synergized with voluntary running exercise protects against glial activation and dysregulation of neuronal plasticity in depression. Food Funct 2023. [PMID: 37464840 DOI: 10.1039/d3fo00496a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Depression is a common psychological disease accompanied by mental disorders and somatic symptoms. However, the underlying mechanisms regarding the pathogenesis of depression are still not clear. Neuronal damage resulting from inflammation is considered to be one of the important risk factors for depression. Ginsenoside-Rg1, a sterol extract extracted from ginseng herbs, has been shown to have neuroprotective effects against neurodegenerative diseases. Moreover, running exercise, a simple behavioral therapy, has been recently shown to have antidepressant effects. However, whether these two synergized strategies are more efficient in depression treatment, especially the neural mechanisms underlying this practical and interesting treatment is unknown. In this study, we have shown that ginsenoside-Rg1 synergized with voluntary running exercise exerts more efficiency on suppressing neuroinflammation, up-regulating expression of neurotrophic factors, and synaptic-related proteins, ameliorating neuronal structural damages than that of ginsenoside-Rg1 or voluntary exercise alone, suggesting its better neuroprotective effects. More importantly, the antidepressant-like effect of this synergistic treatment was also significantly better than either of these two treatments. These results suggest that ginsenoside-Rg1, synergized with voluntary running, may have higher efficacy in the treatment of depression through anti-inflammation and the improvement of neuroplasticity. These findings may provide a new perspective for the development of a therapeutic strategy for depression.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Lihong Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Liyan Wang
- Morphological experimental center, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Ye Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Tian Lan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Changmin Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Xiao Chen
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Shihong Chen
- Department of Endocrinology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Ji'nan, Shandong 250033, People's Republic of China.
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
- Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
20
|
Zhang N, Yang Y, Li C, Zhang K, GAO X, Shen J, Wang Y, Cheng D, Lv J, Sun J. Based on 1H NMR and LC-MS metabolomics reveals biomarkers with neuroprotective effects in multi-parts ginseng powder. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
21
|
Nakayama H, Ihara D, Fukuchi M, Toume K, Yuri C, Tsuda M, Shibahara N, Tabuchi A. The extract based on the Kampo formula daikenchuto (Da Jian Zhong Tang) induces Bdnf expression and has neurotrophic effects in cultured cortical neurons. J Nat Med 2023; 77:584-595. [PMID: 37148454 DOI: 10.1007/s11418-023-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
Reductions in brain-derived neurotrophic factor (BDNF) expression levels have been reported in the brains of patients with neurological disorders such as Alzheimer's disease. Therefore, upregulating BDNF and preventing its decline in the diseased brain could help ameliorate neurological dysfunctions. Accordingly, we sought to discover agents that increase Bdnf expression in neurons. Here, we screened a library of 42 Kampo extracts to identify those with the ability to induce Bdnf expression in cultured cortical neurons. Among the active extracts identified in the screen, we focused on the extract based on the Kampo formula daikenchuto. The extract of daikenchuto in the library used in this study was prepared using the mixture of Zingiberis Rhizoma Processum (ZIN), Zanthoxyli Piperiti Pericarpium (ZAN), and Ginseng Radix (GIN) without Koi. In this study, we defined DKT as the mixture of ZIN, ZAN, and GIN without Koi (DKT extract means the extract prepared from the mixture of ZIN, ZAN, and GIN without Koi). DKT extract significantly increased endogenous Bdnf expression by mediated, at least in part, via Ca2+ signaling involving L-type voltage-dependent Ca2+ channels in cultured cortical neurons. Furthermore, DKT extract significantly improved the survival of cultured cortical neurons and increased neurite complexity in immature neurons. Taken together, our findings suggest that DKT extract induces Bdnf expression and has a neurotrophic effect in neurons. Because BDNF inducers are expected to have therapeutic potential for neurological disorders, re-positioning of Kampo formulations such as daikenchuto may lead to clinical application in diseases associated with reduced BDNF in the brain.
Collapse
Affiliation(s)
- Hironori Nakayama
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan.
| | - Kazufumi Toume
- Department of Medicinal Resources Management, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Chisato Yuri
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Masaaki Tsuda
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Naotoshi Shibahara
- Kampo Education and Training Center, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
22
|
Yang SJ, Wang JJ, Cheng P, Chen LX, Hu JM, Zhu GQ. Ginsenoside Rg1 in neurological diseases: From bench to bedside. Acta Pharmacol Sin 2023; 44:913-930. [PMID: 36380226 PMCID: PMC10104881 DOI: 10.1038/s41401-022-01022-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Ginseng has been used in China as a superior medicinal material for thousands of years that can nourish the five internal organs, calm the mind and benefit wisdom. Due to its anti-inflammatory, antioxidant and neuroprotective activities, one of the active components of ginseng, ginsenoside Rg1, has been extensively investigated in the remedy of brain disorders, especially dementia and depression. In this review, we summarized the research progress on the action mechanisms of Rg1 ameliorating depression-like behaviors, including inhibition of hyperfunction of hypothalamic-pituitary-adrenal (HPA) axis, regulation of synaptic plasticity and gut flora. Rg1 may alleviate Alzheimer's disease in the early phase, as well as in the middle-late phases through repairing dendrite, axon and microglia- and astrocyte-related inflammations. We also proposed that Rg1 could regulate memory state (the imbalance of working and aversive memory) caused by distinct stimuli. These laboratory studies would further the clinical trials on Rg1. From the prospective of drug development, we discussed the limitations of the present investigations and proposed our ideas to increase permeability and bioavailability of Rg1. Taken together, Rg1 has the potential to treat neuropsychiatric disorders, but a future in-depth investigation of the mechanisms is still required. In addition, drug development will benefit from the clinical trials in one specific neuropsychiatric disorder.
Collapse
Affiliation(s)
- Shao-Jie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing-Ji Wang
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China.
| | - Ping Cheng
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Li-Xia Chen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jia-Min Hu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guo-Qi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
23
|
Wang H, Yang Y, Pei G, Wang Z, Chen N. Neurotrophic basis to the pathogenesis of depression and phytotherapy. Front Pharmacol 2023; 14:1182666. [PMID: 37089920 PMCID: PMC10115971 DOI: 10.3389/fphar.2023.1182666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Depression is a major neuropsychiatric disease that considerably impacts individuals’ psychosocial function and life quality. Neurotrophic factors are now connected to the pathogenesis of depression, while the definitive neurotrophic basis remains elusive. Besides, phytotherapy is alternative to conventional antidepressants that may minimize undesirable adverse reactions. Thus, further research into the interaction between neurotrophic factors and depression and phytochemicals that repair neurotrophic factors deficit is highly required. This review highlighted the implication of neurotrophic factors in depression, with a focus on the brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), and nerve growth factor (NGF), and detailed the antidepressant activities of various phytochemicals targeting neurotrophic factors. Additionally, we presented future opportunities for novel diagnostic and therapeutic strategies for depression and provided solutions to challenges in this area to accelerate the clinical translation of neurotrophic factors for the treatment of depression.
Collapse
Affiliation(s)
- Huiqin Wang
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yantao Yang
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, Hunan, China
| | - Gang Pei
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, Hunan, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naihong Chen
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Naihong Chen,
| |
Collapse
|
24
|
Hsieh CC, Chang CY, Yar Lee TX, Wu J, Saovieng S, Hsieh YW, Zhu M, Huang CY, Kuo CH. Longevity, tumor, and physical vitality in rats consuming ginsenoside Rg1. J Ginseng Res 2023; 47:210-217. [PMID: 36926614 PMCID: PMC10014179 DOI: 10.1016/j.jgr.2021.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/12/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022] Open
Abstract
Background Effects of the major ginsenoside Rg1 on mammalian longevity and physical vitality are rarely reported. Purpose To examine longevity, tumor, and spontaneous locomotor activity in rats consuming Rg1. Methods A total of 138 Wistar rats were randomized into 2 groups: control (N = 69) and Rg1 (N = 69). Rg1 (0.1 mg/kg per day) were orally supplemented from 6 months of age until natural death. Spontaneous mobility was measured by video-tracking together with body composition (dual energy x-ray absorptiometry) and inflammation markers at 5, 14, 21, and 28 months of age. Results No significant differences in longevity (control: 706 days; Rg1: 651 days, p = 0.77) and tumor incidence (control: 19%; Rg1: 12%, p = 0.24) were observed between the two groups. Movement distance in the control group declined significantly by ∼60% at 21 months of age, together with decreased TNF-α (p = 0.01) and increased IL-10 (p = 0.02). However, the movement distance in the Rg1 group was maintained ∼50% above the control groups (p = 0.01) at 21 months of age with greater magnitudes of TNF-α decreases and IL-10 increases. Glucose, insulin, and body composition (bone, muscle and fat percentages) were similar for both groups during the entire observation period. Conclusion The results of the study suggest a delay age-dependent decline in physical vitality during late life by lifelong Rg1 consumption. This improvement is associated with inflammatory modulation. Significant effects of Rg1 on longevity and tumorigenesis were not observed.
Collapse
Affiliation(s)
- Chao-Chieh Hsieh
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chiung-Yun Chang
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Tania Xu Yar Lee
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Jinfu Wu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan.,Laboratory of Regenerative Medicine in Sports Science, School of Physical Education & Sports Science, South China Normal University, Guangzhou, China
| | - Suchada Saovieng
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan.,College of Sports Science & Technology, Mahidol University, Thailand
| | - Yu-Wen Hsieh
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Maijian Zhu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| |
Collapse
|
25
|
Shao J, Ma X, Qu L, Ma P, Huang R, Fan D. Ginsenoside Rh4 remodels the periphery microenvironment by targeting the brain-gut axis to alleviate depression-like behaviors. Food Chem 2023; 404:134639. [DOI: 10.1016/j.foodchem.2022.134639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
26
|
Zhang N, Jiang H, Wang H, Wang Y, Peng Y, Liu Y, Xia C, Yan X, Chu S, Zhang Y, Wang Z, Chen N. Novel Antidepressant Mechanism of Ginsenoside Rg1 in Regulating the Dysfunction of the Glutamatergic System in Astrocytes. Int J Mol Sci 2022; 24:ijms24010575. [PMID: 36614017 PMCID: PMC9820673 DOI: 10.3390/ijms24010575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Ginsenoside Rg1, a traditional Chinese medicine monomer, has been shown to have antidepressant effects. We previously found that Rg1 exerts antidepressant effects by improving the gap junction channels (GJCs) dysfunction; however, the downstream mechanisms through which Rg1 ameliorates GJC dysfunction remain unclear. Since hemichannels directly release glutamate, GJC dysfunction decreases the expression levels of glutamate transporters in astrocytes, and glutamatergic system dysfunction plays an essential role in the pathogenesis of depression. The glutamatergic system may be a potential downstream target of Rg1 that exerts antidepressant effects. Therefore, in this study, we aimed to determine the downstream mechanisms by which Rg1 ameliorated GJC dysfunction and exerted its antidepressant effects. Corticosterone (CORT) is used to mimic high glucocorticoid levels in patients with depression in vitro. Primary cortical astrocytes were isolated and phosphorylation of connexin43 (Cx43) as well as the functions of hemichannels, GJCs, and the glutamatergic system were evaluated after drug treatment. Rg1 pretreatment reversed the anomalous activation of Cx43 phosphorylation as well as the dysfunction of hemichannels, GJCs, and the glutamatergic system induced by CORT. These results suggest that Rg1 can ameliorate CORT-induced dysfunction of the glutamatergic system in astrocytes by potentially reducing Cx43 phosphorylation and inhibiting opening of hemichannels, thereby improving GJC dysfunction.
Collapse
Affiliation(s)
- Ningning Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huiqin Wang
- School of Pharmacy, Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, China
| | - Yating Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ye Peng
- School of Pharmacy, Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, China
| | - Yangbo Liu
- School of Pharmacy, Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, China
| | - Congyuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xu Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.W.); (N.C.); Tel.: +86-10-6316-5182 (Z.W.); +86-10-6316-5177 (N.C.)
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- School of Pharmacy, Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, China
- Correspondence: (Z.W.); (N.C.); Tel.: +86-10-6316-5182 (Z.W.); +86-10-6316-5177 (N.C.)
| |
Collapse
|
27
|
Yousuf S, Liu H, Yingshu Z, Zahid D, Ghayas H, Li M, Ding Y, Li W. Ginsenoside Rg1 modulates intestinal microbiota and supports re-generation of immune cells in dexamethasone-treated mice. Acta Microbiol Immunol Hung 2022; 69:259-269. [PMID: 36342667 DOI: 10.1556/030.2022.01881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Ginsenoside Rg1 is one of the major ginsenosides found in roots of Panax ginseng and Panax notoginseng. Ginsenoside Rg1 is known to possess various biological activities including immunity enhancement activity. However, it is not clear whether the regulation of immune function by Rg1 is related to the intestinal microbiota. In the present study, the immuno-modulatory and gut microbiota-reshaping effects of ginsenoside Rg1 were evaluated. Ginsenoside Rg1 acts as an immune-enhancing agent to increase spleen index and the number of T, B and dendritic cells in dexamethasone (Dex)-treated mice. Ginsenoside Rg1 also increased the production of sIgA and regulated the expression of interleukin 2 (IL-2), IL-4, IL-10 and IFN-γ. Meanwhile, Rg1 administration regulated the structure of intestinal microbiota. The relative abundance of mouse intestinal microbial groups, such as Alistipes, Ruminococcaceae, Lachnospiraceae, and Roseburia were increased by Rg1 administration, whereas a decrease in the potential pathogens like Helicobacteraceae, Dubosiella, Mycoplasma, Alloprevotella, Allobaculum was observed. Moreover, Rg1 metabolites of Lachnospiraceae bacterium enhanced the proliferation of CD4+ T cells and T regulatory (Treg) cells. Ginsenoside Rg1 improved the inflammatory condition of the colonic tissue and repaired the destructed mucosal barrier. This study suggested that Rg1 strengthens immunity with regulating the homeostasis of intestinal microbiota in mice.
Collapse
Affiliation(s)
- Sabiha Yousuf
- College of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China
| | - He Liu
- College of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Zhang Yingshu
- College of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Danish Zahid
- College of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Hassan Ghayas
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Wenzhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| |
Collapse
|
28
|
Chen X, Li C, Zeng R, Qiu L, Huang J, Wang N, Ren X, Lin X. Inhibition of miR-495-3p ameliorated sevoflurane induced damage through BDNF/ERK/CREB signaling pathways in HT22 cells. Transpl Immunol 2022; 75:101708. [PMID: 36103909 DOI: 10.1016/j.trim.2022.101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Sevoflurane is used in anesthesia for surgery including in organ transplantation. We investigated the role of a non-coding single-stranded microRNA, miR-495-3p, in the sevoflurane-induced neurotoxicity using a mouse hippocampal neuronal cell line (HT22). METHODS The levels of miR-495-3p in sevoflurane-exposed mice and HT22 cells were determined via RT-qPCR. The role of miR-495-3p on cell viability and apoptosis were determined by CCK-8 and flow cytometric assay, respectively. Western blotting was explored to measure levels of Bax, Bcl-2, active caspase 3, BDNF, p-ERK/ERK and p-CREB/CREB in HT22 cells. ELISA assay was used to examine the levels of reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione peroxidase (GPX) in cells. Dual luciferase reporter assay was used to explore the interaction of miR-495-3p and BDNF. RESULTS The level of miR-495-3p was increased sevoflurane-exposed mice and in sevoflurane-treated HT22 cells. Downregulation of miR-495-3p inhibited sevoflurane-induced apoptosis and promoted cell proliferation by upregulating the proteins of Bcl-2 and downregulating the expressions of Bax and active caspase-3 in HT22 cells. In addition, inhibition of miR-495-3p alleviated sevoflurane-induced oxidative injuries in HT22 cells via decline of ROS and upregulation of SOD and GPX. MiR-495-3p can inhibit the ERK/CREB pathway by targeting BDNF. CONCLUSION Downregulation of miR-495-3p can decrease oxidative status in HT22 cells and alleviate sevoflurane-induced cytotoxicity through stimulating the BDNF/ERK/CREB pathway.
Collapse
Affiliation(s)
- Xiaomei Chen
- Department of Anesthesiology, Affiliated Second Hospital of Xiamen University, 47 Shangteng Road, Fuzhou 350007, Fujian, China.
| | - Chongyi Li
- Department of Anesthesiology, Affiliated Second Hospital of Xiamen University, 47 Shangteng Road, Fuzhou 350007, Fujian, China
| | - Rui Zeng
- Department of Anesthesiology, Affiliated Second Hospital of Xiamen University, 47 Shangteng Road, Fuzhou 350007, Fujian, China
| | - Ling Qiu
- Department of Anesthesiology, Affiliated Second Hospital of Xiamen University, 47 Shangteng Road, Fuzhou 350007, Fujian, China
| | - Jianhang Huang
- Department of Anesthesiology, Affiliated Second Hospital of Xiamen University, 47 Shangteng Road, Fuzhou 350007, Fujian, China
| | - Ning Wang
- Department of Anesthesiology, Affiliated Second Hospital of Xiamen University, 47 Shangteng Road, Fuzhou 350007, Fujian, China
| | - Xia Ren
- Department of Anesthesiology, Affiliated Second Hospital of Xiamen University, 47 Shangteng Road, Fuzhou 350007, Fujian, China
| | - Xingwu Lin
- Department of Anesthesiology, Affiliated Second Hospital of Xiamen University, 47 Shangteng Road, Fuzhou 350007, Fujian, China
| |
Collapse
|
29
|
Jin Y, Pang H, Zhao L, Zhao F, Cheng Z, Liu Q, Cui R, Yang W, Li B. Ginseng total saponins and Fuzi total alkaloids exert antidepressant-like effects in ovariectomized mice through BDNF-mTORC1, autophagy and peripheral metabolic pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154425. [PMID: 36137328 DOI: 10.1016/j.phymed.2022.154425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Shenfu decoction (SFD) is a classic Chinese medicine prescription that has a strong cardiotonic effect. The combination of ginseng (the dried root of Panax ginseng C. A. Meyer) and Fuzi (processed product of sub-root of Aconitum carmichaeli Debx), the main constituents of SFD, has been reported to improve the pharmacological effect of each other. Moreover, research has shown that the main active components of SFD, ginseng total saponins (GTS) and Fuzi total alkaloids (FTA), have antidepressant activity. However, the effects of these ingredients on depressive-like behavior induced by ovariectomy, a model of menopausal depression, have not been studied. PURPOSE Our research aims to elucidate the antidepressant-like effects of GTS and FTA compatibility (GF) in ovariectomized mice and the potential mechanisms. METHODS To elucidate the antidepressant-like effects of GF in mice in ovariectomy condition, behavioral tests were performed after 7 days of intragastric administration of different doses of GF. Underlying molecular mechanisms of CREB-BDNF, BDNF-mTORC1 and autophagy signaling were detected by western blotting, serum metabolites were examined by UPLC-QE plus-MS and dendritic spine density was determined by Golgi-Cox staining. RESULTS GF remarkably decreased the immobility time in the forced swim test. GF also increased levels of pCREB/CREB, BDNF, Akt, mTORC1 and p62 in the prefrontal cortex and hippocampus, as well as decreased LC3-II/LC3-I in the prefrontal cortex and hippocampus of ovariectomized mice. Furthermore, 15 serum differential metabolites (9 of which are lipids and lipid molecules) were identified by metabonomics. Next, the antidepressant-like effects of GF was blocked by rapamycin, an inhibitor of mTORC1. The antidepressant actions of GF on levels of pCREB, mTORC1, LC3-Ⅱ/LC3-Ⅰ and p62 in the prefrontal cortex and the levels of BDNF, Akt, mTORC1 and p62 in the hippocampus were inhibited by rapamycin, and the dendritic spines density was also regulated. CONCLUSION GF has antidepressant effects in ovariectomized mice, and like other antidepressants, these effects involve activation of BDNF-mTORC1, autophagy regulation and consequent effects on hippocampal synaptic plasticity. Moreover, metabolomic results suggest that GF also has effects on peripheral lipid profiles that may provide potential biomarkers for these antidepressant-like effects. These results indicate that GF is worthy of further exploration as a promising pharmaceutical treatment for depression. This study provides a new direction for the development of new indications for traditional Chinese medicine compounds.
Collapse
Affiliation(s)
- Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China; Department of Pharmacy, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Huanhuan Pang
- Cosmetics Laboratory, Jilin Institute for Drug Control, Changchun 130033, PR China
| | - Lihong Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Qianqian Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
30
|
Peng S, Zhou Y, Lu M, Wang Q. Review of Herbal Medicines for the Treatment of Depression. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221139082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Depression, a mental illness that is receiving increasing attention, is caused by multiple factors and genes and adversely affects social life and health. Several hypotheses have been proposed to clarify the pathogenesis of depression, and various synthetic antidepressants have been introduced to treat patients with depression. However, these drugs are effective only in a proportion of patients and fail to achieve complete remission. Recently, herbal medicines have received much attention as alternative treatments for depression because of their fewer side effects and lower costs. In this review, we have mainly focused on the herbal medicines that have been proven in clinical studies (especially randomized controlled trials and preclinical studies) to have antidepressant effects; we also describe the potential mechanisms of the antidepressant effects of those herbal medicines; the cellular and animal model of depression; and the development of novel drug delivery systems for herbal antidepressants. Finally, we objectively elaborate on the challenges of using herbal medicines as antidepressants and describe the benefits, adverse effects, and toxicity of these medicines.
Collapse
Affiliation(s)
- Siqi Peng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yalan Zhou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Lu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
Wang A, Shi M, Xing J, Liu S, Liu Z, Song F. Treatment effects of Radix ginseng-Schisandra chinensis herb pair on Alzheimer’s disease: an investigation of MS-based metabolomics investigation. J Pharm Biomed Anal 2022; 220:115007. [DOI: 10.1016/j.jpba.2022.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
32
|
Current Progress on Neuroprotection Induced by Artemisia, Ginseng, Astragalus, and Ginkgo Traditional Chinese Medicines for the Therapy of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3777021. [PMID: 35746960 PMCID: PMC9213169 DOI: 10.1155/2022/3777021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Aging is associated with the occurrence of diverse degenerative changes in various tissues and organs and with an increased incidence of neurological disorders, especially neurodegenerative diseases such as Alzheimer's disease (AD). In recent years, the search for effective components derived from medicinal plants in delaying aging and preventing and treating neurodegenerative diseases has been increasing and the number of related publications shows a rising trend. Here, we present a concise, updated review on the preclinical and clinical research progress in the assessment of the therapeutic potential of different traditional Chinese medicines and derived active ingredients and their effect on the signaling pathways involved in AD neuroprotection. Recognized by their multitargeting ability, these natural compounds hold great potential in developing novel drugs for AD.
Collapse
|
33
|
The Untapped Potential of Ginsenosides and American Ginseng Berry in Promoting Mental Health via the Gut-Brain Axis. Nutrients 2022; 14:nu14122523. [PMID: 35745252 PMCID: PMC9227060 DOI: 10.3390/nu14122523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the popularity of the ginseng (Panax) root in health research and on the market, the ginseng berry’s potential remains relatively unexplored. Implementing ginseng berry cultivations and designing berry-derived products could improve the accessibility to mental health-promoting nutraceuticals. Indeed, the berry could have a higher concentration of neuroprotective and antidepressant compounds than the root, which has already been the subject of research demonstrating its efficacy in the context of neuroprotection and mental health. In this review, data on the berry’s application in supporting mental health via the gut–brain axis is compiled and discussed.
Collapse
|
34
|
Li Y, Guo Q, Huang J, Wang Z. Antidepressant Active Ingredients From Chinese Traditional Herb Panax Notoginseng: A Pharmacological Mechanism Review. Front Pharmacol 2022; 13:922337. [PMID: 35795547 PMCID: PMC9252462 DOI: 10.3389/fphar.2022.922337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Depression is one of the most common mental illnesses in the world and is highly disabling, lethal, and seriously endangers social stability. The side effects of clinical drugs used to treat depression are obvious, and the onset time is longer. Therefore, there is a great demand for antidepressant drugs with better curative effects, fewer side effects, and shorter onset time. Panax notoginseng, a Chinese herbal medication, has been used to treat depression for thousands of years and shown to have a therapeutic effect on depression. This review surveyed PubMed’s most recent 20 years of research on Panax notoginseng’s use for treating depression. We mainly highlight animal model research and outlined the pathways influenced by medicines. We provide a narrative review of recent empirical evidence of the anti-depressive effects of Panax Notoginseng and novel ideas for developing innovative clinical antidepressants with fewer side effects.
Collapse
Affiliation(s)
- Yanwei Li
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qingwan Guo
- Interdisciplinary Institute for Personalized Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Junqing Huang
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Junqing Huang, ; Ziying Wang,
| | - Ziying Wang
- Interdisciplinary Institute for Personalized Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Junqing Huang, ; Ziying Wang,
| |
Collapse
|
35
|
Fang C, Zhang Z, Xu H, Liu Y, Wang X, Yuan L, Xu Y, Zhu Z, Zhang A, Shao A, Lou M. Natural Products for the Treatment of Post-stroke Depression. Front Pharmacol 2022; 13:918531. [PMID: 35712727 PMCID: PMC9196125 DOI: 10.3389/fphar.2022.918531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Post-stroke depression (PSD) is the most frequent and important neuropsychiatric consequence of stroke. It is strongly associated with exacerbated deterioration of functional recovery, physical and cognitive recoveries, and quality of life. However, its mechanism is remarkably complicated, including the neurotransmitters hypothesis (which consists of a monoaminergic hypothesis and glutamate-mediated excitotoxicity hypothesis), inflammation hypothesis, dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, and neurotrophic hypothesis and neuroplasticity. So far, the underlying pathogenesis of PSD has not been clearly defined yet. At present, selective serotonin reuptake inhibitors (SSRIs) have been used as the first-line drugs to treat patients with PSD. Additionally, more than SSRIs, a majority of the current antidepressants complied with multiple side effects, which limits their clinical application. Currently, a wide variety of studies revealed the therapeutic potential of natural products in the management of several diseases, especially PSD, with minor side effects. Accordingly, in our present review, we aim to summarize the therapeutic targets of these compounds and their potential role in-clinic therapy for patients with PSD.
Collapse
Affiliation(s)
- Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyu Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibo Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Meiqing Lou,
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Meiqing Lou,
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Meiqing Lou,
| |
Collapse
|
36
|
Gao C, Wu M, Du Q, Deng J, Shen J. Naringin Mediates Adult Hippocampal Neurogenesis for Antidepression via Activating CREB Signaling. Front Cell Dev Biol 2022; 10:731831. [PMID: 35478969 PMCID: PMC9037031 DOI: 10.3389/fcell.2022.731831] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
The brain-derived neurotrophic factor/tropomyosin receptor kinase B/cAMP response element-binding protein (BDNF/TrkB/CREB) signaling pathway is a critical therapeutic target for inducing adult hippocampal neurogenesis and antidepressant therapy. In this study, we tested the hypothesis that naringin, a natural medicinal compound, could promote adult hippocampal neurogenesis and improve depression-like behaviors via regulating the BDNF/TrkB/CREB signaling pathway. We first investigated the effects of naringin on promoting adult hippocampal neurogenesis in both normal and chronic corticosterone (CORT)-induced depressive mice. Under physiological condition, naringin treatment enhanced the proliferation of neural stem/progenitor cells (NSPCs) and accelerated neuronal differentiation. In CORT-induced depression mouse model, naringin treatment promoted neuronal differentiation and maturation of NSPCs for hippocampal neurogenesis. Forced swim test, tail suspension test, and open field test confirmed the antidepressant and anxiolytic effects of naringin. Co-treatment of temozolomide (TMZ), a neurogenic inhibitor, abolished these antidepressant and anxiolytic effects. Meanwhile, naringin treatment increased phosphorylation of cAMP response element binding protein (CREB) but had no effect on the expression of brain-derived neurotrophic factor and phosphorylation of TrkB in the hippocampus of CORT-induced depressive mice. Co-treatment of CREB inhibitor 666-15, rather than TrkB inhibitor Cyc-B, abolished the neurogenesis-promoting and antidepressant effects of naringin. Taken together, naringin has antidepressant and anxiolytic effects, and the underlying mechanisms could be attributed to enhance hippocampal neurogenesis via activating CREB signaling.
Collapse
Affiliation(s)
- Chong Gao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hon Kong SAR, China
- The Institute of Brain and Cognitive Sciences, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hon Kong SAR, China
| | - Qiaohui Du
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hon Kong SAR, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hon Kong SAR, China
- *Correspondence: Jiangang Shen,
| |
Collapse
|
37
|
Kim M, Moon S, Jeon HS, Kim S, Koh SH, Chang MS, Kim YM, Choi YK. Dual Effects of Korean Red Ginseng on Astrocytes and Neural Stem Cells in Traumatic Brain Injury: The HO-1–Tom20 Axis as a Putative Target for Mitochondrial Function. Cells 2022; 11:cells11050892. [PMID: 35269514 PMCID: PMC8909112 DOI: 10.3390/cells11050892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
Astrocytes display regenerative potential in pathophysiologic conditions. In our previous study, heme oxygenase-1 (HO-1) promoted astrocytic mitochondrial functions in mice via the peroxisome-proliferator-activating receptor-γ coactivator-1α (PGC-1α) pathway on administering Korean red ginseng extract (KRGE) after traumatic brain injury (TBI). In this study, KRGE promoted astrocytic mitochondrial functions, assessed with oxygen consumption and adenosine triphosphate (ATP) production, which could be regulated by the translocase of the outer membrane of mitochondria 20 (Tom20) pathway with a PGC-1α-independent pathway. The HO-1–Tom20 axis induced an increase in mitochondrial functions, detected with cytochrome c oxidase subunit 2 and cytochrome c. HO-1 crosstalk with nicotinamide phosphoribosyltransferase was concomitant with the upregulated nicotinamide adenine dinucleotide (NAD)/NADH ratio, thereby upregulating NAD-dependent class I sirtuins. In adult neural stem cells (NSCs), KRGE-treated, astrocyte-conditioned media increased oxygen consumption and Tom20 levels through astrocyte-derived HO-1. HO inactivation by Sn(IV) protoporphyrin IX dichloride in TBI mice administered KRGE decreased neuronal markers, together with Tom20. Thus, astrocytic HO-1 induced astrocytic mitochondrial functions. HO-1-related, astrocyte-derived factors may also induce neuronal differentiation and mitochondrial functions of adult NSCs after TBI. KRGE-mediated astrocytic HO-1 induction may have a key role in repairing neurovascular function post-TBI in peri-injured regions by boosting astrocytic and NSC mitochondrial functions.
Collapse
Affiliation(s)
- Minsu Kim
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (S.M.); (H.S.J.); (S.K.)
| | - Sunhong Moon
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (S.M.); (H.S.J.); (S.K.)
| | - Hui Su Jeon
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (S.M.); (H.S.J.); (S.K.)
| | - Sueun Kim
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (S.M.); (H.S.J.); (S.K.)
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea;
| | - Mi-Sook Chang
- Department of Oral Anatomy, Seoul National University School of Dentistry, Seoul 03080, Korea;
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Yoon Kyung Choi
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (S.M.); (H.S.J.); (S.K.)
- Correspondence: ; Tel.: +82-2-450-0558
| |
Collapse
|
38
|
Ginsenoside Rg1 Reduced Microglial Activation and Mitochondrial Dysfunction to Alleviate Depression-Like Behaviour Via the GAS5/EZH2/SOCS3/NRF2 Axis. Mol Neurobiol 2022; 59:2855-2873. [PMID: 35230663 PMCID: PMC9016007 DOI: 10.1007/s12035-022-02740-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/07/2022] [Indexed: 12/31/2022]
Abstract
Ginsenoside Rg1 is the principal active ingredient in ginseng. The antidepressant effects of Rg1 have been validated; however, the specific underlying mechanism of this effect needs further research. Rats were subjected to the chronic restraint stress (CRS) depression model. Rg1, or a positive control drug, was administered to the rats. Depression-like behaviours were evaluated through behavioural experiments. Cytokine, mRNA, protein, ATP, and mitochondria DNA levels were detected using the indicated methods. Lentivirus-packaged plasmids were injected into the rat brain for GAS5 overexpression or knockdown. In vitro mitochondrial dysfunction was evaluated by detecting mitochondrial reactive oxygen species and mitochondrial membrane potential. Direct interaction between GAS5 and EZH2 was validated by RNA immunoprecipitation and RNA pull-down assay. The enrichment of EZH2 and H3K27me3 was evaluated through chromatin immunoprecipitation quantitative real-time PCR. Rg1 treatment alleviated depression-like behaviours, microglial activation, and mitochondrial dysfunction in CRS rats. Similarly, GAS5 knockdown revealed a similar protective effect of Rg1 treatment. GAS5 overexpression in the rat brain compromised the protective effect of Rg1 treatment. Moreover, Rg1 treatment or GAS5 knockdown attenuated microglial activation and mitochondrial dysfunction in vitro. Mechanically, GAS5 was suppressed SOCS3 and NRF2 expression by facilitating EZH2-mediated transcriptional repression. Rg1 attenuated microglial activation and improved mitochondrial dysfunction in depression by downregulating GAS5 expression. Mechanically, GAS5 might regulate microglial activation and mitochondrial dysfunction via the epigenetic suppression of NRF2 and SOCS3.
Collapse
|
39
|
Zarneshan SN, Fakhri S, Khan H. Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach. Pharmacol Res 2022; 177:106099. [DOI: 10.1016/j.phrs.2022.106099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 12/15/2022]
|
40
|
Yun YJ, Park BH, Hou J, Oh JP, Han JH, Kim SC. Ginsenoside F1 Protects the Brain against Amyloid Beta-Induced Toxicity by Regulating IDE and NEP. Life (Basel) 2022; 12:58. [PMID: 35054451 PMCID: PMC8779788 DOI: 10.3390/life12010058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Ginsenoside F1, the metabolite of Rg1, is one of the most important constituents of Panax ginseng. Although the effects of ginsenosides on amyloid beta (Aβ) aggregation in the brain are known, the role of ginsenoside F1 remains unclear. Here, we investigated the protective effect of ginsenoside F1 against Aβ aggregation in vivo and in vitro. Treatment with 2.5 μM ginsenoside F1 reduced Aβ-induced cytotoxicity by decreasing Aβ aggregation in mouse neuroblastoma neuro-2a (N2a) and human neuroblastoma SH-SY5Y neuronal cell lines. Western blotting, real-time PCR, and siRNA analysis revealed an increased level of insulin-degrading enzyme (IDE) and neprilysin (NEP). Furthermore, liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis confirmed that ginsenoside F1 could pass the blood-brain barrier within 2 h after administration. Immunostaining results indicate that ginsenoside F1 reduces Aβ plaques in the hippocampus of APPswe/PSEN1dE9 (APP/PS1) double-transgenic Alzheimer's disease (AD) mice. Consistently, increased levels of IDE and NEP protein and mRNA were observed after the 8-week administration of 10 mg/kg/d ginsenoside F1. These data indicate that ginsenoside F1 is a promising therapeutic candidate for AD.
Collapse
Affiliation(s)
- Yee-Jin Yun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.-J.Y.); (J.-P.O.); (J.-H.H.)
| | - Bong-Hwan Park
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (B.-H.P.); (J.H.)
| | - Jingang Hou
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (B.-H.P.); (J.H.)
| | - Jung-Pyo Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.-J.Y.); (J.-P.O.); (J.-H.H.)
| | - Jin-Hee Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.-J.Y.); (J.-P.O.); (J.-H.H.)
| | - Sun-Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.-J.Y.); (J.-P.O.); (J.-H.H.)
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (B.-H.P.); (J.H.)
| |
Collapse
|
41
|
Zhang Y, Luo Y, Hou X, Lu K, He Y, Yang B, Qin Y. Xiaoyao powder alleviates the hippocampal neuron damage in chronic unpredictable mild stress-induced depression model rats in hippocampus via connexin 43Cx43/glucocorticoid receptor/brain-derived neurotrophic factor signaling pathway. Bioengineered 2022; 13:383-394. [PMID: 34984950 PMCID: PMC8805874 DOI: 10.1080/21655979.2021.2005744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Xiaoyao Powder (XYP) has been widely applied in China to treat stress-related illnesses, such as migraine, depression, Parkinson’s disease, insomnia, and hypertension. Herein, this study aims to explore the effect of XYP on chronic unpredictable mild stress (CUMS)-induced depression and its underlying mechanisms. CUMS-induced depression rat models were established, they were subsequently randomly divided and treated with various conditions. Results of this study indicated that supplementation of XYP observably abolished CUMS-induced hippocampal damage and serum corticosterone (CORT) elevation. In mechanism, we discovered that CUMS induction could cause a prominent downregulation in glucocorticoid receptor (GR), phosphorylated-GR (p-GR), connexin 43 (Cx43), and brain-derived neurotrophic factor (BDNF), a remarkable upregulation in c-Src. While the introduction of XYP could reverse the changes in all of these indicators mediated by CUMS. Furthermore, we proved that Cx43 could interact with GR, and the protective effect of XYP on hippocampal neurons is realized by up-regulating GR. Summarized, this study indicated that XYP could ameliorate hippocampal neuron damage in CUMS-induced depression model rats through acting on Cx43/GR/BDNF axis.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou City, China
| | - Yong Luo
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou City, China
| | - Xuenan Hou
- The Forth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou City, China
| | - Kang Lu
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou City, China
| | - Yanhong He
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou City, China
| | - Baoying Yang
- The 3rd Departments of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou City, China
| | - Yi Qin
- Department of Orthopaedics, Zhuhai People's Hospital, Zhuhai City, China
| |
Collapse
|
42
|
Kim M, Mok H, Yeo WS, Ahn JH, Choi YK. Role of ginseng in the neurovascular unit of neuroinflammatory diseases focused on the blood-brain barrier. J Ginseng Res 2021; 45:599-609. [PMID: 34803430 PMCID: PMC8587512 DOI: 10.1016/j.jgr.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/28/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Ginseng has long been considered as an herbal medicine. Recent data suggest that ginseng has anti-inflammatory properties and can improve learning- and memory-related function in the central nervous system (CNS) following the development of CNS neuroinflammatory diseases such as Alzheimer's disease, cerebral ischemia, and other neurological disorders. In this review, we discuss the role of ginseng in the neurovascular unit, which is composed of endothelial cells surrounded by astrocytes, pericytes, microglia, neural stem cells, oligodendrocytes, and neurons, especially their blood-brain barrier maintenance, anti-inflammatory effects and regenerative functions. In addition, cell-cell communication enhanced by ginseng may be attributed to regeneration via induction of neurogenesis and angiogenesis in CNS diseases. Thus, ginseng may have therapeutic potential to exert cognitive improvement in neuroinflammatory diseases such as stroke, traumatic brain injury, multiple sclerosis, Parkinson's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Joong-Hoon Ahn
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
43
|
Araki R, Tachioka H, Kita A, Fujiwara H, Toume K, Matsumoto K, Yabe T. Kihito prevents corticosterone-induced brain dysfunctions in mice. J Tradit Complement Med 2021; 11:513-519. [PMID: 34765515 PMCID: PMC8572719 DOI: 10.1016/j.jtcme.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/28/2021] [Accepted: 05/13/2021] [Indexed: 11/19/2022] Open
Abstract
Kihito (KIT; Gui Pi Tang) is a traditional herbal medicine that is used for treatment of neuropsychiatric disorders such as depression, anxiety, neurosis and insomnia in China and Japan. Recently, it has also been shown that KIT improves cognitive dysfunction in patients with Alzheimer's disease. In this study, to investigate the mechanisms underlying the effects of KIT on stress-induced brain dysfunctions such as a depressed state and memory impairment, we examined whether KIT prevents behavioral and neurophysiological abnormalities in mice treated chronically with corticosterone (CORT). CORT (40 mg/kg/day, s.c.) and KIT (1000 mg/kg/day, p.o.) were given to 7-week-old male ddY mice for 14 days. Twenty-four hours after the last treatment, depression-like behavior in the forced swim test, spatial memory in the Barnes maze test, cell survival and the number of new-born immature neurons, dendritic spine density and expression levels of mRNA for neurotrophic factors were analyzed. Depression-like behavior and spatial memory impairment were observed in CORT-treated mice without KIT treatment. Hippocampal cell survival, the number of hippocampal new-born immature neurons, hippocampal and accumbal dendritic spine density and mRNA levels for neurotrophic factors such as glial cell line-derived neurotrophic factor (GDNF) were decreased in CORT-treated mice without KIT treatment. KIT prevented CORT-induced depression-like behavior, spatial memory impairment, and decreases in hippocampal cell survival, the number of hippocampal new-born immature neurons, accumbal dendritic spine density and GDNF mRNA. KIT may ameliorate stress-induced brain dysfunctions via prevention of adverse effects of CORT on cell survival, new-born immature neurons, spine density and neurotrophic factors.
Collapse
Affiliation(s)
- Ryota Araki
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
- Corresponding author.
| | - Hayato Tachioka
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Ayami Kita
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Hironori Fujiwara
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kazufumi Toume
- Division of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takeshi Yabe
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
- Corresponding author.
| |
Collapse
|
44
|
Chen Z, Tang Z, Zou K, Huang Z, Liu L, Yang Y, Wang W. D-Serine produces antidepressant-like effects in mice through suppression of BDNF signaling pathway and regulation of synaptic adaptations in the nucleus accumbens. Mol Med 2021; 27:127. [PMID: 34654365 PMCID: PMC8518303 DOI: 10.1186/s10020-021-00389-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE D-Serine is a crucial endogenous co-agonist of N-methyl-D-aspartate receptors (NMDARs) in the central nervous system and can affect the function of the brain derived neurotrophic factor (BDNF) system, which plays an essential role in modulating synaptic plasticity. The current study aimed to systematically evaluate the role and mechanisms of D-serine in depressive behavior in nucleus accumbens (NAc). METHODS D-Serine concentration in the chronic social defeat stress (CSDS) model in NAc was measured using high-performance liquid chromatography (HPLC). The antidepressant-like effects of D-serine were identified using forced swim test (FST) and tail suspension test (TST) in control mice and then assessed in CSDS model. We applied social interaction and sucrose preference tests to identify the susceptibility of CSDS model. Western blotting was further performed to assess the changes of BDNF signaling cascade in NAc after CSDS and D-serine treatment. The BDNF signaling inhibitor (K252a) was also used to clarify the antidepressant-like mechanism of D-serine. Moreover, D-serine effects on synaptic plasticity in NAc were investigated using electrophysiological methods. RESULTS D-Serine concentration was decreased in depression susceptible mice in NAc. D-Serine injections into NAc exhibited antidepressant-like effects in FST and TST without affecting the locomotor activity of mice. D-Serine was also effective in CSDS model of depression. Moreover, D-serine down-regulated the BDNF signaling pathway in NAc during CSDS procedure. Furthermore, BDNF signaling inhibitor (K252a) enhanced the antidepressant effects of D-serine. We also found that D-serine was essential for NMDARs-dependent long-term depression (LTD). CONCLUSION D-Serine exerts antidepressant-like effects in mice mediated through restraining the BDNF signaling pathway and regulating synaptic plasticity in NAc.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zhenyu Tang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ke Zou
- Jiangxi Mental Hospital of Nangchang University, 43 Shangfang Road, Nanchang, 330029, Jiangxi, China
| | - Zhihong Huang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Liuer Liu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yuanjian Yang
- Jiangxi Mental Hospital of Nangchang University, 43 Shangfang Road, Nanchang, 330029, Jiangxi, China.
| | - Wei Wang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
45
|
Della Vecchia S, Marchese M, Santorelli FM, Sicca F. Kir4.1 Dysfunction in the Pathophysiology of Depression: A Systematic Review. Cells 2021; 10:2628. [PMID: 34685608 PMCID: PMC8534194 DOI: 10.3390/cells10102628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
A serotonergic dysfunction has been largely postulated as the main cause of depression, mainly due to its effective response to drugs that increase the serotonergic tone, still currently the first therapeutic line in this mood disorder. However, other dysfunctional pathomechanisms are likely involved in the disorder, and this may in part explain why some individuals with depression are resistant to serotonergic therapies. Among these, emerging evidence suggests a role for the astrocytic inward rectifier potassium channel 4.1 (Kir4.1) as an important modulator of neuronal excitability and glutamate metabolism. To discuss the relationship between Kir4.1 dysfunction and depression, a systematic review was performed according to the PRISMA statement. Searches were conducted across PubMed, Scopus, and Web of Science by two independent reviewers. Twelve studies met the inclusion criteria, analyzing Kir4.1 relationships with depression, through in vitro, in vivo, and post-mortem investigations. Increasing, yet not conclusive, evidence suggests a potential pathogenic role for Kir4.1 upregulation in depression. However, the actual contribution in the diverse subtypes of the disorder and in the comorbid conditions, for example, the epilepsy-depression comorbidity, remain elusive. Further studies are needed to better define the clinical phenotype associated with Kir4.1 dysfunction in humans and the molecular mechanisms by which it contributes to depression and implications for future treatments.
Collapse
Affiliation(s)
- Stefania Della Vecchia
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy;
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Maria Marchese
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Via dei Giacinti 2, 56128 Pisa, Italy;
| | - Filippo Maria Santorelli
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Via dei Giacinti 2, 56128 Pisa, Italy;
| | - Federico Sicca
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy;
- Child Neuropsychiatric Unit, USL Centro Toscana, 59100 Prato, Italy
| |
Collapse
|
46
|
Moragrega I, Ríos JL. Medicinal Plants in the Treatment of Depression: Evidence from Preclinical Studies. PLANTA MEDICA 2021; 87:656-685. [PMID: 33434941 DOI: 10.1055/a-1338-1011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Medicinal plants and their extracts are natural remedies with enormous potential for treating various diseases, including depression and anxiety. In the case of depression, hundreds of plants have traditionally been used in folk medicine for generations. Different plant extracts and natural products have been analyzed as potential antidepressant agents with validated models to test for antidepressant-like effects in animals, although other complementary studies have also been employed. Most of these studies focus on the possible mediators implicated in these potential effects, with dopamine, serotonin, and noradrenaline being the principal neurotransmitters implicated, both through interference with receptors and with their metabolism by monoamino oxidases, as well as through neuro-endocrine and neuroprotective effects. There are approximately 650 reports of antidepressant-like medicinal plants in PubMed; 155 of them have been compiled in this review, with a relevant group yielding positive results. Saffron and turmeric are the most relevant species studied in both preclinical and clinical studies; St. John's wort or kava have also been tested extensively. To the best of our knowledge, no review to date has provided a comprehensive understanding of the biomolecular mechanisms of action of these herbs or of whether their potential effects could have real benefits. The purpose of this narrative review is to provide an update regarding medicinal plants from the year 2000 to the present to examine the therapeutic potential of these antidepressant-like plants in order to contribute to the development of new therapeutic methods to alleviate the tremendous burden that depression causes worldwide.
Collapse
Affiliation(s)
- Inés Moragrega
- Departament de Psicobiologia, Facultat de Psicologia, Universitat de València
| | - José Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València
| |
Collapse
|
47
|
Wang J, Chen R, Liu C, Wu X, Zhang Y. Antidepressant mechanism of catalpol: Involvement of the PI3K/Akt/Nrf2/HO-1 signaling pathway in rat hippocampus. Eur J Pharmacol 2021; 909:174396. [PMID: 34332921 DOI: 10.1016/j.ejphar.2021.174396] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Catalpol is a major compound in Rehmanniae Radix with outstanding medicinal and nutritional values. Our previous studies have demonstrated catalpol's antidepressant effect, but its mechanisms remain unclear. This study aimed to explore the antidepressant mechanisms of catalpol via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1 (HO-1) pathway. Results demonstrated that chronic unpredictable mild stress (CUMS) for 5 consecutive weeks caused significant decreases in the sucrose preference and the horizontal and vertical scores of open-field test, as well as a significant increase in the swimming-immobility time of rats; catalpol administration significantly reversed the abnormality of these indicators. Further real-time fluorescent quantitative polymerase chain reaction and Western blotting results together showed that CUMS significantly downregulated the expression levels of hippocampal genes and proteins, including PI3K, Akt, Nrf2, HO-1, tropomyosin-related kinase B (TrkB), and brain-derived neurotrophic factor; catalpol administration significantly reversed the abnormal expression of these genes and proteins. CUMS also caused a significant decrease in the hippocampal superoxide dismutase, catalase, glutathione peroxidase, glutathione-s transferase, and reduced glutathione levels, as well as a significant increase in thiobarbituric acid reactive substances level in rats; catalpol administration significantly reversed the abnormality of these indicators. Taken together, this study confirmed for the first time that the antidepressant effect of catalpol on CUMS-induced depression involved the upregulation of the PI3K/Akt/Nrf2/HO-1 signaling pathway, thereby improving the hippocampal neurotrophic, neuroprotective, and antioxidant levels. The PI3K/Akt/Nrf2/HO-1 pathway-related molecules may serve as potential new biomarkers and candidate molecular targets for catalpol's antidepressant effects.
Collapse
Affiliation(s)
- Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Rongxing Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Chen Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
48
|
Terstege DJ, MacDonald DS, Tasker RA. Standardised ginseng extract G115® potentiates the antidepressant-like properties of fluoxetine in the forced swim test. Acta Neuropsychiatr 2021; 33:141-147. [PMID: 33478610 DOI: 10.1017/neu.2021.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Ginsenosides, biologically active components of the root of Panax ginseng, have been reported to have therapeutic benefits in a number of disease states including psychiatric conditions such as major depressive disorder. Our objective was to determine if a standardised commercial ginseng extract, G115®, could reduce the signs of behavioural despair commonly observed in animal models of depression either alone or in combination with the selective serotonin reuptake inhibitor (SSRI) fluoxetine. METHODS Male Sprague-Dawley (SD) rats (N = 51) were divided into four groups: vehicle control, G115® ginseng root extract, fluoxetine and fluoxetine plus G115®. Rats were trained to voluntarily consume treatments twice daily for 14 days and were then tested in an open field (OF), elevated plus maze (EPM) and forced swim test (FST). Post-mortem hippocampal and prefrontal cortex tissue was analysed for expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) by western blot. RESULTS One-way Analysis of Variance revealed no significant group differences in the OF or plus-maze performance on any variable examined. In the FST, fluoxetine significantly reduced immobility time and increased latency to immobility. The effects of fluoxetine were further significantly potentiated by co-administration of G115®. Post-mortem tissue analysis revealed significant group differences in BDNF expression in the left hippocampus and left prefrontal cortex without any accompanying changes in TrkB expression. CONCLUSIONS We conclude that oral G115® significantly potentiates the antidepressant-like effect of fluoxetine in the FST in the absence of potentially confounding effects on locomotion and anxiety.
Collapse
Affiliation(s)
- Dylan J Terstege
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Canada
| | - Debra S MacDonald
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Canada
| | - R Andrew Tasker
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Canada
- Translational Neuropsychiatry Unit, Clinical Medicine, Aarhus Universitet, Aarhus, Denmark
| |
Collapse
|
49
|
Guan W, Gu JH, Ji CH, Liu Y, Tang WQ, Wang Y, Jiang B. Xanthoceraside administration produces significant antidepressant effects in mice through activation of the hippocampal BDNF signaling pathway. Neurosci Lett 2021; 757:135994. [PMID: 34058291 DOI: 10.1016/j.neulet.2021.135994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Current available antidepressants have various adverse reactions and slow pharmacodynamics, so it is necessary to find novel antidepressants for effective treatment. Xanthoceraside (XAN), a novel triterpenoid saponin extracted from the fruit husks of Xanthoceras sorbifolium Bunge, has anti-amnesic and neuroprotective properties. The purpose and significance of this study is to assess whether XAN has antidepressant effects in mice using the forced swim test (FST), tail suspension test (TST) and chronic unpredictable mild stress (CUMS) model of depression. The effects of XAN treatment on the hippocampal brain-derived neurotrophic factor (BDNF) signaling pathway and neurogenesis were examined. The antidepressant mechanism of XAN was explored using a BDNF inhibitor (K252a) and an anti-BDNF antibody. It was found that XAN administration significantly reversed the depressive-like behaviors of CUMS-treated mice. XAN treatment also significantly prevented the decreasing effects of CUMS on the hippocampal BDNF signaling and neurogenesis. The antidepressant effects of XAN in mice were blocked by both administration of K252a and anti-BDNF antibody. Collectively, these findings indicate that XAN possesses antidepressant effects in mice which are mediated by activation of hippocampal BDNF signaling pathway, thus providing the first evidence that XAN can be a potential antidepressant candidate.
Collapse
Affiliation(s)
- Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Jiang-Hong Gu
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Chun-Hui Ji
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Yue Liu
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Wen-Qian Tang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Yao Wang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, 899 PingHai Road, Suzhou 215000, Jiangsu, China.
| | - Bo Jiang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China.
| |
Collapse
|
50
|
Xia B, Chen C, Tao W. Neuroplasticity: A Key Player in the Antidepressant Action of Chinese Herbal Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1115-1133. [PMID: 34049476 DOI: 10.1142/s0192415x21500531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditional Chinese medicine (TCM) is a systematic medicine. It provides alternative strategies for the treatment of depression with its clinical experience, comprehensive diagnosis, and treatment theory. Chinese herbal medicine (CHM) is the major form of TCM prescription, and numerous CHMs have been demonstrated to possess remarkable antidepressant-like properties. A diversity of mechanisms have been implicated in CHM-associated antidepressant property. This paper reviewed the neuroplastic mechanisms underlying the antidepressant actions of CHM, finding that CHM repairs neuroplasticity by improving neurogenesis, neurotrophic factors, synaptic spine morphology, cell signaling, glutamatergic system, monoamine neurotransmitters, and neural apoptosis. CHM thereby exerts an antidepressant effect, attempting to offer a better understanding of the mechanisms implicated in TCM-related antidepressant-like efficacy and laying a foundation for the scientific evaluation and development of TCM in treating depression.
Collapse
Affiliation(s)
- Baomei Xia
- Faculty of Rehabilitation Science, Nanjing Normal University of Special Education, Nanjing 210023, P. R. China.,School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chang Chen
- Department of Neurology, Nanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, P. R. China
| | - Weiwei Tao
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|