1
|
Zou RQ, Dai YS, Liu F, Yang SQ, Hu HJ, Li FY. Hepatobiliary organoid research: the progress and applications. Front Pharmacol 2025; 16:1473863. [PMID: 40008122 PMCID: PMC11850396 DOI: 10.3389/fphar.2025.1473863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Organoid culture has emerged as a forefront technology in the life sciences field. As "in vitro micro-organs", organoids can faithfully recapitulate the organogenesis process, and conserve the key structure, physiological function and pathological state of the original tissue or organ. Consequently, it is widely used in basic and clinical studies, becoming important preclinical models for studying diseases and developing therapies. Here, we introduced the definition and advantages of organoids and described the development and advances in hepatobiliary organoids research. We focus on applying hepatobiliary organoids in benign and malignant diseases of the liver and biliary tract, drug research, and regenerative medicine to provide valuable reference information for the application of hepatobiliary organoids. Despite advances in research and treatment, hepatobiliary diseases including carcinoma, viral hepatitis, fatty liver and bile duct defects have still been conundrums of the hepatobiliary field. It is necessary and crucial to study disease mechanisms, establish efficient and accurate research models and find effective treatment strategies. The organoid culture technology shed new light on solving these issues. However, the technology is not yet mature, and many hurdles still exist that need to be overcome. The combination with new technologies such as CRISPR-HOT, organ-on-a-chip may inject new vitality into future development.
Collapse
Affiliation(s)
- Rui-Qi Zou
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Shi Dai
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Si-Qi Yang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Jie Hu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fu-Yu Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Noritake H, Kobayashi Y, Ooba Y, Matsunaga E, Ohta K, Shimoyama S, Yamazaki S, Chida T, Kawata K, Sakaguchi T, Suda T. Successful Interferon Therapy Reverses Enhanced Hepatic Progenitor Cell Activation in Patients with Chronic Hepatitis C. J Interferon Cytokine Res 2015; 35:956-62. [PMID: 26308703 DOI: 10.1089/jir.2014.0197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The enhanced accumulation of hepatic progenitor cells (HPCs) is related to the risk of progression to hepatocellular carcinoma (HCC). Interferon (IFN) treatment reduces HCC risk in patients with chronic hepatitis C virus (HCV) infection. However, the underlying mechanisms remain unclear. The aim of this study was to examine the effects of IFN treatment on HPC activation in HCV patients. Immunohistochemical detection and computer-assisted quantitative image analyses of cytokeratin 7 (CK7) were performed to evaluate HPC activation in paired pre- and post-treatment liver biopsies from 18 HCV patients with sustained virological response (SVR) to IFN-based therapy and from 23 patients without SVR, as well as normal liver tissues obtained from surgical resection specimens of 10 patients. Pretreatment HCV livers showed increased CK7 immunoreactivity, compared with normal livers (HCV: median, 1.38%; normal: median, 0.69%, P=0.006). IFN treatment reduced hepatic CK7 immunoreactivity (median, 1.57% pre-IFN vs. 0.69% post-IFN, P=0.006) in SVR patients, but not in non-SVR patients. The development of HCC following IFN treatment was encountered in 3 non-SVR patients who showed high post-IFN treatment CK7 immunoreactivity (>4%). Successful IFN therapy can reverse enhanced HPC activation in HCV patients, which may contribute to the reduced risk of HCC development in these patients.
Collapse
Affiliation(s)
- Hidenao Noritake
- 1 Hepatology Division, Department of Internal Medicine, Hamamatsu University School of Medicine , Hamamatsu, Japan
| | - Yoshimasa Kobayashi
- 1 Hepatology Division, Department of Internal Medicine, Hamamatsu University School of Medicine , Hamamatsu, Japan
| | - Yukimasa Ooba
- 1 Hepatology Division, Department of Internal Medicine, Hamamatsu University School of Medicine , Hamamatsu, Japan
| | - Erika Matsunaga
- 1 Hepatology Division, Department of Internal Medicine, Hamamatsu University School of Medicine , Hamamatsu, Japan
| | - Kazuyoshi Ohta
- 1 Hepatology Division, Department of Internal Medicine, Hamamatsu University School of Medicine , Hamamatsu, Japan
| | - Shin Shimoyama
- 1 Hepatology Division, Department of Internal Medicine, Hamamatsu University School of Medicine , Hamamatsu, Japan
| | - Satoru Yamazaki
- 1 Hepatology Division, Department of Internal Medicine, Hamamatsu University School of Medicine , Hamamatsu, Japan
| | - Takeshi Chida
- 1 Hepatology Division, Department of Internal Medicine, Hamamatsu University School of Medicine , Hamamatsu, Japan
| | - Kazuhito Kawata
- 1 Hepatology Division, Department of Internal Medicine, Hamamatsu University School of Medicine , Hamamatsu, Japan
| | - Takanori Sakaguchi
- 2 Department of Surgery, Hamamatsu University School of Medicine , Hamamatsu, Japan
| | - Takafumi Suda
- 3 Respiratology Division, Department of Internal Medicine, Hamamatsu University School of Medicine , Hamamatsu, Japan
| |
Collapse
|
3
|
El-Araby HA, Ehsan NA, Konsowa HA, Abd-Elaati BM, Sira AM. Hepatic progenitor cells in children with chronic hepatitis C: correlation with histopathology, viremia, and treatment response. Eur J Gastroenterol Hepatol 2015; 27:561-569. [PMID: 25822865 DOI: 10.1097/meg.0000000000000329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Hepatic progenitor cells (HPCs) are bipotential stem cells that can differentiate towards the hepatocytic and cholangiocytic lineages. Many studies have investigated HPCs in adults with hepatitis C virus infection; however, none has been carried out in the pediatric population. Therefore, this work aimed to investigate HPCs expansion in children with chronic hepatitis C (CHC) and its correlation with histopathology, viremia, and treatment response. PATIENTS AND METHODS Eighty children with CHC, 73 of whom received interferon-based therapy, were recruited. Sections of their liver biopsies were prepared for immunostaining of HPCs using cytokeratin-7 antibody. RESULTS HPCs were expanded in most children (81.3%) with CHC. Expansion occurred in two forms: intraparenchymal isolated hepatic progenitor cell form and periportal ductular reaction form. There was a significant increase in HPCs expansion in higher stages of fibrosis (50, 81.8, and 100% in no, mild, and moderate fibrosis, respectively, with P=0.029). Also, HPCs expansion increased with increased grade of necroinflammatory activity (0, 77.8, 81.8, and 100%, in no, minimal, mild, and moderate activity, respectively), although this was statistically insignificant. Moreover, a significant positive correlation was found between the isolated hepatic progenitor cell number and ductular reaction grade (r=0.755, P<0.0001), and both were significantly correlated with the level of viremia and the grade of necroinflammatory activity. Finally, HPCs expansion was not related to the treatment response. CONCLUSION The relationship of HPCs with both the severity of hepatitis and the stage of fibrosis may be because of a role of HPCs in their pathogenesis.
Collapse
Affiliation(s)
- Hanaa A El-Araby
- Departments of aPediatric Hepatology bPathology, National Liver Institute, Menofiya University, Menofiya, Egypt
| | | | | | | | | |
Collapse
|
4
|
Kakuda Y, Harada K, Nakanuma Y. Canals of Hering loss relates to the progression of the histological stages of primary biliary cirrhosis. J Clin Pathol 2014; 68:141-7. [DOI: 10.1136/jclinpath-2014-202417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Zheng YW, Tsuchida T, Shimao T, Li B, Takebe T, Zhang RR, Sakurai Y, Ueno Y, Sekine K, Ishibashi N, Imajima M, Tanaka T, Taniguchi H. The CD133+CD44+ precancerous subpopulation of oval cells is a therapeutic target for hepatocellular carcinoma. Stem Cells Dev 2014; 23:2237-2249. [PMID: 24804872 PMCID: PMC4155481 DOI: 10.1089/scd.2013.0577] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/29/2014] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor associated with a generally poor prognosis and a high rate of recurrence. HCC usually develops in the context of chronic liver diseases, and long-lasting premalignant conditions precede cancer development. A promising therapeutic approach is to eliminate precancerous cells, which are considered as the precursors of cancer stem cells, to prevent further malignant transformation. In this study, we identified a subpopulation of precancerous cells in a rat liver carcinogenesis model, which were enriched in CD133(+)CD44(+)CD45(-)HIS49(-) cells that formed part of the hepatic oval cells fraction. Prospective isolation of the precancerous cells using flow cytometry identified stem cell properties such as the ability to expand clonally and differentiate into bi-lineage cell types. Furthermore, an acyclic retinoid, which was recently shown to improve overall survival after HCC resection, directly inhibited the extensive expansion of the isolated precancerous cells in vitro and decreased the emergence of the precancerous cells and their progeny in vivo. Long-term follow-up after the acyclic retinoid treatment confirmed reduction in precancerous changes, ultimately resulting in suppression of HCC development. These findings, together with data from recent clinical trials showing marked reduction in intrahepatic recurrence, suggest that acyclic retinoid directly prevents de novo HCC by inhibiting the development of precancerous cells. Given recent advances in diagnostic techniques and the establishment of surveillance programs, the targeting of precancerous cells may have a huge impact on preventative cancer therapies.
Collapse
Affiliation(s)
- Yun-Wen Zheng
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tomonori Tsuchida
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Taiki Shimao
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Bin Li
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takanori Takebe
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ran-Ran Zhang
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yu Sakurai
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yasuharu Ueno
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Keisuke Sekine
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naoto Ishibashi
- Tokyo New Drug Research Laboratories, Pharmacological Division, Kowa Co. Ltd., Tokyo, Japan
| | - Makiko Imajima
- Tokyo New Drug Research Laboratories, Pharmacological Division, Kowa Co. Ltd., Tokyo, Japan
| | - Takuji Tanaka
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
6
|
Kruitwagen HS, Spee B, Schotanus BA. Hepatic progenitor cells in canine and feline medicine: potential for regenerative strategies. BMC Vet Res 2014; 10:137. [PMID: 24946932 PMCID: PMC4089933 DOI: 10.1186/1746-6148-10-137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/31/2013] [Indexed: 12/17/2022] Open
Abstract
New curative therapies for severe liver disease are urgently needed in both the human and veterinary clinic. It is important to find new treatment modalities which aim to compensate for the loss of parenchymal tissue and to repopulate the liver with healthy hepatocytes. A prime focus in regenerative medicine of the liver is the use of adult liver stem cells, or hepatic progenitor cells (HPCs), for functional recovery of liver disease. This review describes recent developments in HPC research in dog and cat and compares these findings to experimental rodent studies and human pathology. Specifically, the role of HPCs in liver regeneration, key components of the HPC niche, and HPC activation in specific types of canine and feline liver disease will be reviewed. Finally, the potential applications of HPCs in regenerative medicine of the liver are discussed and a potential role is suggested for dogs as first target species for HPC-based trials.
Collapse
Affiliation(s)
- Hedwig S Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, The Netherlands.
| | | | | |
Collapse
|
7
|
Wang HY, Yang SL, Liang HF, Li CH. HBx protein promotes oval cell proliferation by up-regulation of cyclin D1 via activation of the MEK/ERK and PI3K/Akt pathways. Int J Mol Sci 2014; 15:3507-18. [PMID: 24577313 PMCID: PMC3975350 DOI: 10.3390/ijms15033507] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 12/13/2022] Open
Abstract
Growing evidence has shown that hepatic oval cells, also named liver progenitor cells, play an important role in the process of liver regeneration in various liver diseases. Oval cell proliferation has been reported in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) and chronic liver disease. Studies have found expression of HBV surface and core antigens in oval cells in the livers of patients with HCC, suggesting that HBV infection of oval cells could be a mechanism of human hepatocarcinogenesis. In addition, there is evidence of multiplication of HBV in oval cell culture. However, little research has been performed to explore the role of HBV-encoded proteins in the proliferation of hepatic oval cells. Previously, we successfully transfected the HBV x (HBx) gene, one of the four genes in the HBV genome, into a rat LE/6 oval cell line. In this study, we tested whether or not the transfected HBx gene could affect oval cell proliferation in vitro. Our results show that overexpression of HBx promotes the proliferation of oval cells and increases cyclin D1 expression, assessed at both the mRNA and protein levels. We also found that HBx activated the PI-3K/Akt and MEK/ERK1/2 pathways in HBx-transfected oval cells. Furthermore, the HBx-induced increases in cyclin D1 expression and oval cell proliferation were completely abolished by treatment with either MEK inhibitor PD184352 or PI-3K inhibitor LY294002. These results demonstrated that HBx has the ability to promote oval cell proliferation in vitro, and its stimulatory effects on cell proliferation and expression of cyclin D1 depend on the activation of the MEK/ERK and PI3K/Akt signaling pathways in cultured oval cells.
Collapse
Affiliation(s)
- Heng-Yi Wang
- Department of Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Sheng-Li Yang
- Department of General Surgery, Liyuan Hospital, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430077, China.
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, China.
| | - Chang-Hai Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, China.
| |
Collapse
|
8
|
Improved Serum Alpha-Fetoprotein Levels after Iron Reduction Therapy in HCV Patients. ISRN HEPATOLOGY 2014; 2014:875140. [PMID: 27335844 PMCID: PMC4890901 DOI: 10.1155/2014/875140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022]
Abstract
Background and Aims. To examine the changes in serum alpha-fetoprotein (AFP) levels after iron reduction by therapeutic phlebotomy in chronic hepatitis C patients. Methods. This retrospective study included 26 chronic hepatitis C patients. The patients were developed iron depletion by repeated therapeutic phlebotomies. Results. Iron reduction therapy significantly reduced the median level of serum AFP from 13 to 7 ng/mL, ALT from 96 to 50 IU/L, gamma-glutamyl transpeptidase (GGT) from 55 to 28 IU/L, and ferritin from 191 to 10 ng/mL (P < 0.001 for each). The rate of decline in the AFP level correlated positively only with that in GGT (r = 0.695, P = 0.001), although a spurious correlation was observed between the rates of decline for AFP and ALT. The AFP level normalized (<10 ng/mL) posttreatment in eight (50%) of 16 patients who had elevated pretreatment AFP levels. Normalized post-treatment ALT and GGT levels were seen in 12% (3 of 26) and 39% (7 of 18) of the patients, respectively. Multivariate analysis identified a post-treatment GGT level of <30 IU/L as an independent factor associated with post-treatment AFP normalization (odds ratio, 21; 95% confidence interval, 1.5-293; P = 0.024). Conclusions. Iron reduction by therapeutic phlebotomy can reduce serum AFP and GGT levels in chronic hepatitis C patients.
Collapse
|
9
|
Fujiwara K, Nakano M, Yasui S, Okitsu K, Yonemitsu Y, Yokosuka O. Advanced histology and impaired liver regeneration are associated with disease severity in acute-onset autoimmune hepatitis. Histopathology 2011; 58:693-704. [DOI: 10.1111/j.1365-2559.2011.03790.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Bateman AC, Hübscher SG. Cytokeratin expression as an aid to diagnosis in medical liver biopsies. Histopathology 2011; 56:415-25. [PMID: 20459548 DOI: 10.1111/j.1365-2559.2009.03391.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The study of cytokeratin expression has provided a valuable insight into the biliary microanatomy of the liver in health and disease. The canals of Hering are a putative site of origin for progenitor cells, which may repopulate the liver after cellular damage and loss. Normal bile ducts and the bile ductular reaction that occurs in many chronic liver diseases - especially chronic biliary tract disease - express cytokeratin (CK) 7 and CK19. Therefore, both ductopenia and the process of bile ductular reaction can be highlighted with immunohistochemistry for these cytokeratins. Furthermore, CK7 is usually expressed in an increasingly widespread manner by hepatocytes as chronic cholestatic liver disease progresses. For these reasons, CK immunohistochemistry is a very useful adjunct to morphological assessment and histochemical stains for copper retention when a diagnosis of chronic biliary disease is being considered. This review describes the anatomical theory behind the use of CK immunohistochemistry for the assessment of bile duct number and distribution in the liver and provides practical advice for the application of this technique in the diagnostic setting of common medical liver diseases.
Collapse
Affiliation(s)
- Adrian C Bateman
- Department of Cellular Pathology, Southampton General Hospital, Southampton, UK.
| | | |
Collapse
|
11
|
Hepatic progenitor cells in chronic hepatitis C: a phenomenon of older age and advanced liver disease. Virchows Arch 2010; 457:457-66. [DOI: 10.1007/s00428-010-0957-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/30/2010] [Accepted: 07/30/2010] [Indexed: 12/19/2022]
|
12
|
Khurana S, Shah N, Cheng K, Shiu B, Samimi R, Belo A, Shant J, Drachenberg C, Wess J, Raufman JP. Scopolamine treatment and muscarinic receptor subtype-3 gene ablation augment azoxymethane-induced murine liver injury. J Pharmacol Exp Ther 2010; 333:639-49. [PMID: 20197374 PMCID: PMC2879938 DOI: 10.1124/jpet.109.165118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/01/2010] [Indexed: 12/31/2022] Open
Abstract
Previous work suggests that vagus nerve disruption reduces hepatocyte and oval cell expansion after liver injury. The role of postneuronal receptor activation in response to liver injury has not been ascertained. We investigated the actions of scopolamine, a nonselective muscarinic receptor antagonist, and specific genetic ablation of a key cholinergic receptor, muscarinic subtype-3 (Chrm3), on azoxymethane (AOM)-induced liver injury in mice. Animal weights and survival were measured as was liver injury using both gross and microscopic examination. To assess hepatocyte proliferation and apoptosis, ductular hyperplasia, and oval cell expansion, we used morphometric analysis of 5-bromo-2'-deoxyuridine-, activated caspase-3-, hematoxylin and eosin-, cytokeratin-19-, and epithelial cell adhesion molecule-stained liver sections. Sirius red staining was used as a measure of collagen deposition and its association with oval cell reaction. In AOM-treated mice, both muscarinic receptor blockade with scopolamine and Chrm3 ablation attenuated hepatocyte proliferation and augmented gross liver nodularity, apoptosis, and fibrosis. Compared with control, scopolamine-treated and Chrm3(-/-) AOM-treated mice had augmented oval cell reaction with increased ductular hyperplasia and oval cell expansion. Oval cell reaction correlated robustly with liver fibrosis. No liver injury was observed in scopolamine-treated and Chrm3(-/-) mice that were not treated with AOM. Only AOM-treated Chrm3(-/-) mice developed ascites and had reduced survival compared with AOM-treated wild-type controls. In AOM-induced liver injury, inhibiting postneuronal cholinergic muscarinic receptor activation with either scopolamine treatment or Chrm3 gene ablation results in prominent oval cell reaction. We conclude that Chrm3 plays a critical role in the liver injury response by modulating hepatocyte proliferation and apoptosis.
Collapse
Affiliation(s)
- Sandeep Khurana
- Division of Gastroenterology and Hepatology, VA Maryland Health Care System and University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Electron microscopic alterations in intermediate hepatocyte-like cells in children with chronic hepatitis B: the first report in pediatric patients. Eur J Gastroenterol Hepatol 2010; 22:741-7. [PMID: 19623079 DOI: 10.1097/meg.0b013e32832e2c09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The study objective was an in-depth ultrastructural analysis of intermediate hepatocyte-like cells (IHCs), constituting a subpopulation of liver progenitor/oval cells, in children with chronic hepatitis B viral (HBV) infection. METHODS Ultrastructural investigations were conducted on liver biopsy material, fixed in a solution of 2.5% glutaraldehyde, 2% paraformaldehyde, and 0.1 mol/l cacodylate buffer, obtained from 40 children, aged 3-16 years, with chronic hepatitis B. RESULTS Transmission-electron microscopic analysis of liver progenitor/oval cells showed, apart from a morphologically unchanged population of oval cells, the presence of IHCs displaying variously pronounced ultrastructural changes, including degeneration. Interesting was that damaged IHCs were mainly observed in patients with a coexisting advanced liver fibrosis, where they frequently adhered to bundles of collagen fibers. Submicroscopic abnormalities in these cells referred mainly to mitochondria and granular endoplasmic reticulum. The most pronounced mitochondrial alterations observed in degenerating IHCs in the course of chronic HBV infection were characterized by distinct swelling, loss of mitochondrial crests, and the presence of myelin structures within the matrix. In granular endoplasmic reticulum, shortening and segmental degranulation of the reticulum were observed. The above changes were accompanied by the appearance of primitive phagosome-like structures with absorbed biliary pigment. In the vicinity of altered IHCs, transitional hepatic stellate cells could be found. CONCLUSION Our study seems to suggest that chronic HBV infection, lasting from childhood and coexisting with intensive fibrosis may, with the involvement of other carcinogenic factors, promote degenerating IHCs towards neoplastic transformation in adulthood.
Collapse
|
14
|
Abstract
The liver consists of many cell types with specialized functions. Hepatocytes are one of the main players in the organ and therefore are the most vulnerable cells to damage. Since they are not everlasting cells, they need to be replenished throughout life. Although the capacity of hepatocytes to contribute to their own maintenance has long been recognized, recent studies have indicated the presence of both intrahepatic and extrahepatic stem/progenitor cell populations that serve to maintain the normal organ and to regenerate damaged parenchyma in response to a variety of insults.The intrahepatic compartment most likely derives primarily from the biliary tree, particularly the most proximal branches, i.e. the canals of Hering and smallest ductules. The extrahepatic compartment is at least in part derived from diverse populations of cells from the bone marrow. Embryonic stem cells (ES's) are considered as a part of the extrahepatic compartment. Due to their pluripotent capabilities, ES cell-derived cells form a potential future source of hepatocytes, to replace or restore hepatic tissues that have been damaged by disease or injury. Progressing knowledge about stem cells in the liver would allow a better understanding of the mechanisms of hepatic homeostasis and regeneration. Although a human stem cell-derived cell type equivalent to primary hepatocytes does not yet exist, the promising results obtained with extrahepatic stem cells would open the way to cell-based therapy for liver diseases.
Collapse
Affiliation(s)
- Nalu Navarro-Alvarez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | |
Collapse
|
15
|
Schotanus BA, van den Ingh TSGAM, Penning LC, Rothuizen J, Roskams TA, Spee B. Cross-species immunohistochemical investigation of the activation of the liver progenitor cell niche in different types of liver disease. Liver Int 2009; 29:1241-52. [PMID: 19490419 DOI: 10.1111/j.1478-3231.2009.02024.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND When hepatocyte replication during liver disease is insufficient for regeneration, liver progenitor cells (LPCs) are activated. The cells and stroma in the immediate environment of LPCs, together termed the LPC niche, are thought to play an important role in this activation. Among these cells are the hepatic stellate cells (HSCs)/myofibroblasts (MFs). AIMS/METHODS We assessed the activation of HSC/MFs and LPCs in relation to the histological location and extent of liver disease in immunohistochemically (double) stained serial sections. Markers of HSC/MFs [alpha-smooth muscle actin, glial fibrillary acidic protein (GFAP), neurotrophin 3 and neural-cell adhesion molecule], markers of LPCs (keratin 7 and keratin 19) and a proliferation marker (Ki67) were used. A very relevant spontaneous model to evaluate LPC niche activation in a translational approach seems to be the dog. Therefore, both human and canine liver diseases with different degree of fibrosis and disease activity were included. RESULTS In human and canine liver disease, type and extent of LPC niche activation depended on type and severity of disease (P<0.05) and corresponded to the main location of disease. Activated HSCs surrounded the activated LPCs. In chronic hepatitis and non-alcoholic steatohepatitis lobular-type HSCs were activated, while during biliary disease portal/septal MFs were mainly activated. In canine liver, GFAP further presented as an early marker of HSC activation. Activation of the LPCs correlated with disease location and severity (P<0.01), and was inversely related to hepatocyte proliferation, as was previously shown in man. CONCLUSION A shared involvement of HSC/MFs, LPCs and disease severity during hepatic disease processes is shown, which is highly similar in man and dog.
Collapse
Affiliation(s)
- Baukje A Schotanus
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
16
|
Richardson MM, Jonsson JR, Powell EE, Brunt EM, Neuschwander-Tetri BA, Bhathal PS, Dixon JB, Weltman MD, Tilg H, Moschen AR, Purdie DM, Demetris AJ, Clouston AD. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology 2007; 133:80-90. [PMID: 17631134 DOI: 10.1053/j.gastro.2007.05.012] [Citation(s) in RCA: 360] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 03/22/2007] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Portal fibrosis and linkage is a key feature of progressive disease in nonalcoholic steatohepatitis (NASH), but not simple steatosis. It is underappreciated and poorly understood. Fatty liver has impaired regeneration that induces a secondary replicative pathway using bipotential, periportal, hepatic progenitor cells (HPCs). We propose that activation of this pathway, with increased cell injury in NASH, also induces a periportal ductular reaction (DR) that could produce a profibrogenic stimulus. METHODS Biopsy specimens from 107 patients with nonalcoholic fatty liver disease and 11 controls were immunostained with cytokeratin-7 to quantify the DR and HPCs, and with p21 to assess hepatocyte replicative arrest. These results were correlated with clinicopathologic variables. RESULTS Patients with nonalcoholic fatty liver disease had expansion of HPCs, with a strong association between HPCs and the DR (r(s) = 0.582, P < .0001). In those with NASH (n = 69) there was an increased DR compared with simple steatosis, which correlated with the stage of fibrosis (r(s) = 0.510, P < .0001). The DR increased with the grade of NASH activity (r(s) = 0.478, P < .0001), grade of portal inflammation (r(s) = 0.445, P < .0001), and extent of hepatocyte replicative arrest (r(s) = 0.446, P < .0001). Replicative arrest was in turn associated with insulin resistance (r(s) = 0.450, P < .0001) and NASH activity (r(s) = 0.452, P < .0001). By multivariate analysis, the extent of DR (odds ratio [OR] = 17.9, P = .016), hepatocyte ballooning (OR = 8.1, P < .0001), and portal inflammation (OR = 3.3, P = .005) were associated independently with fibrosis. CONCLUSIONS These findings suggest that an altered replication pathway in active NASH promotes a periportal DR, which in turn may provoke progressive periportal fibrogenesis.
Collapse
Affiliation(s)
- Michelle M Richardson
- School of Medicine, Southern Clinical Division, University of Queensland, Princess Alexandra Hospital, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Immunohistochemical characterization of hepatic stem cell-related cells in developing human liver. ACTA ACUST UNITED AC 2007; 1:264-8. [PMID: 24573863 DOI: 10.1007/s11684-007-0050-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Little is known about the expression characteristics of the various kinds of possible markers in hepatic stem cells (HSCs) and other HSC-related cells in human fetal liver in various developmental stages. It is significant to investigate the immunohistochemical expression for better understanding of the origin, differentiation and migration of HSCs in the developing human liver. H-E staining and immunohistochemical methods were used to observe the expression of hepatic/cholangiocellular differentiation markers (AFP, GST-π, CK7, CK19) and hematopoietic stem cell markers(CD34 and c-kit) in several kinds of HSC-related cells in thirty cases of fetal liver samples (4-35 weeks after pregnancy). AFP expression appears in fetal hepatocytes at four weeks' gestation. It peaks at 16-24 weeks' gestation and decreases gradually afterwards. Finally, weak signals were only found in some ductal plate cells and a few limiting plate cells. GST-π was detected in hepatic cord cells from the sixth week and in the ductal plate cells from the eighth week. Twenty-six weeks later, only some ductal plate cells and a few limiting plate cells show positive signals. CK19 expression peaks during the 6th-11th weeks in hepatic cord cells and decreases gradually afterwards, except for the ductal plates. CK7 expression was limited in the ductal plate cells and bile ducts cells from the 14th week. CD34 and c-kit were detected at the eighth week in some ductal plate cells and a few mononuclear cells in the hepatic cords/mesenchymal tissue of portal areas. After 21 weeks, CD34 and c-kit were found only in ductal plate cells and a few mononuclear cells in the hepatic mesenchymal tissue of portal areas. Fetal hepatocytes at 4-16 weeks' gestation are mainly constituted by HSCs characterized with bi-potential differentiation capacity. At 16 weeks' gestation, most hepatic cord cells begin to differentiate into hepatocytes and abundant HSCs remain in ductal plate (the origin site of Hering canals). It is also indicated that the hematopoietic stem cells may give rise to some HSCs in embryonic liver. These indirectly support the hypothesis about the location and origin of HSCs in "liver valley hypothesis" reported previously.
Collapse
|
18
|
Sobaniec-Lotowska MESL, Lotowska JM, Lebensztejn DM. Ultrastructure of oval cells in children with chronic hepatitis B, with special emphasis on the stage of liver fibrosis: The first pediatric study. World J Gastroenterol 2007; 13:2918-22. [PMID: 17589940 PMCID: PMC4171142 DOI: 10.3748/wjg.v13.i21.2918] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the ultrastructure of oval cells in children with chronic hepatitis B, with special emphasis on their location in areas of collagen fibroplasia.
METHODS: Morphological investigations were conducted on biopsy material obtained from 40 children, aged 3-16 years with chronic hepatitis B. The stage of fibrosis was assessed histologically using the arbitrary semiquantitative numerical scoring system proposed by Ishak et al. The material for ultrastructural investigation was fixed in glutaraldehyde and paraformaldehyde and processed for transmission–electron microscopic analysis.
RESULTS: Ultrastructural examination of biopsy specimens obtained from children with chronic hepatitis B showed the presence of two types of oval cells, the hepatic progenitor cells and intermediate hepatic-like cells. These cells were present in the parenchyma and were seen most commonly in areas of intense periportal fibrosis (at least stage 2 according to Ishak et al) and in the vicinity of the limiting plate of the lobule. The activated nonparenchymal hepatic cells, i.e. transformed hepatic stellate cells and Kupffer cells were seen in close proximity to the intermediate hepatic-like cells.
CONCLUSION: We found a distinct relationship between the prevalence of oval cells (hepatic progenitor cells and intermediate hepatocyte-like cells) and fibrosis stage in pediatric patients with chronic hepatitis B.
Collapse
|
19
|
Shupe T, Petersen BE. Evidence regarding a stem cell origin of hepatocellular carcinoma. STEM CELL REVIEWS 2007. [PMID: 17142863 DOI: 10.1385/scr: 1: 3: 261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The cellular origin of tumors remains as one of the unanswered, fundamental questions of cancer biology. The notion that tumors may arise from tissue stem cells is supported by phenotypic similarities between these two cell types, such as proliferative potential and expression of onco-fetal proteins. Liver stem cells, or oval cells, have been put forth as a possible target for hepatocarcinogens. Genetically modified and in vitro transformed oval cells have been shown to form tumors in transplantation to animals. Chemical carcinogenesis models in the liver demonstrate varying degrees of oval cell proliferation. There is also preliminary evidence that hepatocellular carcinoma may maintain a bipotential phenotype consistent with an oval cell origin. Whereas definitive proof of an oval cell origin of hepatocellular has yet to be presented, the current circumstantial evidence justifies continued research on this subject.
Collapse
Affiliation(s)
- Thomas Shupe
- Department of Pathology, Immunology and Laboratory Medicine. University of Florida, College of Medicine, Gainesville, FL 32610-0275, USA
| | | |
Collapse
|
20
|
Abstract
Hepatocellular carcinoma is among the most lethal and prevalent cancers in the human population. Despite its significance, there is only an elemental understanding of the molecular, cellular and environmental mechanisms that drive disease pathogenesis, and there are only limited therapeutic options, many with negligible clinical benefit. This Review summarizes the current state of knowledge of this, the most common and dreaded liver neoplasm, and highlights the principal challenges and scientific opportunities that are relevant to controlling this accelerating global health crisis.
Collapse
Affiliation(s)
- Paraskevi A Farazi
- Department of Genetics, Division of Medical Sciences, Harvard University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
21
|
Sun C, Jin XL, Xiao JC. Oval cells in hepatitis B virus-positive and hepatitis C virus-positive liver cirrhosis: histological and ultrastructural study. Histopathology 2006; 48:546-55. [PMID: 16623780 DOI: 10.1111/j.1365-2559.2006.02372.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AIMS It is still not clear whether oval cells demonstrate diverse morphology, immunophenotype or quantity in different human liver diseases. The aim of this study was to investigate these differences in hepatitis B virus (HBV)-positive and hepatitis C virus (HCV)-positive human liver cirrhosis (HLC). METHODS AND RESULTS Thirty-eight cases of HBV+ HLC and 32 cases of HCV+ HLC were investigated by light microscopy and immunohistochemistry for Hepatocyte, CK19, stem cell factor (SCF) and CD34. Five cases were also examined by transmission electron microscopy. Oval cells of similar morphology could be found in proliferating bile ductules in both groups. These cells coexpressed CK19 and Hepatocyte, but did not express SCF or CD34. Some of these cells exhibited a trend towards differentiation. There was no difference in the amount of oval cells between the two groups. The oval cell number was found to increase significantly with the progression of inflammation. A similar stem-like cell was not seen in the normal liver. CONCLUSIONS There are bipotential oval cells in both HBV+ and HCV+ HLC. The lack of difference in oval cells between the two groups suggests that they might play a similar biological role in the histogenesis of different liver diseases.
Collapse
Affiliation(s)
- C Sun
- Department of Pathology, Ruijin Hospital, Shanghai Second Medical University, Shanghai, China
| | | | | |
Collapse
|
22
|
Meuleman P, Libbrecht L, Wieland S, De Vos R, Habib N, Kramvis A, Roskams T, Leroux-Roels G. Immune suppression uncovers endogenous cytopathic effects of the hepatitis B virus. J Virol 2006; 80:2797-807. [PMID: 16501088 PMCID: PMC1395427 DOI: 10.1128/jvi.80.6.2797-2807.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 12/27/2005] [Indexed: 02/07/2023] Open
Abstract
It is generally accepted that the host's immune response rather than the virus itself is causing the hepatocellular damage seen in acute and chronic hepatitis B virus (HBV) infections. However, in situations of severe immune suppression, chronic HBV patients may develop a considerable degree of liver disease. To examine whether HBV has direct cytopathic effects in severely immune compromised hosts, we have infected severe combined immune deficient mice (uPA-SCID), harboring human liver cells, with HBV. Serologic analysis of the plasma of HBV-infected animals revealed the presence of extremely high amounts of viral genomes and proteins. Histological analysis of the livers of uPA-SCID chimeras infected with HBV for more than 2 months showed that the majority of human hepatocytes had a ground-glass appearance, stained intensely for viral proteins, and showed signs of considerable damage and cell death. This histopathologic pattern closely resembles the picture observed in the livers of immunosuppressed HBV patients. These lesions were not observed in animals infected with HBV for less than 1 month. Ultrastructural analysis of long-term-infected hepatocytes showed a highly increased presence of cylindrical HBsAg structures, core particles, and Dane particles compared to short-term-infected hepatocytes. These long-term-infected hepatocytes also contained elevated amounts of HBV cccDNA. In conclusion, HBV causes dramatic intracellular changes and hepatocellular damage in the human hepatocytes that reside in a severely immune deficient mouse. These lesions show much resemblance to the ones encountered in immunosuppressed chronic HBV patients. Our observations indicate that HBV may be directly cytopathic in conditions of severe immune suppression.
Collapse
Affiliation(s)
- Philip Meuleman
- Center for Vaccinology, Ghent University and Hospital, Building A, First Floor, De Pintelaan 185, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW This review highlights recent publications on hepatobiliary pathology concerning several unusual types of hepatitis, fatty liver disease, disorders of the biliary tree and other topics that have a substantial impact on liver biopsy interpretation. RECENT FINDINGS In the outbreak of severe acute respiratory syndrome (SARS), many patients had abnormalities in liver function tests. Liver biopsy findings in three cases were reported that showed a generic picture of hepatitis, with exceptionally increased mitotic activity. The role of portal myofibroblasts in cirrhosis was examined in several studies. A newly described lesion, isolated ductular hyperplasia (IDH) was found in patients with prolonged abnormalities of liver function tests of uncertain origin. Hyperplastic, well-differentiated bile ductules were seen on liver biopsy in the absence of any identifiable biliary disease. Hereditary hemochromatosis is now a complex entity with various clinicopathological forms based on mutations in the HFE gene and other iron-homeostatic genes such as transferrin receptor 2 and ferroportin 1. In some of these heritable forms of primary iron overload, stainable iron is present in both hepatocytes and Kupffer cells. After liver transplantation, differentiating recurrent HCV infection from acute rejection on liver biopsy is problematic, with exceptionally low inter- and intra-observer reliability shown in one study. SUMMARY The hepatitis associated with the SARS coronavirus, Isolated Ductular Hyperplasia in patients with liver function test abnormalities and other topics with pathologic relevance are reviewed.
Collapse
Affiliation(s)
- Jay H Lefkowitch
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
24
|
Clouston AD, Powell EE, Walsh MJ, Richardson MM, Demetris AJ, Jonsson JR. Fibrosis correlates with a ductular reaction in hepatitis C: roles of impaired replication, progenitor cells and steatosis. Hepatology 2005; 41:809-18. [PMID: 15793848 DOI: 10.1002/hep.20650] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms for progressive fibrosis and exacerbation by steatosis in patients with chronic hepatitis C (HCV) are still unknown. We hypothesized that proliferative blockade in HCV-infected and steatotic hepatocytes results in the default activation of hepatic progenitor cells (HPC), capable of differentiating into both biliary and hepatocyte lineages, and that the resultant ductular reaction promotes portal fibrosis. To study this concept, 115 liver biopsy specimens from subjects with HCV were scored for steatosis, inflammation, and fibrosis. Biliary epithelium and HPC were decorated by cytokeratin 7 immunoperoxidase, and the replicative state of hepatocytes was assessed by p21 and Ki-67 immunohistochemistry. A ductular reaction at the portal interface was common. There was a highly significant correlation between the area of ductular reaction and fibrosis stage (r = 0.453, P < .0001), which remained independently associated after multivariate analysis. HPC numbers also correlated with fibrosis (r = 0.544, P < .0001) and the ductular area (r = 0.624, P < .0001). Moreover, steatosis correlated with greater HPC proliferation (r = 0.372, P = .0004) and ductular reaction (r = 0.374, P < .0001) but was not an obligate feature. Impaired hepatocyte replication by p21 expression was independently associated with HPC expansion (P = .002) and increased with the body mass index (P < .001) and lobular inflammation (P = .005). In conclusion, the strong correlation between portal fibrosis and a periportal ductular reaction with HPC expansion, the exacerbation by steatosis, and the associations with impaired hepatocyte replication suggest that an altered regeneration pathway drives the ductular reaction. We believe this triggers fibrosis at the portal tract interface. This may be a stereotyped response of importance in other chronic liver diseases.
Collapse
Affiliation(s)
- Andrew D Clouston
- School of Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, Australia.
| | | | | | | | | | | |
Collapse
|