1
|
Magagnoli L, Ciceri P, Cozzolino M. Secondary hyperparathyroidism in chronic kidney disease: pathophysiology, current treatments and investigational drugs. Expert Opin Investig Drugs 2024; 33:775-789. [PMID: 38881200 DOI: 10.1080/13543784.2024.2369307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Secondary hyperparathyroidism (SHPT) is a common complication of chronic kidney disease (CKD). It begins as an adaptive increase in parathyroid hormone levels to prevent calcium and phosphate derangements. Over time, this condition becomes maladaptive and is associated with increased morbidity and mortality. Current therapies encompass phosphate-lowering strategies, vitamin D analogues, calcimimetics and parathyroidectomy. These approaches harbor inherent limitations, stimulating interest in the development of new drugs for SHPT to overcome these limitations and improve survival and quality of life among CKD patients. AREAS COVERED This review delves into the main pathophysiological mechanisms involved in SHPT, alongside the treatment options that are currently available and under active investigation. Data presented herein stem from a comprehensive search conducted across PubMed, Web of Science, ClinicalTrials.gov and International Clinical Trials Registry Platform (ICTRP) spanning from 2000 onwards. EXPERT OPINION The advancements in investigational drugs for SHPT hold significant promise for enhancing treatment efficacy while minimizing side effects associated with conventional therapies. Although several challenges still hinder their adoption in clinical practice, ongoing research will likely continue to expand the available therapeutic options, refine treatment strategies, and tailor them to individual patient profiles.
Collapse
Affiliation(s)
- Lorenza Magagnoli
- Department of Health Sciences, University of Milan, IT, Milano, Italy
| | - Paola Ciceri
- Laboratory of Experimental Nephrology, Department of Health Sciences, University of Milan, IT, Milano, Italy
| | - Mario Cozzolino
- Department of Health Sciences, University of Milan, IT, Milano, Italy
| |
Collapse
|
2
|
Laskou S, Kountouri I, Paschou E, Topalidis C, Axi P, Petrakis G, Kosmidis C, Sapalidis K. Tertiary hyperparathyroidism masking an atypical parathyroid tumor. Clin Case Rep 2024; 12:e8753. [PMID: 38617065 PMCID: PMC11014803 DOI: 10.1002/ccr3.8753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
Atypical parathyroid tumors represent a group of parathyroid neoplasms of uncertain malignant potential. In view of preoperative diagnostic difficulties, suspicious features for malignancy may guide the surgeon to perform a radical surgical approach.
Collapse
Affiliation(s)
- Styliani Laskou
- 3rd Surgical DepartmentAristotle University of Thessaloniki, AHEPA HospitalThessalonikiGreece
| | - Ismini Kountouri
- 3rd Surgical DepartmentAristotle University of Thessaloniki, AHEPA HospitalThessalonikiGreece
| | - Eleni Paschou
- 3rd Surgical DepartmentAristotle University of Thessaloniki, AHEPA HospitalThessalonikiGreece
| | - Christos Topalidis
- Department of Pathology, Faculty of MedicineAristotle University of ThessalonikiThessalonikiGreece
| | - Paraskevi Axi
- 3rd Surgical DepartmentAristotle University of Thessaloniki, AHEPA HospitalThessalonikiGreece
| | - Georgios Petrakis
- Department of Pathology, Faculty of MedicineAristotle University of ThessalonikiThessalonikiGreece
| | - Christoforos Kosmidis
- 3rd Surgical DepartmentAristotle University of Thessaloniki, AHEPA HospitalThessalonikiGreece
| | - Konstantinos Sapalidis
- 3rd Surgical DepartmentAristotle University of Thessaloniki, AHEPA HospitalThessalonikiGreece
| |
Collapse
|
3
|
Mao J, You H, Wang M, Ba Y, Qian J, Cheng P, Lu C, Chen J. Single-cell RNA sequencing reveals transdifferentiation of parathyroid chief cells into oxyphil cells in patients with uremic secondary hyperparathyroidism. Kidney Int 2024; 105:562-581. [PMID: 38142040 DOI: 10.1016/j.kint.2023.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 12/25/2023]
Abstract
The parathyroid gland is one of the main organs that regulate calcium and phosphorus metabolism. It is mainly composed of chief cells and oxyphil cells. Oxyphil cell counts are low in the parathyroid glands of healthy adults but are dramatically increased in patients with uremia and secondary hyperparathyroidism (SHPT). Increased oxyphil cell counts are related to drug treatment resistance, but the origin of oxyphil cells and the mechanism of proliferation remain unknown. Herein, three types of parathyroid nodules (chief cell nodules, oxyphil cell nodules and mixed nodules, respectively) excised from parathyroid glands of uremic SHPT patients were used for single-cell RNA sequencing (scRNA-seq), other molecular biology studies, and transplantation into nude mice. Through scRNA-seq of parathyroid mixed nodules from three patients with uremic SHPT, we established the first transcriptomic map of the human parathyroid and found a chief-to-oxyphil cell transdifferentiation characterized by gradual mitochondrial enrichment associated with the uremic milieu. Notably, the mitochondrial enrichment and cellular proliferation of chief cell and oxyphil cell nodules decreased significantly after leaving the uremic milieu via transplantation into nude mice. Remarkably, the phenotype of oxyphil cell nodules improved significantly in the nude mice as characterized by decreased mitochondrial content and the proportion of oxyphil cells to chief cells. Thus, our study provides a comprehensive single-cell transcriptome atlas of the human parathyroid and elucidates the origin of parathyroid oxyphil cells and their underlying transdifferentiating mechanism. These findings enhance our understanding of parathyroid disease and may open new treatment perspectives for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Jianping Mao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Huaizhou You
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengjing Wang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Jing Qian
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Cheng
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuhan Lu
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Chen
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Zivaljevic V, Zivic R, Slijepcevic N, Buzejic M, Dundjerovic D, Trbojevic Stankovic J, Stojakov D, Jovanovic M, Paunovic I. Parathyroid carcinoma in chronic renal disease - a case series of three patients and review of literature. Acta Chir Belg 2023; 123:199-206. [PMID: 34459368 DOI: 10.1080/00015458.2021.1970438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Apart from being a rare endocrine tumor, parathyroid carcinoma is also one of the rarest malignancies in human beings. Parathyroid carcinoma is even more uncommon in haemodialysis patients with end-stage renal disease. The pathogenesis of parathyroid hyperplasia in haemodialysis patients is well known, but the mechanism of development of parathyroid carcinoma in these patients remains unclear. METHODS Three cases of parathyroid carcinoma in haemodialysis patients are presented in this study: a 69-year-old male patient and two female patients (67 and 61 years old). In all cases parathyroid carcinoma infiltrated the ipsilateral thyroid lobe and in one patient the right laryngeal nerve was involved as well. One patient underwent three surgical procedures. RESULTS After surgical treatment, all patients were normocalcaemic and showed a significant reduction in PTH levels. CONCLUSION In patients with secondary hyperparathyroidism, who develop parathyroid carcinoma, surgical resection is the only viable treatment option.
Collapse
Affiliation(s)
- Vladan Zivaljevic
- Center for Endocrine Surgery, Clinical Center of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Rastko Zivic
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Surgery Clinic, Clinical Centre "Dr. Dragisa Misovic - Dedinje", Belgrade, Serbia
| | - Nikola Slijepcevic
- Center for Endocrine Surgery, Clinical Center of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Matija Buzejic
- Center for Endocrine Surgery, Clinical Center of Serbia, Belgrade, Serbia
| | - Dusko Dundjerovic
- School of Medicine, University of Belgrade, Belgrade, Serbia.,School of Medicine, Institute for Pathological Anatomy, University of Belgrade, Belgrade, Serbia
| | - Jasna Trbojevic Stankovic
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Department of Nephrology, Urological Clinic, Clinical Centre "Dr. Dragisa Misovic - Dedinje", Belgrade, Serbia
| | - Dejan Stojakov
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Surgery Clinic, Clinical Centre "Dr. Dragisa Misovic - Dedinje", Belgrade, Serbia
| | - Milan Jovanovic
- Center for Endocrine Surgery, Clinical Center of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivan Paunovic
- Center for Endocrine Surgery, Clinical Center of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Xiang Z, Wang M, Miao C, Jin D, Wang H. Mechanism of calcitriol regulating parathyroid cells in secondary hyperparathyroidism. Front Pharmacol 2022; 13:1020858. [PMID: 36267284 PMCID: PMC9577402 DOI: 10.3389/fphar.2022.1020858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
A common consequence of chronic renal disease is secondary hyperparathyroidism (SHPT) and is closely related to the mortality and morbidity of uremia patients. Secondary hyperparathyroidism (SHPT) is caused by excessive PTH production and release, as well as parathyroid enlargement. At present, the mechanism of cell proliferation in secondary hyperparathyroidism (SHPT) is not completely clear. Decreased expression of the vitamin D receptor (VDR) and calcium-sensing receptor (CaSR), and 1,25(OH)2D3 insufficiency all lead to a decrease in cell proliferation suppression, and activation of multiple pathways is also involved in cell proliferation in renal hyperparathyroidism. The interaction between the parathormone (PTH) and parathyroid hyperplasia and 1,25(OH)2D3 has received considerable attention. 1,25(OH)2D3 is commonly applied in the therapy of renal hyperparathyroidism. It regulates the production of parathormone (PTH) and parathyroid cell proliferation through transcription and post-transcription mechanisms. This article reviews the role of 1,25(OH)2D3 in parathyroid cells in secondary hyperparathyroidism and its current understanding and potential molecular mechanism.
Collapse
|
6
|
The American Association of Endocrine Surgeons Guidelines for the Definitive Surgical Management of Secondary and Tertiary Renal Hyperparathyroidism. Ann Surg 2022; 276:e141-e176. [PMID: 35848728 DOI: 10.1097/sla.0000000000005522] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To develop evidence-based recommendations for safe, effective, and appropriate treatment of secondary (SHPT) and tertiary (THPT) renal hyperparathyroidism. BACKGROUND Hyperparathyroidism is common among patients with chronic kidney disease, end-stage kidney disease, and kidney transplant. The surgical management of SHPT and THPT is nuanced and requires a multidisciplinary approach. There are currently no clinical practice guidelines that address the surgical treatment of SHPT and THPT. METHODS Medical literature was reviewed from January 1, 1985 to present January 1, 2021 by a panel of 10 experts in SHPT and THPT. Recommendations using the best available evidence was constructed. The American College of Physicians grading system was used to determine levels of evidence. Recommendations were discussed to consensus. The American Association of Endocrine Surgeons membership reviewed and commented on preliminary drafts of the content. RESULTS These clinical guidelines present the epidemiology and pathophysiology of SHPT and THPT and provide recommendations for work-up and management of SHPT and THPT for all involved clinicians. It outlines the preoperative, intraoperative, and postoperative management of SHPT and THPT, as well as related definitions, operative techniques, morbidity, and outcomes. Specific topics include Pathogenesis and Epidemiology, Initial Evaluation, Imaging, Preoperative and Perioperative Care, Surgical Planning and Parathyroidectomy, Adjuncts and Approaches, Outcomes, and Reoperation. CONCLUSIONS Evidence-based guidelines were created to assist clinicians in the optimal management of secondary and tertiary renal hyperparathyroidism.
Collapse
|
7
|
Sirikul W, Siri-Angkul N, Chattipakorn N, Chattipakorn SC. Fibroblast Growth Factor 23 and Osteoporosis: Evidence from Bench to Bedside. Int J Mol Sci 2022; 23:ijms23052500. [PMID: 35269640 PMCID: PMC8909928 DOI: 10.3390/ijms23052500] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis is a chronic debilitating disease caused by imbalanced bone remodeling processes that impair the structural integrity of bone. Over the last ten years, the association between fibroblast growth factor 23 (FGF23) and osteoporosis has been studied in both pre-clinical and clinical investigations. FGF23 is a bone-derived endocrine factor that regulates mineral homeostasis via the fibroblast growth factor receptors (FGFRs)/αKlotho complex. These receptors are expressed in kidney and the parathyroid gland. Preclinical studies have supported the link between the local actions of FGF23 on the bone remodeling processes. In addition, clinical evidence regarding the effects of FGF23 on bone mass and fragility fractures suggest potential diagnostic and prognostic applications of FGF23 in clinical contexts, particularly in elderly and patients with chronic kidney disease. However, inconsistent findings exist and there are areas of uncertainty requiring exploration. This review comprehensively summarizes and discusses preclinical and clinical reports on the roles of FGF23 on osteoporosis, with an emphasis on the local action, as opposed to the systemic action, of FGF23 on the bone. Current gaps in knowledge and future research directions are also suggested to encourage further rigorous research in this important field.
Collapse
Affiliation(s)
- Wachiranun Sirikul
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Natthaphat Siri-Angkul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.-A.); (N.C.)
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.-A.); (N.C.)
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.-A.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-944-451; Fax: +66-53-222-844
| |
Collapse
|
8
|
Hassan A, Khalaily N, Kilav-Levin R, Nechama M, Volovelsky O, Silver J, Naveh-Many T. Molecular Mechanisms of Parathyroid Disorders in Chronic Kidney Disease. Metabolites 2022; 12:metabo12020111. [PMID: 35208186 PMCID: PMC8878033 DOI: 10.3390/metabo12020111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Secondary hyperparathyroidism (SHP) is a common complication of chronic kidney disease (CKD) that induces morbidity and mortality in patients. How CKD stimulates the parathyroid to increase parathyroid hormone (PTH) secretion, gene expression and cell proliferation remains an open question. In experimental SHP, the increased PTH gene expression is post-transcriptional and mediated by PTH mRNA–protein interactions that promote PTH mRNA stability. These interactions are orchestrated by the isomerase Pin1. Pin1 participates in conformational change-based regulation of target proteins, including mRNA-binding proteins. In SHP, Pin1 isomerase activity is decreased, and thus, the Pin1 target and PTH mRNA destabilizing protein KSRP fails to bind PTH mRNA, increasing PTH mRNA stability and levels. An additional level of post-transcriptional regulation is mediated by microRNA (miRNA). Mice with parathyroid-specific knockout of Dicer, which facilitates the final step in miRNA maturation, lack parathyroid miRNAs but have normal PTH and calcium levels. Surprisingly, these mice fail to increase serum PTH in response to hypocalcemia or uremia, indicating a role for miRNAs in parathyroid stimulation. SHP often leads to parathyroid hyperplasia. Reduced expressions of parathyroid regulating receptors, activation of transforming growth factor α-epidermal growth factor receptor, cyclooxygenase 2-prostaglandin E2 and mTOR signaling all contribute to the enhanced parathyroid cell proliferation. Inhibition of mTOR by rapamycin prevents and corrects the increased parathyroid cell proliferation of SHP. This review summarizes the current knowledge on the mechanisms that stimulate the parathyroid cell at multiple levels in SHP.
Collapse
Affiliation(s)
- Alia Hassan
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (A.H.); (N.K.); (R.K.-L.); (J.S.)
| | - Nareman Khalaily
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (A.H.); (N.K.); (R.K.-L.); (J.S.)
| | - Rachel Kilav-Levin
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (A.H.); (N.K.); (R.K.-L.); (J.S.)
- Nursing, Jerusalem College of Technology, Jerusalem 91160, Israel
| | - Morris Nechama
- Pediatric Nephrology, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (M.N.); (O.V.)
- The Wohl Institute for Translational Medicine, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Oded Volovelsky
- Pediatric Nephrology, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (M.N.); (O.V.)
- The Wohl Institute for Translational Medicine, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Justin Silver
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (A.H.); (N.K.); (R.K.-L.); (J.S.)
| | - Tally Naveh-Many
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (A.H.); (N.K.); (R.K.-L.); (J.S.)
- The Wohl Institute for Translational Medicine, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel
- Correspondence:
| |
Collapse
|
9
|
Mao J, Wang M, Ni L, Gong W, Jiang X, Zhang Q, Zhang M, Wen D, Chen J. Local NF-κB Activation Promotes Parathyroid Hormone Synthesis and Secretion in Uremic Patients. Endocrinology 2021; 162:6257872. [PMID: 33912936 DOI: 10.1210/endocr/bqab084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Secondary hyperparathyroidism (SHPT) in uremic patients is characterized by parathyroid gland (PTG) hyperplasia and parathyroid hormone (PTH) elevation. Previously, we demonstrated that NF-κB activation contributed to parathyroid cell proliferation in rats with chronic kidney disease. Although vitamin D inhibits inflammation and ameliorates SHPT, the contribution of vitamin D deficiency to SHPT via local NF-κB activation remains to be clarified. PTGs collected from 10 uremic patients with advanced SHPT were used to test the expressions of vitamin D receptor (VDR), NF-κB, and proliferating cell nuclear antigen (PCNA). Freshly excised PTG tissues were incubated for 24 hours in vitro with VDR activator (VDRA) calcitriol or NF-κB inhibitor pyrrolidine thiocarbamate (PDTC). Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were performed to investigate the regulation of PTH transcription by NF-κB. We found higher levels of activated NF-κB and lower expression of VDR in nodular hyperplastic PTGs than in diffuse hyperplasia. In cultured PTG tissues, treatment with VDRA or PDTC inhibited NF-κB activation and PCNA expression, and downregulated preproPTH mRNA and intact PTH levels. ChIP assays demonstrated the presence of NF-κB binding sites in PTH promoter. Furthermore, in luciferase reporter assays, addition of exogenous p65 significantly increased PTH luciferase activity by 2.4-fold (P < 0.01), while mutation of NF-κB binding site at position -908 of the PTH promoter suppressed p65-induced PTH reporter activity (P < 0.01). In summary, local NF-κB activation contributes to SHPT and mediates the transcriptional activation of PTH directly in uremic patients. Vitamin D deficiency may be involved in SHPT via the activation of NF-κB pathway.
Collapse
Affiliation(s)
- Jianping Mao
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Mengjing Wang
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Li Ni
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Wen Gong
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Xinxin Jiang
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Qian Zhang
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Minmin Zhang
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Donghai Wen
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jing Chen
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| |
Collapse
|
10
|
Hamano N, Endo Y, Kawata T, Fukagawa M. Development of evocalcet for unmet needs among calcimimetic agents. Expert Rev Endocrinol Metab 2020; 15:299-310. [PMID: 32552012 DOI: 10.1080/17446651.2020.1780911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The calcium-sensing receptor is an important treatment target for secondary hyperparathyroidism (SHPT) in patients undergoing dialysis. In addition to vitamin D receptor activator, cinacalcet has recently been widely used for SHPT management, and the significant suppression of parathyroid hormone (PTH) with better control of serum calcium and phosphorus has been reported. However, low adherence and insufficient dose escalation mainly due to frequent gastrointestinal adverse events, still remain as major issues. To overcome these unmet needs, we have developed a new oral calcimimetic agent evocalcet, which has recently been approved by the Pharmaceutical Affairs Act in Japan. AREAS COVERED PubMed was searched from inception until April 2020 with the word evocalcet to summarize the development of this new calcimimetic agent, its pharmacokinetics, and the results of clinical trials, along with an overview of the differences among calcimimetic agents. This review also includes the management of SHPT with a focus on calcimimetics. EXPERT OPINION Evocalcet evoked fewer gastrointestinal-related adverse events while suppressing PTH at a lower dose than cinacalcet. These data suggest evocalcet may contribute to better adherence and sufficient dose escalation in patients with SHPT. Whether or not evocalcet improves clinical outcomes remains to be elucidated.
Collapse
Affiliation(s)
- Naoto Hamano
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine , Isehara, Japan
| | - Yuichi Endo
- R&D Division, Kyowa Kirin Co., Ltd , Tokyo, Japan
| | | | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine , Isehara, Japan
| |
Collapse
|
11
|
Egstrand S, Nordholm A, Morevati M, Mace ML, Hassan A, Naveh-Many T, Rukov JL, Gravesen E, Olgaard K, Lewin E. A molecular circadian clock operates in the parathyroid gland and is disturbed in chronic kidney disease associated bone and mineral disorder. Kidney Int 2020; 98:1461-1475. [PMID: 32721445 DOI: 10.1016/j.kint.2020.06.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/16/2023]
Abstract
Circadian rhythms in metabolism, hormone secretion, cell cycle and locomotor activity are regulated by a molecular circadian clock with the master clock in the suprachiasmatic nucleus of the central nervous system. However, an internal clock is also expressed in several peripheral tissues. Although about 10% of all genes are regulated by clock machinery an internal molecular circadian clock in the parathyroid glands has not previously been investigated. Parathyroid hormone secretion exhibits a diurnal variation and parathyroid hormone gene promoter contains an E-box like element, a known target of circadian clock proteins. Therefore, we examined whether an internal molecular circadian clock is operating in parathyroid glands, whether it is entrained by feeding and how it responds to chronic kidney disease. As uremia is associated with extreme parathyroid growth and since disturbed circadian rhythm is related to abnormal growth, we examined the expression of parathyroid clock and clock-regulated cell cycle genes in parathyroid glands of normal and uremic rats. Circadian clock genes were found to be rhythmically expressed in normal parathyroid glands and this clock was minimally entrained by feeding. Diurnal regulation of parathyroid glands was next examined. Significant rhythmicity of fibroblast-growth-factor-receptor-1, MafB and Gata3 was found. In uremic rats, deregulation of circadian clock genes and the cell cycle regulators, Cyclin D1, c-Myc, Wee1 and p27, which are influenced by the circadian clock, was found in parathyroid glands as well as the aorta. Thus, a circadian clock operates in parathyroid glands and this clock and downstream cell cycle regulators are disturbed in uremia and may contribute to dysregulated parathyroid proliferation in secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Søren Egstrand
- Nephrological Department, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark; Nephrological Department, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Nordholm
- Nephrological Department, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark; Nephrological Department, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marya Morevati
- Nephrological Department, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Maria L Mace
- Nephrological Department, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Alia Hassan
- Minerva Center for Calcium and Bone Metabolism, Nephrology Services, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Tally Naveh-Many
- Minerva Center for Calcium and Bone Metabolism, Nephrology Services, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Jakob L Rukov
- Nephrological Department, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Eva Gravesen
- Nephrological Department, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Olgaard
- Nephrological Department, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ewa Lewin
- Nephrological Department, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark; Nephrological Department, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Abstract
Parathyroid hormone is an essential regulator of extracellular calcium and phosphate. PTH enhances calcium reabsorption while inhibiting phosphate reabsorption in the kidneys, increases the synthesis of 1,25-dihydroxyvitamin D, which then increases gastrointestinal absorption of calcium, and increases bone resorption to increase calcium and phosphate. Parathyroid disease can be an isolated endocrine disorder or part of a complex syndrome. Genetic mutations can account for diseases of parathyroid gland formulation, dysregulation of parathyroid hormone synthesis or secretion, and destruction of the parathyroid glands. Over the years, a number of different options are available for the treatment of different types of parathyroid disease. Therapeutic options include surgical removal of hypersecreting parathyroid tissue, administration of parathyroid hormone, vitamin D, activated vitamin D, calcium, phosphate binders, calcium-sensing receptor, and vitamin D receptor activators to name a few. The accurate assessment of parathyroid hormone also provides essential biochemical information to properly diagnose parathyroid disease. Currently available immunoassays may overestimate or underestimate bioactive parathyroid hormone because of interferences from truncated parathyroid hormone fragments, phosphorylation of parathyroid hormone, and oxidation of amino acids of parathyroid hormone.
Collapse
Affiliation(s)
- Edward Ki Yun Leung
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
13
|
Naveh-Many T, Volovelsky O. Parathyroid Cell Proliferation in Secondary Hyperparathyroidism of Chronic Kidney Disease. Int J Mol Sci 2020; 21:ijms21124332. [PMID: 32570711 PMCID: PMC7352987 DOI: 10.3390/ijms21124332] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Secondary hyperparathyroidism (SHP) is a common complication of chronic kidney disease (CKD) that correlates with morbidity and mortality in uremic patients. It is characterized by high serum parathyroid hormone (PTH) levels and impaired bone and mineral metabolism. The main mechanisms underlying SHP are increased PTH biosynthesis and secretion as well as increased glandular mass. The mechanisms leading to parathyroid cell proliferation in SHP are not fully understood. Reduced expressions of the receptors for calcium and vitamin D contribute to the disinhibition of parathyroid cell proliferation. Activation of transforming growth factor-α-epidermal growth factor receptor (TGF-α-EGFR), nuclear factor kappa B (NF-kB), and cyclooxygenase 2- prostaglandin E2 (Cox2-PGE2) signaling all correlate with parathyroid cell proliferation, underlining their roles in the development of SHP. In addition, the mammalian target of rapamycin (mTOR) pathway is activated in parathyroid glands of experimental SHP rats. Inhibition of mTOR by rapamycin prevents and corrects the increased parathyroid cell proliferation of SHP. Mice with parathyroid-specific deletion of all miRNAs have a muted increase in serum PTH and fail to increase parathyroid cell proliferation when challenged by CKD, suggesting that miRNA is also necessary for the development of SHP. This review summarizes the current knowledge on the mechanisms of parathyroid cell proliferation in SHP.
Collapse
Affiliation(s)
- Tally Naveh-Many
- Minerva Center for Calcium and Bone Metabolism, Nephrology Services, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
- The Wohl Institute for Translational Medicine, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Oded Volovelsky
- The Wohl Institute for Translational Medicine, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
- Pediatric Nephrology Unit and Research Lab, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
- Correspondence: ; Tel.: +972-26777213
| |
Collapse
|
14
|
Zhang Q, Li S, Ye G, Wang M, Ni L, Kan S, Zhang M, Chen J. Prostaglandin E2 receptor EP2 mediates the effect of cyclooxygenase 2 on secondary parathyroid hyperplasia in end-stage renal disease. Nephrol Dial Transplant 2020; 34:606-617. [PMID: 29982796 DOI: 10.1093/ndt/gfy194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Secondary hyperparathyroidism (SHPT) in patients with end-stage renal disease (ESRD) is characterized by hyperplasia of the parathyroid glands (PTGs), while the underlying mechanism is not completely understood. Previously we demonstrated a relationship between cyclooxygenase 2 (COX2) overexpression and parathyroid hyperplasia and here we investigate the role of COX2 downstream metabolic product prostaglandin E2 (PGE2) and its receptor EP2 in the pathogenesis of SHPT. METHODS PTGs isolated from ESRD patients with advanced SHPT were used to test the expression of COX2-microsomal prostaglandin E synthase-1 (mPGES-1)-EP2 pathway. A diffuse proliferative section of the PTGs was used for tissue culture and treated with high phosphate (HPi) medium, COX2-PGE2-EP2 pathway inhibitors or agonists. EP2 short hairpin RNA (shRNA) lentivirus was locally applied to treat an SHPT rat model. RESULTS In PTGs isolated from ESRD patients, enhanced immunoactivities of COX2, mPGES-1 and EP2 were observed. In primary cultured PTG tissues, HPi induced intact parathyroid hormone (iPTH) secretion, proliferating cell nuclear antigen (PCNA) expression and COX2 activity, while COX2 and EP2 inhibitors attenuated hyperparathyroidism promoted by HPi. Furthermore, PGE2 or EP2 agonist (butaprost) directly stimulated hyperparathyroidism, whereas EP2 receptor antagonist or cyclic adenosine monophosphate inhibitor attenuated the hyperparathyroidism promoted by PGE2 or butaprost. EP2 shRNA treatment significantly reduced excessive expressions of EP2 and PCNA in the PTGs of nephrectomy rats fed an HPi diet, diminished the size of PTGs and downregulated serum iPTH levels. CONCLUSIONS The COX2 downstream PGE2 and its receptor EP2 may play an important role in HPi-induced parathyroid hyperplasia and may serve as a potential therapeutic target for SHPT in ESRD.
Collapse
Affiliation(s)
- Qian Zhang
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shensen Li
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxin Ye
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengjing Wang
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Ni
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sen Kan
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minmin Zhang
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Chen
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Disputable Issues of Etiology and Pathogenesis of Tertiary Hyperparathyroidism. ACTA BIOMEDICA SCIENTIFICA 2019. [DOI: 10.29413/abs.2019-4.5.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hyperparathyroidism is a clinical and laboratory syndrome characterized by high production of the chief cells of the parathyroid hormone, a calcium-phosphorus metabolism disorder and the organ failure (kidneys, bone tissue).There are primary, secondary and tertiary hyperparathyroidism.This literature review is focused on tertiary hyperparathyroidism and includes the following sections: definition of different forms of hyperparathyroidism, the role of vitamin D in the tertiary hyperparathyroidism development, the development of tertiary hyperparathyroidism in chronic kidney disease patients, the development of tertiary hyperparathyroidism in patients after kidney transplantation, differential diagnosis various forms of hyperparathyroidism, indications for surgical tertiary hyperparathyroidism treatment in patients with kidney disease, in patients with normal kidney function.Objective. The objective of this literature review is to study the current information about this definition, pathogenesis, diagnosis and treatment of tertiary hyperparathyroidism.Methodology. The literature review was taken in English data bases MEDLINE (Pubmed), Scopus, Cochlear library, using following keywords: “secondary hyperparathyroidism pathogenesis diagnosis treatment”, “tertiary hyperparathyroidism pathogenesis diagnosis treatment”, “development of tertiary hyperparathyroidism from secondary hyperparathyroidism”, “chronic vitamin D deficiency, hyperparathyroidism”, “early stages of chronic renal failure, hyperparathyroidism”. Also, search for the same keywords was completed in Russian data base Elibrary.Discussion. Both the lack of a common understanding of this problem, and the presence of diverse and contradictory data of the etiology and pathogenesis indicate the need for further study of tertiary hyperparathyroidism.
Collapse
|
16
|
Chandran M, Wong J. Secondary and Tertiary Hyperparathyroidism in Chronic Kidney Disease: An Endocrine and Renal Perspective. Indian J Endocrinol Metab 2019; 23:391-399. [PMID: 31741895 PMCID: PMC6844175 DOI: 10.4103/ijem.ijem_292_19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Secondary Hyperparathyroidism (SHP) seen as a frequent complication in Chronic Kidney Disease (CKD) has many pathogenetic peculiarities that are still incompletely defined and understood. During the long course of chronic renal failure, SHP can also transform sometimes into the hypercalcemic state characterized by quasi-autonomous production of Parathyroid Hormone from the parathyroid glands: a disorder that is termed Tertiary Hyperparathyroidism. The clinical consequences of SHP in CKD are protean, encompassing bone and mineral abnormalities but as recently identified, also several metabolic and cardiovascular problems, the most important of which is vascular calcification. There have been several advances in the therapeutic armamentarium available for the treatment of SHP, though clear demonstration of a benefit regarding major clinical outcomes with any of the new agents is still lacking. This narrative review summarizes the current understanding about this disorder and highlights some of the recent research on the subject.
Collapse
Affiliation(s)
- Manju Chandran
- Department of Endocrinology, Osteoporosis and Bone Metabolism Unit, Singapore General Hospital, Singapore
| | - Jiunn Wong
- Department of Renal Medicine, Singapore General Hospital, Singapore
| |
Collapse
|
17
|
Mizobuchi M, Ogata H, Koiwa F. Secondary Hyperparathyroidism: Pathogenesis and Latest Treatment. Ther Apher Dial 2018; 23:309-318. [PMID: 30411503 DOI: 10.1111/1744-9987.12772] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/23/2018] [Accepted: 11/02/2018] [Indexed: 01/02/2023]
Abstract
The classic pathogenesis of secondary hyperparathyroidism (SHPT) began with the trade-off hypothesis based on parathyroid hormone hypersecretion brought about by renal failure resulting from a physiological response to correct metabolic disorder of calcium, phosphorus, and vitamin D. In dialysis patients with failed renal function, physiological mineral balance control by parathyroid hormone through the kidney fails and hyperparathyroidism progresses. In this process, many significant genetic findings have been established. Abnormalities of Ca-sensing receptor and vitamin D receptor are associated with the pathogenesis of SHPT, and fibroblast growth factor 23 has also been shown to be involved in the pathogenesis. Vitamin D receptor activators (VDRAs) are widely used for treatment of SHPT. However, VDRAs have calcemic and phosphatemic effects that limit their use to a subset of patients, and calcimimetics have been developed as alternative drugs for SHPT. Hyperphosphatemia also affects progression of SHPT, and control of hyperphosphatemia is, therefore, thought to be fundamental for control of SHPT. Currently, a combination of a VDRA and a calcimimetic is recognized as the optimal strategy for SHPT, and for other outcomes such as reduced cardiovascular disease and improved survival. The latest findings on the pathogenesis and treatment of SHPT are summarized in this review.
Collapse
Affiliation(s)
- Masahide Mizobuchi
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hiroaki Ogata
- Department of Medicine, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Fumihiko Koiwa
- Division of Nephrology, Department of Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| |
Collapse
|
18
|
Kan S, Zhang W, Mao J, Wang M, Ni L, Zhang M, Zhang Q, Chen J. NF-κB activation contributes to parathyroid cell proliferation in chronic kidney disease. J Nephrol 2018; 31:941-951. [DOI: 10.1007/s40620-018-0530-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/26/2018] [Indexed: 12/20/2022]
|
19
|
Vangala C, Pan J, Cotton RT, Ramanathan V. Mineral and Bone Disorders After Kidney Transplantation. Front Med (Lausanne) 2018; 5:211. [PMID: 30109232 PMCID: PMC6079303 DOI: 10.3389/fmed.2018.00211] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
The risk of mineral and bone disorders among patients with chronic kidney disease is substantially elevated, owing largely to alterations in calcium, phosphorus, vitamin D, parathyroid hormone, and fibroblast growth factor 23. The interwoven relationship among these minerals and hormones results in maladaptive responses that are differentially affected by the process of kidney transplantation. Interpretation of conventional labs, imaging, and other fracture risk assessment tools are not standardized in the post-transplant setting. Post-transplant bone disease is not uniformly improved and considerable variation exists in monitoring and treatment practices. A spectrum of abnormalities such as hypophosphatemia, hypercalcemia, hyperparathyroidism, osteomalacia, osteopenia, and osteoporosis are commonly encountered in the post-transplant period. Thus, reducing fracture risk and other bone-related complications requires recognition of these abnormalities along with the risk incurred by concomitant immunosuppression use. As kidney transplant recipients continue to age, the drivers of bone disease vary throughout the post-transplant period among persistent hyperparathyroidism, de novo hyperparathyroidism, and osteoporosis. The use of anti-resorptive therapies require understanding of different options and the clinical scenarios that warrant their use. With limited studies underscoring clinical events such as fractures, expert understanding of MBD physiology, and surrogate marker interpretation is needed to determine ideal and individualized therapy.
Collapse
Affiliation(s)
- Chandan Vangala
- Division of Nephrology and Solid-Organ Transplantation, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Jenny Pan
- Division of Nephrology and Solid-Organ Transplantation, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Ronald T Cotton
- Division of Abdominal Transplantation, Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Venkat Ramanathan
- Division of Nephrology and Solid-Organ Transplantation, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| |
Collapse
|
20
|
Borsari S, Pardi E, Pellegata NS, Lee M, Saponaro F, Torregrossa L, Basolo F, Paltrinieri E, Zatelli MC, Materazzi G, Miccoli P, Marcocci C, Cetani F. Loss of p27 expression is associated with MEN1 gene mutations in sporadic parathyroid adenomas. Endocrine 2017; 55:386-397. [PMID: 27038812 DOI: 10.1007/s12020-016-0941-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/24/2016] [Indexed: 01/08/2023]
Abstract
MEN1 is the main gene responsible for tumorigenesis of syndromic and sporadic primary hyperparathyroidism (PHPT). Germline mutations of the CDKN1B/p27Kip gene have been associated with multiple endocrine tumors in rats and humans. To evaluate the involvement of the CDKN1B gene and its relationship with MEN1 in sporadic PHPT, we carried out sequencing and loss of heterozygosity analyses of the CDKN1B gene in 147 sporadic parathyroid adenomas. p27 immunohistochemistry and genetic screening of the MEN1 gene were performed in 50 cases. Three germline CDKN1B variants (c.-80C>T, c.-29_-26delAGAG, c.397C>A) were identified in 3/147 patients. Reduction of CDKN1B gene transcription rate was demonstrated in vitro for the novel c.-80C>T and the c.-29_-26delAGAG variants. Loss of p27 expression was detected in the tumor carrying the c.-29_-26delAGAG variant. Two tumors carrying the CDKN1B variants also harbored a MEN1 mutation. Fifty-four percent of 50 CDKN1B mutation-negative tumors had a reduction of p27 nuclear staining. Somatic MEN1 mutations, identified in 15/50 samples, significantly segregated in tumors negative for nuclear and cytoplasmic p27 staining. The germline nature of the CDKN1B mutations suggests that they might predispose to PHPT. The lack of somatic CDKN1B mutations in our samples points to a rare involvement in parathyroid adenomas, despite the frequent loss of nuclear p27 expression. MEN1 biallelic inactivation seems to be directly related to down-regulation of p27 expression through the inhibition of CDKN1B gene transcription.
Collapse
Affiliation(s)
- Simona Borsari
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Natalia S Pellegata
- Institute of Pathology, Helmholtz Zentrum Munchen-German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, Germany
| | - Misu Lee
- Institute of Pathology, Helmholtz Zentrum Munchen-German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, Germany
| | - Federica Saponaro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Liborio Torregrossa
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Elena Paltrinieri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Clinical Sciences and Community Health, University of Milan IRCCS Foundation Ca' Granda Policlinico Hospital, Milan, Italy
| | - Maria Chiara Zatelli
- Department of Medical Sciences, Section of Endocrinology, University of Ferrara, Ferrara, Italy
| | - Gabriele Materazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Miccoli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filomena Cetani
- Endocrine Unit 2, University Hospital of Pisa, Via Paradisa, 2, 56124, Pisa, Italy.
| |
Collapse
|
21
|
Ribeiro C, Penido MGMG, Guimarães MMM, Tavares MDS, Souza BDN, Leite AF, de Deus LMC, Machado LJDC. Parathyroid ultrasonography and bone metabolic profile of patients on dialysis with hyperparathyroidism. World J Nephrol 2016; 5:437-447. [PMID: 27648407 PMCID: PMC5011250 DOI: 10.5527/wjn.v5.i5.437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/12/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023] Open
Abstract
AIM To evaluate the parathyroid ultrasonography and define parameters that can predict poor response to treatment in patients with secondary hyperparathyroidism due to renal failure.
METHODS This cohort study evaluated 85 patients with chronic kidney disease stage V with parathyroid hormone levels above 800 pg/mL. All patients underwent ultrasonography of the parathyroids and the following parameters were analyzed: Demographic characteristics (etiology of chronic kidney disease, gender, age, dialysis vintage, vascular access, use of vitamin D), laboratory (calcium, phosphorus, parathyroid hormone, alkaline phosphatase, bone alkaline phosphatase), and the occurrence of bone changes, cardiovascular events and death. The χ2 test were used to compare proportions or the Fisher exact test for small sample frequencies. Student t-test was used to detect differences between the two groups regarding continuous variables.
RESULTS Fifty-three patients (66.4%) had parathyroid nodules with higher levels of parathyroid hormone, calcium and phosphorus. Sixteen patients underwent parathyroidectomy and had higher levels of phosphorus and calcium × phosphorus product (P = 0.03 and P = 0.006, respectively). They also had lower mortality (32% vs 68%, P = 0.01) and lower incidence of cardiovascular or cerebrovascular events (27% vs 73%, P = 0.02). Calcium × phosphorus product above 55 mg2/dL2 [RR 1.48 (1.06, 2.08), P = 0.03], presence of vascular calcification [1.33 (1.01, 1.76), P = 0.015] and previous occurrence of vascular events [RR 2.25 (1.27, 3.98), P < 0.001] were risk factors for mortality in this population. There was no association between the occurrence of nodules and mortality.
CONCLUSION The identification of nodules at ultrasonography strengthens the indication for parathyroidectomy in patients with secondary hyperparathyroidism due to renal failure.
Collapse
|
22
|
Expression of Vitamin D Receptor (VDR) Positively Correlates with Survival of Urothelial Bladder Cancer Patients. Int J Mol Sci 2015; 16:24369-86. [PMID: 26501255 PMCID: PMC4632755 DOI: 10.3390/ijms161024369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/12/2015] [Accepted: 09/25/2015] [Indexed: 02/07/2023] Open
Abstract
Vitamin D3 shows tumoristatic and anticancer effects by acting through the vitamin D receptor (VDR), while hydroxylation of 25-hydroxyvitamin D3 at position 1α by CYP27B1 is an essential step in its activation. The expression of both the VDR and CYP27B1 has been found in many normal and cancer tissues, but there is a lack of information about its expression in human bladder cancers. The aim of the present research was to examine whether the expression of the VDR and CYP27B1 in bladder cancer was related to the prognostic markers and disease outcome. We analyzed VDR and CYP27B1 in samples of tumor and normal tissues obtained from 71 urinary bladder cancer patients. The highest VDR immunostaining was found in normal epithelium and was significantly lower in bladder cancer cells (p < 0.001 with Mann–Whitney U test). VDR expression was lowest in more advanced (pT2b–pT4) (p = 0.005 with Mann–Whitney U test) and metastasizing cancers (p < 0.05 and p = 0.004 with Mann–Whitney U test for nuclear and cytoplasmic VDR immunostaining, respectively). The lack of cytoplasmic and nuclear VDR was also related to shorter overall survival (for cytoplasmic VDR immunolocalization 13.3 vs. 55.3 months of survival, HR = 1.92, p = 0.04 and for nuclear VDR immunostaining 13.5 vs. 55.3 months of survival, HR = 2.47, p = 0.002 with Mantel-Cox test). In cases with the lack of high cytoplasmic VDR staining the non-classic differentiations (NDs) was observed in higher percentage of tumor area. CYP27B1 expression was lower in cancer cells than in normal epithelial cells (p = 0.03 with Mann–Whitney U test), but its expression did not correlate with tumor stage (pT), metastasizing, grade, mitotic activity or overall survival. In conclusion, expression of the VDR and CYP27B1 are deregulated in urothelial bladder cancers. Although our results showing a relationship between the decreased VDR expression and prognostic markers and survival time indicate potential usefulness of VDR as a new indicator of a poorer prognosis, further studies are needed in different patient cohorts by independent groups to validate this hypothesis. We also suggest that vitamin D-based therapies may represent an adjuvant strategy in treatment for bladder cancers expressing VDR.
Collapse
|
23
|
Goto S, Komaba H, Fukagawa M. Pathophysiology of parathyroid hyperplasia in chronic kidney disease: preclinical and clinical basis for parathyroid intervention. NDT Plus 2015; 1:iii2-iii8. [PMID: 25983967 PMCID: PMC4421132 DOI: 10.1093/ndtplus/sfn079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Accepted: 03/14/2008] [Indexed: 01/15/2023] Open
Abstract
Secondary hyperparathyroidism is characterised by excessive secretion of parathyroid hormone and parathyroid hyperplasia, resulting in both skeletal and extraskeletal consequences. Recent basic and clinical studies have brought considerable advances in our understanding of the pathophysiology of parathyroid hyperplasia and have also provided practical therapeutic approaches, especially with regard to indications for parathyroid intervention. In this context, it is quite important to recognize the development of nodular hyperplasia, because the cells in nodular hyperplasia are usually resistant to calcitriol treatment. Patients with nodular hyperplasia should undergo parathyroid intervention including percutaneous ethanol injection therapy (PEIT). Selective PEIT of the parathyroid gland is an effective approach in which the enlarged parathyroid gland with nodular hyperplasia is 'selectively' destroyed by ethanol injection, and other glands with diffuse hyperplasia are then managed by medical therapy. With a more focused attention to applying parathyroid intervention, we can expect significant improvement in the management of secondary hyperparathyroidism in dialysis patients.
Collapse
Affiliation(s)
- Shunsuke Goto
- Division of Nephrology and Kidney Center , Kobe University School of Medicine , Kobe 650-0017 , Japan
| | - Hirotaka Komaba
- Division of Nephrology and Kidney Center , Kobe University School of Medicine , Kobe 650-0017 , Japan
| | - Masafumi Fukagawa
- Division of Nephrology and Kidney Center , Kobe University School of Medicine , Kobe 650-0017 , Japan
| |
Collapse
|
24
|
Wetmore JB, Gurevich K, Sprague S, Da Roza G, Buerkert J, Reiner M, Goodman W, Cooper K. A Randomized Trial of Cinacalcet versus Vitamin D Analogs as Monotherapy in Secondary Hyperparathyroidism (PARADIGM). Clin J Am Soc Nephrol 2015; 10:1031-40. [PMID: 25904755 DOI: 10.2215/cjn.07050714] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 03/31/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Direct comparison of cinacalcet and vitamin D analogs as monotherapies to lower parathyroid hormone (PTH) levels has not been undertaken. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This was a prospective, multicenter, phase 4, randomized, open-label study that enrolled participants from 2010 to 2012. Adult participants (n=312) on hemodialysis with PTH >450 pg/ml were randomized 1:1 to 12 months of treatment with either cinacalcet (n=155) or vitamin D analogs (n=157) to evaluate the mean percentage change in plasma PTH level (primary end point) and the proportion of participants achieving plasma PTH <300 pg/ml or a ≥30% decrease in PTH (secondary end points). A preplanned analysis to determine whether there were important region-by-treatment interactions was also undertaken. RESULTS Baseline mean PTH was 846 pg/ml (n=155) for cinacalcet and 816 pg/ml (n=157) for vitamin D analog therapy. The mean (95% confidence interval) percentage change from baseline in PTH was -12.1% (-20.0% to -4.1%) in the cinacalcet arm and -7.0% (-14.9% to 0.8%) in the vitamin D analog arm, a difference of -5.0% (-15.4% to 5.4%) (P=0.35). Similarly, there was no difference in achievement of secondary efficacy end points between arms (19.4% and 15.3% of participants with PTH≤300 pg/ml and 42.6% and 33.8% of participants had a PTH reduction >30% in the cinacalcet and vitamin D analog arms, respectively). A prespecified analysis revealed a large treatment-by-region interaction, with nominally greater response to cinacalcet compared with vitamin D analogs in non-United States participants (US versus non-US participants, P<0.001). Hypocalcemia was more common in the cinacalcet arm, whereas hypercalcemia and hyperphosphatemia occurred more often in the vitamin D analog arm. CONCLUSIONS Participants had similar modest reductions in PTH with either cinacalcet or vitamin D analog monotherapy over 52 weeks of treatment, but effects varied by region. Treatments differed with regard to effect on calcium and phosphorus levels.
Collapse
Affiliation(s)
- James B Wetmore
- Division of Nephrology, Hennepin County Medical Center, Minneapolis, Minnesota;
| | | | - Stuart Sprague
- Division of Nephrology and Hypertension, NorthShore University HealthSystem, Evanston, Illinois
| | - Gerald Da Roza
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Buerkert
- Columbia Nephrology Associates, Columbia, South Carolina; and
| | | | | | | |
Collapse
|
25
|
de Bragança AC, Volpini RA, Canale D, Gonçalves JG, Shimizu MHM, Sanches TR, Seguro AC, Andrade L. Vitamin D deficiency aggravates ischemic acute kidney injury in rats. Physiol Rep 2015; 3:3/3/e12331. [PMID: 25780095 PMCID: PMC4393165 DOI: 10.14814/phy2.12331] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vitamin D deficiency (VDD) increases the risk of death in hospitalized patients. Renal ischemia/reperfusion injury (IRI) induces acute kidney injury (AKI), which activates cell cycle inhibitors, including p21, a cyclin-dependent kinase inhibitor and genomic target of 25-hydroxyvitamin D, which is in turn a potent immunomodulator with antiproliferative effects. In this study, we assess the impact of VDD in renal IRI. Wistar rats were divided into groups, each evaluated for 30 days: control (receiving a standard diet); VDD (receiving a vitamin D-free diet); IRI (receiving a standard diet and subjected to 45-min bilateral renal ischemia on day 28); and VDD + IRI (receiving a vitamin D-free diet and subjected to 45-min bilateral renal ischemia on day 28). At 48 h after IRI, animals were euthanized; blood, urine, and kidney tissue samples were collected. Compared with IRI rats, VDD + IRI rats showed a more severe decrease in glomerular filtration rate, greater urinary protein excretion, a higher kidney/body weight ratio and lower renal aquaporin 2 expression, as well as greater morphological damage, characterized by increased interstitial area and tubular necrosis. Our results suggest that the severity of tubular damage in IRI may be associated with downregulation of vitamin D receptors and p21. VDD increases renal inflammation, cell proliferation and cell injury in ischemic AKI.
Collapse
Affiliation(s)
- Ana Carolina de Bragança
- Division of Nephrology, Laboratory of Basic Science LIM-12 University of São Paulo School of Medicine, São Paulo, Brazil
| | - Rildo A Volpini
- Division of Nephrology, Laboratory of Basic Science LIM-12 University of São Paulo School of Medicine, São Paulo, Brazil
| | - Daniele Canale
- Division of Nephrology, Laboratory of Basic Science LIM-12 University of São Paulo School of Medicine, São Paulo, Brazil
| | - Janaína G Gonçalves
- Division of Nephrology, Laboratory of Basic Science LIM-12 University of São Paulo School of Medicine, São Paulo, Brazil
| | - Maria Heloisa M Shimizu
- Division of Nephrology, Laboratory of Basic Science LIM-12 University of São Paulo School of Medicine, São Paulo, Brazil
| | - Talita R Sanches
- Division of Nephrology, Laboratory of Basic Science LIM-12 University of São Paulo School of Medicine, São Paulo, Brazil
| | - Antonio C Seguro
- Division of Nephrology, Laboratory of Basic Science LIM-12 University of São Paulo School of Medicine, São Paulo, Brazil
| | - Lúcia Andrade
- Division of Nephrology, Laboratory of Basic Science LIM-12 University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
26
|
Abstract
This review focuses on the pathologic entities associated with hyperparathyroidism in humans. A discussion of the lesions, their embryology, and pathologic features is included. Immunohistology, cytopathology, and a brief overview of molecular aspects of the lesion are included.
Collapse
Affiliation(s)
- Virginia A LiVolsi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Zubair N Baloch
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Paydas S, Acikalim A, Kaya B, Bicer BH, Ulker M, Demircan O, Uguz A, Balal M, Sakman G, Sertdemir Y, Karaer R, Altun E. Expression of p53, Ki67, epidermal growth factor receptor, transforming growth-factorα, and p21 in primary and secondary hyperparathyroidism. Indian J Endocrinol Metab 2014; 18:826-830. [PMID: 25364678 PMCID: PMC4192989 DOI: 10.4103/2230-8210.140265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Secondary hyperparathyroidism (SH) is major problem in chronic renal failure. There are studies to examine proliferation and apoptosis associated biomarkers expressions in parathyroid lesions to reveal specific features. In this study, we evaluated the expression of some growth factors and their receptors in parathyroid gland of patients with SH or primary hyperparathyroidism (PH). MATERIALS AND METHODS A total of 49 patients had been operated for PH and 26 for SH. Parathyroid tissue samples were evaluated histopathologically and immunohistochemically using antibodies to human p53, Kİ-67, anti-human p21, antitransforming growth factor (TGF) α, CPP32 (caspase 3), and epidermal growth factor receptor (EGFR). RESULTS Adenoma was higher in PH compared with SH as 48/49 and 3/26, respectively (P = 0.000). Parathyroid hyperplasia was found in 23/26 patients with SH and 1/49 patient with PH. In parathyroid tissue there were no difference between PH and SH for p53, Ki-67, caspase, EGFR expressions; while there were significantly difference for TGFα (P = 0.047) and borderline significant difference for p21 (P = 0.06) expressions. CONCLUSION Adenoma was priority present in PH patients, hyperplasia was present in SH. There were no differences between primary and SH or adenoma and hyperplasia for expressions of cycline-dependent kinase inhibitor p21, p53, EGFR, Ki67, caspase; while TGFα expression was found to be different.
Collapse
Affiliation(s)
- Saime Paydas
- Department of Nephrology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Arbil Acikalim
- Department of Pathology and General Surgery, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Bulent Kaya
- Department of Nephrology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Bermal Hasbay Bicer
- Department of Pathology and General Surgery, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Mehmet Ulker
- Department of Nephrology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Orhan Demircan
- Department of Nephrology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Aysun Uguz
- Department of Pathology and General Surgery, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Mustafa Balal
- Department of Nephrology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Gurhan Sakman
- Department of Nephrology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Yasar Sertdemir
- Department of Biostatistics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Refika Karaer
- Department of Nephrology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Eda Altun
- Department of Nephrology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
28
|
Arcidiacono MV, Yang J, Fernandez E, Dusso A. The induction of C/EBPβ contributes to vitamin D inhibition of ADAM17 expression and parathyroid hyperplasia in kidney disease. Nephrol Dial Transplant 2014; 30:423-33. [PMID: 25294851 DOI: 10.1093/ndt/gfu311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In secondary hyperparathyroidism (SHPT), enhanced parathyroid levels of transforming growth factor-α (TGFα) increase EGF receptor (EGFR) activation causing parathyroid hyperplasia, high parathyroid hormone (PTH) and also reductions in vitamin D receptor (VDR) that limit vitamin D suppression of SHPT. Since anti-EGFR therapy is not an option in human SHPT, we evaluated ADAM17 as a therapeutic target to suppress parathyroid hyperplasia because ADAM17 is required to release mature TGFα, the most potent EGFR-activating ligand. METHODS Computer analysis of the ADAM17 promoter identified TGFα and C/EBPβ as potential regulators of the ADAM17 gene. Their regulation of ADAM17 expression, TGFα/EGFR-driven growth and parathyroid gland (PTG) enlargement were assessed in promoter-reporter assays in A431 cells and corroborated in rat and human SHPT, using erlotinib as anti-EGFR therapy to suppress TGFα signals, active vitamin D to induce C/EBPβ or the combination. RESULTS While TGFα induced ADAM17-promoter activity by 2.2-fold exacerbating TGFα/EGFR-driven growth, ectopic C/EBPβ expression completely prevented this vicious synergy. Accordingly, in advanced human SHPT, parathyroid ADAM17 levels correlated directly with TGFα and inversely with C/EBPβ. Furthermore, combined erlotinib + calcitriol treatment suppressed TGFα/EGFR-cell growth and PTG enlargement more potently than erlotinib in part through calcitriol induction of C/EBPβ to inhibit ADAM17-promoter activity, mRNA and protein. Importantly, in rat SHPT, the correction of vitamin D deficiency effectively reversed the resistance to paricalcitol induction of C/EBPβ to suppress ADAM17 expression and PTG enlargement, reducing PTH by 50%. CONCLUSION In SHPT, correction of vitamin D and calcitriol deficiency induces parathyroid C/EBPβ to efficaciously attenuate the severe ADAM17/TGFα synergy, which drives PTG enlargement and high PTH.
Collapse
Affiliation(s)
- Maria Vittoria Arcidiacono
- Renal Division, Washington University School of Medicine, St. Louis, MO, USA Division of Experimental Nephrology, IRB Lleida, Lleida, Spain
| | - Jing Yang
- Renal Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Elvira Fernandez
- Division of Experimental Nephrology, IRB Lleida, Lleida, Spain Renal Division, Hospital Universitari Arnau de Vilanova, Universidad de Lleida, Lleida, Spain
| | - Adriana Dusso
- Renal Division, Washington University School of Medicine, St. Louis, MO, USA Division of Experimental Nephrology, IRB Lleida, Lleida, Spain
| |
Collapse
|
29
|
Lee SM, Bishop KA, Goellner JJ, O'Brien CA, Pike JW. Mouse and human BAC transgenes recapitulate tissue-specific expression of the vitamin D receptor in mice and rescue the VDR-null phenotype. Endocrinology 2014; 155:2064-76. [PMID: 24693968 PMCID: PMC4020932 DOI: 10.1210/en.2014-1107] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are mediated by the vitamin D receptor (VDR), which is expressed in numerous target tissues in a cell type-selective manner. Recent studies using genomic analyses and recombineered bacterial artificial chromosomes (BACs) have defined the specific features of mouse and human VDR gene loci in vitro. In the current study, we introduced recombineered mouse and human VDR BACs as transgenes into mice and explored their expression capabilities in vivo. Individual transgenic mouse strains selectively expressed BAC-derived mouse or human VDR proteins in appropriate vitamin D target tissues, thereby recapitulating the tissue-specific expression of endogenous mouse VDR. The mouse VDR transgene was also regulated by 1,25(OH)2D3 and dibutyryl-cAMP. When crossed into a VDR-null mouse background, both transgenes restored wild-type basal as well as 1,25(OH)2D3-inducible gene expression patterns in the appropriate tissues. This maneuver resulted in the complete rescue of the aberrant phenotype noted in the VDR-null mouse, including systemic features associated with altered calcium and phosphorus homeostasis and disrupted production of parathyroid hormone and fibroblast growth factor 23, and abnormalities associated with the skeleton, kidney, parathyroid gland, and the skin. This study suggests that both mouse and human VDR transgenes are capable of recapitulating basal and regulated expression of the VDR in the appropriate mouse tissues and restore 1,25(OH)2D3 function. These results provide a baseline for further dissection of mechanisms integral to mouse and human VDR gene expression and offer the potential to explore the consequence of selective mutations in VDR proteins in vivo.
Collapse
Affiliation(s)
- Seong Min Lee
- Department of Biochemistry (S.M.L., K.A.B., J.W.P.), University of Wisconsin-Madison, Madison, Wisconsin 53706; and University of Arkansas for Medical Sciences (J.J.G., C.A.O.), Little Rock, Arkansas 72205
| | | | | | | | | |
Collapse
|
30
|
Florescu MC, Islam KM, Plumb TJ, Smith-Shull S, Nieman J, Mandalapu P. Calcium supplementation after parathyroidectomy in dialysis and renal transplant patients. Int J Nephrol Renovasc Dis 2014; 7:183-90. [PMID: 24868170 PMCID: PMC4027938 DOI: 10.2147/ijnrd.s56995] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Data on the risk factors and clinical course of hungry bone syndrome are lacking in dialysis and renal transplant patients who undergo parathyroidectomy. In this study, we aimed to assess the risks and clinical course of hungry bone syndrome and calcium repletion after parathyroidectomy in dialysis and renal transplant patients. Methods We performed a retrospective review of parathyroidectomies performed at The Nebraska Medical Center. Results We identified 41 patients, ie, 30 (73%) dialysis and eleven (27%) renal transplant patients. Dialysis patients had a significantly higher pre-surgery intact parathyroid hormone (iPTH, P<0.001) and a larger iPTH drop after surgery (P<0.001) than transplant recipients. Post-surgery hypocalcemia in dialysis patients was severe and required aggressive and prolonged calcium replacement (11 g) versus a very mild hypocalcemia requiring only brief and minimal replacement (0.5 g) in transplant recipients (P<0.001). Hypophosphatemia was not detected in the dialysis group. Phosphorus did not increase immediately after surgery in transplant recipients. The hospital stay was significantly longer in dialysis patients (8.2 days) compared with transplant recipients (3.2 days, P<0.001). Conclusion The clinical course of hungry bone syndrome is more severe in dialysis patients than in renal transplant recipients. Young age, elevated alkaline phosphatase, elevated pre-surgery iPTH, and a large decrease in post-surgical iPTH are risk factors for severe hungry bone syndrome in dialysis patients.
Collapse
Affiliation(s)
| | | | | | - Sara Smith-Shull
- Department of Pharmacy, The Nebraska Medical Center, Omaha, NE, USA
| | - Jennifer Nieman
- Department of Pharmacy, The Nebraska Medical Center, Omaha, NE, USA
| | | |
Collapse
|
31
|
Costa-Guda J, Arnold A. Genetic and epigenetic changes in sporadic endocrine tumors: parathyroid tumors. Mol Cell Endocrinol 2014; 386:46-54. [PMID: 24035866 PMCID: PMC3943641 DOI: 10.1016/j.mce.2013.09.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 01/05/2023]
Abstract
Parathyroid neoplasia is most commonly due to benign parathyroid adenoma but rarely can be caused by malignant parathyroid carcinoma. Evidence suggests that parathyroid carcinomas rarely, if ever, evolve through an identifiable benign intermediate, with the notable exception of carcinomas associated with the familial hyperparathyroidism-jaw tumor syndrome. Several genes have been directly implicated in the pathogenesis of typical sporadic parathyroid adenoma; somatic mutations in the MEN1 tumor suppressor gene are the most frequent finding, and alterations in the cyclin D1/PRAD1 oncogene are also firmly established molecular drivers of sporadic adenomas. In addition, good evidence supports mutation in the CDKN1B/p27 cyclin-dependent kinase inhibitor (CDKI) gene, and in other CDKI genes as contributing to disease pathogenesis in this context. Somatic defects in additional genes, including β-catenin, POT1 and EZH2 may contribute to parathyroid adenoma formation but, for most, their ability to drive parathyroid tumorigenesis remains to be demonstrated experimentally. Further, genetic predisposition to sporadic presentations of parathyroid adenoma appears be conferred by rare, and probably low-penetrance, germline variants in CDKI genes and, perhaps, in other genes such as CASR and AIP. The HRPT2 tumor suppressor gene is commonly mutated in parathyroid carcinoma.
Collapse
Affiliation(s)
- Jessica Costa-Guda
- Center for Molecular Medicine and Division of Endocrinology & Metabolism, University of Connecticut School of Medicine, Farmington, CT 06030-3101, USA
| | - Andrew Arnold
- Center for Molecular Medicine and Division of Endocrinology & Metabolism, University of Connecticut School of Medicine, Farmington, CT 06030-3101, USA.
| |
Collapse
|
32
|
The parathyroid glands. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Walter S, Baruch A, Dong J, Tomlinson JE, Alexander ST, Janes J, Hunter T, Yin Q, Maclean D, Bell G, Mendel DB, Johnson RM, Karim F. Pharmacology of AMG 416 (Velcalcetide), a novel peptide agonist of the calcium-sensing receptor, for the treatment of secondary hyperparathyroidism in hemodialysis patients. J Pharmacol Exp Ther 2013; 346:229-40. [PMID: 23674604 DOI: 10.1124/jpet.113.204834] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
A novel peptide, AMG 416 (formerly KAI-4169, and with a United States Adopted Name: velcalcetide), has been identified that acts as an agonist of the calcium-sensing receptor (CaSR). This article summarizes the in vitro and in vivo characterization of AMG 416 activity and the potential clinical utility of this novel compound. AMG 416 activates the human CaSR in vitro, acting by a mechanism distinct from that of cinacalcet, the only approved calcimimetic, since it can activate the CaSR both in the presence or the absence of physiologic levels of extracellular calcium. Administration of AMG 416 in vivo into either normal or renally compromised rats results in dose-dependent reductions in parathyroid hormone (PTH) levels and corresponding decreases in serum calcium, regardless of the baseline level of PTH. Treatment of 5/6 nephrectomized rats with AMG 416 resulted in dramatic improvements in their metabolic profile, including lower PTH and serum creatinine levels, reduced amounts of vascular calcification, attenuated parathyroid hyperplasia, and greater expression of the parathyroid gland regulators CaSR, vitamin D receptor, and FGF23 receptor compared with vehicle-treated animals. No drug accumulation was observed under this dosing regimen, and the terminal half-life of AMG 416 was estimated to be 2-4.5 hours. As a long-acting CaSR agonist, AMG 416 is an innovative new therapy for the treatment of hemodialysis patients with secondary hyperparathyroidism.
Collapse
|
34
|
Varshney S, Bhadada SK, Saikia UN, Sachdeva N, Behera A, Arya AK, Sharma S, Bhansali A, Mithal A, Rao SD. Simultaneous expression analysis of vitamin D receptor, calcium-sensing receptor, cyclin D1, and PTH in symptomatic primary hyperparathyroidism in Asian Indians. Eur J Endocrinol 2013; 169:109-16. [PMID: 23660642 DOI: 10.1530/eje-13-0085] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND To explore underlying molecular mechanisms in the pathogenesis of symptomatic sporadic primary hyperparathyroidism (PHPT). MATERIALS AND METHODS Forty-one parathyroid adenomas from patients with symptomatic PHPT and ten normal parathyroid glands either from patients with PHPT (n=3) or from euthyroid patients without PHPT during thyroid surgery (n=7) were analyzed for vitamin D receptor (VDR), calcium-sensing receptor (CASR), cyclin D1 (CD1), and parathyroid hormone (PTH) expressions. The protein expressions were assessed semiquantitatively by immunohistochemistry, based on percentage of positive cells and staining intensity, and confirmed by quantitative real-time PCR. RESULTS Immunohistochemistry revealed significant reductions in VDR (both nuclear and cytoplasmic) and CASR expressions and significant increases in CD1 and PTH expressions in adenomatous compared with normal parathyroid tissue. Consistent with immunohistochemistry findings, both VDR and CASR mRNAs were reduced by 0.36- and 0.45-fold change (P<0.001) and CD1 and PTH mRNAs were increased by 9.4- and 17.4-fold change respectively (P<0.001) in adenomatous parathyroid tissue. PTH mRNA correlated with plasma PTH (r=0.864; P<0.001), but not with adenoma weight, while CD1 mRNA correlated with adenoma weight (r=0.715; P<0.001). There were no correlations between VDR and CASR mRNA levels and serum Ca, plasma intact PTH, or 25-hydroxyvitamin D levels. In addition, there was no relationship between the decreases in VDR and CASR mRNA expressions and the increases in PTH and CD1 mRNA expressions. CONCLUSIONS The expression of both VDR and CASR are reduced in symptomatic PHPT in Asian Indians. In addition, CD1 expression was greatly increased and correlated with adenoma weight, implying a potential role for CD1 in adenoma growth and differential clinical expression of PHPT.
Collapse
Affiliation(s)
- Shweta Varshney
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, 4th Floor, F-Block, Room No. 2, Chandigarh 160012, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Latus J, Lehmann R, Roesel M, Fritz P, Braun N, Ulmer C, Steurer W, Biegger D, Ott G, Dippon J, Alscher MD, Kimmel M. Analysis of α-klotho, fibroblast growth factor-, vitamin-D and calcium-sensing receptor in 70 patients with secondary hyperparathyroidism. Kidney Blood Press Res 2013; 37:84-94. [PMID: 23552627 DOI: 10.1159/000343403] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Secondary hyperparathyroidism (sHPT) is known as a very common complication in patients with chronic kidney disease, and G-protein-coupled calcium-sensing receptor (CaSR), Vitamin D receptor (VDR) and Fibroblast growth factor receptor (FGFR)/Klotho complexes seem to be involved in its development. METHODS Hyperplastic parathyroid glands from 70 sHPT patients and normal parathyroid tissue from 7 patients were obtained during parathyroidectomy. Conventional morphological and immunohistochemical analysis of parathyroid glands was performed after dividing each slide in a 3x3 array. RESULTS The presence of lipocytes in the normal parathyroid gland and tissue architecture (nodal in patients with sHPT) allows for discrimination between normal parathyroid glands and parathyroid glands of patients with sHPT. Protein expression of Klotho, FGFR, CaSR and VDR was higher in the normal parathyroid glands compared to the sHPT group (p<0.001, p=0.07, p =0.01 and p=0.001). The variability of each protein expression within each tissue slide was high. Therefore correlations between the different immunohistochemical variables were analyzed for each of the nine fields and than analyzed for all patients. Using this analysis, a highly significant positive correlation could be found between the expression of FGFR and VDR (p=0.0004). Interestingly, in terms of VDR we found a shift to a more mixed nuclear/cytoplasmic staining in the HPT group compared to normal parathyroid gland cells, which showed solitary nuclear staining for VDR (p>0.05). CONCLUSIONS CaSR, VDR and an impaired Klotho-FGFR-axis seem to be the major players in the development of sHPT. Whether the detected correlation between FGFR and VDR and the shift to a more mixed nuclear/cytoplasmic staining of VDR will yield new insights into the pathogenesis of the disease has to be evaluated in further studies.
Collapse
Affiliation(s)
- Joerg Latus
- Department of Internal Medicine, Division of Nephrology, Robert Bosch Hospital, Stuttgart, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bienaimé F, Prié D, Friedlander G, Souberbielle JC. Vitamin D metabolism and activity in the parathyroid gland. Mol Cell Endocrinol 2011; 347:30-41. [PMID: 21664247 DOI: 10.1016/j.mce.2011.05.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 12/21/2022]
Abstract
Parathormone (PTH) and vitamin D are two critical hormonal regulators of calcium homeostasis. An important cross-talk exists between the PTH and vitamin D hormonal systems. PTH enhances vitamin D hydroxylation on carbon 1 in kidney cells thereby allowing the systemic release of 1-25-dihydroxy-vitamin D, which represents the fully active hormone. Conversely, parathyroid gland represents a direct target for vitamin D. Parathyroid cells express the vitamin D receptor and the 1-α-hydroxylase enzyme, which allows the local formation of 1-25-dihydroxy-vitamin D. Because of its potential implication in several diseases, including osteoporosis or chronic kidney disease, the interplay between PTH and vitamin D has received considerable attention these last two decades. The aim of this review is to summarize our current understanding of the molecular basis of vitamin D action and metabolism in parathyroid cells. The potential clinical implications of the recent advances made in this field will also be discussed.
Collapse
Affiliation(s)
- Frank Bienaimé
- Service de Physiologie - Explorations Fonctionnelles, Hôpital Necker Enfants Malades, 149 Rue de Sèvres, 75015 Paris, France
| | | | | | | |
Collapse
|
37
|
Miller G, Davis J, Shatzen E, Colloton M, Martin D, Henley CM. Cinacalcet HCl prevents development of parathyroid gland hyperplasia and reverses established parathyroid gland hyperplasia in a rodent model of CKD. Nephrol Dial Transplant 2011; 27:2198-205. [PMID: 22036941 PMCID: PMC3363978 DOI: 10.1093/ndt/gfr589] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Secondary hyperparathyroidism (sHPT) represents an adaptive response to progressively impaired control of calcium, phosphorus and vitamin D in chronic kidney disease (CKD). It is characterized by parathyroid hyperplasia and excessive synthesis and secretion of parathyroid hormone (PTH). Parathyroid hyperplasia in uremic rats can be prevented by calcium-sensing receptor (CaSR) activation with the calcimimetic cinacalcet (Sensipar®/Mimpara®); however, it is unknown, how long the effects of cinacalcet persist after withdrawal of treatment or if cinacalcet is efficacious in uremic rats with established sHPT. METHODS We sought to determine the effect of cinacalcet discontinuation in uremic rats and whether cinacalcet was capable of influencing parathyroid hyperplasia in animals with established sHPT. RESULTS Discontinuation of cinacalcet resulted in reversal of the beneficial effects on serum PTH and parathyroid hyperplasia. In rats with established sHPT, cinacalcet decreased serum PTH and mediated regression of parathyroid hyperplasia. The cinacalcet-mediated decrease in parathyroid gland size was accompanied by increased expression of the cyclin-dependent kinase inhibitor p21. Prevention of cellular proliferation with cinacalcet occurred despite increased serum phosphorus and decreased serum calcium. CONCLUSIONS The animal data provided suggest established parathyroid hyperplasia can be reversed by modulating CaSR activity with cinacalcet and that continued treatment may be necessary to maintain reductions in PTH.
Collapse
Affiliation(s)
- Gerald Miller
- Department of Metabolic Disorders, Amgen Inc, Thousand Oaks, CA, USA
| | | | | | | | | | | |
Collapse
|
38
|
Shiizaki K, Hatamura I, Mato M, Nakazawa E, Saji F, Onishi A, Ogura M, Watanabe Y, Kusano E. Development and prevention of morphologic and ultrastructural changes in uremia-induced hyperplastic parathyroid gland. Ultrastruct Pathol 2011; 35:230-8. [PMID: 21867406 DOI: 10.3109/01913123.2011.601406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The detailed ultrastructural changes of uremia-induced hyperplastic parathyroid gland and the effects of current medical treatments for secondary hyperparathyroidism were investigated. Marked enlargement of parathyroid cell with accumulation of mitochondria and lipids and a significant increase in the thickness of the pericapillary area with increased fibrosis and appearance of fibroblast like cells were noted in the hyperplastic gland caused by uremia and phosphate retention. These ultrastructural changes and biochemical findings indicating hyperparathyroidism were significantly suppressed by all of the treatment using phosphate restriction, calcitriol, and cinacalcet. The characteristic ultrastructural changes, including the morphologic evidence of nodule formation, were indicated.
Collapse
Affiliation(s)
- Kazuhiro Shiizaki
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Komaba H, Kakuta T, Fukagawa M. Diseases of the parathyroid gland in chronic kidney disease. Clin Exp Nephrol 2011; 15:797-809. [DOI: 10.1007/s10157-011-0502-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 07/08/2011] [Indexed: 12/31/2022]
|
40
|
Sato T, Kikkawa Y, Hiramitsu T, Yamamoto T, Goto N, Matsuoka S, Nagasaka T, Watarai Y, Uchida K, Tominaga Y. Role of multifunctional cell cycle modulators in advanced secondary hyperparathyroidism. Ther Apher Dial 2011; 15 Suppl 1:26-32. [PMID: 21595849 DOI: 10.1111/j.1744-9987.2011.00922.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Long-term dialysis for patients with end stage renal disease leads to an unavoidable common complication, which is secondary hyperparathyroidism. Two histological patterns (nodular and diffuse hyperplasia) are detected, indicating that continuous uremia-related stimulation promotes parathyroid cell proliferation from diffuse to nodular growth. However, the key molecular mechanism is not fully understood, which narrows the range of therapeutic options for advanced secondary hyperparathyroidism. To address this issue, we utilized surgically resected normal and hyperplastic parathyroid glands to perform immunohistochemical analysis of a multifunctional cell cycle modulator, CCAAT enhancer binding protein (C/EBP)β. In contrast to normal parathyroid tissue and diffuse hyperplasia, the intensity of C/EBPβ staining was homogeneously increased in the parathyroid cells from nodules, along with a higher cyclin D1 labeling index (108.0 ± 19.5, mean ± SEM) and Ki-67 labeling index (31.70 ± 0.49). Normal and diffuse hyperplastic parathyroid glands had far fewer cyclin D1- and Ki-67-positive cells (P < 0.001). Immunofluorescent double staining showed abundant coexpression of Th235 (mitogen-activated protein kinase [MAPK] phosphorylation site) C/EBPβ, along with upregulation of cytoplasmic Ras in nodular hyperplasia. In conclusion, hyperplastic parathyroid cells in nodules have an autonomous proliferation mechanism similar to that of cancer, in which C/EBPβ is upregulated and phosphorylated to interact with the oncogenic Ras/MAPK pathway. C/EBPβ may be a novel target molecule for blocking the growth circuit that underlies parathyroid tumorigenesis in secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Tetsuhiko Sato
- Department of Transplant and Endocrine Surgery, Nagoya Second Red Cross Hospital, Showa-ku, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang Q, Qiu J, Li H, Lu Y, Wang X, Yang J, Wang S, Zhang L, Gu Y, Hao CM, Chen J. Cyclooxygenase 2 promotes parathyroid hyperplasia in ESRD. J Am Soc Nephrol 2011; 22:664-72. [PMID: 21335517 DOI: 10.1681/asn.2010060594] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hyperplasia of the PTG underlies the secondary hyperparathyroidism (SHPT) observed in CKD, but the mechanism underlying this hyperplasia is incompletely understood. Because aberrant cyclooxygenase 2 (COX2) expression promotes epithelial cell proliferation, we examined the effects of COX2 on the parathyroid gland in uremia. In patients with ESRD who underwent parathyroidectomy, clusters of cells within the parathyroid glands had increased COX2 expression. Some COX2-positive cells exhibited two nuclei, consistent with proliferation. Furthermore, nearly 78% of COX2-positive cells expressed proliferating cell nuclear antigen (PCNA). In the 5/6-nephrectomy rat model, rats fed a high-phosphate diet had significantly higher serum PTH levels and larger parathyroid glands than sham-operated rats. Compared with controls, the parathyroid glands of uremic rats exhibited more PCNA-positive cells and greater COX2 expression in the chief cells. Treatment with COX2 inhibitor celecoxib significantly reduced PCNA expression, attenuated serum PTH levels, and reduced the size of the glands. In conclusion, COX2 promotes the pathogenesis of hyperparathyroidism in ESRD, suggesting that inhibiting the COX2 pathway could be a potential therapeutic target.
Collapse
Affiliation(s)
- Qian Zhang
- Division of Nephrology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Brożyna AA, Jozwicki W, Janjetovic Z, Slominski AT. Expression of vitamin D receptor decreases during progression of pigmented skin lesions. Hum Pathol 2011; 42:618-31. [PMID: 21292298 DOI: 10.1016/j.humpath.2010.09.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 01/18/2023]
Abstract
1,25-dihydroxyvitamin D3 affects proliferation, differentiation, and apoptosis and protects DNA against oxidative damage with a net tumorostatic and anticarcinogenic effect. It acts through a specific nuclear receptor that is widely distributed through the body. Although a beneficial role of vitamin D in melanoma patients has been suggested, there is lack of information on the changes in the expression pattern of vitamin D receptor during progression of pigmented lesions. Using immunohistochemistry, we analyzed the expression of vitamin D receptor in 140 samples obtained form 82 patients, including 25 benign nevi, 70 primary cutaneous melanomas, 35 metastases, 5 re-excisions, and 5 normal skin biopsies. The strongest expression was observed in normal skin that significantly decreased in melanocytic proliferations with the following order of expression: normal skin > melanocytic nevi > melanomas = metastases. The vitamin D receptor expression in skin surrounding nevi and melanoma was also significantly reduced as compared to normal skin. Tumor-infiltrating and lymph node lymphocytes retained high levels of vitamin D receptor. There was negative correlation between tumor progression and vitamin D receptor expression with a remarkable decrease of the immunoreactivity in nuclei of melanoma cells at vertical versus radial growth phases and with metastatic melanomas showing the lowest cytoplasmic receptor staining. Furthermore, lack of the receptor expression in primary melanomas and metastases was related to shorter overall patients' survival. In addition, the receptor expression decreased in melanized melanoma cells in comparison to amelanotic or poorly pigmented cells. Therefore, we propose that reduction or absence of vitamin D receptor is linked to progression of melanocytic lesions, that its lack affects survival of melanoma patients, and that melanogenesis can attenuate receptor expression. In conclusion, changes in vitamin D receptor expression pattern can serve as important variables for diagnosis, predicting clinical outcome of the disease, and/or as a guidance for novel therapy of melanomas based on use of vitamin D or its derivatives.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, The Lukaszczyk Oncology Center, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz 85-796, Poland
| | | | | | | |
Collapse
|
43
|
Komaba H, Shiizaki K, Fukagawa M. Pharmacotherapy and interventional treatments for secondary hyperparathyroidism: current therapy and future challenges. Expert Opin Biol Ther 2010; 10:1729-42. [DOI: 10.1517/14712598.2010.518614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Komaba H, Nakanishi S, Fujimori A, Tanaka M, Shin J, Shibuya K, Nishioka M, Hasegawa H, Kurosawa T, Fukagawa M. Cinacalcet effectively reduces parathyroid hormone secretion and gland volume regardless of pretreatment gland size in patients with secondary hyperparathyroidism. Clin J Am Soc Nephrol 2010; 5:2305-14. [PMID: 20798251 DOI: 10.2215/cjn.02110310] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Cinacalcet is effective in reducing serum parathyroid hormone (PTH) in patients with secondary hyperparathyroidism. However, it has not been proven whether parathyroid gland size predicts response to therapy and whether cinacalcet is capable of inducing a reduction in parathyroid volume. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This 52-week, multicenter, open-label study enrolled hemodialysis patients with moderate to severe secondary hyperparathyroidism (intact PTH >300 pg/ml). Doses of cinacalcet were adjusted between 25 and 100 mg to achieve intact PTH <180 pg/ml. Ultrasonography was performed to measure the parathyroid gland size at baseline, week 26, and week 52. Findings were also compared with those of historical controls. RESULTS Of the 81 subjects enrolled, 56 had parathyroid glands smaller than 500 mm(3) (group S) and 25 had at least one enlarged gland larger than 500 mm(3) (group L). Treatment with cinacalcet effectively decreased intact PTH by 55% from baseline in group S and by 58% in group L. A slightly greater proportion of patients in group S versus group L achieved an intact PTH <180 pg/ml (46 versus 32%) and a >30% reduction from baseline (88 versus 78%), but this was not statistically significant. Cinacalcet therapy also resulted in a significant reduction in parathyroid gland volume regardless of pretreatment size, which was in sharp contrast to historical controls (n = 87) where parathyroid gland volume progressively increased with traditional therapy alone. CONCLUSIONS Cinacalcet effectively decreases serum PTH levels and concomitantly reduces parathyroid gland volume, even in patients with marked parathyroid hyperplasia.
Collapse
Affiliation(s)
- Hirotaka Komaba
- Division of Nephrology and Kidney Center, Kobe University School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Canalejo A, Canalejo R, Rodriguez ME, Martinez-Moreno JM, Felsenfeld AJ, Rodríguez M, Almaden Y. Development of parathyroid gland hyperplasia without uremia: role of dietary calcium and phosphate. Nephrol Dial Transplant 2009; 25:1087-97. [PMID: 19934096 DOI: 10.1093/ndt/gfp616] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background. Many experimental studies have demonstrated that parathyroid cell proliferation is induced by uremia and further aggravated by hypocalcemia, phosphorus retention and vitamin D deficiency. However, these factors may also promote parathyroid growth without uremia. In the present study, we examined the onset and progression of parathyroid hyperplasia regardless of the uremic setting, a situation that might occur soon during the early renal disease. Thus, the novelty of this work resides in the close examination of the time course for the expected changes in proliferation rates and their association with parathyroid hormone (PTH) release in normal rats under the physiological demands of a high-phosphate diet (HPD) or a low-calcium diet (LCD). Methods. We evaluated the functional response of the parathyroid glands in normal rats to different physiological demands an HPD 0.6% Ca, 1.2% P) and LCD 0.2% Ca, 0.6% P) and compared it with that of uremic rats. Furthermore, we also evaluated the time course for the reversal of high-P and low-Ca-induced parathyroid cell growth and PTH upon normalization of dietary Ca and P intake (0.6% Ca, 0.6% P). Proliferation was measured by flow cytometry and calcium receptor (CaR) and vitamin D receptor (VDR) expression were assessed by qRT-PCR. Results. The pattern in the development of parathyroid hyperplasia by the two dietary models was different. The HPD produced a stronger stimulus than the number of proliferating cells doubled after only 1 day, while the LCD required 5 days to induce an increase; the elevated calcitriol might be a mitigating factor. The increase in cell proliferation was accompanied by a transient down-regulation of VDR expression (higher in the HPD); the expression of CaR was not affected by either diet. Cell proliferation and VDR mRNA levels were restored to control values by Day 15; it is as though the gland had attained a sufficient level of hyperplasia to respond to the PTH challenge. Compared to normal rats, the response of uremic rats to the HPD showed sustained and much higher rates of PTH secretion and cell proliferation and sustained down-regulation of both VDR mRNA and CaR mRNA. Finally, the recovery from the HPD or LCD to a control diet resulted in a rapid restoration of PTH values (1 to 2 days), but the reduction in cell proliferation was delayed (3 to 5 days). Conclusions. Regardless of uremia, a physiological demand to increase the PTH secretion driven either by a high P or a low Ca intake is able to induce a different pattern of parathyroid hyperplasia, which might be aggravated by the down-regulation of VDR expression. The recovery from the HPD or LCD to a control diet results in a more rapid reduction in PTH than in cell proliferation.
Collapse
Affiliation(s)
- Antonio Canalejo
- Department of Environmental Biology and Public Health, University of Huelva, Huelva, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int 2009; 77:232-8. [PMID: 19890272 DOI: 10.1038/ki.2009.414] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 23 (FGF23) exerts its effect by binding to its cognate FGF receptor 1 (FGFR1) in the presence of its co-receptor Klotho. Parathyroid glands express both FGFR1 and Klotho, and FGF23 decreases parathyroid hormone gene expression and hormone secretion directly. In uremic patients with secondary hyperparathyroidism (SHPT), however, parathyroid hormone secretion remains elevated despite extremely high FGF23 levels. To determine the mechanism of this resistance, we measured the expression of Klotho, FGFR1, and the proliferative marker Ki67 in 7 normal and 80 hyperplastic parathyroid glands from uremic patients by immunohistochemistry. All uremic patients had severe SHPT along with markedly high FGF23 levels. Quantitative real-time reverse transcription PCR showed that the mRNA levels for Klotho and FGFR1correlated significantly with their semi-quantitative immunohistochemical intensity. Compared with normal tissue, the immunohistochemical expression of Klotho and FGFR1 decreased, but Ki67 expression increased significantly in hyperplastic parathyroid glands, particularly in glands with nodular hyperplasia. These results suggest that the depressed expression of the Klotho-FGFR1 complex in hyperplastic glands underlies the pathogenesis of SHPT and its resistance to extremely high FGF23 levels in uremic patients.
Collapse
|
47
|
Zhang ZL, Tong J, Lu RN, Scutt AM, Goltzman D, Miao DS. Therapeutic potential of non-adherent BM-derived mesenchymal stem cells in tissue regeneration. Bone Marrow Transplant 2009; 43:69-81. [PMID: 18711348 DOI: 10.1038/bmt.2008.260] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/07/2008] [Accepted: 07/18/2008] [Indexed: 12/16/2022]
Abstract
We demonstrated that non-adherent BM cells (NA-BMCs) can be expanded in suspension and give rise to multiple mesenchymal phenotypes including fibroblastic, osteoblastic, chondrocytic and adipocytic as well as glial cell lineages in vitro using the 'pour-off' BMC culture method. Mesenchymal stem cells (MSCs) derived from NA-BMCs (NA-MSCs) from wild-type mice were transplanted into VDR gene knockout (VDR(-/-)) mice that had received a lethal dose of radiation. Results revealed that NA-MSC can be used to rescue lethally irradiated mice and become incorporated into a diverse range of tissues. After lethal dose irradiation, all untransplanted mice died within 2 weeks, whereas those transplanted with NA-MSCs were viable for at least 3 months. Transplantation rescued these mice by reconstructing a hematopoietic system and repairing other damaged tissues. WBC, RBC and platelet counts recovered to normal after 1 month, and VDR gene expression was found in various tissues of viable VDR(-/-) recipients. Adult BM harbors pluripotent NA-MSCs, which can migrate in vivo into multiple body organs. In an appropriate microenvironment, they can adhere, proliferate and differentiate into specialized cells of target tissues and thus function in damaged tissue regeneration and repair.
Collapse
Affiliation(s)
- Z L Zhang
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Mendoza FJ, Lopez I, Canalejo R, Almaden Y, Martin D, Aguilera-Tejero E, Rodriguez M. Direct upregulation of parathyroid calcium-sensing receptor and vitamin D receptor by calcimimetics in uremic rats. Am J Physiol Renal Physiol 2008; 296:F605-13. [PMID: 19091789 DOI: 10.1152/ajprenal.90272.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To investigate whether the effect of the calcimimetic AMG 641 and calcitriol on CaSR and VDR expression could be separated from their ability to reduce parathyroid cell proliferation, five-sixth nephrectomized (5/6 Nx) rats received vehicle, AMG 641, calcitriol, or AMG 641+calcitriol either daily for 13 days (long-term protocol) or in a single dose (short-term protocol). In the long-term protocol, AMG 641, calcitriol, and their combination significantly reduced the percentage of proliferating parathyroid cells. Proliferation was uncontrolled in the short-term protocol. A significant increase in CaSR mRNA (% vs. beta-actin) was detected in rats treated with both calcitriol (1.60 +/- 0.30) and AMG 641 (1.66 +/- 0.25) for 13 days (P = 0.01 vs. 5/6 Nx+vehicle, 0.89 +/- 0.09); and there was a further increase when both drugs were administered simultaneously (2.46 +/- 0.33). In the short-term protocol, only rats receiving AMG 641 alone (2.01 +/- 0.33, P < 0.001) showed increased expression of CaSR mRNA, whereas the combination (1.81 +/- 0.20) produced no additional benefit. AMG 641 also increased CaSR mRNA expression in vitro. Changes in VDR mRNA paralleled those of CaSR mRNA. In the long-term treatment, both AMG 641 (0.87 +/- 0.14) and calcitriol (0.99 +/- 0.12) increased VDR mRNA (P < 0.05 vs. 5/6 Nx+vehicle, 0.49 +/- 0.10), and the increase was more accentuated when the drugs were combined (1.49 +/- 0.45). In the short-term protocol, only treatment with AMG 641, alone (1.52 +/- 0.41) or combined with calcitriol (1.86 +/- 0.24), increased VDR mRNA. In conclusion, our results demonstrate an acute increase in CaSR mRNA and VDR mRNA in the parathyroid glands of uremic rats treated with AMG 641, in which cell proliferation was uncontrolled, thus supporting a direct effect of calcimimetics on CaSR and VDR expression by hyperplastic parathyroid cells.
Collapse
Affiliation(s)
- Francisco J Mendoza
- Departamento Medicina y Cirugia Animal, Universidad de Cordoba, Cordoba, Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
Wetmore JB, Quarles LD. Treatment of secondary hyperparathyroidism in kidney disease: what we know and do not know about use of calcimimetics and vitamin D analogs. Int J Nephrol Renovasc Dis 2008; 1:5-17. [PMID: 21694914 PMCID: PMC3108756 DOI: 10.2147/ijnrd.s4368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
There is a growing understanding of the pathophysiology of secondary hyperparathyroidism (SHPT) and a recent emergence of new agents for SHPT treatment in patients with advanced kidney disease. At the same time, appreciation that mineral metabolic derangements promote vascular calcification and contribute to excess mortality, along with recognition of potentially important “non-classical” actions of vitamin D, have prompted the nephrology community to reexamine the use of various SHPT treatments, such as activated vitamin D sterols, phosphate binders, and calcimimetics. In this review, the evidence for treatment of SHPT with calcimimetics and vitamin D analogs is evaluated, with particular consideration given to recent clinical trials that have reported encouraging findings with cinacalcet use. Additionally, several controversies in the pathogenesis and treatment of SHPT are explored. The proposition that calcitriol deficiency is a true pathological state is challenged, the relative importance of the vitamin D receptor and the calcium sensing receptor in parathyroid gland function is summarized, and the potential relevance of non-classical actions of vitamin D for patients with advanced renal disease is examined. Taken collectively, the balance of evidence now supports a treatment paradigm in which calcimimetics are the most appropriate primary treatment for SHPT in the majority of end stage renal disease patients, but which nevertheless acknowledges an important role for modest doses of activated vitamin D sterols.
Collapse
Affiliation(s)
- James B Wetmore
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
50
|
Wetmore JB, Quarles LD. Calcimimetics or vitamin D analogs for suppressing parathyroid hormone in end-stage renal disease: time for a paradigm shift? ACTA ACUST UNITED AC 2008; 5:24-33. [PMID: 18957950 DOI: 10.1038/ncpneph0977] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 09/09/2008] [Indexed: 12/14/2022]
Abstract
Considerable advances have been made in the understanding of the pathogenesis and treatment of secondary hyperparathyroidism (SHPT) in chronic kidney disease (CKD). These include the discovery that the calcium-sensing receptor has an important role in the regulation of parathyroid gland function, the development of calcimimetics to target this receptor, the recognition that vitamin D receptor activation has important functions beyond the regulation of mineral metabolism, the identification of the phosphaturic factor fibroblast growth factor 23 and the contribution of this hormone to disordered phosphate and vitamin D metabolism in CKD. However, despite the availability of calcimimetics, phosphate binders, and vitamin D analogs, control of SHPT remains suboptimal in many patients with advanced kidney disease. In this Review, we explore several unresolved issues regarding the pathogenesis and treatment of SHPT. Specifically, we examine the significance of elevated circulating fibroblast growth factor 23 levels in CKD, question the proposition that calcitriol deficiency is truly a pathological state, explore the relative importance of the vitamin D receptor and the calcium-sensing receptor in parathyroid gland function and evaluate the evidence to support the treatment of SHPT with calcimimetics and vitamin D analogs. Finally, we propose a novel treatment framework in which calcimimetics are the primary therapy for suppressing parathyroid hormone production in patients with end-stage renal disease.
Collapse
Affiliation(s)
- James B Wetmore
- Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|