1
|
Dremencov E, Jezova D, Barak S, Gaburjakova J, Gaburjakova M, Kutna V, Ovsepian SV. Trophic factors as potential therapies for treatment of major mental disorders. Neurosci Lett 2021; 764:136194. [PMID: 34433100 DOI: 10.1016/j.neulet.2021.136194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022]
Abstract
Notwithstanding major advances in psychotherapeutics, their efficacy and specificity remain limited. The slow onset of beneficial outcomes and numerous adverse effects of widely used medications remain of chief concern, warranting in-depth studies. The majority of frontline therapies are thought to enhance the endogenous monoaminergic drive, to initiate a cascade of molecular events leading to lasting functional and structural plasticity. They also involve alterations in trophic factor signalling, including brain-derived neurotrophic factor (BDNF), VGF (non-acronymic), vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), glial cell-derived neurotrophic factor (GDNF), and others. In several major mental disorders, emerging data suggest protective and restorative effects of trophic factors in preclinical models, when applied on their own. Antidepressant outcomes of VGF and FGF2, for instance, were shown in experimental animals, while BDNF and GDNF prove useful in the treatment of addiction, schizophrenia, and autism spectrum disorders. The main challenge with the effective translation of these and other findings in the clinic is the knowledge gap in action mechanisms with potential risks, as well as the lack of effective platforms for validation under clinical settings. Herein, we review the state-of-the-art and advances in the therapeutic use of trophic factors in several major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Segev Barak
- School of Psychological Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Kutna
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
2
|
Alipour M, Jafarian M, Rastgoo R, Mokri A, Gorji A, Zarrindast MR, Lorestani F, Razaghi EM. Cabergoline in Treatment of Methamphetamine-Dependent Patients and Its Effect on Serum Level of Glial Cell-Derived Neurotrophic Factor: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Eur Addict Res 2021; 27:457-468. [PMID: 33857946 DOI: 10.1159/000515398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/22/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Methamphetamine use disorder is an important public health problem, especially in the younger generation, and associated with various psychiatric, cognitive, social, economic, and legal issues. Cabergoline, a drug with dopaminergic properties and long half-life, has been considered for the treatment of stimulant dependence. The systemic use of cabergoline has been shown to increase glial cell-derived neurotrophic factor (GDNF) expression. OBJECTIVE In this study, we investigated the effects of cabergoline on the serum level of GDNF and its effect on abstaining from methamphetamine in individuals treated for methamphetamine use disorder. METHOD Sixty male subjects with methamphetamine use disorder were randomly assigned to 2 groups receiving cabergoline and placebo, respectively. During a 12-week follow-up, we compared the serum level of GDNF, urine test results for methamphetamine use, and depression scale between the 2 groups. RESULTS We found that serum GDNF was lower in subjects who used methamphetamine than healthy subjects (p < 0.0001). However, the serum level of GDNF was not associated with cabergoline use. The rising number of cases testing positive in the placebo group showed a trend resulting in no significant difference between cases testing positive and negative (p = 0.585) at the end of week 12. In the verum group, however, the significantly high number of cases who tested negative - sober - for substances observed in early stages (weeks 7-8) continued to remain significantly higher till the end of the study (p = 0.043), resembling an association between treatment with cabergoline and remaining sober. Although reduced during treatment, recovery from depression was not associated with cabergoline treatment. CONCLUSION The findings of this study confirmed the effect of cabergoline in reducing methamphetamine use. However, a serum level of the GDNF increase, as seen in animal studies, was not associated with cabergoline treatment of human subjects. This study was registered at the Iranian Registry of Clinical Trials (TRN:IRCT2015050422077N1, October 06, 2015, https://en.irct.ir/trial/19134).
Collapse
Affiliation(s)
- Mohammadesmaeil Alipour
- Department of Neuroscience and Addiction Studies, MD, PhD Candidate in Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Janbazan Medical and Engineering Research Center, Tehran, Iran
| | - Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rastgoo
- Department of Neuroscience and Addiction Studies, MD, PhD Candidate in Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azarakhsh Mokri
- Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Epilepsy Research Center, Westfalische Wilhelms-Universität Münster, Münster, Germany
| | - Mohammad R Zarrindast
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Lorestani
- Department of Psychology, Faculty of Humaities, Saveh Islamic Azad University, Saveh, Iran
| | - Emran M Razaghi
- Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Liran M, Rahamim N, Ron D, Barak S. Growth Factors and Alcohol Use Disorder. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a039271. [PMID: 31964648 DOI: 10.1101/cshperspect.a039271] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurotrophic growth factors were originally characterized for their support in neuronal differentiation, outgrowth, and survival during development. However, it has been acknowledged that they also play a vital role in the adult brain. Abnormalities in growth factors have been implicated in a variety of neurological and psychiatric disorders, including alcohol use disorder (AUD). This work focuses on the interaction between alcohol and growth factors. We review literature suggesting that several growth factors play a unique role in the regulation of alcohol consumption, and that breakdown in these growth factor systems is linked to the development of AUD. Specifically, we focus on the brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), and insulin growth factor 1 (IGF-1). We also review the literature on the potential role of midkine (MDK) and pleiotrophin (PTN) and their receptor, anaplastic lymphoma kinase (ALK), in AUD. We show that alcohol alters the expression of these growth factors or their receptors in brain regions previously implicated in addiction, and that manipulations on these growth factors and their downstream signaling can affect alcohol-drinking behaviors in animal models. We conclude that there is a need for translational and clinical research to assess the therapeutic potential of new pharmacotherapies targeting these systems.
Collapse
Affiliation(s)
- Mirit Liran
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Nofar Rahamim
- Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Dorit Ron
- Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, California 94143-0663, USA
| | - Segev Barak
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.,School of Psychological Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
4
|
Maier HB, Neyazi M, Neyazi A, Hillemacher T, Pathak H, Rhein M, Bleich S, Goltseker K, Sadot-Sogrin Y, Even-Chen O, Frieling H, Barak S. Alcohol consumption alters Gdnf promoter methylation and expression in rats. J Psychiatr Res 2020; 121:1-9. [PMID: 31710958 DOI: 10.1016/j.jpsychires.2019.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022]
Abstract
Alcohol use disorder is one of the most disabling diseases worldwide. Glial-cell derived neurotrophic factor (Gdnf) shows promising results concerning the inhibition of alcohol consumption in rodent models. We investigated the epigenetic regulation of Gdnf following ethanol consumption and withdrawal in a rat model. 32 Wistar rats underwent 7 weeks of intermittent access to alcohol in a 2-bottle choice (IA2BC). Whole blood, Nucleus Accumbens (NAc) and Ventral Tegmental Area (VTA) were collected immediately after the last 24 h of an alcohol-drinking session (alcohol group, AG) or 24 h after withdrawal (withdrawal group, WG). MRNA levels were measured using real-time quantitative PCR. Bisulfite-conversion of DNA and capillary sequencing was used to determine methylation levels of the core promoter (CP) and the negative regulatory element (NRE). The CP of the AG in the NAc was significantly less methylated compared to controls (p < 0.05). In the NAc, mRNA expression was significantly higher in the WG (p < 0.05). In the WG, mRNA expression levels in the VTA were significantly lower (p < 0.05) and showed significantly less methylation in the NRE in the VTA (p < 0.001) and the NAc (p < 0.01) compared to controls. Changes in the cerebral mRNA expression correspond to alterations in DNA methylation of the Gdnf promoter in a rodent model. Our results hold clinical relevance since differences in Gdnf mRNA expression and DNA methylation could be a target for pharmacological interventions.
Collapse
Affiliation(s)
- Hannah Benedictine Maier
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany.
| | - Meraj Neyazi
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexandra Neyazi
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Thomas Hillemacher
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany; Department of Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Hansi Pathak
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Mathias Rhein
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Koral Goltseker
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Sadot-Sogrin
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Oren Even-Chen
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Segev Barak
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Abstract
The receptor tyrosine kinases (RTKs) are a large family of proteins that transduce extracellular signals to the inside of the cell to ultimately affect important cellular functions such as cell proliferation, survival, apoptosis, differentiation, and migration. They are expressed in the nervous system and can regulate behavior through modulation of neuronal and glial function. As a result, RTKs are implicated in neurodegenerative and psychiatric disorders such as depression and addiction. Evidence has emerged that 5 RTKs (tropomyosin-related kinase B (TrkB), RET proto-oncogene (RET), anaplastic lymphoma kinase (ALK), fibroblast growth factor receptor (FGFR), and epidermal growth factor receptor (EGFR)) modulate alcohol drinking and other behaviors related to alcohol addiction. RTKs are considered highly "druggable" targets and small-molecule inhibitors of RTKs have been developed for the treatment of various conditions, particularly cancer. These kinases are therefore attractive targets for the development of new pharmacotherapies to treat alcohol use disorder (AUD). This review will examine the preclinical evidence describing TrkB, RET, ALK, FGFR, and EGFR modulation of alcohol drinking and other behaviors relevant to alcohol abuse.
Collapse
Affiliation(s)
- Kana Hamada
- Department of Psychiatry and Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, 1601 West Taylor Street, MC 912, Chicago, Illinois, 60612, USA
| | - Amy W Lasek
- Department of Psychiatry and Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, 1601 West Taylor Street, MC 912, Chicago, Illinois, 60612, USA.
| |
Collapse
|
6
|
Das A, Pagliaroli L, Vereczkei A, Kotyuk E, Langstieh B, Demetrovics Z, Barta C. Association of GDNF and CNTNAP2 gene variants with gambling. J Behav Addict 2019; 8:471-478. [PMID: 31446765 PMCID: PMC7044627 DOI: 10.1556/2006.8.2019.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS Some form of gambling can be observed in nearly every society, as the gratification felt upon winning in uncertain conditions is universal. A culturally distinct form of gambling, associated with a traditional sporting event of archery known as "teer," is innate to the province of Meghalaya, India. The objective of this study was to find genetic variants underlying this unique form of behavioral addiction. To better understand game-based gambling, we studied genetic variants related to dopaminergic pathways and other genes previously linked to various psychological disorders. METHODS This study was carried out on a sample of 196 Indo-Aryan adults from Shillong, Meghalaya. Genotyping of glial cell line-derived neurotrophic factor (GDNF) polymorphisms was carried out using real-time PCR. We further investigated 32 single nucleotide polymorphisms located in the 3' UTR of additional genes of interest using an OpenArray® real-time PCR platform. RESULTS Case-control analysis revealed a significant association between GDNF variant rs2973033 (p = .00864, χ2 = 13.132, df = 2) and contactin-associated protein-like 2 (CNTNAP2) variant rs2530311 (p = .0448, χ2 = 13.132, df = 2) with gambling. DISCUSSION AND CONCLUSIONS Association of the GDNF gene with gambling could be attributed to its involvement in the development and survival of dopaminergic neurons. Our result is in good agreement with previous data indicating the role of GDNF in certain substance addictions. Several rare variants in the CNTNAP2 gene were also implicated in alcohol addiction in a previous study. This pilot study provides further support for the role of GDNF and CNTNAP2 in addiction behaviors.
Collapse
Affiliation(s)
- Arundhuti Das
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary,Department of Anthropology, Utkal University, Bhubaneswar, India,Indian Council of Medical Research, Regional Medical Research Center, Bhubaneswar, India
| | - Luca Pagliaroli
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Andrea Vereczkei
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Eszter Kotyuk
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Banrida Langstieh
- Department of Anthropology, North Eastern Hill University, Shillong, India
| | - Zsolt Demetrovics
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary,Corresponding author: Csaba Barta, MD, PhD; Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, PO Box 260, Hungary; Phone: +36 1 459 1500 ext. 60137; Fax: +36 1 266 7480; E-mail:
| |
Collapse
|
7
|
Barak S, Ahmadiantehrani S, Logrip ML, Ron D. GDNF and alcohol use disorder. Addict Biol 2019; 24:335-343. [PMID: 29726054 DOI: 10.1111/adb.12628] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/13/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has been extensively studied for its role in the development and maintenance of the midbrain dopaminergic system, although evidence suggests that GDNF also plays a role in drug and alcohol addiction. This review focuses on the unique actions of GDNF in the mechanisms that prevent the transition from recreational alcohol use to abuse. Specifically, we describe studies in rodents suggesting that alcohol acutely increases GDNF expression in the ventral tegmental area, which enables the activation of the mitogen-activated protein kinase signaling pathway and the gating of alcohol intake. We further provide evidence to suggest that GDNF acts in the ventral tegmental area via both nongenomic and genomic mechanisms to suppress alcohol consumption. In addition, we describe findings indicating that when this endogenous protective pathway becomes dysregulated, alcohol intake levels escalate. Finally, we describe the potential use of GDNF inducers as a novel therapeutic approach to treat alcohol use disorder.
Collapse
Affiliation(s)
- Segev Barak
- School of Psychological Sciences and the Sagol School of NeuroscienceTel Aviv University Tel Aviv Israel
| | | | - Marian L. Logrip
- Department of PsychologyIndiana University‐Purdue University Indianapolis Indianapolis IN USA
| | - Dorit Ron
- Department of NeurologyUniversity of California San Francisco San Francisco CA USA
| |
Collapse
|
8
|
Marton S, González B, Rodríguez-Bottero S, Miquel E, Martínez-Palma L, Pazos M, Prieto JP, Rodríguez P, Sames D, Seoane G, Scorza C, Cassina P, Carrera I. Ibogaine Administration Modifies GDNF and BDNF Expression in Brain Regions Involved in Mesocorticolimbic and Nigral Dopaminergic Circuits. Front Pharmacol 2019; 10:193. [PMID: 30890941 PMCID: PMC6411846 DOI: 10.3389/fphar.2019.00193] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/14/2019] [Indexed: 01/07/2023] Open
Abstract
Ibogaine is an atypical psychedelic alkaloid, which has been subject of research due to its reported ability to attenuate drug-seeking behavior. Recent work has suggested that ibogaine effects on alcohol self-administration in rats are related to the release of Glial cell Derived Neurotrophic Factor (GDNF) in the Ventral Tegmental Area (VTA), a mesencephalic region which hosts the soma of dopaminergic neurons. Although previous reports have shown ibogaine’s ability to induce GDNF expression in rat midbrain, there are no studies addressing its effect on the expression of GDNF and other neurotrophic factors (NFs) such as Brain Derived Neurotrophic Factor (BDNF) or Nerve Growth Factor (NGF) in distinct brain regions containing dopaminergic neurons. In this work, we examined the effect of ibogaine acute administration on the expression of these NFs in the VTA, Prefrontal Cortex (PFC), Nucleus Accumbens (NAcc) and the Substantia Nigra (SN). Rats were i.p. treated with ibogaine 20 mg/kg (I20), 40 mg/kg (I40) or vehicle, and NFs expression was analyzed after 3 and 24 h. At 24 h an increase of the expression of the NFs transcripts was observed in a site and dose dependent manner. Only for I40, GDNF was selectively upregulated in the VTA and SN. Both doses elicited a large increase in the expression of BDNF transcripts in the NAcc, SN and PFC, while in the VTA a significant effect was found only for I40. Finally, NGF mRNA was upregulated in all regions after I40, while I20 showed a selective upregulation in PFC and VTA. Regarding protein levels, an increase of GDNF was observed in the VTA only for I40 but no significant increase for BDNF was found in all the studied areas. Interestingly, an increase of proBDNF was detected in the NAcc for both doses. These results show for the first time a selective increase of GDNF specifically in the VTA for I40 but not for I20 after 24 h of administration, which agrees with the effective dose found in previous self-administration studies in rodents. Further research is needed to understand the contribution of these changes to ibogaine’s ability to attenuate drug-seeking behavior.
Collapse
Affiliation(s)
- Soledad Marton
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Bruno González
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Rodríguez-Bottero
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ernesto Miquel
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Martínez-Palma
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mariana Pazos
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - José Pedro Prieto
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Paola Rodríguez
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY, United States
| | - Gustavo Seoane
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Scorza
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Patricia Cassina
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ignacio Carrera
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
9
|
Ziv Y, Rahamim N, Lezmy N, Even-Chen O, Shaham O, Malishkevich A, Giladi E, Elkon R, Gozes I, Barak S. Activity-dependent neuroprotective protein (ADNP) is an alcohol-responsive gene and negative regulator of alcohol consumption in female mice. Neuropsychopharmacology 2019; 44:415-424. [PMID: 30008470 PMCID: PMC6300527 DOI: 10.1038/s41386-018-0132-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/16/2022]
Abstract
Neuroadaptations in the brain reward system caused by excessive alcohol intake, lead to drinking escalation and alcohol use disorder phenotypes. Activity-dependent neuroprotective protein (ADNP) is crucial for brain development, and is implicated in neural plasticity in adulthood. Here, we discovered that alcohol exposure regulates Adnp expression in the mesolimbic system, and that Adnp keeps alcohol drinking in moderation, in a sex-dependent manner. Specifically, Sub-chronic alcohol treatment (2.5 g/kg/day for 7 days) increased Adnp mRNA levels in the dorsal hippocampus in both sexes, and in the nucleus accumbens of female mice, 24 h after the last alcohol injection. Long-term voluntary consumption of excessive alcohol quantities (~10-15 g/kg/24 h, 5 weeks) increased Adnp mRNA in the hippocampus of male mice immediately after an alcohol-drinking session, but the level returned to baseline after 24 h of withdrawal. In contrast, excessive alcohol consumption in females led to long-lasting reduction in hippocampal Adnp expression. We further tested the regulatory role of Adnp in alcohol consumption, using the Adnp haploinsufficient mouse model. We found that Adnp haploinsufficient female mice showed higher alcohol consumption and preference, compared to Adnp intact females, whereas no genotype difference was observed in males. Importantly, daily intranasal administration of the ADNP-snippet drug candidate NAP normalized alcohol consumption in Adnp haploinsufficient females. Finally, female Adnp haploinsufficient mice showed a sharp increase in alcohol intake after abstinence, suggesting that Adnp protects against relapse in females. The current data suggest that ADNP is a potential novel biomarker and negative regulator of alcohol-drinking behaviors.
Collapse
Affiliation(s)
- Yarden Ziv
- 0000 0004 1937 0546grid.12136.37Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel ,0000 0004 1937 0546grid.12136.37Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Nofar Rahamim
- 0000 0004 1937 0546grid.12136.37Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978 Tel Aviv, Israel ,0000 0004 1937 0546grid.12136.37School of Psychological Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Noa Lezmy
- 0000 0004 1937 0546grid.12136.37Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978 Tel Aviv, Israel ,0000 0004 1937 0546grid.12136.37School of Psychological Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Oren Even-Chen
- 0000 0004 1937 0546grid.12136.37School of Psychological Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ohad Shaham
- 0000 0004 1937 0546grid.12136.37School of Psychological Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Anna Malishkevich
- 0000 0004 1937 0546grid.12136.37Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Eliezer Giladi
- 0000 0004 1937 0546grid.12136.37Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ran Elkon
- 0000 0004 1937 0546grid.12136.37Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel ,0000 0004 1937 0546grid.12136.37Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Illana Gozes
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel. .,Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Segev Barak
- Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel. .,School of Psychological Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
10
|
LeCocq MR, Lahlou S, Chahine M, Padillo LN, Chaudhri N. Modeling Relapse to Pavlovian Alcohol-Seeking in Rats Using Reinstatement and Spontaneous Recovery Paradigms. Alcohol Clin Exp Res 2018; 42:1795-1806. [PMID: 29969151 DOI: 10.1111/acer.13825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/28/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Animal models are critical for studying causal explanations of relapse. Using a Pavlovian conditioning procedure with alcohol, we examined relapse after extinction triggered by either re-exposure to alcohol (reinstatement) or a delay between extinction and test (spontaneous recovery). METHODS Male, Long-Evans rats were acclimated to 15% alcohol in the home-cage using an intermittent-access 2-bottle choice procedure. Next, they received Pavlovian conditioning sessions in which an auditory-conditioned stimulus (CS; 20 second white noise; 8 trials/session; variable time 240 seconds) was paired with 15% alcohol (0.3 ml/CS; 2.4 ml/session) that was delivered into a fluid port for oral ingestion. In subsequent extinction and test sessions, CS presentations occurred as before, but without alcohol. RESULTS In experiment 1, exposure to either alcohol or water in the fluid port following extinction reinstated CS-elicited port entries at test 24 hours later. In a follow-up study using the same procedure (experiment 2), reinstatement was more robustly stimulated by alcohol, compared to a familiar lemon-flavored liquid. In experiment 3, systemic alcohol injections (0, 0.5, or 1.0 g/kg, intraperitoneal) administered either 24 hours or 15 minutes before test did not reinstate CS-elicited alcohol-seeking. Importantly, enzymatic assays in experiment 4 revealed detectable levels of alcohol in the blood following oral alcohol intake or intraperitoneal injection, suggesting that a pharmacological effect was likely with either route of administration. Last, in experiment 5, a 23-day delay between extinction and test resulted in a robust spontaneous recovery of CS-elicited alcohol-seeking. CONCLUSIONS The reinstatement and spontaneous recovery effects revealed herein provide evidence of viable new behavioral paradigms for testing interventions against relapse.
Collapse
Affiliation(s)
- Mandy Rita LeCocq
- Department of Psychology, Center for Studies in Behavioral Neurobiology/FRQS Groupe de recherche en neurobiologie comportementale, Concordia University, Montreal, Quebec, Canada
| | - Soraya Lahlou
- Department of Psychology, Center for Studies in Behavioral Neurobiology/FRQS Groupe de recherche en neurobiologie comportementale, Concordia University, Montreal, Quebec, Canada
| | - Melanie Chahine
- Department of Psychology, Center for Studies in Behavioral Neurobiology/FRQS Groupe de recherche en neurobiologie comportementale, Concordia University, Montreal, Quebec, Canada
| | - Loreena Nadine Padillo
- Department of Psychology, Center for Studies in Behavioral Neurobiology/FRQS Groupe de recherche en neurobiologie comportementale, Concordia University, Montreal, Quebec, Canada
| | - Nadia Chaudhri
- Department of Psychology, Center for Studies in Behavioral Neurobiology/FRQS Groupe de recherche en neurobiologie comportementale, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Targeting the intracellular signaling "STOP" and "GO" pathways for the treatment of alcohol use disorders. Psychopharmacology (Berl) 2018; 235:1727-1743. [PMID: 29654346 PMCID: PMC5949137 DOI: 10.1007/s00213-018-4882-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
In recent years, research has identified the molecular and neural substrates underlying the transition of moderate "social" consumption of alcohol to the characteristic alcohol use disorder (AUD) phenotypes including excessive and compulsive alcohol use which we define in the review as the GO signaling pathways. In addition, growing evidence points to the existence of molecular mechanisms that keep alcohol consumption in check and that confer resilience for the development of AUD which we define herein as the STOP signaling pathways. In this review, we focus on examples of the GO and the STOP intracellular signaling pathways and discuss our current knowledge of how manipulations of these pathways may be used for the treatment of AUD.
Collapse
|
12
|
Ray LA, Bujarski S, Shoptaw S, Roche DJO, Heinzerling K, Miotto K. Development of the Neuroimmune Modulator Ibudilast for the Treatment of Alcoholism: A Randomized, Placebo-Controlled, Human Laboratory Trial. Neuropsychopharmacology 2017; 42:1776-1788. [PMID: 28091532 PMCID: PMC5520778 DOI: 10.1038/npp.2017.10] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 02/06/2023]
Abstract
Current directions in medication development for alcohol use disorder (AUD) emphasize the need to identify novel molecular targets and efficiently screen new compounds aimed at those targets. Ibudilast (IBUD) is a neuroimmune modulator that inhibits phosphodiesterase-4 and -10 and macrophage migration inhibitory factor and was recently found to reduce alcohol intake in rats by ∼50%. To advance medication development for AUD, the present study consists of a randomized, crossover, double-blind, placebo-controlled laboratory study of IBUD in nontreatment-seeking individuals with current (ie, past month) mild-to-severe AUD. This study tested the safety, tolerability, and initial human laboratory efficacy of IBUD (50 mg b.i.d.) on primary measures of subjective response to alcohol as well as secondary measures of cue- and stress-induced changes in craving and mood. Participants (N=24) completed two separate 7-day intensive outpatient protocols that included daily visits for medication administration and testing. Upon reaching a stable target dose of IBUD (or matched placebo), participants completed a stress-exposure session (day 5; PM), an alcohol cue-exposure session (day 6; AM), and an i.v. alcohol administration session (day 6; PM). Participants stayed overnight after the alcohol administration, and discharge occurred on day 7 of the protocol. Medication conditions were separated by a washout period that was ⩾7 days. IBUD was well tolerated; however, there were no medication effects on primary measures of subjective response to alcohol. IBUD was associated with mood improvements on the secondary measures of stress exposure and alcohol cue exposure, as well as reductions in tonic levels of craving. Exploratory analyses revealed that among individuals with higher depressive symptomatology, IBUD attenuated the stimulant and mood-altering effects of alcohol as compared with placebo. Together, these findings extend preclinical demonstrations of the potential utility of IBUD for the treatment of AUD and suggest that depressive symptomatology should be considered as a potential moderator of efficacy for pharmacotherapies with neuroimmune effects, such as IBUD.
Collapse
Affiliation(s)
- Lara A Ray
- Department of Psychology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Spencer Bujarski
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Steve Shoptaw
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Department of Family Medicine, University of California, Los Angeles, CA, USA
| | - Daniel JO Roche
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Keith Heinzerling
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Department of Family Medicine, University of California, Los Angeles, CA, USA
| | - Karen Miotto
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Fredriksson I, Adhikary S, Steensland P, Vendruscolo LF, Bonci A, Shaham Y, Bossert JM. Prior Exposure to Alcohol Has No Effect on Cocaine Self-Administration and Relapse in Rats: Evidence from a Rat Model that Does Not Support the Gateway Hypothesis. Neuropsychopharmacology 2017; 42:1001-1011. [PMID: 27649640 PMCID: PMC5506787 DOI: 10.1038/npp.2016.209] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
Abstract
The gateway hypothesis posits that initial exposure to legal drugs promotes subsequent addiction to illicit drugs. However, epidemiological studies are correlational and cannot rule out the alternative hypothesis of shared addiction vulnerability to legal and illegal drugs. We tested the gateway hypothesis using established rat alcohol exposure procedures and cocaine self-administration and reinstatement (relapse) procedures. We gave Wistar or alcohol-preferring (P) rats intermittent access to water or 20% alcohol in their homecage for 7 weeks (three 24-h sessions/week). We also exposed Wistar rats to air or intoxicating alcohol levels in vapor chambers for 14-h/day for 7 weeks. We then tested the groups of rats for acquisition of cocaine self-administration using ascending cocaine doses (0.125, 0.25, 0.5, 1.0 mg/kg/infusion) followed by a dose-response curve after acquisition of cocaine self-administration. We then extinguished lever pressing and tested the rats for reinstatement of drug seeking induced by cocaine-paired cues and cocaine priming (0, 2.5, 5, 10 mg/kg, i.p.). Wistar rats consumed moderate amounts of alcohol (4.6 g/kg/24 h), P rats consumed higher amounts of alcohol (7.6 g/kg/24 h), and Wistar rats exposed to alcohol vapor had a mean blood alcohol concentration of 176.2 mg/dl during the last week of alcohol exposure. Alcohol pre-exposure had no effect on cocaine self-administration, extinction responding, and reinstatement of drug seeking. Pre-exposure to moderate, high, or intoxicating levels of alcohol had no effect on cocaine self-administration and relapse to cocaine seeking. Our data do not support the notion that alcohol is a gateway drug to cocaine.
Collapse
Affiliation(s)
- Ida Fredriksson
- Cellular Neurobiology Branch, IRP-NIDA, NIH, Baltimore, MD, USA,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Sweta Adhikary
- Behavioral Neuroscience Branch, IRP-NIDA, NIH, Baltimore, MD, USA
| | - Pia Steensland
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | | | - Antonello Bonci
- Cellular Neurobiology Branch, IRP-NIDA, NIH, Baltimore, MD, USA,Solomon H. Snyder Neuroscience Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP-NIDA, NIH, Baltimore, MD, USA,NIDA, IRP Behavioral Neuroscience Branch 251 Bayview Blvd, Suite 200, Baltimore, MD 21044, USA, Tel: +1 410 740-2723, Fax: +1 410 740-2727, E-mail:
| | | |
Collapse
|
14
|
Ibáñez CF, Andressoo JO. Biology of GDNF and its receptors — Relevance for disorders of the central nervous system. Neurobiol Dis 2017; 97:80-89. [DOI: 10.1016/j.nbd.2016.01.021] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 01/15/2023] Open
|
15
|
Abstract
The main characteristic of alcohol use disorder is the consumption of large quantities of alcohol despite the negative consequences. The transition from the moderate use of alcohol to excessive, uncontrolled alcohol consumption results from neuroadaptations that cause aberrant motivational learning and memory processes. Here, we examine studies that have combined molecular and behavioural approaches in rodents to elucidate the molecular mechanisms that keep the social intake of alcohol in check, which we term 'stop pathways', and the neuroadaptations that underlie the transition from moderate to uncontrolled, excessive alcohol intake, which we term 'go pathways'. We also discuss post-transcriptional, genetic and epigenetic alterations that underlie both types of pathways.
Collapse
Affiliation(s)
- Dorit Ron
- Corresponding author: Dorit Ron, 675 Nelson Rising Lane, BOX 0663, San Francisco, CA 94143-0663,
| | - Segev Barak
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
16
|
Lhullier AC, Moreira FP, da Silva RA, Marques MB, Bittencourt G, Pinheiro RT, Souza LDM, Portela LV, Lara DR, Jansen K, Wiener CD, Oses JP. Increased serum neurotrophin levels related to alcohol use disorder in a young population sample. Alcohol Clin Exp Res 2016; 39:30-3. [PMID: 25623403 DOI: 10.1111/acer.12592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/01/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND The diagnosis of alcohol use disorder is based on clinical signs and on the measurement of biological markers. However, these markers are neither sufficiently sensitive, nor specific enough, for determining the effects of alcohol abuse on the central nervous system. Serum neurotrophins are important regulators of neural survival, development, function, and plasticity and have been found to be reduced in alcohol use disorder. The aim of this study was to investigate the alterations in serum neurotrophin levels (brain-derived neurotrophic factor [BDNF], glial-derived neurotrophic factor [GDNF], and nerve growth factor [NGF]) in alcohol use disorder in a young population, and thus possibly representing the early stages of the illness. METHODS This is a cross-sectional study, nested in a population-based study of people aged 18 to 35, involving 795 participants. The participants responded to the CAGE questionnaire, and a CAGE score of ≥2 was considered to be a positive screen for the abuse/dependence or moderate to severe alcohol use disorder. Serum BDNF, GDNF, and NGF levels were measured by ELISA. RESULTS In the CAGE ≥ 2 group, GDNF (p ≤ 0.001) and NGF (p ≤ 0.001) serum levels were significantly increased, and the BDNF elevation was near a statistical significance (p = 0.068) when compared to the CAGE < 2 group. A significantly positive correlation was observed only in the CAGE ≥ 2 group for BDNF/GDNF (r = 0.37, p < 0.001) and GDNF/NGF (r = 0.84, p < 0.001) levels. The correlation between the NGF and BDNF levels was significantly positive in both groups (r = 0.28, p < 0.001 for the CAGE < 2 group, and r = 0.30, p = 0.008 for the CAGE ≥ 2 group). CONCLUSIONS These results suggest that elevated neurotrophins are candidate markers for the early stages of alcohol misuse.
Collapse
Affiliation(s)
- Alfredo C Lhullier
- Escola de Psicologia, Centro de Ciências da Vida e da Saúde, Universidade Católica de Pelotas, Pelotas, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Maiya R, McMahon T, Wang D, Kanter B, Gandhi D, Chapman HL, Miller J, Messing RO. Selective chemical genetic inhibition of protein kinase C epsilon reduces ethanol consumption in mice. Neuropharmacology 2016; 107:40-48. [PMID: 26947945 DOI: 10.1016/j.neuropharm.2016.02.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/18/2016] [Accepted: 02/27/2016] [Indexed: 11/19/2022]
Abstract
Reducing expression or inhibiting translocation of protein kinase C epsilon (PKCε) prolongs ethanol intoxication and decreases ethanol consumption in mice. However, we do not know if this phenotype is due to reduced PKCε kinase activity or to impairment of kinase-independent functions. In this study, we used a chemical-genetic strategy to determine whether a potent and highly selective inhibitor of PKCε catalytic activity reduces ethanol consumption. We generated ATP analog-specific PKCε (AS-PKCε) knock-in mice harboring a point mutation in the ATP binding site of PKCε that renders the mutant kinase highly sensitive to inhibition by 1-tert-butyl-3-naphthalen-1-ylpyrazolo[3,4-d]pyrimidin-4-amine (1-NA-PP1). Systemically administered 1-NA-PP1 readily crossed the blood brain barrier and inhibited PKCε-mediated phosphorylation. 1-NA-PP1 reversibly reduced ethanol consumption by AS-PKCε mice but not by wild type mice lacking the AS-PKCε mutation. These results support the development of inhibitors of PKCε catalytic activity as a strategy to reduce ethanol consumption, and they demonstrate that the AS- PKCε mouse is a useful tool to study the role of PKCε in behavior.
Collapse
Affiliation(s)
- Rajani Maiya
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 78712, USA
| | - Thomas McMahon
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| | - Dan Wang
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| | - Benjamin Kanter
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| | - Dev Gandhi
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 78712, USA
| | - Holly L Chapman
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 78712, USA
| | - Jacklyn Miller
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| | - Robert O Messing
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 78712, USA; The Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA.
| |
Collapse
|
18
|
Fu R, Gregor D, Peng Z, Li J, Bekker A, Ye J. Chronic intermittent voluntary alcohol drinking induces hyperalgesia in Sprague-Dawley rats. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2015; 7:136-144. [PMID: 26823962 PMCID: PMC4697669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
The mechanisms of hyperalgesia in alcoholics are not completely clear, and the development of animal models would therefore be necessary in investigating the underlying changes. Several studies including our own have demonstrated that the intermittent access to 20% ethanol two-bottle choice procedure (IA2BC) promotes escalation of drinking, and induces physical dependence in the Sprague-Dawley (SD) rat, one of the strains most commonly used in preclinical alcohol research. In this study, we investigated whether the IA2BC procedure could produce hyperalgesia in SD rats. We show here that, the SD rats in the IA2BC procedure significantly escalated their drinking within 8 weeks, which is consistent with other studies. Starting from 8 weeks of repeated chronic drinking, the mechanical and thermal sensitivity was significantly increased. During withdrawal, there were noticeable physical dependence signs, including tail stiffness and lower limb flexion, which started at 4 hours and lasted for more than 3 days after ethanol removal. Importantly, during withdrawal, the mechanical and thermal sensitivity was further increased, which started at 12 hours and lasted for more than seven days after ethanol removal. These results suggest that utilizing the SD rat under the IA2BC procedure could be a useful animal model with heuristic value for exploring the mechanisms underlying hyperalgesia induced by chronic alcohol abuse.
Collapse
Affiliation(s)
- Rao Fu
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School Newark, NJ, USA
| | - Danielle Gregor
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School Newark, NJ, USA
| | - Zengliu Peng
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School Newark, NJ, USA
| | - Jing Li
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School Newark, NJ, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School Newark, NJ, USA
| | - Jianghong Ye
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School Newark, NJ, USA
| |
Collapse
|
19
|
Barak S, Wang J, Ahmadiantehrani S, Ben Hamida S, Kells AP, Forsayeth J, Bankiewicz KS, Ron D. Glial cell line-derived neurotrophic factor (GDNF) is an endogenous protector in the mesolimbic system against excessive alcohol consumption and relapse. Addict Biol 2015; 20:629-42. [PMID: 24801661 DOI: 10.1111/adb.12152] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Moderate social consumption of alcohol is common; however, only a small percentage of individuals transit from social to excessive, uncontrolled alcohol drinking. This suggests the existence of protective mechanisms that prevent the development of alcohol addiction. Here, we tested the hypothesis that the glial cell line-derived neurotrophic factor (GDNF) in the mesolimbic system [e.g. the nucleus accumbens (Acb) and ventral tegmental area (VTA)] is part of such a mechanism. We found that GDNF knockdown, by infecting rat Acb neurons with a small hairpin RNA (shRNA) targeting the GDNF gene, produced a rapid escalation to excessive alcohol consumption and enhanced relapse to alcohol drinking. Conversely, viral-mediated overexpression of the growth factor in the mesolimbic system blocked the escalation from moderate to excessive alcohol drinking. To access the mechanism underlying GDNF's actions, we measured the firing rate of dopaminergic (DAergic) neurons in the VTA after a history of excessive alcohol intake with or without elevating GDNF levels. We found that the spontaneous firing rate of DAergic neurons in the VTA was reduced during alcohol withdrawal and that GDNF reversed this alcohol-induced DA deficiency. Together, our results suggest that endogenous GDNF in the mesolimbic system controls the transition from moderate to excessive alcohol drinking and relapse via reversal of alcohol-dependent neuro-adaptations in DAergic VTA neurons.
Collapse
Affiliation(s)
- Segev Barak
- The Gallo Research Center; University of California; San Francisco CA USA
- Department of Neurology; University of California; San Francisco CA USA
| | - Jun Wang
- The Gallo Research Center; University of California; San Francisco CA USA
- Department of Neurology; University of California; San Francisco CA USA
| | - Somayeh Ahmadiantehrani
- The Gallo Research Center; University of California; San Francisco CA USA
- Department of Neurology; University of California; San Francisco CA USA
| | - Sami Ben Hamida
- The Gallo Research Center; University of California; San Francisco CA USA
- Department of Neurology; University of California; San Francisco CA USA
| | - Adrian P. Kells
- Department of Neurological Surgery; University of California; San Francisco CA USA
| | - John Forsayeth
- Department of Neurological Surgery; University of California; San Francisco CA USA
| | | | - Dorit Ron
- The Gallo Research Center; University of California; San Francisco CA USA
- Department of Neurology; University of California; San Francisco CA USA
| |
Collapse
|
20
|
Doremus-Fitzwater TL, Buck HM, Bordner K, Richey L, Jones ME, Deak T. Intoxication- and withdrawal-dependent expression of central and peripheral cytokines following initial ethanol exposure. Alcohol Clin Exp Res 2015; 38:2186-98. [PMID: 25156612 DOI: 10.1111/acer.12481] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 04/21/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Evidence has emerged demonstrating that ethanol (EtOH) influences cytokine expression within the central nervous system, although most studies have examined long-term exposure. Thus, the cytokine response to an acute EtOH challenge was investigated, in order to characterize profiles of cytokine changes following acute exposure. METHODS Rats pups were injected intraperitoneally (i.p.) with 2-g/kg EtOH, and IL-1 mRNA and protein were assessed 0, 60, 120, 180, and 240 minutes post injection (Experiment 1). In Experiments 2 to 5, the expression of several cytokines was examined in adult male rats during acute intoxication (3 hours after 4-g/kg EtOH), as well as withdrawal (18 hours post injection), after i.p. or intragastric (i.g.) EtOH administration. RESULTS Early in ontogeny, acute EtOH significantly decreased brain IL-1 mRNA and protein. Subsequently, when adult rats were examined, significant and temporally dynamic alterations in central and peripheral cytokines were observed following acute i.p. EtOH exposure (4 g/kg). Although cytokine- and region-dependent central IL-6 expression was generally increased and tumor necrosis factor alpha decreased during intoxication, IL-1 expression exhibited increases during withdrawal. In the periphery, acute i.p. EtOH elevated expression of all cytokines, with the response growing in magnitude as the time post injection increased. Following acute i.g. EtOH (4 g/kg), intoxication-related increases in IL-6 expression were again observed in the paraventricular nucleus of the hypothalamus (PVN), although to a lesser extent. Long-term, voluntary, intermittent EtOH consumption resulted in tolerance to the effects of an i.g. EtOH challenge (4 g/kg) on PVN IL-6 expression, whereas these same elevations in IL-6 expression were still seen in the amygdala in rats with a history of moderate EtOH intake. Treatment with minocycline did not significantly attenuate i.p. or i.g. EtOH-induced changes in central cytokine expression. CONCLUSIONS Together, these studies provide a foundation for understanding fluctuations in central and peripheral cytokines following acute EtOH as potential contributors to the constellation of neural and behavioral alterations observed during EtOH intoxication and withdrawal.
Collapse
Affiliation(s)
- Tamara L Doremus-Fitzwater
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York
| | | | | | | | | | | |
Collapse
|
21
|
Reynolds PM, Mueller SW, MacLaren R. A comparison of dexmedetomidine and placebo on the plasma concentrations of NGF, BDNF, GDNF, and epinephrine during severe alcohol withdrawal. Alcohol 2015; 49:15-9. [PMID: 25638740 DOI: 10.1016/j.alcohol.2014.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 11/27/2022]
Abstract
Alcohol withdrawal and therapies may affect nerve growth factor (NGF), brain-derived neurotrophic growth factor (BDNF), glial-derived neurotrophic growth factor (GDNF), and epinephrine (EPI). This study evaluated dexmedetomidine (DEX) on NGF, BDNF, GDNF, and EPI in severe alcohol withdrawal and related their plasma concentrations to DEX concentrations. Twenty-four subjects were randomized to DEX 1.2 mcg/kg/hour (high dose [HD]), 0.4 mcg/kg/hour (low dose [LD]), or placebo. Blood was collected at 0 (T0), 48 (T48), and 96-120 (T96) hours after starting the study drug, and concentrations of these transmitters and DEX were determined. Similar NGF suppression occurred at T48 and T96 across all groups. BDNF and GDNF levels increased insignificantly at T48 in the placebo group but steadily declined in both DEX groups, with a trend toward significance in the HD group at T48. EPI concentrations declined significantly in the HD group at T48, only to increase at T96. Median DEX concentrations during the study were insignificantly higher in HD than LD. T0 values of BDNF (r = -0.47, p = 0.02) and GDNF (r = -0.37, p = 0.05) were inversely associated with the need for mechanical ventilation before study enrollment. No other clinical parameter was associated with the plasma concentrations of these transmitters. Daily lorazepam requirements were associated with the severity of withdrawal (r = 0.7, p < 0.0001) and DEX concentrations were inversely related to daily lorazepam requirements (r = -0.33, p = 0.008). DEX utilization suppressed EPI (r = -0.57, p = 0.004). EPI concentrations were associated with BDNF values at T0 (r = 0.55, p = 0.04) and throughout the study (r = 0.25, p = 0.04). In summary, the plasma concentrations of NGF, BDNF, GDNF, and EPI during alcohol withdrawal are variable and the effects of DEX were marginal. DEX administration and higher DEX concentrations attenuated lorazepam administration in the short-term and suppressed EPI.
Collapse
|
22
|
Ahmadiantehrani S, Barak S, Ron D. GDNF is a novel ethanol-responsive gene in the VTA: implications for the development and persistence of excessive drinking. Addict Biol 2014; 19:623-33. [PMID: 23298382 DOI: 10.1111/adb.12028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent inhibitor of ethanol consumption and relapse, and GDNF heterozygous knockout mice display increased reward sensitivity to ethanol and consume more ethanol after a period of abstinence than their wild-type littermates. Here, we tested whether ethanol alters GDNF expression in the ventral tegmental area (VTA; GDNF's site of action) and/or the nucleus accumbens (NAc; the main source of GDNF), and if so, determine the role of the endogenous growth factor in the regulation of ethanol consumption. Systemic administration of ethanol increased GDNF expression and protein levels in the VTA, but not the NAc. Additionally, GDNF levels were elevated after an ethanol-drinking session in rats that consumed ethanol in the intermittent-access two-bottle choice procedure for 1 week, but not 7 weeks. Deprivation following 7 weeks of excessive ethanol intake reduced GDNF levels, while a short ethanol binge drinking period following deprivation upregulated GDNF expression. Importantly, knockdown of GDNF within the VTA using adenovirus expressing short hairpin RNA facilitated the escalation of ethanol drinking by ethanol-naïve rats, but not by rats with a history of excessive ethanol consumption. These results suggest that during initial ethanol-drinking experiences, GDNF in the VTA is increased and protects against the development of excessive ethanol intake. However, the growth factor's protective response to ethanol breaks down after protracted excessive ethanol intake and withdrawal, resulting in persistent, excessive ethanol consumption.
Collapse
Affiliation(s)
- Somayeh Ahmadiantehrani
- Gallo Research Center; Emeryville CA USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics; University of California; San Francisco CA USA
| | | | - Dorit Ron
- Gallo Research Center; Emeryville CA USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics; University of California; San Francisco CA USA
- Department of Neurology; University of California; San Francisco CA USA
| |
Collapse
|
23
|
Ray LA, Roche DJO, Heinzerling K, Shoptaw S. Opportunities for the development of neuroimmune therapies in addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:381-401. [PMID: 25175870 DOI: 10.1016/b978-0-12-801284-0.00012-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies have implicated neuroinflammatory processes in the pathophysiology of various psychiatric conditions, including addictive disorders. Neuroimmune signaling represents an important and relatively poorly understood biological process in drug addiction. The objective of this review is to update the field on recent developments in neuroimmune therapies for addiction. First, we review studies of neuroinflammation in relation to alcohol and methamphetamine dependence followed by a section on neuroinflammation and accompanying neurocognitive dysfunction in HIV infection and concomitant substance abuse. Second, we provide a review of pharmacotherapies with neuroimmune properties and their potential development for the treatment of addictions. Pharmacotherapies covered in this review include ibudilast, minocycline, doxycycline, topiramate, indomethacin, rolipram, anakinra (IL-1Ra), peroxisome proliferator-activated receptor agonists, naltrexone, and naloxone. Lastly, summary and future directions are provided with recommendations for how to efficiently translate preclinical findings into clinical studies that can ultimately lead to novel and more effective pharmacotherapies for addiction.
Collapse
Affiliation(s)
- Lara A Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA.
| | - Daniel J O Roche
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Keith Heinzerling
- Department of Family Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Steve Shoptaw
- Department of Family Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
24
|
Naumenko VS, Bazovkina DV, Semenova AA, Tsybko AS, Il'chibaeva TV, Kondaurova EM, Popova NK. Effect of glial cell line-derived neurotrophic factor on behavior and key members of the brain serotonin system in mouse strains genetically predisposed to behavioral disorders. J Neurosci Res 2013; 91:1628-38. [PMID: 24105724 DOI: 10.1002/jnr.23286] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/13/2013] [Accepted: 07/25/2013] [Indexed: 12/26/2022]
Abstract
The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF.
Collapse
Affiliation(s)
- Vladimir S Naumenko
- Department of Behavioral Neurogenomics, Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Harmful excessive use of alcohol has a severe impact on society and it remains one of the major causes of morbidity and mortality in the population. However, mechanisms that underlie excessive alcohol consumption are still poorly understood, and thus available medications for alcohol use disorders are limited. Here, we report that changing the level of chromatin condensation by affecting DNA methylation or histone acetylation limits excessive alcohol drinking and seeking behaviors in rodents. Specifically, we show that decreasing DNA methylation by inhibiting the activity of DNA methyltransferase (DNMT) with systemic administration of the FDA-approved drug, 5-azacitidine (5-AzaC) prevents excessive alcohol use in mice. Similarly, we find that increasing histone acetylation via systemic treatment with several histone deacetylase (HDAC) inhibitors reduces mice binge-like alcohol drinking. We further report that systemic administration of the FDA-approved HDAC inhibitor, SAHA, inhibits the motivation of rats to seek alcohol. Importantly, the actions of both DNMT and HDAC inhibitors are specific for alcohol, as no changes in saccharin or sucrose intake were observed. In line with these behavioral findings, we demonstrate that excessive alcohol drinking increases DNMT1 levels and reduces histone H4 acetylation in the nucleus accumbens (NAc) of rodents. Together, our findings illustrate that DNA methylation and histone acetylation control the level of excessive alcohol drinking and seeking behaviors in preclinical rodent models. Our study therefore highlights the possibility that DNMT and HDAC inhibitors can be used to treat harmful alcohol abuse.
Collapse
|
26
|
Abstract
Ethanol's effects on intracellular signaling pathways contribute to acute effects of ethanol as well as to neuroadaptive responses to repeated ethanol exposure. In this chapter we review recent discoveries that demonstrate how ethanol alters signaling pathways involving several receptor tyrosine kinases and intracellular tyrosine and serine-threonine kinases, with consequences for regulation of cell surface receptor function, gene expression, protein translation, neuronal excitability and animal behavior. We also describe recent work that demonstrates a key role for ethanol in regulating the function of scaffolding proteins that organize signaling complexes into functional units. Finally, we review recent exciting studies demonstrating ethanol modulation of DNA and histone modification and the expression of microRNAs, indicating epigenetic mechanisms by which ethanol regulates neuronal gene expression and addictive behaviors.
Collapse
Affiliation(s)
- Dorit Ron
- Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| | - Robert O. Messing
- Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| |
Collapse
|
27
|
Jee C, Lee J, Lim JP, Parry D, Messing RO, McIntire SL. SEB-3, a CRF receptor-like GPCR, regulates locomotor activity states, stress responses and ethanol tolerance in Caenorhabditis elegans. GENES BRAIN AND BEHAVIOR 2012; 12:250-62. [PMID: 22853648 DOI: 10.1111/j.1601-183x.2012.00829.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/15/2012] [Accepted: 07/21/2012] [Indexed: 11/27/2022]
Abstract
The CRF (corticotropin-releasing factor) system is a key mediator of the stress response. Alterations in CRF signaling have been implicated in drug craving and ethanol consumption. The development of negative reinforcement via activation of brain stress systems has been proposed as a mechanism that contributes to alcohol dependence. Here, we isolated a gain-of-function allele of seb-3, a CRF receptor-like GPCR in Caenorhabditis elegans, providing an in vivo model of a constitutively activated stress system. We also characterized a loss-of-function allele of seb-3 and showed that SEB-3 positively regulates a stress response that leads to an enhanced active state of locomotion, behavioral arousal and tremor. SEB-3 also contributed to acute tolerance to ethanol and to the development of tremor during ethanol withdrawal. Furthermore, we found that a specific CRF(1) receptor antagonist reduced acute functional tolerance to ethanol in mice. These findings demonstrate functional conservation of the CRF system in responses to stress and ethanol in vertebrates and invertebrates.
Collapse
Affiliation(s)
- C Jee
- The Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, CA, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Davies DL, Bortolato M, Finn DA, Ramaker MJ, Barak S, Ron D, Liang J, Olsen RW. Recent advances in the discovery and preclinical testing of novel compounds for the prevention and/or treatment of alcohol use disorders. Alcohol Clin Exp Res 2012; 37:8-15. [PMID: 22671690 DOI: 10.1111/j.1530-0277.2012.01846.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/26/2012] [Indexed: 11/27/2022]
Abstract
Alcohol abuse and dependence have a staggering socioeconomic impact, yet current therapeutic strategies are largely inadequate to treat these disorders. Thus, the development of new strategies that can effectively prevent alcohol use disorders (AUDs) is of paramount importance. Currently approved medications attempt to deter alcohol intake by blocking ethanol metabolism or by targeting the neurochemical systems downstream of the cascades leading to craving and dependence. Unfortunately, these medications have provided only limited success as indicated by the continued high rates of alcohol abuse and alcoholism. The lack of currently available effective treatment strategies is highlighted by the urgent call by the NIAAA to find new and paradigm-changing therapeutics to either prevent or treat alcohol-related problems. This mini-review highlights recent findings from 4 laboratories with a focus on compounds that have the potential to be novel therapeutic agents that can be developed for the prevention and/or treatment of AUDs.
Collapse
Affiliation(s)
- Daryl L Davies
- School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lim JP, Zou ME, Janak PH, Messing RO. Responses to ethanol in C57BL/6 versus C57BL/6 × 129 hybrid mice. Brain Behav 2012; 2:22-31. [PMID: 22574271 PMCID: PMC3343296 DOI: 10.1002/brb3.29] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 11/08/2011] [Accepted: 11/27/2011] [Indexed: 11/23/2022] Open
Abstract
Although genetic background alters responses to ethanol, there has not yet been a methodical quantification of differences in ethanol-related behaviors between inbred and hybrid mice commonly used in gene-targeting studies. Here, we compared C57BL/6NTac × 129S6/SvEvTac F1 hybrid mice (B6129S6) with C57BL/6NTac inbred mice (B6NT), and C57BL/6J × 129X1/SvJ (B6129X1) and C57BL/6J × 129S4/SvJae F1 hybrids (B6129S4) with C57BL/6J mice (B6J), in five commonly used tests: continuous access two-bottle choice drinking, intermittent limited-access binge drinking, ethanol clearance, ethanol-induced loss of the righting reflex, and conditioned place preference (CPP) for ethanol. We found that inbred B6J and B6NT mice showed greater ethanol preference and consumption than their respective hybrids when ethanol was continuously available. Within the intermittent limited-access drinking procedure, though all lines showed similar intake over eight drinking sessions, the average of all sessions showed that B6NT mice drank significantly more ethanol than B6129S6 mice. In addition, B6J mice consumed more ethanol than B6129X1 mice, although they drank less than B6129S4 mice. No differences in ethanol LORR duration were observed between inbred and hybrid mice. Although ethanol clearance was similar among B6J mice and their respective hybrids, B6NT mice cleared ethanol more rapidly than B6129S6 mice. All lines developed CPP for ethanol. Our findings indicate that it may not be necessary to backcross hybrids to an inbred B6 background to study many ethanol-related behaviors in gene-targeted mice.
Collapse
Affiliation(s)
- Jana P Lim
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California San Francisco Emeryville, California 94608
| | | | | | | |
Collapse
|
30
|
|
31
|
Pickens CL, Airavaara M, Theberge F, Fanous S, Hope BT, Shaham Y. Neurobiology of the incubation of drug craving. Trends Neurosci 2011; 34:411-20. [PMID: 21764143 PMCID: PMC3152666 DOI: 10.1016/j.tins.2011.06.001] [Citation(s) in RCA: 468] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/02/2011] [Accepted: 06/02/2011] [Indexed: 12/20/2022]
Abstract
It was suggested in 1986 that cue-induced drug craving in cocaine addicts progressively increases over the first several weeks of abstinence and remains high for extended periods. During the past decade, investigators have identified an analogous incubation phenomenon in rodents, in which time-dependent increases in cue-induced drug seeking are observed after withdrawal from intravenous cocaine self-administration. Such an incubation of drug craving is not specific to cocaine, as similar findings have been observed after self-administration of heroin, nicotine, methamphetamine and alcohol in rats. In this review, we discuss recent results that have identified important brain regions involved in the incubation of drug craving, as well as evidence for the underlying cellular mechanisms. Understanding the neurobiology of the incubation of drug craving in rodents is likely to have significant implications for furthering understanding of brain mechanisms and circuits that underlie craving and relapse in human addicts.
Collapse
Affiliation(s)
| | | | - Florence Theberge
- Intramural Research Program, National Institute on Drug Addiction (NIDA), National Institute of Health (NIH), 251 Bayview Blvd, Baltimore, Maryland, 21224, USA
| | - Sanya Fanous
- Intramural Research Program, National Institute on Drug Addiction (NIDA), National Institute of Health (NIH), 251 Bayview Blvd, Baltimore, Maryland, 21224, USA
| | - Bruce T. Hope
- Intramural Research Program, National Institute on Drug Addiction (NIDA), National Institute of Health (NIH), 251 Bayview Blvd, Baltimore, Maryland, 21224, USA
| | - Yavin Shaham
- Intramural Research Program, National Institute on Drug Addiction (NIDA), National Institute of Health (NIH), 251 Bayview Blvd, Baltimore, Maryland, 21224, USA
| |
Collapse
|
32
|
Barak S, Carnicella S, Yowell QV, Ron D. Glial cell line-derived neurotrophic factor reverses alcohol-induced allostasis of the mesolimbic dopaminergic system: implications for alcohol reward and seeking. J Neurosci 2011; 31:9885-94. [PMID: 21734280 PMCID: PMC3144766 DOI: 10.1523/jneurosci.1750-11.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/16/2011] [Accepted: 05/19/2011] [Indexed: 11/21/2022] Open
Abstract
We previously showed that infusion of glial cell line-derived neurotrophic factor (GDNF) into the ventral tegmental area (VTA) rapidly reduces alcohol intake and relapse (Carnicella et al., 2008, 2009a), and increases dopamine (DA) levels in the nucleus accumbens (NAc) of alcohol-naive rats (Wang et al., 2010). Withdrawal from excessive alcohol intake is associated with a reduction in NAc DA levels, whereas drug-induced increases in NAc DA levels are associated with reward. We therefore tested whether GDNF in the VTA reverses alcohol withdrawal-associated DA deficiency and/or possesses rewarding properties. Rats were trained for 7 weeks to consume high levels of alcohol (5.47 ± 0.37 g/kg/24 h) in intermittent access to 20% alcohol in a two-bottle choice procedure. Using in vivo microdialysis, we show that 24 h withdrawal from alcohol causes a substantial reduction in NAc DA overflow, which was reversed by intra-VTA GDNF infusion. Using conditioned place preference (CPP) paradigm, we observed that GDNF on its own does not induce CPP, suggesting that the growth factor is not rewarding. However, GDNF blocked acquisition and expression of alcohol-CPP. In addition, GDNF induced a downward shift in the dose-response curve for operant self-administration of alcohol, further suggesting that GDNF suppresses, rather than substitutes for, the reinforcing effects of alcohol. Our findings suggest that GDNF reduces alcohol-drinking behaviors by reversing an alcohol-induced allostatic DA deficiency in the mesolimbic system. In addition, as it lacks abuse liability, the study further highlights GDNF as a promising target for treatment of alcohol use/abuse disorders.
Collapse
Affiliation(s)
- Segev Barak
- The Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Sebastien Carnicella
- The Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Quinn V. Yowell
- The Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Dorit Ron
- The Ernest Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| |
Collapse
|
33
|
Airavaara M, Pickens CL, Stern AL, Wihbey KA, Harvey BK, Bossert JM, Liu QR, Hoffer BJ, Shaham Y. Endogenous GDNF in ventral tegmental area and nucleus accumbens does not play a role in the incubation of heroin craving. Addict Biol 2011; 16:261-72. [PMID: 21182575 DOI: 10.1111/j.1369-1600.2010.00281.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) activity in ventral tegmental area (VTA) mediates the time-dependent increases in cue-induced cocaine-seeking after withdrawal (incubation of cocaine craving). Here, we studied the generality of these findings to incubation of heroin craving. Rats were trained to self-administer heroin for 10 days (6 hours/day; 0.075 mg/kg/infusion; infusions were paired with a tone-light cue) and tested for cue-induced heroin-seeking in extinction tests after 1, 11 or 30 withdrawal days. Cue-induced heroin seeking was higher after 11 or 30 days than after 1 day (incubation of heroin craving), and the time-dependent increases in extinction responding were associated with time-dependent changes in GDNF mRNA expression in VTA and nucleus accumbens. Additionally, acute accumbens (but not VTA) GDNF injections (12.5 µg/side) administered 1-3 hours after the last heroin self-administration training session enhanced the time-dependent increases in extinction responding after withdrawal. However, the time-dependent increases in extinction responding after withdrawal were not associated with changes in GDNF protein expression in VTA and accumbens. Additionally, interfering with endogenous GDNF function by chronic delivery of anti-GDNF monoclonal neutralizing antibodies (600 ng/side/day) into VTA or accumbens had no effect on the time-dependent increases in extinction responding. In summary, heroin self-administration and withdrawal regulate VTA and accumbens GDNF mRNA expression in a time-dependent manner, and exogenous GDNF administration into accumbens but not VTA potentiates cue-induced heroin seeking. However, based on the GDNF protein expression and the anti-GDNF monoclonal neutralizing antibodies manipulation data, we conclude that neither accumbens nor VTA endogenous GDNF mediates the incubation of heroin craving.
Collapse
Affiliation(s)
- Mikko Airavaara
- Intramural Research Program and National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ghitza UE, Zhai H, Wu P, Airavaara M, Shaham Y, Lu L. Role of BDNF and GDNF in drug reward and relapse: a review. Neurosci Biobehav Rev 2010; 35:157-71. [PMID: 19914287 PMCID: PMC2891859 DOI: 10.1016/j.neubiorev.2009.11.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 11/23/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) are neurotrophic factors that are critical for the growth, survival, and differentiation of developing neurons. These neurotrophic factors also play important roles in the survival and function of adult neurons, learning and memory, and synaptic plasticity. Since the mid-1990s, investigators have studied the role of BDNF and GDNF in the behavioral effects of abused drugs and in the neuroadaptations induced by repeated exposure to drugs in the mesocorticolimbic dopamine system. Here, we review rodent studies on the role of BDNF and GDNF in drug reward, as assessed in the drug self-administration and the conditioned place preference procedures, and in drug relapse, as assessed in extinction and reinstatement procedures. Our main conclusion is that whether BDNF or GDNF would facilitate or inhibit drug-taking behaviors depends on the drug type, the brain site, the addiction phase (initiation, maintenance, or abstinence/relapse), and the time interval between site-specific BDNF or GDNF injections and the reward- and relapse-related behavioral assessments.
Collapse
Affiliation(s)
- Udi E. Ghitza
- Center for the Clinical Trials Network, NIDA, NIH, Bethesda, MD, USA
| | - Haifeng Zhai
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Ping Wu
- National Institute on Drug Dependence, Peking University, Beijing, China
| | | | - Yavin Shaham
- Intramural Research Program, NIDA, NIH, Baltimore, MD, USA
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China
| |
Collapse
|
35
|
Heberlein A, Muschler M, Wilhelm J, Frieling H, Lenz B, Gröschl M, Kornhuber J, Bleich S, Hillemacher T. BDNF and GDNF serum levels in alcohol-dependent patients during withdrawal. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1060-4. [PMID: 20553781 DOI: 10.1016/j.pnpbp.2010.05.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 12/11/2022]
Abstract
Preclinical study results suggest that brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) modulate addictive behaviour. Therefore we investigated alterations in BDNF (81 male patients) and GDNF serum levels (52 male patients) in alcohol-dependent patients during alcohol withdrawal (day 1, 7 and 14) in comparison to healthy controls (41 male controls). BDNF serum levels were not significantly altered in alcohol-dependent patients compared to healthy controls (p=0.685). GDNF serum levels were significantly reduced in the alcohol-dependent patients (p<0.001). BDNF (p=0.265) and GDNF (p=0.255) serum levels did not change significantly during alcohol withdrawal. BDNF serum levels were significantly negatively associated with alcohol withdrawal severity on day 1 (CIWA-Ar score, p=0.004). GDNF serum levels were significantly negatively associated with individual estimation of alcohol tolerance (SESA-XT score, p=0.028). There was no further association with psychometric dimensions of alcohol withdrawal. In conclusion we found that GDNF serum levels are significantly reduced in alcohol-dependent patients. GDNF serum levels were negatively associated with alcohol tolerance. Moreover BDNF serum levels were found to be associated with withdrawal severity.
Collapse
Affiliation(s)
- Annemarie Heberlein
- Department of Psychiatry, Hannover Medical School, Center for Addiction Research, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|