1
|
Raj JAT, Shah J, Ghanekar S, John G, Goda JS, Chatterjee A. Pharmacological and therapeutic innovation to mitigate radiation-induced cognitive decline (RICD) in brain tumor patients. Cancer Lett 2025; 620:217700. [PMID: 40194653 DOI: 10.1016/j.canlet.2025.217700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Radiation therapy is a key treatment modality in both primary and metastatic brain tumors. However, despite its efficacy, it often results in cognitive decline, particularly after whole brain RT (WBRT). Radiation-induced cognitive impairment, which affects memory, attention, and executive function, significantly affects Quality Of Life (QOL) and functional independence. Although white matter necrosis, a hallmark of conventional radiation techniques, has become less common with modern methods, cognitive deficits remain a persistent issue. Neuroinflammation is a key driver of this decline, along with disruptions in hippocampal neurogenesis and damage to regions of the brain. Radiation affects neural stem cells, mature neurons, and glial cells, particularly within the hippocampus, affecting cognition. Recent studies suggest that targeting neuroinflammation and other key Signaling pathways (NMDAR, RAAS, PARP, PPAR, etc.) can reduce cognitive impairment. This review examines the theme of radiation-induced cognitive decline and explores possible interventions to prevent or mitigate these outcomes.
Collapse
Affiliation(s)
- Jemema Agnes Tripena Raj
- Department of Radiation Oncology and Radiobiology Lab, Advance Center for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Center, Navi Mumbai, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Janmey Shah
- Department of Radiation Oncology and Radiobiology Lab, Advance Center for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Center, Navi Mumbai, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Shubham Ghanekar
- Department of Radiation Oncology and Radiobiology Lab, Advance Center for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Center, Navi Mumbai, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Geofrey John
- Department of Radiation Oncology and Radiobiology Lab, Advance Center for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Center, Navi Mumbai, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Jayant S Goda
- Department of Radiation Oncology and Radiobiology Lab, Advance Center for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Center, Navi Mumbai, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology and Radiobiology Lab, Advance Center for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Center, Navi Mumbai, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra, India.
| |
Collapse
|
2
|
Leskinen S, Alsalek S, Wernicke AG. Effects of radiotherapy on the hippocampus and hippocampal neurogenesis: a systematic review of preclinical studies. Strahlenther Onkol 2025; 201:383-397. [PMID: 39800777 DOI: 10.1007/s00066-024-02341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/18/2024] [Indexed: 03/22/2025]
Abstract
PURPOSE A comprehensive literature review was undertaken to understand the effects and underlying mechanisms of cranial radiotherapy (RT) on the hippocampus and hippocampal neurogenesis as well as to explore protective factors and treatments that might mitigate these effects in preclinical studies. METHODS PubMed/MEDLINE, Web of Science, and Embase were queried for studies involving the effects of radiation on the hippocampus and hippocampal neurogenesis. Data extraction followed the Animal Research Reporting of In Vivo Experiments (ARRIVE) guidelines, and a risk of bias assessment was conducted for the included animal studies using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk of bias tool. RESULTS Ninety studies were included, with 48 assessing radiation-induced changes and 42 examining possible interventions. The majority of studies (97.8%) used experimental animal models. Studies demonstrated that cranial irradiation reduces hippocampal neurogenesis, particularly in the neurogenic niches of the dentate gyrus; causes alterations in gene expression and enzymatic activity; induces inflammation; promotes apoptosis; and often results in cognitive impairment. Potential protective strategies include pharmacological agents like metformin and peroxisome proliferator-activated receptor-α (PPAR-α) agonists or behavioral interventions like voluntary running. In a risk of bias assessment, many studies were rated as having an unclear risk of bias. CONCLUSION Radiotherapy, while essential for managing brain tumors, can have adverse effects on hippocampal function and structure in animal models. These effects manifest in reduced neurogenesis, molecular alterations, and increased inflammation, leading to cognitive deficits. Further research is needed to identify and improve interventions and develop comprehensive therapeutic approaches that balance effective tumor control with the preservation of cognitive health.
Collapse
Affiliation(s)
- Sandra Leskinen
- State University of New York Downstate Medical Center, Brooklyn, NY, USA.
| | - Samir Alsalek
- Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - A Gabriella Wernicke
- Department of Radiation Medicine, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| |
Collapse
|
3
|
Song D, Zhang J, Hu X, Liu X. Progress in the treatment of Alzheimer's disease based on nanosized traditional Chinese medicines. J Mater Chem B 2025; 13:1548-1572. [PMID: 39711283 DOI: 10.1039/d4tb02062f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Traditional Chinese medicine (TCM) has been employed for centuries in treating and managing Alzheimer's disease (AD). However, their effective delivery to target sites can be a major challenge. This is due to their poor water solubility, low bioavailability, and potential toxicity. Furthermore, the blood-brain barrier (BBB) is a major obstacle to effective TCM delivery, significantly reducing efficacy. Advancements in nanotechnology and its applications in TCM (nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain area. This review summarizes the recent advances in nanocarrier-based delivery systems for different types of active constituents of TCM for AD, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones. Besides, the main challenges and opportunities for the future development of these advanced TCM nanocarriers are emphasized. In conclusion, this review provides valuable insights and guidance for utilizing nanocarriers to shape future TCM drug delivery.
Collapse
Affiliation(s)
- Dan Song
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Xiaoyan Liu
- West China Hospital of Sichuan University, 610041, China
| |
Collapse
|
4
|
Potì F, Scalera E, Feuerborn R, Fischer J, Arndt L, Varga G, Pardali E, Seidl MD, Fobker M, Liebisch G, Hesse B, Lukasz AH, Rossaint J, Kehrel BE, Rosenbauer F, Renné T, Christoffersen C, Simoni M, Burkhardt R, Nofer JR. Sphingosine 1-phosphate receptor 1signaling in macrophages reduces atherosclerosis in LDL receptor-deficient mice. JCI Insight 2024; 9:e158127. [PMID: 39531328 PMCID: PMC11665566 DOI: 10.1172/jci.insight.158127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Sphingosine 1-phosphate (S1P) is a lysosphingolipid with antiatherogenic properties, but mechanisms underlying its effects remain unclear. We here investigated atherosclerosis development in cholesterol-rich diet-fed LDL receptor-deficient mice with high or low overexpression levels of S1P receptor 1 (S1P1) in macrophages. S1P1-overexpressing macrophages showed increased activity of transcription factors PU.1, interferon regulatory factor 8 (IRF8), and liver X receptor (LXR) and were skewed toward an M2-distinct phenotype characterized by enhanced production of IL-10, IL-1RA, and IL-5; increased ATP-binding cassette transporter A1- and G1-dependent cholesterol efflux; increased expression of MerTK and efferocytosis; and reduced apoptosis due to elevated B cell lymphoma 6 and Maf bZIP B. A similar macrophage phenotype was observed in mice administered S1P1-selective agonist KRP203. Mechanistically, the enhanced PU.1, IRF8, and LXR activity in S1P1-overexpressing macrophages led to downregulation of the cAMP-dependent PKA and activation of the signaling cascade encompassing protein kinases AKT and mTOR complex 1 as well as the late endosomal/lysosomal adaptor MAPK and mTOR activator 1. Atherosclerotic lesions in aortic roots and brachiocephalic arteries were profoundly or moderately reduced in mice with high and low S1P1 overexpression in macrophages, respectively. We conclude that S1P1 signaling polarizes macrophages toward an antiatherogenic functional phenotype and countervails the development of atherosclerosis in mice.
Collapse
Affiliation(s)
- Francesco Potì
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Enrica Scalera
- Department of Food and Drug, University of Parma, Parma, Italy
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
| | - Renata Feuerborn
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
| | - Josephine Fischer
- Institute of Molecular Tumor Biology, University of Münster, Münster, Germany
| | - Lilli Arndt
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany
| | - Georg Varga
- Department of Pediatric Rheumatology and Immunology, University Children’s Hospital Münster, Münster, Germany
| | - Evangelia Pardali
- Department of Cardiology, University Hospital Münster, Münster, Germany
- Pharvaris GmbH, Zug, Switzerland
| | - Matthias D. Seidl
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Manfred Fobker
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Bettina Hesse
- Division of General Internal Medicine, Nephrology, and Rheumatology, Department of Medicine D, and
| | - Alexander H. Lukasz
- Division of General Internal Medicine, Nephrology, and Rheumatology, Department of Medicine D, and
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Beate E. Kehrel
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University of Münster, Münster, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Jerzy-Roch Nofer
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Laboratory Medicine, Marien-Hospital, Niels-Stensen-Kliniken, Osnabrück, Germany
| |
Collapse
|
5
|
Wang Y, Bao X, Zhang Y, Wu Q. The current research status of the mechanisms and treatment of radioactive brain injury. Am J Cancer Res 2024; 14:5598-5613. [PMID: 39803653 PMCID: PMC11711531 DOI: 10.62347/beau4974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Radioactive brain injury, a severe complication ensuing from radiotherapy for head and neck malignancies, frequently manifests as cognitive impairment and substantially diminishes patients' quality of life. Despite its profound impact, the pathogenesis of this condition remains inadequately elucidated, and efficacious treatments are notably absent in clinical practice. Consequently, contemporary interventions predominantly focus on symptom alleviation rather than achieving a radical cure or reversing the injury process. This article provides a comprehensive review of the various pathogenic mechanisms and therapeutic strategies associated with radioactive brain injury, offering insights that may guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yaru Wang
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| | - Xiaoqing Bao
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| | - Yu Zhang
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| | - Qibing Wu
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| |
Collapse
|
6
|
Li K, Ji M, Sun X, Shan J, Su G. Food Polyphenols in Radiation-Related Diseases: The Roles and Possible Mechanisms. Curr Nutr Rep 2024; 13:884-895. [PMID: 39340730 DOI: 10.1007/s13668-024-00582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE OF REVIEW As science and technology continue to evolve, the potential harm of radiation to the human body cannot be overlooked. Radiation has the capacity to inflict cellular and body-wide damage. Polyphenols are a group of naturally occurring compounds that are found in an array of plant foods. Scientific studies have demonstrated that these compounds possess noteworthy anti-radiation efficacy. Furthermore, they have been observed to be less toxic at higher doses. In the present review, we discussed the mechanisms of ionizing radiation damage and the progress in the research on the radiation resistance mechanism of polyphenol compounds, to provide guidance for the prevention and treatment of radiation related diseases. RECENT FINDINGS Food polyphenols can reduce the oxidative damage caused by ionizing radiation, clear free radicals, reduce DNA damage, regulate NF-KB, MAPK, JAK/STAT, Wnt and other signaling pathways, improve immune function, and have significant protective effects on radiation-induced inflammation, fibrosis, cancer and other aspects. In addition, it also has significant dual effects on radiation sensitization and radiation protection. Food polyphenols come from a wide range of sources, are abundant in daily food, and have no toxic side effects, demonstrating that food polyphenols have great advantages in preventing and treating radiation-related diseases.
Collapse
Affiliation(s)
- Kaidi Li
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Maxin Ji
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiujuan Sun
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Junyan Shan
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guangyue Su
- Shenyang Pharmaceutical University, Shenyang, 110016, China.
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative, Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
7
|
Li X, Ding Z. Cognitive dysfunction induced by cranial radiotherapy: mechanisms and therapeutic methods. Brain Res Bull 2024; 218:111106. [PMID: 39447765 DOI: 10.1016/j.brainresbull.2024.111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Cranial radiotherapy can damage normal brain tissues, inducing cognitive dysfunction in patients. Radiotherapy-induced cognitive dysfunction is associated with hippocampal injury, white matter damage and microvascular injury. In this study, the mechanisms of cognitive dysfunction induced by cranial radiotherapy and combined chemoradiotherapy are reviewed, and the advances in therapeutic methods for radiotherapy-induced brain injury are summarized. The mechanisms of radiotherapy-induced brain injury include a decline of neurogenesis, impairment of neurons and glial cells, vascular injury, oxidative stress and DNA damage, cell death, and inflammatory response. Disruption of the bloodbrain barrier (BBB) increases the exposure of the brain to chemotherapeutic agents, thus exacerbating radiotherapy-induced brain damage. The current methods used to prevent radiotherapy-induced brain injury mainly include precision radiotherapy, stem cell transplantation, and treatment with neuroprotective drugs. The combined application of precision radiotherapy and neuroprotective drugs, including antioxidants, anti-inflammatory agents and other drugs, might exert better neuroprotective effects. To resolve the issues of neuroprotective drugs, such as difficulty in crossing the BBB, nanoenzymes and drug delivery nano-systems could be applied in the future.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Liu X, Ding Y, Jiang C, Xin Y, Ma X, Xu M, Wang Q, Hou B, Li Y, Zhang S, Shao B. Astragaloside IV mediates radiation-induced neuronal damage through activation of BDNF-TrkB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155803. [PMID: 38876008 DOI: 10.1016/j.phymed.2024.155803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Electromagnetic radiation is relevant to human life, and radiation can trigger neurodegenerative diseases by altering the function of the central nervous system through oxidative stress, mitochondrial dysfunction, and protein degradation. Astragaloside IV (AS-IV) is anti-oxidative, anti-apoptotic, activates the BDNF-TrkB pathway and enhances synaptic plasticity in radiated mice, which can exert its neuroprotection. However, the exact molecular mechanisms are still unclear. PURPOSE This study investigated whether AS-IV could play a neuroprotective role by regulating BDNF-TrkB pathway in radiation damage and its underlying molecular mechanisms. METHODS Transgenic mice (Thy1-YFP line H) were injected with AS-IV (40 mg/kg/day body weight) by intraperitoneal injection daily for 4 weeks, followed by X-rays. PC12 cells and primary cortical neurons were also exposed to UVA after 24 h of AS-IV treatment (25 μg/ml and 50 μg/ml) in vitro. The impact of radiation on learning and cognitive functions was visualized in the Morris water maze assay. Subsequently, Immunofluorescence and Golgi-Cox staining analyses were utilized to investigate the structural damage of neuronal dendrites and the density of dendritic spines. Transmission electron microscopy was performed to examine how the radiation affected the ultrastructure of neurons. Finally, western blotting analysis and Quantitative RT-PCR were used to evaluate the expression levels and locations of proteins in vitro and in vivo. RESULTS Radiation induced BDNF-TrkB signaling dysregulation and decreased the levels of neuron-related functional genes (Ngf, Bdnf, Gap-43, Ras, Psd-95, Arc, Creb, c-Fos), PSD-95 and F-actin, which subsequently led to damage of neuronal ultrastructure and dendrites, loss of dendritic spines, and decreased dendritic complexity index, contributing to spatial learning and memory deficits. These abnormalities were prevented by AS-IV treatment. In addition, TrkB receptor antagonists antagonized these neuroprotective actions of AS-IV. 7,8-dihydroxyflavone and AS-IV had neuroprotective effects after radiation. CONCLUSION AS-IV inhibits morphological damage of neurons and cognitive dysfunction in mice after radiation exposure, resulting in a neuroprotective effect, which were mediated by activating the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Yanping Ding
- School of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu Province, PR China
| | - Chenxin Jiang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Yuanyuan Xin
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Xin Ma
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Min Xu
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Qianhao Wang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Boru Hou
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, PR China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Baoping Shao
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
9
|
Inokuchi JI, Go S, Suzuki A, Nakagawasai O, Odaira-Satoh T, Veillon L, Nitta T, McJarrow P, Kanoh H, Inamori KI, Tan-No K, Collett M. Dietary gangliosides rescue GM3 synthase deficiency outcomes in mice accompanied by neurogenesis in the hippocampus. Front Neurosci 2024; 18:1387221. [PMID: 39119456 PMCID: PMC11308210 DOI: 10.3389/fnins.2024.1387221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Ganglioside GM3 synthase is a key enzyme involved in the biosynthesis of gangliosides. GM3 synthase deficiency (GM3SD) causes an absence of GM3 and all downstream biosynthetic derivatives, including all the a-, b-, c-series gangliosides, commonly found in neural tissues. The affected individuals manifest with severe irritability, intractable seizures, hearing loss, blindness, and profound intellectual disability. It has been reported that oral ganglioside supplementation has achieved some significant improvements in clinical symptoms, growth parameters, and developmental and cognitive scores in GM3SD patients. To gain insight into the molecular mechanisms of this supplementation, we performed supplementation of oral bovine milk gangliosides to GM3 synthase-deficient mice from early weaning periods. The oral milk ganglioside preparations were dominated by GM3 and GD3 gangliosides. Oral milk ganglioside supplementation improved the decreased cognitive function observed in GM3 synthase-deficient mice. The improvement in cognitive function was accompanied by increased ganglioside levels and neurogenesis in the hippocampus in the supplemented animals.
Collapse
Affiliation(s)
- Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Forefront Research Centre, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Shinji Go
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akemi Suzuki
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takayo Odaira-Satoh
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Lucas Veillon
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takahiro Nitta
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Paul McJarrow
- Fonterra Research and Development Centre, Palmerston North, New Zealand
| | - Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kei-ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Michael Collett
- Fonterra Research and Development Centre, Palmerston North, New Zealand
| |
Collapse
|
10
|
Kim S, Yang S, Kim J, Chung KW, Jung YS, Chung HY, Lee J. Glucocorticoid Receptor Down-Regulation Affects Neural Stem Cell Proliferation and Hippocampal Neurogenesis. Mol Neurobiol 2024; 61:3198-3211. [PMID: 37979034 DOI: 10.1007/s12035-023-03785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal axis and abnormalities in the glucocorticoid receptor (GR) have been linked to major depressive disorder. Given the critical role of GR in stress response regulation, we investigated the impact of GR changes on neural stem cells (NSCs) proliferation and hippocampal neurogenesis. Stress response was induced using dexamethasone (DEX), a GR agonist, which led to reduced proliferation of neural stem cells and neural progenitor cells, as well as decreased expression of GR. Additionally, a reduction of serum concentration within the culture media resulted in suppressed cell proliferation, accompanied by decreased GR expression. The association between GR expression and cell proliferation was further confirmed through GR siRNA knockdown and overexpression experiments. Furthermore, in vivo studies utilizing young male C57BL/6 mice demonstrated that corticosterone (CORT) (35 μg/ml) administered through drinking water for four weeks induced depression-like behavior, as indicated by increased immobility times in forced swimming and tail suspension tests. CORT exposure led to reduced GR and nestin expression levels, along with diminished numbers of BrdU-positive cells in the hippocampi, indicating impaired hippocampal neurogenesis. Taken together, our findings provide the first evidence that stress-induced downregulation of GR negatively affects neurogenesis by inhibiting NSCs proliferation.
Collapse
Affiliation(s)
- Seoyeong Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Seonguk Yang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehoon Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
11
|
Kuil L, Seigers R, Loos M, de Gooijer M, Compter A, Boogerd W, van Tellingen O, Smit A, Schagen S. Fractionated brain X-irradiation profoundly reduces hippocampal immature neuron numbers without affecting spontaneous behavior in mice. Heliyon 2024; 10:e29947. [PMID: 38707355 PMCID: PMC11066401 DOI: 10.1016/j.heliyon.2024.e29947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Whole brain radiotherapy (WBRT) is used to improve tumor control in patients with primary brain tumors, or brain metastasis from various primary tumors to improve tumor control. However, WBRT can lead to cognitive decline in patients. We assessed whether fractionated WBRT (fWBRT) affects spontaneous behavior of mice in automated home cages and cognition (spatial memory) using the Barnes maze. Male C57Bl/6j mice received bi-lateral fWBRT at a dosage of 4 Gy/day on 5 consecutive days. In line with previous reports, immunohistochemical analysis of doublecortin positive cells in the dentate gyrus showed a profound reduction in immature neurons 4 weeks after fWBRT. Surprisingly, spontaneous behavior as measured in automated home cages was not affected. Moreover, learning and memory measured with Barnes maze, was also not affected 4-6 weeks after fWBRT. At 10-11 weeks after fWBRT a significant difference in escape latency during the learning phase, but not in the probe test of the Barnes maze was observed. In conclusion, although we confirmed the serious adverse effect of fWBRT on neurogenesis 4 weeks after fWBRT, we did not find similar profound effects on spontaneous behavior in the automated home cage nor on learning abilities as measured by the Barnes maze. The relationship between the neurobiological effects of fWBRT and cognition seems more complex than often assumed and the choice of animal model, cognitive tasks, neurobiological parameters, and experimental set-up might be important factors in these types of experiments.
Collapse
Affiliation(s)
- L.E. Kuil
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - R. Seigers
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - M. Loos
- Sylics (Synaptologics BV), Bilthoven, the Netherlands
| | - M.C. de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A. Compter
- Department of Neuro-Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - W. Boogerd
- Department of Neuro-Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - O. van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A.B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands
| | - S.B. Schagen
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Song J, Li M, Kang N, Jin W, Xiao Y, Li Z, Qi Q, Zhang J, Duan Y, Feng X, Lv P. Baicalein ameliorates cognitive impairment of vascular dementia rats via suppressing neuroinflammation and regulating intestinal microbiota. Brain Res Bull 2024; 208:110888. [PMID: 38295883 DOI: 10.1016/j.brainresbull.2024.110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Neuroinflammation induced by chronic cerebral hypoperfusion (CCH) plays a crucial role in the pathophysiologic mechanisms of vascular dementia (VD). A growing body of research has found that intestinal microbiota is associated with a variety of central nervous system disorders and that there is a relationship between intestinal microbiota dysbiosis and cognitive dysfunction and inflammatory responses. Baicalein belongs to the class of flavonoids and has a variety of biological functions, including anti-inflammatory, antioxidant and anti-apoptotic. Baicalein has a significant improvement in memory and learning, and can be used as a potential drug for the protection and treatment of central nervous system disorders. Whether baicalein has an ameliorative effect on cognitive impairment in VD, and whether its mechanism is related to the inhibition of inflammatory response and regulation of intestinal microbiota has not been reported. We used bilateral common carotid artery occlusion (BCCAO) to establish a VD rat model. Morris water maze (MWM) test showed that baicalein improved cognitive dysfunction in VD rats. We applied HE staining, immunofluorescence and ELISA to observe that baicalein treatment significantly improved CCH-induced neuronal damage in the CA1 region of the hippocampus, and reduced glial cell activation and release of pro-inflammatory factors. Western blot showed that baicalein inhibited the activation of the TLR4/MyD88/NF-κB signaling pathway in VD rats. We applied 16 S rDNA sequencing to analyze the composition of the intestinal microbiota. The results showed that baicalein modulated the diversity and composition of the intestinal microbiota, and suppressed the relative abundance of inflammation-associated microbiota in VD rats. In conclusion, this study found that baicalein ameliorated cognitive impairment, attenuated hippocampal inflammatory responses, inhibited the TLR4/MyD88/NF-κB signaling pathway, and modulated intestinal microbiota in VD rats.
Collapse
Affiliation(s)
- Jiaxi Song
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Meixi Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Ning Kang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Wei Jin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Yining Xiao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Zhe Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Qianqian Qi
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Jiayu Zhang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Yaxin Duan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Xiaoxiao Feng
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
13
|
Wu B, Li S, Wang J, Wang J, Qiu W, Gao H. Bibliometric and visualization analysis of radiation brain injury from 2003 to 2023. Front Neurol 2024; 14:1275836. [PMID: 38298563 PMCID: PMC10828967 DOI: 10.3389/fneur.2023.1275836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Background Over the past two decades, the field of radiation brain injury has attracted the attention of an increasing number of brain scientists, particularly in the areas of molecular pathology and therapeutic approaches. Characterizing global collaboration networks and mapping development trends over the past 20 years is essential. Objective The aim of this paper is to examine significant issues and future directions while shedding light on collaboration and research status in the field of radiation brain injury. Methods Bibliometric studies were performed using CiteSpaceR-bibliometrix and VOSviewer software on papers regarding radiation brain injury that were published before November 2023 in the Web of Science Core Collection. Results In the final analysis, we found 4,913 records written in 1,219 publications by 21,529 authors from 5,007 institutions in 75 countries. There was a noticeable increase in publications in 2014 and 2021. The majority of records listed were produced by China, the United States, and other high-income countries. The largest nodes in each cluster of the collaboration network were Sun Yat-sen University, University of California-San Francisco, and the University of Toronto. Galldiks N, Barnett GH, Langen KJ and Kim JH are known to be core authors in the field. The top 3 keywords in that time frame are radiation, radiation necrosis, and radiation-therapy. Conclusions The objective and thorough bibliometric analysis also identifies current research hotspots and potential future paths, providing a retrospective perspective on RBI and offering useful advice to researchers choosing research topics. Future development directions include the integration of multi-omics methodologies and novel imaging techniques to improve RBI's diagnostic effectiveness and the search for new therapeutic targets.
Collapse
Affiliation(s)
- Baofang Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Shaojie Li
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Jian Wang
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jiayin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Weizhi Qiu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Hongzhi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| |
Collapse
|
14
|
Ye Z, Wang J, Shi W, Zhou Z, Zhang Y, Wang J, Yang H. Reprimo (RPRM) as a Potential Preventive and Therapeutic Target for Radiation-Induced Brain Injury via Multiple Mechanisms. Int J Mol Sci 2023; 24:17055. [PMID: 38069378 PMCID: PMC10707327 DOI: 10.3390/ijms242317055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Patients receiving cranial radiotherapy for primary and metastatic brain tumors may experience radiation-induced brain injury (RIBI). Thus far, there has been a lack of effective preventive and therapeutic strategies for RIBI. Due to its complicated underlying pathogenic mechanisms, it is rather difficult to develop a single approach to target them simultaneously. We have recently reported that Reprimo (RPRM), a tumor suppressor gene, is a critical player in DNA damage repair, and RPRM deletion significantly confers radioresistance to mice. Herein, by using an RPRM knockout (KO) mouse model established in our laboratory, we found that RPRM deletion alleviated RIBI in mice via targeting its multiple underlying mechanisms. Specifically, RPRM knockout significantly reduced hippocampal DNA damage and apoptosis shortly after mice were exposed to whole-brain irradiation (WBI). For the late-delayed effect of WBI, RPRM knockout obviously ameliorated a radiation-induced decline in neurocognitive function and dramatically diminished WBI-induced neurogenesis inhibition. Moreover, RPRM KO mice exhibited a significantly lower level of acute and chronic inflammation response and microglial activation than wild-type (WT) mice post-WBI. Finally, we uncovered that RPRM knockout not only protected microglia against radiation-induced damage, thus preventing microglial activation, but also protected neurons and decreased the induction of CCL2 in neurons after irradiation, in turn attenuating the activation of microglial cells nearby through paracrine CCL2. Taken together, our results indicate that RPRM plays a crucial role in the occurrence of RIBI, suggesting that RPRM may serve as a novel potential target for the prevention and treatment of RIBI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College of Soochow University, Suzhou 215123, China; (Z.Y.); (J.W.); (W.S.); (Z.Z.); (Y.Z.); (J.W.)
| |
Collapse
|
15
|
Yang B, Liang Y, He S, Liu Y, Zhang K, Qiu J. Dosimetric comparison of coplanar and noncoplanar volumetric modulated arc therapy for hippocampal-sparing whole-brain radiation therapy. Med Dosim 2023; 49:85-92. [PMID: 38016886 DOI: 10.1016/j.meddos.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 08/24/2023] [Indexed: 11/30/2023]
Abstract
Whole brain radiation therapy with hippocampal-sparing (HS-WBRT) is a novel treatment of brain metastases, which can relieve symptoms reduce recurrence in the central nervous system, and spare the hippocampus without compromising target coverage. This study aims to find out the superior combination of the treatment planning system and linear accelerator between Eclipse (version 15.6) with TrueBeam and uRT-TPOIS (vision R001.4) with uRT-linac 506c in HS-WBRT. The coplanar and noncoplanar volumetric modulated arc therapy (VMAT) for HS-WBRT plans were evaluated and compared on both combinations, respectively. Twenty patients for HS-WBRT were retrospectively selected at Peking Union Medical College Hospital (PUMCH) from 2021 to 2022. The coplanar and noncoplanar HS-WBRT treatment plans were designed by Eclipse and uRT-TPOIS referring to RTOG 0933 dose criteria, and their dosimetry parameters were compared. In addition, the plan complexity, monitor units, and beam-on time were recorded for Eclipse plans delivered on TrueBeam and uRT-TPOIS plans delivered on uRT-linac 506c. The results demonstrated that the dosimetric criteria of 4 types of HS-WBRT plans could meet the requirements of RTOG 0933. In terms of target coverage, dosimetric indexes of Eclipse plans and uRT-TPOIS plans were comparable, and the former is slightly better. As for metrics of organs-at-risk protection, coplanar and noncoplanar plans conducted by uRT-TPOIS were greatly superior to those by Eclipse. For coplanar and noncoplanar plans designed by the same treatment planning system, most of the dosimetric indexes had no significant difference. The monitor units of uRT-TPOIS plans was higher than that of Eclipse plans, but the modulation complexity of them were close, and uRT-TPOIS with uRT-linac 506c significantly reduced beam-on-time consumption by 9% on average for coplanar plans and 26% for noncoplanar plans compared to Eclipse with TrueBeam. This study firstly compared the coplanar and noncoplanar HS-WBRT treatment plans between Eclipse with TrueBeam and uRT-TPOIS with uRT-linac 506c in terms of dosimetry indexes, modulation complexity, and time consumption. It is shown that the radiation treatment solution of uRT-TPOIS with uRT-linac 506c is comparable with Eclipse with TrueBeam in terms of planning design, and significantly reduced the delivery time, which can be applied in clinical practice and promoted as a treatment format.
Collapse
Affiliation(s)
- Bo Yang
- Department of Radiation Oncology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Yongguang Liang
- Department of Radiation Oncology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Shumeng He
- United Imaging Research Institute of Intelligent Imaging, Beijing, 100094, China
| | - Yinglong Liu
- United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, 518045, China
| | - Kang Zhang
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| | - Jie Qiu
- Department of Radiation Oncology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
16
|
Liu Z, Xu K, Pan S, Zhang N, Wang D, Chen Y, Zhao Y, Wang S, Li J, Tong X. Manganese-enhanced magnetic resonance assessment of changes in hippocampal neural function after the treatment of radiation-induced brain injury with bone marrow mesenchymal stem cells. Brain Res Bull 2023; 204:110795. [PMID: 37863438 DOI: 10.1016/j.brainresbull.2023.110795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The role of bone marrow mesenchymal stem cells (BMSCs) in treating radiation-induced brain injury (RIBI) is not completely understood, and assessment methods to directly characterize neurological function are lacking. In this study, we aimed to evaluate the effects of BMSCs treatment on changes in hippocampal neural function in Sprague-Dawley(SD) rats with RIBI, and to evaluate the therapeutic effect of BMSCs by manganese-enhanced magnetic resonance imaging (MEMRI). First, we assessed cognitive function after RIBI treatment with BMSCs using the Morris water maze. Next, we used MEMRI at two time points to observe the treatment effect and explore the correlation between MEMRI and cognitive function. Finally, we evaluated the expression of specific hippocampal neurofunctional proteins, the ultrastructure of hippocampal nerves, and the histological changes in the hippocampus. After BMSCs treatment of RIBI, cognitive dysfunction improved significantly, the expression of hippocampal neurofunctional proteins was increased, the integrity of the hippocampal neural structure was protected, and nerve cell survival was enhanced. The improvement in neurological function was successfully detected by MEMRI, and MEMRI was highly correlated with cognitive function and histological changes. These results suggest that BMSCs treatment of RIBI is an optional modality, and MEMRI can be used for treatment evaluation.
Collapse
Affiliation(s)
- Zhanhong Liu
- College of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Kaina Xu
- College of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Shichao Pan
- College of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Na Zhang
- Department of Radiotherapy, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161006, China
| | - Dapeng Wang
- Department of Radiotherapy, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161006, China
| | - Ying Chen
- Department of Radiotherapy, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161006, China
| | - Yaru Zhao
- Department of Radiotherapy, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161006, China
| | - Siqi Wang
- Department of Radiotherapy, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161006, China
| | - Jing Li
- Department of Radiotherapy, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161006, China
| | - Xu Tong
- Department of Radiotherapy, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
17
|
Liu X, Wang Y, Li J, Wu B, Wang S, Guo Q, Liu Y. To study the protective effect of Huangqi Baihe Granules on Radiation brain injury based on network pharmacology and experiment. JOURNAL OF ETHNOPHARMACOLOGY 2023:116610. [PMID: 37150423 DOI: 10.1016/j.jep.2023.116610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqi baihe Granules (HQBHG), which is a key Chinese medical prescription, has a remarkable efficacy in oxidative stress and inflammation. Nevertheless, the therapeutic effect on Radiation brain injury (RBI) has rarely been studied. AIM OF THE STUDY The study aimed to verify the effect of HQBHG against RBI and explore its potential mechanism. METHODS The potential targets and mechanisms of HQBHG against RBI were predicted by network pharmacology and verified by established rat model of RBI Firstly, the therapeutic effect of HQBHG in RBI was confirmed by water maze test, HE staining and Enzyme-linked immunosorbent assay (ELISA). Secondly, the potential critical anti-RBI pathway of HQBHG was further explored by water maze, HE staining, immunofluorescence assays, ELISA and western blot. RESULTS A total of 43 HQBHG anti-RBI targets were obtained. Gene Ontology (Go) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotations showed that the treatment of HQBHG in RBI might be mainly related to oxidative stress, inflammation and PI3K/AKT pathway. Experimental studies have indicated that HQBHG can improve spatial learning and memory ability, alleviate pathological damage of brain tissue in RBI of rats. HQBHG also can down-regulate the levels of IL-1β, TNF-α, ROS and MDA, meanwhile, GSH was significantly up-regulated. In addition, the HQBHG can increase the protein expression phosphorylations PI3K (p-PI3K), phosphorylations AKT(p-AKT) and Nrf2 in the brain tissue of RBI. CONCLUSION HQBHG may alleviated RBI by regulated oxidative stress and inflammatory response through PI3K/AKT/Nrf2 pathway.
Collapse
Affiliation(s)
- Xiuzhu Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Jiawei Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Bingbing Wu
- 940th Hospital of Chinese People 's Liberation Army Joint Support Force, Lanzhou, 730050, Gansu Province, China.
| | - Siyu Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Qingyang Guo
- 940th Hospital of Chinese People 's Liberation Army Joint Support Force, Lanzhou, 730050, Gansu Province, China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
18
|
The Effects of Galactic Cosmic Rays on the Central Nervous System: From Negative to Unexpectedly Positive Effects That Astronauts May Encounter. BIOLOGY 2023; 12:biology12030400. [PMID: 36979092 PMCID: PMC10044754 DOI: 10.3390/biology12030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Galactic cosmic rays (GCR) pose a serious threat to astronauts’ health during deep space missions. The possible functional alterations of the central nervous system (CNS) under GCR exposure can be critical for mission success. Despite the obvious negative effects of ionizing radiation, a number of neutral or even positive effects of GCR irradiation on CNS functions were revealed in ground-based experiments with rodents and primates. This review is focused on the GCR exposure effects on emotional state and cognition, emphasizing positive effects and their potential mechanisms. We integrate these data with GCR effects on adult neurogenesis and pathological protein aggregation, forming a complete picture. We conclude that GCR exposure causes multidirectional effects on cognition, which may be associated with emotional state alterations. However, the irradiation in space-related doses either has no effect or has performance enhancing effects in solving high-level cognition tasks and tasks with a high level of motivation. We suppose the model of neurotransmission changes after irradiation, although the molecular mechanisms of this phenomenon are not fully understood.
Collapse
|
19
|
Sisin NNT, Rahman WN. Potentials of Bismuth-Based Nanoparticles and Baicalein Natural Compounds as Radiosensitizers in Cancer Radiotherapy: a Review. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-022-01057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Chen SX, Xiao ZJ, Xie M, Chang YQ, Zhou GJ, Wen HM, He DQ, Xu CL, Chen YR, Li YH. Treatment of radiation-induced brain injury with bisdemethoxycurcumin. Neural Regen Res 2023; 18:416-421. [PMID: 35900439 PMCID: PMC9396486 DOI: 10.4103/1673-5374.346549] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Radiation therapy is considered the most effective non-surgical treatment for brain tumors. However, there are no available treatments for radiation-induced brain injury. Bisdemethoxycurcumin (BDMC) is a demethoxy derivative of curcumin that has anti-proliferative, anti-inflammatory, and anti-oxidant properties. To determine whether BDMC has the potential to treat radiation-induced brain injury, in this study, we established a rat model of radiation-induced brain injury by administering a single 30-Gy vertical dose of irradiation to the whole brain, followed by intraperitoneal injection of 500 μL of a 100 mg/kg BDMC solution every day for 5 successive weeks. Our results showed that BDMC increased the body weight of rats with radiation-induced brain injury, improved learning and memory, attenuated brain edema, inhibited astrocyte activation, and reduced oxidative stress. These findings suggest that BDMC protects against radiation-induced brain injury.
Collapse
|
21
|
Davinelli S, Medoro A, Ali S, Passarella D, Intrieri M, Scapagnini G. Dietary Flavonoids and Adult Neurogenesis: Potential Implications for Brain Aging. Curr Neuropharmacol 2023; 21:651-668. [PMID: 36321225 PMCID: PMC10207917 DOI: 10.2174/1570159x21666221031103909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 02/10/2023] Open
Abstract
Adult neurogenesis deficiency has been proposed to be a common hallmark in different age-related neurodegenerative diseases. The administration of flavonoids is currently reported as a potentially beneficial strategy for preventing brain aging alterations, including adult neurogenesis decline. Flavonoids are a class of plant-derived dietary polyphenols that have drawn attention for their neuroprotective and pro-cognitive effects. Although they undergo extensive metabolism and localize in the brain at low concentrations, flavonoids are now believed to improve cerebral vasculature and interact with signal transduction cascades involved in the regulation of adult neurogenesis. Furthermore, many dietary flavonoids have been shown to reduce oxidative stress and neuroinflammation, improving the neuronal microenvironment where adult neurogenesis occurs. The overall goal of this review is to summarize the evidence supporting the role of flavonoids in modulating adult neurogenesis as well as to highlight how these dietary agents may be promising candidates in restoring healthy brain function during physiological and pathological aging.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| |
Collapse
|
22
|
Ma M, Wang J, Jiang H, Chen Q, Xiao Y, Yang H, Lin L. Transcranial deep-tissue phototherapy for Alzheimer's disease using low-dose X-ray-activated long-afterglow scintillators. Acta Biomater 2023; 155:635-643. [PMID: 36328129 DOI: 10.1016/j.actbio.2022.10.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/30/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
Non-invasive phototherapy has been emerging as an ambitious tactic for suppression of amyloid-β (Aβ) self-assembly against Alzheimer's disease (AD). However, it remains a daunting challenge to develop efficient photosensitizers for Aβ oxygenation that are activatable in a deep brain tissue through the scalp and skull, while reducing side effects on normal tissues. Here, we report an Aβ targeted, low-dose X-ray-excitable long-afterglow scintillator (ScNPs@RB/Ab) for efficient deep-brain phototherapy. We demonstrate that the as-synthesized ScNPs@RB/Ab is capable of converting X-rays into visible light to activate the photosensitizers of rose bengal (RB) for Aβ oxygenation through the scalp and skull. We show that the ScNPs@RB/Ab persistently emitting visible luminescence can substantially minimize the risk of excessive X-ray exposure dosage. Importantly, peptide KLVFFAED-functionalized ScNPs@RB/Ab shows a blood-brain barrier permeability. In vivo experimental results validated that ScNPs@RB/Ab alleviated Aβ burden and slowed cognitive decline in triple-transgenic AD model mice at extremely low X-ray doses without side effects. Our study paves a new pathway to develop high-efficiency transcranial AD phototherapy. STATEMENT OF SIGNIFICANCE: Non-invasive phototherapy has been emerging as an ambitious tactic for suppression of amyloid-β (Aβ) self-assembly against Alzheimer's disease (AD). However, it remains a daunting challenge to develop efficient photosensitizers for Aβ oxygenation that are activatable in a deep brain tissue through the scalp and skull, while reducing side effects on normal tissues. Herein, we report an Aβ targeted, low-dose X-ray-excitable long-afterglow scintillators (ScNPs@RB/Ab) for efficient deep-brain phototherapy. In vivo experimental results validated that ScNPs@RB/Ab alleviated Aβ burden and slowed cognitive decline in triple-transgenic AD model mice at extremely low X-ray doses without side effects.
Collapse
Affiliation(s)
- Mengmeng Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yi Xiao
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 637457, Singapore.
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325000, China.
| |
Collapse
|
23
|
Sisin NNT, Mat NFC, Rashid RA, Dollah N, Razak KA, Geso M, Algethami M, Rahman WN. Natural Baicalein-Rich Fraction as Radiosensitizer in Combination with Bismuth Oxide Nanoparticles and Cisplatin for Clinical Radiotherapy. Int J Nanomedicine 2022; 17:3853-3874. [PMID: 36081572 PMCID: PMC9448000 DOI: 10.2147/ijn.s370478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/19/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Chemotherapy has been used in conjunction with radiation therapy to improve the treatment outcomes of cancers. Cisplatin (Cis) is a standard treatment that has been used as a chemotherapeutic drug in medical settings. However, the possibility of complications constrains the treatment due to the exposure of healthy organs to unnecessary radiation and the drugs' toxicities. As a result, researchers have been looking for non-toxic chemotherapeutic agents which can be used as radiosensitizers, possibly produced from natural derivatives and nano sized materials. METHODS BRF, Cis, and BiONPs were irradiated individually and in combinations with 6 MV of photon beam and 6 MeV of electron beams with 0 to 10 Gy radiation doses on MCF-7, MDA-MB-231, and NIH/3T3 cell lines. Then, the experimental sensitization enhancement ratios (SER) of each treatment obtained were compared to the theoretical dose enhancement factor (DEF). The interactions within the BRF-BiONPs (BB) and BRF-Cis-BiONPs (BCB) combinations were also estimated using the Combination Index (CI). RESULTS BRF induced radiosensitization in all cells under 6 MV photon beam (SER of 1.06 to 1.35), and MDA-MB-231 cells only under 6 MeV electron beam (SER = 1.20). The highest SER values for BiONPs and Cis were obtained from MCF-7 cells under a 6 MeV electron beam (SER of 1.50 and 2.24, respectively). The theoretical DEFs were generally lower than the experimental SERs. Based on the SER and CI relationships, it was estimated that BB and BCB therapy methods interacted in either a synergistic or additive manner. CONCLUSION The BRF is found to induce relatively less radiosensitization effects compared to the BiONPs and Cis. The BB and BCB combinations have shown better effects with potential for becoming competently suitable radiosensitizers in breast cancer therapies.
Collapse
Affiliation(s)
| | - Nor Fazila Che Mat
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | - Norhayati Dollah
- Department of Nuclear Medicine, Radiotherapy and Oncology, Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Khairunisak Abdul Razak
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Moshi Geso
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Merfat Algethami
- Faculty of Science, Taif University, Al Hawiyah, Taif, Saudi Arabia
| | - Wan Nordiana Rahman
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
24
|
Jaylet T, Quintens R, Benotmane MA, Luukkonen J, Tanaka IB, Ibanez C, Durand C, Sachana M, Azimzadeh O, Adam-Guillermin C, Tollefsen KE, Laurent O, Audouze K, Armant O. Development of an Adverse Outcome Pathway for radiation-induced microcephaly via expert consultation and machine learning. Int J Radiat Biol 2022; 98:1752-1762. [PMID: 35947014 DOI: 10.1080/09553002.2022.2110312] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Brain development during embryogenesis and in early postnatal life is particularly complex and involves the interplay of many cellular processes and molecular mechanisms, making it extremely vulnerable to exogenous insults, including ionizing radiation (IR). Microcephaly is one of the most frequent neurodevelopmental abnormalities that is characterized by small brain size, and is often associated with intellectual deficiency. Decades of research span from epidemiological data on in utero exposure of the A-bomb survivors, to studies on animal and cellular models that allowed deciphering the most prominent molecular mechanisms leading to microcephaly. The Adverse Outcome Pathway (AOP) framework is used to organize, evaluate and portray the scientific knowledge of toxicological effects spanning different biological levels of organizations, from the initial interaction with molecular targets to the occurrence of a disease or adversity. In the present study, the framework was used in an attempt to organize the current scientific knowledge on microcephaly progression in the context of ionizing radiation (IR) exposure. This work was performed by a group of experts formed during a recent workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. Here we report on the development of a putative AOP for congenital microcephaly resulting from IR exposure based on discussions of the working group and we emphasize the use of a novel machine-learning approach to assist in the screening of the available literature to develop AOPs. CONCLUSION The expert consultation led to the identification of crucial biological events for the progression of microcephaly upon exposure to IR, and highlighted current knowledge gaps. The machine learning approach was successfully used to screen the existing knowledge and helped to rapidly screen the body of evidence and in particular the epidemiological data. This systematic review approach also ensured that the analysis was sufficiently comprehensive to identify the most relevant data and facilitate rapid and consistent AOP development. We anticipate that as machine learning approaches become more user-friendly through easy-to-use web interface, this would allow AOP development to become more efficient and less time consuming.
Collapse
Affiliation(s)
- Thomas Jaylet
- Université Paris Cité, T3S, Inserm UMRS 1124, Paris, France
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK-CEN, Mol, Belgium
| | | | - Jukka Luukkonen
- University of Eastern Finland, Kuopio Campus, Department of Environmental and Biological Sciences, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ignacia Braga Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 lenomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Chrystelle Ibanez
- PSE-SANTE/SESANE/LRTOX Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Christelle Durand
- PSE-SANTE/SESANE/LRTOX Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Environment Health and Safety Division, 75775 CEDEX 16 Paris, France
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (Bfs), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Christelle Adam-Guillermin
- PSE-SANTE/SDOS/LMDN, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579, Oslo, Norway.,Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Olivier Laurent
- PSE-SANTE/SESANE/LEPID, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMRS 1124, Paris, France
| | - Olivier Armant
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France
| |
Collapse
|
25
|
Iqubal A, Iqubal MK, Sharma S, Wasim M, Alfaleh MA, Md S, Baboota S, Ali J, Haque SE. Pathogenic mechanisms and therapeutic promise of phytochemicals and nanocarriers based drug delivery against radiotherapy-induced neurotoxic manifestations. Drug Deliv 2022; 29:1492-1511. [PMID: 35543534 PMCID: PMC9103628 DOI: 10.1080/10717544.2022.2064562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy is one of the extensively used therapeutic modalities in glioblastoma and other types of cancers. Radiotherapy is either used as a first-line approach or combined with pharmacotherapy or surgery to manage and treat cancer. Although the use of radiotherapy significantly increased the survival time of patients, but its use has been reported with marked neuroinflammation and cognitive dysfunction that eventually reduced the quality of life of patients. Based on the preclinical and clinical investigations, the profound role of increased oxidative stress, nuclear translocation of NF-kB, production of proinflammatory cytokines such as TNF-α, IL-6, IL-β, increased level of MMPs, increased apoptosis, reduced angiogenesis, neurogenesis, and histological aberrations in CA1, CA2, CA3 and DG region of the hippocampus have been reported. Various pharmacotherapeutic drugs are being used as an adjuvant to counteract this neurotoxic manifestation. Still, most of these drugs suffer from systemic adverse effect, causes interference to ongoing chemotherapy, and exhibit pharmacokinetic limitations in crossing the blood-brain barrier. Therefore, various phytoconstituents, their nano carrier-based drug delivery systems and miRNAs have been explored to overcome the aforementioned limitations. The present review is focused on the mechanism and evidence of radiotherapy-induced neuroinflammation and cognitive dysfunction, pathological and molecular changes in the brain homeostasis, available adjuvants, their limitations. Additionally, the potential role and mechanism of neuroprotection of various nanocarrier based natural products and miRNAs have been discussed.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Product Development Department, Sentiss Research Centre, Sentiss Pharma Pvt Ltd, Gurugram, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Wasim
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohamed A Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
26
|
Madhav H, Jameel E, Rehan M, Hoda N. Recent advancements in chromone as a privileged scaffold towards the development of small molecules for neurodegenerative therapeutics. RSC Med Chem 2022; 13:258-279. [PMID: 35434628 PMCID: PMC8942243 DOI: 10.1039/d1md00394a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/27/2022] [Indexed: 02/02/2023] Open
Abstract
Neurodegenerative disorders, i.e., Alzheimer's or Parkinson's disease, involve progressive degeneration of the central nervous system, resulting in memory loss and cognitive impairment. The intensification of neurodegenerative research in recent years put some molecules into clinical trials, but still there is an urgent need to develop effective therapeutic molecules to combat these diseases. Chromone is a well-identified privileged structure for the design of well-diversified therapeutic molecules of potential pharmacological interest, particularly in the field of neurodegeneration. In this short review, we focused on the recent advancements and developments of chromones for neurodegenerative therapeutics. Different small molecules were reviewed as multi-target-directed ligands (MTDLs) with potential inhibition of AChE, BuChE, MAO-A, MAO-B, Aβ plaque formation and aggregation. Recently developed MTDLs emphasized that the chromone scaffold has the potential to develop new molecules for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hari Madhav
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia IslamiaNew Delhi110025India
| | - Ehtesham Jameel
- College of Pharmaceutical Sciences, Zhejiang UniversityHangzhouPR China
| | - Mohammad Rehan
- Max-Planck-Institute für Molekulare Physiologie, Abteilung Chemische BiologieOtto-Hahn-Straße 1144227 DortmundGermany
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia IslamiaNew Delhi110025India
| |
Collapse
|
27
|
Ma L, Ye Z, Zhang Y, Shi W, Wang J, Yang H. Irradiated microvascular endothelial cells may induce bystander effects in neural stem cells leading to neurogenesis inhibition. JOURNAL OF RADIATION RESEARCH 2022; 63:192-201. [PMID: 35059710 PMCID: PMC8944295 DOI: 10.1093/jrr/rrab125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Radiation-induced neurocognitive dysfunction (RIND) has attracted a lot of attention lately due to the significant improvement of the survival of cancer patients after receiving cranial radiotherapy. The detailed mechanisms are not completely understood, but extensive evidence supports an involvement of the inhibition of hippocampal neurogenesis, which may result from radiation-induced depletion of neural stem cells (NSCs) as well as the damage to neurogenic niches. As an important component of neurogenic niches, vascular cells interact with NSCs through different signaling mechanisms, which is similar to the characteristics of radiation-induced bystander effect (RIBE). But whether RIBE is involved in neurogenesis inhibition contributed by the damaged vascular cells is unknown. Thus, the purpose of the present study was to investigate the occurrence of RIBEs in non-irradiated bystander NSCs induced by irradiated bEnd.3 vascular endothelial cells in a co-culture system. The results show that compared with the NSCs cultured alone, the properties of NSCs were significantly affected after co-culture with bEnd.3 cells, and further change was induced without obvious oxidative stress and apoptosis when bEnd.3 cells were irradiated, manifesting as a reduction in the proliferation, neurosphere-forming capability and differentiation potential of NSCs. All these results suggest that the damaged vascular endothelial cells may contribute to neurogenesis inhibition via inducing RIBEs in NSCs, thus leading to RIND.
Collapse
Affiliation(s)
- Linlin Ma
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, P. R. China 215123
| | - Zhujing Ye
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, P. R. China 215123
| | - Yarui Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, P. R. China 215123
| | - Wenyu Shi
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, P. R. China
| | - Jingdong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, P. R. China 215123
| | - Hongying Yang
- Corresponding author. H. Yang, Tel: +86-512-65882637; Fax: +86-512-65884830;
| |
Collapse
|
28
|
Liu LY, Qin TZ, Guo L, Rong-Rong H, Jing YT, Lai PP, Xue YZ, Ding GR. The Preventive and Therapeutic Effect of Repetitive Transcranial Magnetic Stimulation on Radiation-Induced Brain Injury in Mice. Int J Radiat Biol 2022; 98:1316-1329. [PMID: 35130116 DOI: 10.1080/09553002.2022.2038806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To clarify the preventive and therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) on brain injury induced by X-ray cranial irradiation, preliminarily identify the mechanism and provide a novel clinical approach for the prevention and treatment of radiation-induced brain injury (RBI). MATERIALS AND METHODS Male C57BL/6 mice were randomly divided into the sham group, large fractionated dose (5 Gy ×4 d) group, large fractionated dose + rTMS (5 Gy ×4 d + rTMS) group, conventional fractionated dose (2 Gy ×10 d) group and conventional fractionated dose + rTMS (2 Gy ×10 d + rTMS) group. After cranial irradiation and rTMS, behavioral experiments, morphological staining and molecular biology experiments were performed. We further determined the mechanism of rTMS on the prevention and treatment of RBI, including changes in hippocampal neuronal apoptosis, neural stem cell (NSC) proliferation and differentiation, and neuronal synaptic plasticity. RESULTS rTMS alleviated the negative effects of cranial radiation on the general health of mice and promoted their recovery. rTMS ameliorated the impairment of spatial learning and memory induced by cranial radiation, and this beneficial effect was more robust in the conventional fractionated dose group than the large fractionated dose group. Moreover, rTMS alleviated the alterations in hippocampal structure and neuronal death and had preventive and therapeutic effects against RBI. In addition, rTMS reduced hippocampal cell apoptosis, promoted NSC proliferation and differentiation in the hippocampus after cranial irradiation, and enhanced neuronal synaptic plasticity in the hippocampus. Subsequent studies showed that rTMS upregulated the expression of learning- and memory-related proteins. CONCLUSION rTMS could alleviate learning and memory impairment caused by RBI, and the preventive and therapeutic effects of rTMS were better for the conventional fraction radiation paradigms.
Collapse
Affiliation(s)
- Li-Yuan Liu
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Tong-Zhou Qin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Ling Guo
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Huang Rong-Rong
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China.,School of Public Health, Shandong First Medical University, Tai'an, Shandong, China
| | - Yun-Tao Jing
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Pan-Pan Lai
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Yi-Zhe Xue
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Gui-Rong Ding
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
29
|
Mitchell J, Kim SJ, Howe C, Lee S, Her JY, Patel M, Kim G, Lee J, Im E, Rhee SH. Chronic Intestinal Inflammation Suppresses Brain Activity by Inducing Neuroinflammation in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:72-86. [PMID: 34619134 PMCID: PMC8759038 DOI: 10.1016/j.ajpath.2021.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
Chronic gut inflammation such as inflammatory bowel disease is believed to be associated with neurodegenerative diseases in humans. However, the direct evidence for and the underlying mechanism of this brain-gut interaction remain elusive. In this study, manganese-enhanced magnetic resonance imaging was used to assess functional brain activity from awake and freely moving mice with chronic colitis. Manganese ion uptake (indicative of Ca2+ influx into neuronal cells) and accumulation were reduced in the hippocampus of chronic colitis mice compared with control mice. Long-term memory declined and neuroinflammatory signals, including IL-1β production and activation of caspase-1, caspase-11, and gasdermin, were induced. High-mobility group box 1 (HMGB1) levels were elevated both in the serum and in the hippocampus; however, lipopolysaccharide (LPS) levels remained at low levels without significant changes in these samples. The blood-brain barrier permeability was increased in chronic colitis mice. In the presence of LPS, HMGB1 treatment induced the activation of caspase-11 and gasdermin in the mouse microglial cell line SIM-A9. These findings suggest that HMGB1 released from the inflamed intestine may move to the brain through the blood circulatory system; in conjunction with a low level of endogenous LPS, elevated HMGB1 can subsequently activate caspase-mediated inflammatory responses in the brain.
Collapse
Affiliation(s)
- Jonathon Mitchell
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Su Jin Kim
- Department of Biological Sciences, Oakland University, Rochester, Michigan; College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Cody Howe
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Seulah Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ji Yun Her
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Marisa Patel
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Gayoung Kim
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Jaewon Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Republic of Korea.
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, Michigan.
| |
Collapse
|
30
|
Goya L, Román RS, de Pascual-Teresa S. Polyphenols effect on cerebrovascular health. Curr Med Chem 2021; 29:1029-1044. [PMID: 34844534 DOI: 10.2174/0929867328666211129123459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022]
Abstract
Polyphenols are a wide group of plant components that include a high number of individual compounds and are present in foods, dietary supplements and drugs. Many of them have shown pharmacological effects, are used in cardiovascular disease prevention, and not as many have been assayed in cancer treatment or co-treatment. In the last few years, however, the research on polyphenols implications in a healthy aging and especially in neurodegeneration and cognition improvement has increased dramatically. Most of the results found in this sense are again related with the capacity of some specific polyphenols to regulate the blood flow, but this time at the cerebral level, and to protect the endothelium at this same level. In this thorough review, we want to concentrate precisely on the effect of polyphenols on the cerebrovascular homeostasis, reviewing the mechanisms that underline this effect and the radiological methods and endogenous biomarkers that are used in human trials aimed at showing the beneficial effect of polyphenols or polyphenols rich foods on neuroprotection and cognition function.
Collapse
Affiliation(s)
- Luis Goya
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Jose Antonio Novais 10, 28040 Madrid. Spain
| | - Ricardo San Román
- Vascular and Interventional Radiology Department, Hospital 12 de Octubre, 28041 Madrid. Spain
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Jose Antonio Novais 10, 28040 Madrid. Spain
| |
Collapse
|
31
|
Unusual Bioactive Compounds with Antioxidant Properties in Adjuvant Therapy Supporting Cognition Impairment in Age-Related Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms221910707. [PMID: 34639048 PMCID: PMC8509433 DOI: 10.3390/ijms221910707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Cognitive function decline is strictly related to age, resulting in the loss of the ability to perform daily behaviors and is a fundamental clinical neurodegeneration symptom. It has been proven that an adequate diet, comprehensive nutrition, and a healthy lifestyle may significantly inhibit neurodegenerative processes, improving cognitive functions. Therefore, intensive research has been conducted on cognitive-enhancing treatment for many years, especially with substances of natural origin. There are several intervention programs aimed at improving cognitive functions in elderly adults. Cognitive functions depend on body weight, food consumed daily, the quality of the intestinal microflora, and the supplements used. The effectiveness in the prevention of dementia is particularly high before the onset of the first symptoms. The impact of diet and nutrition on age-associated cognitive decline is becoming a growing field as a vital factor that may be easily modified, and the effects may be observed on an ongoing basis. The paper presents a review of the latest preclinical and clinical studies on the influence of natural antioxidants on cognitive functions, with particular emphasis on neurodegenerative diseases. Nevertheless, despite the promising research results in animal models, the clinical application of natural compounds will only be possible after solving a few challenges.
Collapse
|
32
|
Alesci A, Fumia A, Lo Cascio P, Miller A, Cicero N. Immunostimulant and Antidepressant Effect of Natural Compounds in the Management of Covid-19 Symptoms. J Am Coll Nutr 2021; 41:840-854. [PMID: 34550044 DOI: 10.1080/07315724.2021.1965503] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the use of natural compounds as adjuvant treatments and alternatives to traditional pharmacological therapies has become increasingly popular. These compounds have a wide range of biological effects, such as: antioxidant, anti-aging, hypocholesterolizing, hypoglycemic, antitumoral, antidepressant, anxiolytic activity, etc. Almost all of these compounds are easily available and are contained in different foods. At the end of 2019 the Coronavirus SARS-CoV-2 appeared in China and quickly spread throughout the world, causing a pandemic. The most common symptoms of this infection are dry cough, fever, dyspnea, and in severe cases bilateral interstitial pneumonia, with consequences that can lead to death. The nations, in trying to prevent the spread of infection, have imposed social distancing and lockdown measures on their citizens. This had a strong psychological-social impact, leading to phobic, anxious and depressive states. Pharmacological therapy could be accompanied by treatment with several natural compounds, such as vitamins, baicalein, zinc and essential oils. These compounds possess marked immunostimulant activity, strengthening the immune response and mitigating interactions between the virus and the host cell. They also have an antidepressant effect, acting on certain neurotransmitters.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", Messina, Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
33
|
Liu M, Yang Y, Zhao B, Yang Y, Wang J, Shen K, Yang X, Hu D, Zheng G, Han J. Exosomes Derived From Adipose-Derived Mesenchymal Stem Cells Ameliorate Radiation-Induced Brain Injury by Activating the SIRT1 Pathway. Front Cell Dev Biol 2021; 9:693782. [PMID: 34395427 PMCID: PMC8358610 DOI: 10.3389/fcell.2021.693782] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Objective Studies have shown that the therapeutic effects of mesenchymal stem cells (MSCs) are mediated in a paracrine manner, mainly through extracellular vesicles such as exosomes. Here, we designed a study to investigate whether exosomes derived from adipose-derived mesenchymal stem cells (ADMSC-Exos) had protective effects in a rat model of radiation-induced brain injury and in microglia. Methods Male adult Sprague-Dawley (SD) rats were randomly divided into three groups: the control group, the radiation group (30 Gy), and the radiation + exosomes group (30 Gy + 100 ug exosomes). Meanwhile, microglia were divided into four groups: the control group, the radiation group (10 Gy), the radiation + exosomes group (10 Gy + 4 ug exosomes), and radiation + exosomes + EX527 group (10 Gy + 4 ug exosomes + 100 nM EX527). Tissue samples and the levels of oxidative stress and inflammatory factors in each group were compared. Results Statistical analysis showed that after irradiation, ADMSC-Exos intervention in vivo significantly reduced the levels of caspase-3, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4), and promoted the recovery of superoxide dismutase (SOD), catalase (CAT), IL-4, and IL-10. Moreover, ADMSC-Exos intervention inhibited microglial infiltration and promoted the expression of SIRT1. Furthermore, the results in vitro showed that the above effects of ADMSC-Exos could be reversed by SIRT-1 inhibitor EX527. Conclusion This study demonstrated that ADMSC-Exos exerted protective effects against radiation-induced brain injury by reducing oxidative stress, inflammation and microglial infiltration via activating the SIRT1 pathway. ADMSC-Exos may serve as a promising therapeutic tool for radiation-induced brain injury.
Collapse
Affiliation(s)
- Mengdong Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Bin Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Yuefan Yang
- Department of Biomedical Engineering, Air Force Military Medical University, Xi'an, China.,Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Guoxu Zheng
- State key laboratory of Cancer Biology, Department of Immunology, Air Force Military Medical University, Xi'an, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
34
|
The Role of Supplementation with Natural Compounds in Post-Stroke Patients. Int J Mol Sci 2021; 22:ijms22157893. [PMID: 34360658 PMCID: PMC8348438 DOI: 10.3390/ijms22157893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Malnutrition is a serious problem in post-stroke patients. Importantly, it intensifies with hospitalization, and is related to both somatic and psychological reasons, as well as is associated with the insufficient knowledge of people who accompany the patient. Malnutrition is a negative prognostic factor, leading to a reduction in the quality of life. Moreover, this condition significantly extends hospitalization time, increases the frequency of treatment in intensive care units, and negatively affects the effectiveness of rehabilitation. Obtaining growing data on the therapeutic effectiveness of new compounds of natural origin is possible through the use of pharmacodynamic and analytical methods to assess their therapeutic properties. The proper supply of nutrients, as well as compounds of natural origin, is an important element of post-stroke therapy, due to their strong antioxidant, anti-inflammatory, neuroprotective and neuroplasticity enhancing properties. Taking the above into account, in this review we present the current state of knowledge on the benefits of using selected substances of natural origin in patients after cerebral stroke.
Collapse
|
35
|
Parihar VK, Syage A, Flores L, Lilagan A, Allen BD, Angulo MC, Song J, Smith SM, Arechavala RJ, Giedzinski E, Limoli CL. The Cannabinoid Receptor 1 Reverse Agonist AM251 Ameliorates Radiation-Induced Cognitive Decrements. Front Cell Neurosci 2021; 15:668286. [PMID: 34262437 PMCID: PMC8273551 DOI: 10.3389/fncel.2021.668286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Despite advancements in the radiotherapeutic management of brain malignancies, resultant sequelae include persistent cognitive dysfunction in the majority of survivors. Defining the precise causes of normal tissue toxicity has proven challenging, but the use of preclinical rodent models has suggested that reductions in neurogenesis and microvascular integrity, impaired synaptic plasticity, increased inflammation, and alterations in neuronal structure are contributory if not causal. As such, strategies to reverse these persistent radiotherapy-induced neurological disorders represent an unmet medical need. AM251, a cannabinoid receptor 1 reverse agonist known to facilitate adult neurogenesis and synaptic plasticity, may help to ameliorate radiation-induced CNS impairments. To test this hypothesis, three treatment paradigms were used to evaluate the efficacy of AM251 to ameliorate radiation-induced learning and memory deficits along with disruptions in mood at 4 and 12 weeks postirradiation. Results demonstrated that acute (four weekly injections) and chronic (16 weekly injections) AM251 treatments (1 mg/kg) effectively alleviated cognitive and mood dysfunction in cranially irradiated mice. The beneficial effects of AM251 were exemplified by improved hippocampal- and cortical-dependent memory function on the novel object recognition and object in place tasks, while similar benefits on mood were shown by reductions in depressive- and anxiety-like behaviors on the forced swim test and elevated plus maze. The foregoing neurocognitive benefits were associated with significant increases in newly born (doublecortin+) neurons (1.7-fold), hippocampal neurogenesis (BrdU+/NeuN+mature neurons, 2.5-fold), and reduced expression of the inflammatory mediator HMGB (1.2-fold) in the hippocampus of irradiated mice. Collectively, these findings indicate that AM251 ameliorates the effects of clinically relevant cranial irradiation where overall neurological benefits in memory and mood coincided with increased hippocampal cell proliferation, neurogenesis, and reduced expression of proinflammatory markers.
Collapse
Affiliation(s)
- Vipan K Parihar
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Amber Syage
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Lidia Flores
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Angelica Lilagan
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Maria C Angulo
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Joseph Song
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Sarah M Smith
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Rebecca J Arechavala
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
36
|
Uddin MS, Mamun AA, Rahman MM, Jeandet P, Alexiou A, Behl T, Sarwar MS, Sobarzo-Sánchez E, Ashraf GM, Sayed AA, Albadrani GM, Peluso I, Abdel-Daim MM. Natural Products for Neurodegeneration: Regulating Neurotrophic Signals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8820406. [PMID: 34239696 PMCID: PMC8241508 DOI: 10.1155/2021/8820406] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders (NDs) are heterogeneous groups of ailments typically characterized by progressive damage of the nervous system. Several drugs are used to treat NDs but they have only symptomatic benefits with various side effects. Numerous researches have been performed to prove the advantages of phytochemicals for the treatment of NDs. Furthermore, phytochemicals such as polyphenols might play a pivotal role in rescue from neurodegeneration due to their various effects as anti-inflammatory, antioxidative, and antiamyloidogenic agents by controlling apoptotic factors, neurotrophic factors (NTFs), free radical scavenging system, and mitochondrial stress. On the other hand, neurotrophins (NTs) including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT4/5, and NT3 might have a crucial neuroprotective role, and their diminution triggers the development of the NDs. Polyphenols can interfere directly with intracellular signaling molecules to alter brain activity. Several natural products also improve the biosynthesis of endogenous genes encoding antiapoptotic Bcl-2 as well as NTFs such as glial cell and brain-derived NTFs. Various epidemiological studies have demonstrated that the initiation of these genes could play an essential role in the neuroprotective function of dietary compounds. Hence, targeting NTs might represent a promising approach for the management of NDs. In this review, we focus on the natural product-mediated neurotrophic signal-modulating cascades, which are involved in the neuroprotective effects.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Md Motiar Rahman
- Laboratory of Clinical Biochemistry and Nutritional Sciences (LCBNS), Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, USC INRAe 1488, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, P.O. Box 1039, CEDEX 2, 51687 Reims, France
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham, Australia
- AFNP Med Austria, 1010 Wien, Austria
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00142 Rome, Italy
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
37
|
Li Y, Jiang M, Deng Z, Zeng S, Hao J. Low Dose Soft X-Ray Remotely Triggered Lanthanide Nanovaccine for Deep Tissue CO Gas Release and Activation of Systemic Anti-Tumor Immunoresponse. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004391. [PMID: 34165903 PMCID: PMC8224418 DOI: 10.1002/advs.202004391] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/15/2021] [Indexed: 05/08/2023]
Abstract
Gas-based therapy has emerged as a new green therapy strategy for anti-tumor treatment. However, the therapeutic efficacy is still restricted by the deep tissue controlled release, poor lymphocytic infiltration, and inherent immunosuppressive tumor microenvironment (TME). Herein, a new type of nanovaccine is designed by integrating low dose soft X-ray-triggered CO releasing lanthanide scintillator nanoparticles (ScNPs: NaLuF4 :Gd,Tb@NaLuF4 ) with photo-responsive CO releasing moiety (PhotoCORM) for synergistic CO gas/immuno-therapy of tumors. The designed nanovaccine presents significantly boosted radioluminescence and enables deep tissue CO generation at unprecedented tissue depths of 5 cm under soft X-ray irradiation. Intriguingly, CO as a superior immunogenic cell death (ICD) inducer further reverses the deep tissue immunosuppressive TME and concurrently activates adaptive anti-tumor immunity through efficient reactive oxygen species (ROS) generation. More importantly, the designed nanovaccine presents efficient growth inhibition of both local and distant tumors via a soft X-ray activated systemic anti-tumor immunoresponse. This work provides a new strategy of designing anti-tumor nanovaccines for synergistic deep tissue gas-therapy and remote soft X-ray photoactivation of the immune response.
Collapse
Affiliation(s)
- Youbin Li
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and ElectronicsHunan Normal UniversityChangsha410081P. R. China
| | - Mingyang Jiang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and ElectronicsHunan Normal UniversityChangsha410081P. R. China
| | - Zhiming Deng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and ElectronicsHunan Normal UniversityChangsha410081P. R. China
| | - Songjun Zeng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and ElectronicsHunan Normal UniversityChangsha410081P. R. China
| | - Jianhua Hao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong Kong999077P. R. China
| |
Collapse
|
38
|
Can Dexmedetomidine Be Effective in the Protection of Radiotherapy-Induced Brain Damage in the Rat? Neurotox Res 2021; 39:1338-1351. [PMID: 34057703 DOI: 10.1007/s12640-021-00379-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Approximately 7 million people are reported to be undergoing radiotherapy (RT) at any one time in the world. However, it is still not possible to prevent damage to secondary organs that are off-target. This study, therefore, investigated the potential adverse effects of RT on the brain, using cognitive, histopathological, and biochemical methods, and the counteractive effect of the α2-adrenergic receptor agonist dexmedetomidine. Thirty-two male Sprague Dawley rats aged 5-6 months were randomly allocated into four groups: untreated control, and RT, RT + dexmedetomidine-100, and RT + dexmedetomidine-200-treated groups. The passive avoidance test was applied to all groups. The RT groups received total body X-ray irradiation as a single dose of 8 Gy. The rats were sacrificed 24 h after X-ray irradiation, and following the application of the passive avoidance test. The brain tissues were subjected to histological and biochemical evaluation. No statistically significant difference was found between the control and RT groups in terms of passive avoidance outcomes and 8-hydroxy-2'- deoxyguanosine (8-OHdG) positivity. In contrast, a significant increase in tissue MDA and GSH levels and positivity for TUNEL, TNF-α, and nNOS was observed between the control and the irradiation groups (p < 0.05). A significant decrease in these values was observed in the groups receiving dexmedetomidine. Compared with the control group, gradual elevation was determined in GSH levels in the RT group, followed by the RT + dexmedetomidine-100 and RT + dexmedetomidine-200 groups. Dexmedetomidine may be beneficial in countering the adverse effects of RT in the cerebral and hippocampal regions.
Collapse
|
39
|
Deng X, Shao Z, Zhao Y. Solutions to the Drawbacks of Photothermal and Photodynamic Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002504. [PMID: 33552860 PMCID: PMC7856884 DOI: 10.1002/advs.202002504] [Citation(s) in RCA: 300] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/24/2020] [Indexed: 05/11/2023]
Abstract
Phototherapy such as photothermal therapy and photodynamic therapy in cancer treatment has been developed quickly over the past few years for its noninvasive nature and high efficiency. However, there are still many drawbacks in phototherapy that prevent it from clinical applications. Thus, scientists have designed different systems to overcome the issues associated with phototherapy, including enhancing the targeting ability of phototherapy, low-temperature photothermal therapy, replacing near-infrared light with other excitation sources, and so on. This article discusses the problems and shortcomings encountered in the development of phototherapy and highlights possible solutions to address them so that phototherapy may become a useful cancer treatment approach in clinical practice. This article aims to give a brief summary about current research advancements in phototherapy research and provides a quick guideline toward future developments in the field.
Collapse
Affiliation(s)
- Xiangyu Deng
- Department of Orthopaedic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Zengwu Shao
- Department of Orthopaedic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| |
Collapse
|
40
|
Yang X, Ma L, Ye Z, Shi W, Zhang L, Wang J, Yang H. Radiation-induced bystander effects may contribute to radiation-induced cognitive impairment. Int J Radiat Biol 2021; 97:329-340. [PMID: 33332177 DOI: 10.1080/09553002.2021.1864498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Despite being a major treatment modality for brain cancer due to its efficiency in achieving cancer control, radiotherapy has long been known to cause long-term side effects, including radiation-induced cognitive impairment (RICI). Neurogenesis inhibition due to radiation-induced damage in neural stem cells (NSCs) has been demonstrated to be an important mechanism underlying RICI. Radiation-induced bystander effects (RIBEs) denote the biological responses in non-targeted cells after their neighboring cells are irradiated. We have previously demonstrated that RIBEs could play an important role in the skin wound healing process. Therefore, we aimed to investigate whether RIBEs contribute to RICI in this study. MATERIALS AND METHODS The transwell co-culture method was used to investigate bystander effects in mouse NSCs induced by irradiated GL261 mouse glioma cells in vitro. The proliferation, neurosphere-forming capacity and differentiation potential of NSCs were determined as the bystander endpoints. The exosomes were extracted from the media used to culture GL261 cells and were injected into the hippocampus of C57BL/6 mice. Two months later, the neurogenesis of mice was assessed using BrdU incorporation and immunofluorescence microscopy, and cognitive function was evaluated by the Morris Water Maze. RESULTS After co-culture with GL261 glioma cells, mouse NSCs displayed inhibited proliferation and reduced neurosphere-forming capacity and differentiation potential. The irradiated GL261 cells caused greater inhibition and reduction in NSCs than unirradiated GL261 cells. Moreover, adding the exosomes secreted by GL261 cells into the culture of NSCs inhibited NSC proliferation, suggesting that the cancer cell-derived exosomes may be critical intercellular signals. Furthermore, injection of the exosomes from GL261 cells into the hippocampus of mice caused significant neurogenesis inhibition and cognitive impairment two month later, and the exosomes from irradiated GL261 cells induced greater inhibitory effects. CONCLUSION RIBEs mediated by the exosomes from irradiated cancer cells could contribute to RICI and, therefore, could be a novel mechanism underlying RICI.
Collapse
Affiliation(s)
- Xuejiao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, PR China
| | - Linlin Ma
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, PR China
| | - Zhujing Ye
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, PR China
| | - Wenyu Shi
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, PR China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Liyuan Zhang
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, PR China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Second Affiliated Hospital of Soochow University, Suzhou, PR China.,Institute of Radiotherapy & Oncology of Soochow University, Suzhou, PR China
| | - Jingdong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, PR China
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, PR China.,Institute of Radiotherapy & Oncology of Soochow University, Suzhou, PR China
| |
Collapse
|
41
|
Wang Q, Xie C, Xi S, Qian F, Peng X, Huang J, Tang F. Radioprotective Effect of Flavonoids on Ionizing Radiation-Induced Brain Damage. Molecules 2020; 25:5719. [PMID: 33287417 PMCID: PMC7730479 DOI: 10.3390/molecules25235719] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 01/27/2023] Open
Abstract
Patients receiving brain radiotherapy may suffer acute or chronic side effects. Ionizing radiation induces the production of intracellular reactive oxygen species and pro-inflammatory cytokines in the central nervous system, leading to brain damage. Complementary Chinese herbal medicine therapy may reduce radiotherapy-induced side effects. Flavonoids are a class of natural products which can be extracted from Chinese herbal medicine and have been shown to have neuroprotective and radioprotective properties. Flavonoids are effective antioxidants and can also inhibit regulatory enzymes or transcription factors important for controlling inflammatory mediators, affect oxidative stress through interaction with DNA and enhance genomic stability. In this paper, radiation-induced brain damage and the relevant molecular mechanism were summarized. The radio-neuro-protective effect of flavonoids, i.e., antioxidant, anti-inflammatory and maintaining genomic stability, were then reviewed. We concluded that flavonoids treatment may be a promising complementary therapy to prevent radiotherapy-induced brain pathophysiological changes and cognitive impairment.
Collapse
Affiliation(s)
- Qinqi Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.W.); (C.X.); (S.X.)
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Chenghao Xie
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.W.); (C.X.); (S.X.)
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Shijun Xi
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.W.); (C.X.); (S.X.)
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng Qian
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China;
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.W.); (C.X.); (S.X.)
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Jiangrong Huang
- Department of Integrative Medicine, School of Health Sciences, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 1 CREATE Way #04-01, CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
42
|
Nakagawasai O, Lin JR, Odaira T, Takahashi K, Nemoto W, Moriguchi S, Yabuki Y, Kobayakawa Y, Fukunaga K, Nakada M, Tan-No K. Scabronine G Methyl Ester Improves Memory-Related Behavior and Enhances Hippocampal Cell Proliferation and Long-Term Potentiation via the BDNF-CREB Pathway in Olfactory Bulbectomized Mice. Front Pharmacol 2020; 11:583291. [PMID: 33281604 PMCID: PMC7689418 DOI: 10.3389/fphar.2020.583291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
A previous study reported that scabronine G methyl ester (SG-ME) potentially enhances the in vitro secretion of neurotrophic factors such as nerve growth factor via the protein kinase C (PKC)-ζ pathway. However, it remains unknown whether SG-ME can improve cognitive dysfunctions in olfactory bulbectomized (OBX) mice. To address this question, we evaluated SG-ME-treated and untreated OBX mice in a passive avoidance test. We also investigated potential effects of SG-ME on several parameters: cell proliferation and cAMP response element-binding protein (CREB) phosphorylation in the hippocampal dentate gyrus by immunohistochemistry, brain-derived neurotrophic factor (BDNF) levels in the hippocampus by Western blotting, p-CREB levels in the hippocampus by MapAnalyzer, and long-term potentiation (LTP) by electrophysiology. On the 14th day after surgery OBX mice showed altered passive avoidance and decreases in both cell proliferation and long-term potentiation in the hippocampus, while these changes were reversed by SG-ME (20 μg/mouse) 24 h after the treatment. The improvement in memory deficits was prevented when SG-ME was co-administeredwith either zeta inhibitory peptide (PKC-ζ inhibitor), anti-BDNF antibody, ANA-12 (TrkB antagonist), U0126 (MEK inhibitor), H-89 (PKA inhibitor), LY294002 (PI3K inhibitor) or KN-93 (CaMKII inhibitor). We found that SG-ME enhanced brain-derived neurotrophic factor and p-CREB levels in the hippocampus while p-CREB was localized in neurons, but not in astrocytes nor microglial cells. These findings revealed the potential of SG-ME in improving memory impairments by enhancing cell proliferation and LTP via activation of the BDNF/CREB signaling pathway in neurons.
Collapse
Affiliation(s)
- Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jia-Rong Lin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takayo Odaira
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kohei Takahashi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Ohtawara, Japan
| | - Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shigeki Moriguchi
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.,Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yu Kobayakawa
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masahisa Nakada
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
43
|
Cichon N, Saluk-Bijak J, Gorniak L, Przyslo L, Bijak M. Flavonoids as a Natural Enhancer of Neuroplasticity-An Overview of the Mechanism of Neurorestorative Action. Antioxidants (Basel) 2020; 9:antiox9111035. [PMID: 33114058 PMCID: PMC7690743 DOI: 10.3390/antiox9111035] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroplasticity is a complex physiological process occurring in the brain for its entire life. However, it is of particular importance in the case of central nervous system (CNS) disorders. Neurological recovery largely depends on the ability to reestablish the structural and functional organization of neurovascular networks, which must be pharmacologically supported. For this reason, new forms of therapy are constantly being sought. Including adjuvant therapies in standard treatment may support the enhancement of repair processes and restore impaired brain functions. The common hallmark of nerve tissue damage is increased by oxidative stress and inflammation. Thus, the studies on flavonoids with strong antioxidant and anti-inflammatory properties as a potential application in neuro intervention have been carried out for a long time. However, recent results have revealed another important property of these compounds in CNS therapy. Flavonoids possess neuroprotective activity, and promote synaptogenesis and neurogenesis, by, among other means, inhibiting oxidative stress and neuroinflammation. This paper presents an overview of the latest knowledge on the impact of flavonoids on the plasticity processes of the brain, taking into account the molecular basis of their activity.
Collapse
Affiliation(s)
- Natalia Cichon
- Biohazard Prevention Center, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (L.G.); (M.B.)
- Correspondence: ; Tel.: +48-42-635-43-36
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Leslaw Gorniak
- Biohazard Prevention Center, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (L.G.); (M.B.)
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Research Institute of Polish Mother’s Memorial Hospital, Rzgowska 281/289, 93-338 Lodz, Poland;
| | - Michal Bijak
- Biohazard Prevention Center, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (L.G.); (M.B.)
| |
Collapse
|
44
|
Pariset E, Malkani S, Cekanaviciute E, Costes SV. Ionizing radiation-induced risks to the central nervous system and countermeasures in cellular and rodent models. Int J Radiat Biol 2020; 97:S132-S150. [PMID: 32946305 DOI: 10.1080/09553002.2020.1820598] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Harmful effects of ionizing radiation on the Central Nervous System (CNS) are a concerning outcome in the field of cancer radiotherapy and form a major risk for deep space exploration. Both acute and chronic CNS irradiation induce a complex network of molecular and cellular alterations including DNA damage, oxidative stress, cell death and systemic inflammation, leading to changes in neuronal structure and synaptic plasticity with behavioral and cognitive consequences in animal models. Due to this complexity, countermeasure or therapeutic approaches to reduce the harmful effects of ionizing radiation include a wide range of protective and mitigative strategies, which merit a thorough comparative analysis. MATERIALS AND METHODS We reviewed current approaches for developing countermeasures to both targeted and non-targeted effects of ionizing radiation on the CNS from the molecular and cellular to the behavioral level. RESULTS We focus on countermeasures that aim to mitigate the four main detrimental actions of radiation on CNS: DNA damage, free radical formation and oxidative stress, cell death, and harmful systemic responses including tissue death and neuroinflammation. We propose a comprehensive review of CNS radiation countermeasures reported for the full range of irradiation types (photons and particles, low and high linear energy transfer) and doses (from a fraction of gray to several tens of gray, fractionated and unfractionated), with a particular interest for exposure conditions relevant to deep-space environment and radiotherapy. Our review reveals the importance of combined strategies that increase DNA protection and repair, reduce free radical formation and increase their elimination, limit inflammation and improve cell viability, limit tissue damage and increase repair and plasticity. CONCLUSIONS The majority of therapeutic approaches to protect the CNS from ionizing radiation have been limited to acute high dose and high dose rate gamma irradiation, and few are translatable from animal models to potential human application due to harmful side effects and lack of blood-brain barrier permeability that precludes peripheral administration. Therefore, a promising research direction would be to focus on practical applicability and effectiveness in a wider range of irradiation paradigms, from fractionated therapeutic to deep space radiation. In addition to discovering novel therapeutics, it would be worth maximizing the benefits and reducing side effects of those that already exist. Finally, we suggest that novel cellular and tissue models for developing and testing countermeasures in the context of other impairments might also be applied to the field of CNS responses to ionizing radiation.
Collapse
Affiliation(s)
- Eloise Pariset
- Universities Space Research Association, Columbia, MD, USA.,Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Sherina Malkani
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.,Young Scientist Program, Blue Marble Space Institute of Science, Moffett Field, CA, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
45
|
Talik Sisin NN, Abdul Razak K, Zainal Abidin S, Che Mat NF, Abdullah R, Ab Rashid R, Khairil Anuar MA, Rahman WN. Synergetic Influence of Bismuth Oxide Nanoparticles, Cisplatin and Baicalein-Rich Fraction on Reactive Oxygen Species Generation and Radiosensitization Effects for Clinical Radiotherapy Beams. Int J Nanomedicine 2020; 15:7805-7823. [PMID: 33116502 PMCID: PMC7567565 DOI: 10.2147/ijn.s269214] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE This study aimed to quantify synergetic effects induced by bismuth oxide nanoparticles (BiONPs), cisplatin (Cis) and baicalein-rich fraction (BRF) natural-based agent on the reactive oxygen species (ROS) generation and radiosensitization effects under irradiation of clinical radiotherapy beams of photon, electron and HDR-brachytherapy. The combined therapeutic responses of each compound and clinical radiotherapy beam were evaluated on breast cancer and normal fibroblast cell line. METHODS In this study, individual BiONPs, Cis, and BRF, as well as combinations of BiONPs-Cis (BC), BiONPs-BRF (BB) and BiONPs-Cis-BRF (BCB) were treated to the cells before irradiation using HDR brachytherapy with 0.38 MeV iridium-192 source, 6 MV photon beam and 6 MeV electron beam. The individual or synergetic effects from the application of the treatment components during the radiotherapy were elucidated by quantifying the ROS generation and radiosensitization effects on MCF-7 and MDA-MB-231 breast cancer cell lines as well as NIH/3T3 normal cell line. RESULTS The ROS generated in the presence of Cis stimulated the most substantial amount of ROS compared to the BiONPs and BRF. Meanwhile, the combination of the components had induced the higher ROS levels for photon beam than the brachytherapy and electron beam. The highest ROS enhancement relative to the control is attributable to the presence of BC combination in MDA-MB-231 cells, in comparison to the BB and BCB combinations. The radiosensitization effects which were quantified using the sensitization enhancement ratio (SER) indicate the highest value by BC in MCF-7 cells, followed by BCB and BB treatment. The radiosensitization effects are found to be more prominent for brachytherapy in comparison to photon and electron beam. CONCLUSION The BiONPs, Cis and BRF are the potential radiosensitizers that could improve the efficiency of radiotherapy to eradicate the cancer cells. The combination of these potent radiosensitizers might produce multiple effects when applied in radiotherapy. The BC combination is found to have the highest SER, followed by the BCB combination. This study is also the first to investigate the effect of BRF in combination with BiONPs (BB) and BC (BCB) treatments.
Collapse
Affiliation(s)
- Noor Nabilah Talik Sisin
- Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan,Malaysia
| | - Khairunisak Abdul Razak
- Material Engineering Programme, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Safri Zainal Abidin
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia
| | - Nor Fazila Che Mat
- Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan,Malaysia
| | - Reduan Abdullah
- Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan,Malaysia
- Nuclear Medicine, Radiotherapy and Oncology Department, Hospital of Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Raizulnasuha Ab Rashid
- Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan,Malaysia
| | - Muhammad Afiq Khairil Anuar
- Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan,Malaysia
| | - Wan Nordiana Rahman
- Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan,Malaysia
| |
Collapse
|
46
|
Wang M, Dong Y, Wu J, Li H, Zhang Y, Fan S, Li D. Baicalein ameliorates ionizing radiation-induced injuries by rebalancing gut microbiota and inhibiting apoptosis. Life Sci 2020; 261:118463. [PMID: 32950576 DOI: 10.1016/j.lfs.2020.118463] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/05/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022]
Abstract
AIMS Ionizing radiation (IR) induces injuries to the hematopoietic and intestinal systems, which are the leading cause of death. Baicalein, a plant-derived flavonoid, shows anti-oxidative stress, anti-apoptosis, anti-inflammation effects in many diseases. In this study, we evaluated the effects and mechanism of baicalein on IR induced intestinal and hematopoietic injuries. MAIN METHODS Mice were divided into three groups: Control, IR and IR + Baicalein. All of mice were intraperitoneally administered with 100 mg/kg baicalein or normal saline for 1 h before IR, and then a day post-IR. The changes in intestinal structure, function and molecular expression were observed by pathological experiments and western blot. 16S rRNA gene sequencing was performed to analyze gut microbiota and further predicted metabolic pathways through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Hematopoietic function was evaluated by peripheral blood cells count and by flow cytometry analysis of hematopoietic cells composition. KEY FINDINGS Baicalein improved intestinal structure and the ability of proliferation and regeneration after mice exposed to IR, in which the rebalance of gut microbial composition played an important role. KEGG results showed that p53-related apoptotic pathways played important roles in the composition changes of gut microbiota. Then we observed that baicalein inhibited the activation of p53 and p53 mediated mitochondrial apoptosis and death receptor apoptosis in the intestine. In addition, IR induced injuries to hematopoietic system also could be ameliorated by baicalein. SIGNIFICANCE These results provide new insights into the mechanism of baicalein and support the potential of baicalein as a radioprotective medicine.
Collapse
Affiliation(s)
- Meifang Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jing Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Hongyan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yuanyang Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
47
|
Antidementia effects of Enterococcus faecalis 2001 are associated with enhancement of hippocampal neurogenesis via the ERK-CREB-BDNF pathway in olfactory bulbectomized mice. Physiol Behav 2020; 223:112997. [DOI: 10.1016/j.physbeh.2020.112997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 01/23/2023]
|
48
|
The effect of baicalein-loaded Y-shaped miktoarm copolymer on spatial memory and hippocampal expression of DHCR24, SELADIN and SIRT6 genes in rat model of Alzheimer. Int J Pharm 2020; 586:119546. [PMID: 32544519 DOI: 10.1016/j.ijpharm.2020.119546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
In the present study, we successfully synthesized nanocarriers (NCs) based on Y-shaped miktoarm copolymers, Poly Ethylene Glycol-Lysine-(Poly Caprolactone)2 (PEG-Lys-PCL2), which were loaded by baicalein (B) through the nanoprecipitation process to assess their in-vitro and in-vivo properties. We applied various methods and measurements including proton nuclear magnetic resonance (HNMR), dynamic light scattering (DLS), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), MTT assay, hemolysis test, lethal dose, real-time PCR, and Morris water maze. The results of DLS indicated that the size and zeta potential of the obtained NCs and B-loaded NCs were acceptable. Also, in-vivo and in-vitro biocompatibility examinations proved that miktoarm-based NCs were safe, and all rats treated with miktoarm-based NCs did not exhibit any remarkable weight loss during the experiment. The results of the Morris water maze (in-vivo test) revealed that the normal saline-treated group, as well as B-miktoarm + Scopolamine (M + B + S) and B-miktoarm-Tween80 + Scopolamine (M + B + T + S) pretreatment groups, spent more time in the target quadrant. Thus, this experiment showed that pretreatment of rats with M + B + S and M + B + T + S had the most effects on spatial memory. According to quantitative PCR analysis, we hypothesized that, in comparison with other experimental groups, pretreatment of rats with M + B + T + S could be more effective in preventing cholinergic dysfunction, brain oxidative stress and cognitive deficits which cause by Scopolamine HBr. This outcome may be partially due to the upregulation of DHCR24, SELADIN, and SIRT6 in entire of the hippocampal region of normal saline-treated and M + B + T + S pretreatment groups. These results may be because mimicking the cell membrane structure would be an excellent feature for miktoarm, and partial coating of Tween-80 can play a critical role for PEG-Lys-PCL2-based NCs in crossing the brain cell membrane, and they can easily be uptaken by the cells. Eventually, all of the obtained data confirmed that PEG-Lys-PCL2 miktoarm star copolymers are suitable for delivering therapeutic agents to the brain for the treatment of Alzheimer's disease (AD). Also, it seems that baicalein should be taken into account as a potent compound for the treatment of AD.
Collapse
|
49
|
Gan L, Guo M, Si J, Zhang J, Liu Z, Zhao J, Wang F, Yan J, Li H, Zhang H. Protective effects of phenformin on zebrafish embryonic neurodevelopmental toxicity induced by X-ray radiation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4202-4210. [DOI: 10.1080/21691401.2019.1687505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lu Gan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Menghuan Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jing Si
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinhua Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Liu
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, China
| | - Jin Zhao
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Fang Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junfang Yan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Li
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Cathepsin B inhibitors block multiple radiation-induced side effects in C. elegans. Cell Res 2019; 29:1042-1045. [PMID: 31664165 DOI: 10.1038/s41422-019-0247-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/23/2019] [Indexed: 01/01/2023] Open
|