1
|
Luse MA, Dunaway LS, Nyshadham S, Carvalho A, Sedovy MW, Ruddiman CA, Tessema R, Hirschi K, Johnstone SR, Isakson BE. Endothelial-adipocyte Cx43 Mediated Gap Junctions Can Regulate Adiposity. FUNCTION 2024; 5:zqae029. [PMID: 38984993 PMCID: PMC11384900 DOI: 10.1093/function/zqae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 07/11/2024] Open
Abstract
Obesity is a multifactorial metabolic disorder associated with endothelial dysfunction and increased risk of cardiovascular disease. Adipose capillary adipose endothelial cells (CaECs) plays a crucial role in lipid transport and storage. Here, we investigated the mechanisms underlying CaEC-adipocyte interaction and its impact on metabolic function. Single-cell RNA sequencing (scRNAseq) revealed an enrichment of fatty acid handling machinery in CaECs from high fat diet (HFD) mice, suggesting their specialized role in lipid metabolism. Transmission electron microscopy (TEM) confirmed direct heterocellular contact between CaECs and adipocytes. To model this, we created an in vitro co-culture transwell system to model the heterocellular contact observed with TEM. Contact between ECs and adipocytes in vitro led to upregulation of fatty acid binding protein 4 in response to lipid stimulation, hinting intercellular signaling may be important between ECs and adipocytes. We mined our and others scRNAseq datasets to examine which connexins may be present in adipose capillaries and adipocytes and consistently identified connexin 43 (Cx43) in mouse and humans. Genetic deletion of endothelial Cx43 resulted in increased epididymal fat pad (eWAT) adiposity and dyslipidemia in HFD mice. Consistent with this observation, phosphorylation of Cx43 at serine 368, which closes gap junctions, was increased in HFD mice and lipid-treated ECs. Mice resistant to this post-translational modification, Cx43S368A, were placed on an HFD and were found to have reduced eWAT adiposity and improved lipid profiles. These findings suggest Cx43-mediated heterocellular communication as a possible regulatory mechanism of adipose tissue function.
Collapse
Affiliation(s)
- Melissa A Luse
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, 22903, VA, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, 22903, VA, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, 22903, VA, USA
| | - Shruthi Nyshadham
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, 22903, VA, USA
| | - Alicia Carvalho
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, 22903, VA, USA
| | - Meghan W Sedovy
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Roanoke, 24016, VA, USA
| | - Claire A Ruddiman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, 22903, VA, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, 22903, VA, USA
| | - Rachel Tessema
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, 22903, VA, USA
| | - Karen Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, 22903, VA, USA
| | - Scott R Johnstone
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Roanoke, 24016, VA, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, 22903, VA, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, 22903, VA, USA
| |
Collapse
|
2
|
Mironova GY, Kowalewska PM, El-Lakany M, Tran CHT, Sancho M, Zechariah A, Jackson WF, Welsh DG. The conducted vasomotor response and the principles of electrical communication in resistance arteries. Physiol Rev 2024; 104:33-84. [PMID: 37410448 PMCID: PMC11918294 DOI: 10.1152/physrev.00035.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023] Open
Abstract
Biological tissues are fed by arterial networks whose task is to set blood flow delivery in accordance with energetic demand. Coordinating vasomotor activity among hundreds of neighboring segments is an essential process, one dependent upon electrical information spreading among smooth muscle and endothelial cells. The "conducted vasomotor response" is a functional expression of electrical spread, and it is this process that lies at the heart of this critical review. Written in a narrative format, this review first highlights historical manuscripts and then characterizes the conducted response across a range of preparations. Trends are highlighted and used to guide subsequent sections, focused on cellular foundations, biophysical underpinnings, and regulation in health and disease. Key information has been tabulated; figures reinforce grounding concepts and reveal a framework within which theoretical and experimental work can be rationalized. This summative review highlights that despite 30 years of concerted experimentation, key aspects of the conducted response remain ill defined. Of note is the need to rationalize the regulation and deterioration of conduction in pathobiological settings. New quantitative tools, along with transgenic technology, are discussed as a means of propelling this investigative field forward.
Collapse
Affiliation(s)
- Galina Yu Mironova
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paulina M Kowalewska
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mohammed El-Lakany
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Cam Ha T Tran
- Department of Physiology, Faculty of Medicine, University of Nevada (Reno), Reno, Nevada, United States
| | - Maria Sancho
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Anil Zechariah
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Donald G Welsh
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Jeffrey DA, Russell A, Guerrero MB, Fontaine JT, Romero P, Rosehart AC, Dabertrand F. Estrogen regulates myogenic tone in hippocampal arterioles by enhanced basal release of nitric oxide and endothelial SK Ca channel activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553442. [PMID: 37645715 PMCID: PMC10462022 DOI: 10.1101/2023.08.15.553442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Arteries and arterioles exhibit myogenic tone, a partially constricted state that allows further constriction or dilation in response to moment-to-moment fluctuations in blood pressure. The vascular endothelium that lines the internal surface of all blood vessels controls a wide variety of essential functions, including the contractility of the adjacent smooth muscle cells by providing a tonic vasodilatory influence. Studies conducted on large (pial) arteries on the surface of the brain have shown that estrogen lowers myogenic tone in female mice by enhancing nitric oxide (NO) release from the endothelium, however, whether this difference extends to the intracerebral microcirculation remains ambiguous. The existing incomplete picture of sex differences in cerebrovascular physiology combined with a deficiency in treatments that fully restore cognitive function after cerebrovascular accidents places heavy emphasis on the necessity to investigate myogenic tone regulation in the microcirculation from both male and female mice. We hypothesized that sex-linked hormone regulation of myogenic tone extends its influence on the microcirculation level, and sought to characterize it in isolated arterioles from the hippocampus, a major cognitive brain area. Using diameter measurements both in vivo (acute cranial window vascular diameter) and ex vivo (pressure myography experiments), we measured lower myogenic tone responses in hippocampal arterioles from female than male mice. By using a combined surgical and pharmacological approach, we found myogenic tone in ovariectomized (OVX) female mice matches that of males, as well as in endothelium-denuded arterioles. Interestingly, eNOS inhibition induced a larger constriction in female arterioles but only partially abolished the difference in tone. We identified that the remnant difference was mediated by a higher activity and expression of the small-conductance Ca 2+ -sensitive K + (SK) channels. Collectively, these data indicate that eNOS and SK channels exert greater vasodilatory influence over myogenic tone in female mice at physiological pressures.
Collapse
|
4
|
Luik AL, Hannocks MJ, Loismann S, Kapupara K, Cerina M, van der Stoel M, Tsytsyura Y, Glyvuk N, Nordenvall C, Klingauf J, Huveneers S, Meuth S, Jakobsson L, Sorokin L. Endothelial basement membrane laminins - new players in mouse and human myoendothelial junctions and shear stress communication. Matrix Biol 2023; 121:56-73. [PMID: 37311512 DOI: 10.1016/j.matbio.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Basement membranes (BMs) are critical but frequently ignored components of the vascular system. Using high-resolution confocal imaging of whole-mount-stained mesenteric arteries, we identify integrins, vinculin, focal adhesion kinase (FAK) and several BM proteins including laminins as novel components of myoendothelial junctions (MEJs), anatomical microdomains that are emerging as regulators of cross-talk between endothelium and smooth muscle cells (SMCs). Electron microscopy revealed multiple layers of the endothelial BM that surround endothelial projections into the smooth muscle layer as structural characteristics of MEJs. The shear-responsive calcium channel TRPV4 is broadly distributed in endothelial cells and occurs in a proportion of MEJs where it localizes to the tips of the endothelial projections that are in contact with the underlying SMCs. In mice lacking the major endothelial laminin isoform, laminin 411 (Lama4-/-), which we have previously shown over-dilate in response to shear and exhibit a compensatory laminin 511 upregulation, localization of TRPV4 at the endothelial-SMC interface in MEJs was increased. Endothelial laminins do not affect TRPV4 expression, rather in vitro electrophysiology studies using human umbilical cord arterial endothelial cells revealed enhanced TRPV4 signalling upon culturing on an RGD-motif containing domain of laminin 511. Hence, integrin-mediated interactions with laminin 511 in MEJ structures unique to resistance arteries modulate TRPV4 localization at the endothelial-smooth muscle interface in MEJs and signalling over this shear-response molecule.
Collapse
Affiliation(s)
- Anna-Liisa Luik
- Institute of Physiological Chemistry and Pathobiochemistry; Cells in Motion Interfaculty Centre
| | - Melanie-Jane Hannocks
- Institute of Physiological Chemistry and Pathobiochemistry; Cells in Motion Interfaculty Centre
| | - Sophie Loismann
- Institute of Physiological Chemistry and Pathobiochemistry; Cells in Motion Interfaculty Centre
| | - Kishan Kapupara
- Institute of Physiological Chemistry and Pathobiochemistry; Cells in Motion Interfaculty Centre
| | - Manuela Cerina
- Cells in Motion Interfaculty Centre; Institute of Translational Neurology and Department of Neurology, University of Muenster, Germany
| | - Miesje van der Stoel
- Dept of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, the Netherlands
| | - Yaroslav Tsytsyura
- Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Nataliya Glyvuk
- Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Caroline Nordenvall
- Dept of Molecular Medicine and Surgery, Karolinska Institute, Sweden; Dept of Pelvic Cancer, GI Oncology and Colorectal Surgery Unit, Karolinska University Hospital, Sweden
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Stephan Huveneers
- Dept of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, the Netherlands
| | - Sven Meuth
- Cells in Motion Interfaculty Centre; Institute of Translational Neurology and Department of Neurology, University of Muenster, Germany; Neurology Clinic, Medical Faculty, University of Düsseldorf, Germany
| | - Lars Jakobsson
- Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Sweden
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry; Cells in Motion Interfaculty Centre.
| |
Collapse
|
5
|
Sedovy MW, Leng X, Leaf MR, Iqbal F, Payne LB, Chappell JC, Johnstone SR. Connexin 43 across the Vasculature: Gap Junctions and Beyond. J Vasc Res 2022; 60:101-113. [PMID: 36513042 PMCID: PMC11073551 DOI: 10.1159/000527469] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
Connexin 43 (Cx43) is essential to the function of the vasculature. Cx43 proteins form gap junctions that allow for the exchange of ions and molecules between vascular cells to facilitate cell-to-cell signaling and coordinate vasomotor activity. Cx43 also has intracellular signaling functions that influence vascular cell proliferation and migration. Cx43 is expressed in all vascular cell types, although its expression and function vary by vessel size and location. This includes expression in vascular smooth muscle cells (vSMC), endothelial cells (EC), and pericytes. Cx43 is thought to coordinate homocellular signaling within EC and vSMC. Cx43 gap junctions also function as conduits between different cell types (heterocellular signaling), between EC and vSMC at the myoendothelial junction, and between pericyte and EC in capillaries. Alterations in Cx43 expression, localization, and post-translational modification have been identified in vascular disease states, including atherosclerosis, hypertension, and diabetes. In this review, we discuss the current understanding of Cx43 localization and function in healthy and diseased blood vessels across all vascular beds.
Collapse
Affiliation(s)
- Meghan W. Sedovy
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Translational Biology, Medicine, And Health Graduate Program, Virginia Tech, Blacksburg, VA, USA
| | - Xinyan Leng
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - Melissa R. Leaf
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Farwah Iqbal
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Laura Beth Payne
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - John C. Chappell
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - Scott R. Johnstone
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
6
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
7
|
Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling. Int J Mol Sci 2021; 22:ijms22147284. [PMID: 34298897 PMCID: PMC8306829 DOI: 10.3390/ijms22147284] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Pathological vascular wall remodeling refers to the structural and functional changes of the vessel wall that occur in response to injury that eventually leads to cardiovascular disease (CVD). Vessel wall are composed of two major primary cells types, endothelial cells (EC) and vascular smooth muscle cells (VSMCs). The physiological communications between these two cell types (EC–VSMCs) are crucial in the development of the vasculature and in the homeostasis of mature vessels. Moreover, aberrant EC–VSMCs communication has been associated to the promotor of various disease states including vascular wall remodeling. Paracrine regulations by bioactive molecules, communication via direct contact (junctions) or information transfer via extracellular vesicles or extracellular matrix are main crosstalk mechanisms. Identification of the nature of this EC–VSMCs crosstalk may offer strategies to develop new insights for prevention and treatment of disease that curse with vascular remodeling. Here, we will review the molecular mechanisms underlying the interplay between EC and VSMCs. Additionally, we highlight the potential applicable methodologies of the co-culture systems to identify cellular and molecular mechanisms involved in pathological vascular wall remodeling, opening questions about the future research directions.
Collapse
|
8
|
Chen M, Li X. Role of TRPV4 channel in vasodilation and neovascularization. Microcirculation 2021; 28:e12703. [PMID: 33971061 DOI: 10.1111/micc.12703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022]
Abstract
The transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca2+ -permeable nonselective cation channel, is widely distributed in the circulatory system, particularly in vascular endothelial cells (ECs) and smooth muscle cells (SMCs). The TRPV4 channel is activated by various endogenous and exogenous stimuli, including shear stress, low intravascular pressure, and arachidonic acid. TRPV4 has a role in mediating vascular tone and arterial blood pressure. The activation of the TRPV4 channel induces Ca2+ influx, thereby resulting in endothelium-dependent hyperpolarization and SMC relaxation through SKCa and IKCa activation on ECs or through BKCa activation on SMCs. Ca2+ binds to calmodulin, which leads to the production of nitric oxide, causing vasodilation. Furthermore, the TRPV4 channel plays an important role in angiogenesis and arteriogenesis and is critical for tumor angiogenesis and growth, since it promotes or inhibits the development of various types of cancer. The TRPV4 channel is involved in the active growth of collateral arteries induced by flow shear stress, which makes it a promising therapeutic target in the occlusion or stenosis of the main arteries. In this review, we explore the role and the potential mechanism of action of the TRPV4 channel in the regulation of vascular tone and in the induction of neovascularization to provide a reference for future research.
Collapse
Affiliation(s)
- Miao Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiucun Li
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Anatomy and Histoembryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Schmidt K, de Wit C. Endothelium-Derived Hyperpolarizing Factor and Myoendothelial Coupling: The in vivo Perspective. Front Physiol 2021; 11:602930. [PMID: 33424626 PMCID: PMC7786115 DOI: 10.3389/fphys.2020.602930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
The endothelium controls vascular tone adopting blood flow to tissue needs. It releases chemical mediators [e.g., nitric oxide (NO), prostaglandins (PG)] and exerts appreciable dilation through smooth muscle hyperpolarization, thus termed endothelium-dependent hyperpolarization (EDH). Initially, EDH was attributed to release of a factor, but later it was suggested that smooth muscle hyperpolarization might be derived from radial spread of an initial endothelial hyperpolarization through heterocellular channels coupling these vascular cells. The channels are indeed present and formed by connexins that enrich in gap junctions (GJ). In vitro data suggest that myoendothelial coupling underlies EDH-type dilations as evidenced by blocking experiments as well as simultaneous, merely identical membrane potential changes in endothelial and smooth muscle cells (SMCs), which is indicative of coupling through ohmic resistors. However, connexin-deficient animals do not display any attenuation of EDH-type dilations in vivo, and endothelial and SMCs exhibit distinct and barely superimposable membrane potential changes exerted by different means in vivo. Even if studied in the exact same artery EDH-type dilation exhibits distinct features in vitro and in vivo: in isometrically mounted vessels, it is rather weak and depends on myoendothelial coupling through connexin40 (Cx40), whereas in vivo as well as in vitro under isobaric conditions it is powerful and independent of myoendothelial coupling through Cx40. It is concluded that EDH-type dilations are distinct and a significant dependence on myoendothelial coupling in vitro does not reflect the situation under physiologic conditions in vivo. Myoendothelial coupling may act as a backup mechanism that is uncovered in the absence of the powerful EDH-type response and possibly reflects a situation in a pathophysiologic environment.
Collapse
Affiliation(s)
- Kjestine Schmidt
- Institut für Physiologie, Universität zu Lübeck, Lübeck, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, Lübeck, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| |
Collapse
|
10
|
Kohlhaas J, Jäger MA, Lust L, De La Torre C, Hecker M, Korff T. Endothelial cells control vascular smooth muscle cell cholesterol levels by regulating 24-dehydrocholesterol reductase expression. Exp Cell Res 2021; 399:112446. [PMID: 33422461 DOI: 10.1016/j.yexcr.2020.112446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Communication of vascular cells is essential for the control of organotypic functions of blood vessels. In this context, vascular endothelial cells (EC) act as potent regulators of vascular smooth muscle cell (VSMC) functions such as contraction and relaxation. However, the impact of ECs on the gene expression pattern of VSMCs is largely unknown. Here, we investigated changes of the VSMC transcriptome by utilizing 3D human vascular organoids organized as a core of VSMCs enclosed by a monolayer of ECs. Microarray-based analyses indicated that interaction with ECs for 48 h down-regulates expression of genes in VSMCs controlling rate-limiting steps of the cholesterol biosynthesis such as HMGCR, HMGCS1, DHCR24 and DHCR7. Protein analyses revealed a decrease in the abundance of DHCR24 (24-dehydrocholesterol reductase) and lower cholesterol levels in VSMCs co-cultured with ECs. On the functional level, the blockade of the DHCR24 activity impaired adhesion, migration and proliferation of VSMCs. Collectively, these findings indicate that ECs have the capacity to instruct VSMCs to shut down the expression of DHCR24 thereby limiting their cholesterol biosynthesis, which may support their functional steady state.
Collapse
Affiliation(s)
- Johanna Kohlhaas
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Marius Andreas Jäger
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Leandra Lust
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Carolina De La Torre
- Center of Medical Research, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Germany.
| |
Collapse
|
11
|
Baldwin SN, Sandow SL, Mondéjar-Parreño G, Stott JB, Greenwood IA. K V7 Channel Expression and Function Within Rat Mesenteric Endothelial Cells. Front Physiol 2020; 11:598779. [PMID: 33364977 PMCID: PMC7750541 DOI: 10.3389/fphys.2020.598779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/13/2020] [Indexed: 01/04/2023] Open
Abstract
Background and Purpose: Arterial diameter is dictated by the contractile state of the vascular smooth muscle cells (VSMCs), which is modulated by direct and indirect inputs from endothelial cells (ECs). Modulators of KCNQ-encoded kV7 channels have considerable impact on arterial diameter and these channels are known to be expressed in VSMCs but not yet defined in ECs. However, expression of kV7 channels in ECs would add an extra level of vascular control. This study aims to characterize the expression and function of KV7 channels within rat mesenteric artery ECs. Experimental Approach: In rat mesenteric artery, KCNQ transcript and KV7 channel protein expression were determined via RT-qPCR, immunocytochemistry, immunohistochemistry and immunoelectron microscopy. Wire myography was used to determine vascular reactivity. Key Results: KCNQ transcript was identified in isolated ECs and VSMCs. KV7.1, KV7.4 and KV7.5 protein expression was determined in both isolated EC and VSMC and in whole vessels. Removal of ECs attenuated vasorelaxation to two structurally different KV7.2-5 activators S-1 and ML213. KIR2 blockers ML133, and BaCl2 also attenuated S-1 or ML213-mediated vasorelaxation in an endothelium-dependent process. KV7 inhibition attenuated receptor-dependent nitric oxide (NO)-mediated vasorelaxation to carbachol, but had no impact on relaxation to the NO donor, SNP. Conclusion and Implications: In rat mesenteric artery ECs, KV7.4 and KV7.5 channels are expressed, functionally interact with endothelial KIR2.x channels and contribute to endogenous eNOS-mediated relaxation. This study identifies KV7 channels as novel functional channels within rat mesenteric ECs and suggests that these channels are involved in NO release from the endothelium of these vessels.
Collapse
Affiliation(s)
- Samuel N Baldwin
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Shaun L Sandow
- Biomedical Science, School of Health and Sports Science, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Gema Mondéjar-Parreño
- Department of Pharmacology and Toxicology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jennifer B Stott
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| |
Collapse
|
12
|
Hald BO, Welsh DG. Conceptualizing conduction as a pliant electrical response: impact of gap junctions and ion channels. Am J Physiol Heart Circ Physiol 2020; 319:H1276-H1289. [PMID: 32986968 DOI: 10.1152/ajpheart.00285.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Vasomotor responses conduct among resistance arteries to coordinate blood flow delivery pursuant to energetic demand. Conduction is set by the electrical and mechanical properties of vascular cells, the former tied to how gap junctions and ion channels distribute and dissipate charge, respectively. These membrane proteins are subject to modulation; thus, conduction could be viewed as "pliant" to the current regulatory state. This study used in silico approaches to conceptualize electrical pliancy and to illustrate how gap junctional and ion channel properties distinctly impact conduction along a single skeletal muscle artery or a branching cerebrovascular network. Initial simulations revealed how vascular cells encoded with electrotonic properties best reproduced spreading behavior; the endothelium's importance as a charge source and a longitudinal conduit was readily observed. Alterations in gap junctional conductance produced unique electrical fingerprints: 1) decreased endothelial coupling impaired longitudinal but enhanced radial spread, and 2) reduced myoendothelial coupling limited radial but enhanced longitudinal spread. Subsequent simulations illustrated how tuning ion channel activity, e.g., inward rectifying- and voltage-gated K+ channels, modified charge dissipation, resting membrane potential, and the spread of the electrical phenomenon. Restricting ion channel tuning to a network subregion then revealed how electrical spread could be locally shaped in accordance with the aggregate changes in membrane resistance. In summary, our analysis frames and reimagines electrical conduction as a pliable process, with subtle regulatory changes to membrane proteins shaping network spread and tissue perfusion.NEW & NOTEWORTHY Conducted vasomotor responses depend on initiation and spread of electrical phenomena along arterial walls and their translation into contractile responses. Using computational approaches, we show how subtle but widespread regulation of gap junctions and ion channels can modulate the range and amplitude of electrical spread. Ion channels are regulated by endocrine and mechanical signals and may differ regionally in networks. Subregional electrical changes are not spatially confined but may affect electrical conduction in neighboring regions.
Collapse
Affiliation(s)
- Bjørn Olav Hald
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Donald G Welsh
- Robarts Research Institute and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
13
|
Abstract
Of the 21 members of the connexin family, 4 (Cx37, Cx40, Cx43, and Cx45) are expressed in the endothelium and/or smooth muscle of intact blood vessels to a variable and dynamically regulated degree. Full-length connexins oligomerize and form channel structures connecting the cytosol of adjacent cells (gap junctions) or the cytosol with the extracellular space (hemichannels). The different connexins vary mainly with regard to length and sequence of their cytosolic COOH-terminal tails. These COOH-terminal parts, which in the case of Cx43 are also translated as independent short isoforms, are involved in various cellular signaling cascades and regulate cell functions. This review focuses on channel-dependent and -independent effects of connexins in vascular cells. Channels play an essential role in coordinating and synchronizing endothelial and smooth muscle activity and in their interplay, in the control of vasomotor actions of blood vessels including endothelial cell reactivity to agonist stimulation, nitric oxide-dependent dilation, and endothelial-derived hyperpolarizing factor-type responses. Further channel-dependent and -independent roles of connexins in blood vessel function range from basic processes of vascular remodeling and angiogenesis to vascular permeability and interactions with leukocytes with the vessel wall. Together, these connexin functions constitute an often underestimated basis for the enormous plasticity of vascular morphology and function enabling the required dynamic adaptation of the vascular system to varying tissue demands.
Collapse
Affiliation(s)
- Ulrich Pohl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany; Biomedical Centre, Cardiovascular Physiology, LMU Munich, Planegg-Martinsried, Germany; German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
14
|
Biwer LA, Askew-Page HR, Hong K, Milstein J, Johnstone SR, Macal E, Good ME, Bagher P, Sonkusare SK, Isakson BE. Endothelial calreticulin deletion impairs endothelial function in aged mice. Am J Physiol Heart Circ Physiol 2020; 318:H1041-H1048. [PMID: 32196361 PMCID: PMC7346539 DOI: 10.1152/ajpheart.00586.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Discrete calcium signals within the vascular endothelium decrease with age and contribute to impaired endothelial-dependent vasodilation. Calreticulin (Calr), a multifunctional calcium binding protein and endoplasmic reticulum (ER) chaperone, can mediate calcium signals and vascular function within the endothelial cells (ECs) of small resistance arteries. We found Calr protein expression significantly decreases with age in mesenteric arteries and examined the functional role of EC Calr in vasodilation and calcium mobilization in the context of aging. Third-order mesenteric arteries from mice with or without EC Calr knockdown were examined for calcium signals and constriction to phenylephrine (PE) or vasodilation to carbachol (CCh) after 75 wk of age. PE constriction in aged mice with or without EC Calr was unchanged. However, calcium signals and vasodilation to endothelial-dependent agonist carbachol were significantly impaired in aged EC Calr knockdown mice. Ex vivo incubation of arteries with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) significantly improved vasodilation in mice lacking EC Calr. Our data suggests diminished vascular Calr expression with age can contribute to the detrimental effects of aging on endothelial calcium regulation and vasodilation.NEW & NOTEWORTHY Calreticulin (Calr) is responsible for key physiological processes in endoplasmic reticulum, especially in aging tissue. In particular, endothelial Calr is crucial to vascular function. In this study, we deleted Calr from the endothelium and aged the mice up to 75 wk to examine changes in vascular function. We found two key differences: 1) calcium events in endothelium were severely diminished after muscarinic stimulation, which 2) corresponded with a dramatic decrease in muscarinic vasodilation. Remarkably, we were able to rescue the effect of Calr deletion on endothelial-dependent vasodilatory function using tauroursodeoxycholic acid (TUDCA), an inhibitor of endoplasmic reticulum stress that is currently in clinical trials.
Collapse
Affiliation(s)
- Lauren A Biwer
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia.,Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Henry R Askew-Page
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Kwangseok Hong
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Physical Education, College of Education, Chung-Ang University, Seoul, South Korea
| | - Jenna Milstein
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Scott R Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Edgar Macal
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Pooneh Bagher
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
15
|
Zechariah A, Tran CHT, Hald BO, Sandow SL, Sancho M, Kim MSM, Fabris S, Tuor UI, Gordon GR, Welsh DG. Intercellular Conduction Optimizes Arterial Network Function and Conserves Blood Flow Homeostasis During Cerebrovascular Challenges. Arterioscler Thromb Vasc Biol 2020; 40:733-750. [PMID: 31826653 PMCID: PMC7058668 DOI: 10.1161/atvbaha.119.313391] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Cerebral arterial networks match blood flow delivery with neural activity. Neurovascular response begins with a stimulus and a focal change in vessel diameter, which by themselves is inconsequential to blood flow magnitude, until they spread and alter the contractile status of neighboring arterial segments. We sought to define the mechanisms underlying integrated vascular behavior and considered the role of intercellular electrical signaling in this phenomenon. Approach and Results: Electron microscopic and histochemical analysis revealed the structural coupling of cerebrovascular cells and the expression of gap junctional subunits at the cell interfaces, enabling intercellular signaling among vascular cells. Indeed, robust vasomotor conduction was detected in human and mice cerebral arteries after focal vessel stimulation: a response attributed to endothelial gap junctional communication, as its genetic alteration attenuated this behavior. Conducted responses were observed to ascend from the penetrating arterioles, influencing the contractile status of cortical surface vessels, in a simulated model of cerebral arterial network. Ascending responses recognized in vivo after whisker stimulation were significantly attenuated in mice with altered endothelial gap junctional signaling confirming that gap junctional communication drives integrated vessel responses. The diminishment in vascular communication also impaired the critical ability of the cerebral vasculature to maintain blood flow homeostasis and hence tissue viability after stroke. CONCLUSIONS Our findings highlight the integral role of intercellular electrical signaling in transcribing focal stimuli into coordinated changes in cerebrovascular contractile activity and expose, a hitherto unknown mechanism for flow regulation after stroke.
Collapse
Affiliation(s)
- Anil Zechariah
- Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Cam Ha T. Tran
- Hotchkiss Brain Institute, Libin Cardiovascular Institute and the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Department of Physiology and Cell Biology, University of Nevada, Reno, Nevada, USA 89557
| | - Bjorn O. Hald
- Department of Neuroscience, Translational Neurobiology, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Shaun L. Sandow
- University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland 4558 Australia
| | - Maria Sancho
- Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Michelle Sun Mi Kim
- Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Sergio Fabris
- Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Ursula I. Tuor
- Hotchkiss Brain Institute, Libin Cardiovascular Institute and the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Grant R.J. Gordon
- Hotchkiss Brain Institute, Libin Cardiovascular Institute and the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Donald G. Welsh
- Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7
- Hotchkiss Brain Institute, Libin Cardiovascular Institute and the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
16
|
Agonist-evoked endothelial Ca 2+ signalling microdomains. Curr Opin Pharmacol 2019; 45:8-15. [PMID: 30986569 DOI: 10.1016/j.coph.2019.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/03/2019] [Accepted: 03/15/2019] [Indexed: 01/14/2023]
Abstract
Localized, oscillating Ca2+ signals have been identified in discrete microdomains of vascular endothelial cells. At myoendothelial contacts (between endothelial and smooth muscle cells), both endothelial Ca2+ pulsars (IP3-mediated release of intracellular Ca2+) and Ca2+ sparklets (extracellular Ca2+ entry via TRP channels) contribute to endothelium-dependent hyperpolarization of smooth muscle, vasodilation, and feedback control of vasoconstriction. Ca2+ sparklets occurring at close-contact domains between endothelial cells are possibly involved in conducted hyperpolarization and spreading vasodilation in arterial networks. This review summarizes these Ca2+ signalling phenomena, examines the proposed mechanisms leading to their generation by G-protein-coupled receptor agonists, and explores the proposed physiological roles of these localized and specialized Ca2+ signals.
Collapse
|
17
|
Pogoda K, Kameritsch P. Molecular regulation of myoendothelial gap junctions. Curr Opin Pharmacol 2019; 45:16-22. [DOI: 10.1016/j.coph.2019.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/14/2019] [Accepted: 03/15/2019] [Indexed: 11/16/2022]
|
18
|
Pogoda K, Kameritsch P, Mannell H, Pohl U. Connexins in the control of vasomotor function. Acta Physiol (Oxf) 2019; 225:e13108. [PMID: 29858558 DOI: 10.1111/apha.13108] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells, as well as smooth muscle cells, show heterogeneity with regard to their receptor expression and reactivity. For the vascular wall to act as a functional unit, the various cells' responses require integration. Such an integration is not only required for a homogeneous response of the vascular wall, but also for the vasomotor behaviour of consecutive segments of the microvascular arteriolar tree. As flow resistances of individual sections are connected in series, sections require synchronization and coordination to allow effective changes of conductivity and blood flow. A prerequisite for the local coordination of individual vascular cells and different sections of an arteriolar tree is intercellular communication. Connexins are involved in a dual manner in this coordination. (i) By forming gap junctions between cells, they allow an intercellular exchange of signalling molecules and electrical currents. In particular, the spread of electrical currents allows for coordination of cell responses over longer distances. (ii) Connexins are able to interact with other proteins to form signalling complexes. In this way, they can modulate and integrate individual cells' responses also in a channel-independent manner. This review outlines mechanisms allowing the vascular connexins to exert their coordinating function and to regulate the vasomotor reactions of blood vessels both locally, and in vascular networks. Wherever possible, we focus on the vasomotor behaviour of small vessels and arterioles which are the main vessels determining vascular resistance, blood pressure and local blood flow.
Collapse
Affiliation(s)
- K. Pogoda
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
- DZHK (German Center for Cardiovascular Research); Partner Site Munich Heart Alliance; Munich Germany
| | - P. Kameritsch
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
- DZHK (German Center for Cardiovascular Research); Partner Site Munich Heart Alliance; Munich Germany
| | - H. Mannell
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
| | - U. Pohl
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
- DZHK (German Center for Cardiovascular Research); Partner Site Munich Heart Alliance; Munich Germany
- Munich Cluster for Systems Neurology (SyNergy); Munich Germany
| |
Collapse
|
19
|
Cellular and Ionic Mechanisms of Arterial Vasomotion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:297-312. [DOI: 10.1007/978-981-13-5895-1_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Hald BO, Castorena-Gonzalez JA, Zawieja SD, Gui P, Davis MJ. Electrical Communication in Lymphangions. Biophys J 2018; 115:936-949. [PMID: 30143234 DOI: 10.1016/j.bpj.2018.07.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/02/2018] [Accepted: 07/19/2018] [Indexed: 11/30/2022] Open
Abstract
Contractions of lymphangions, i.e., the segment between two one-way lymphatic valves, generate the pressure gradients that propel lymph back to the circulation. Each lymphangion is comprised of an inner sheet of lymphatic endothelial cells circumscribed by one or more layers of lymphatic muscle cells (LMCs). Each contraction is produced by an LMC action potential (AP) that propagates via gap junctions along the lymphangion. Yet, electrical coupling within and between cell layers and the impact on AP waves is poorly understood. Here, we combine studies in rat and mouse lymphatic vessels with mathematical modeling to show that initiation of AP waves depends on high input resistance (low current drain), whereas propagation depends on morphology and sufficient LMC:LMC coupling. Simulations show that 1) myoendothelial coupling is insignificant to facilitate AP generation and sustain an experimentally measured cross-junctional potential difference of 25 mV, i.e., AP waves propagate along the LMC layer only; 2) LMC:LMC resistance is estimated around 2-10 MΩ but depends on vessel structure and cell-cell coupling, e.g., some degree of LMC overlap protects AP waves against LMC decoupling; 3) the propensity of AP wave initiation is highest around the valves, where the density of LMCs is low; and 4) a single pacemaker cell embedded in the LMC layer must be able to generate very large currents to overcome the current drain from the layer. However, the required current generation to initiate an AP wave is reduced upon stimulation of multiple adjacent LMCs. With stimulation of all LMCs, AP waves can also arise from heterogeneity in the electrical activity of LMCs. The findings advance our understanding of the electrical constraints that underlie initiation of APs in the LMC layer and make testable predictions about how morphology, LMC excitability, and LMC:LMC electrical coupling interact to determine the ability to initiate and propagate AP waves in small lymphatic vessels.
Collapse
Affiliation(s)
- Bjørn Olav Hald
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Jorge Augusto Castorena-Gonzalez
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Scott David Zawieja
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Peichun Gui
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Michael John Davis
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.
| |
Collapse
|
21
|
Chennupati R, Meens MJ, Janssen BJ, van Dijk P, Hakvoort TBM, Lamers WH, De Mey JGR, Koehler SE. Deletion of endothelial arginase 1 does not improve vasomotor function in diabetic mice. Physiol Rep 2018; 6:e13717. [PMID: 29890043 PMCID: PMC5995309 DOI: 10.14814/phy2.13717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023] Open
Abstract
Endothelial arginase 1 was ablated to assess whether this prevents hyperglycemia-induced endothelial dysfunction by improving arginine availability for nitric oxide production. Endothelial Arg1-deficient mice (Arg1-KOTie2 ) were generated by crossing Arg1fl/fl (controls) with Tie2Cretg/- mice and analyzed by immunohistochemistry, measurements of hemodynamics, and wire myography. Ablation was confirmed by immunohistochemistry. Mean arterial blood pressure was similar in conscious male control and Arg1-KOTie2 mice. Depletion of circulating arginine by intravenous infusion of arginase 1 or inhibition of nitric oxide synthase activity with L-NG -nitro-arginine methyl ester increased mean arterial pressure similarly in control (9 ± 2 and 34 ± 2 mmHg, respectively) and Arg1-KOTie2 mice (11 ± 3 and 38 ± 4 mmHg, respectively). Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Arg1-KOTie2 and control animals by wire myography. Diabetes was induced in 10-week-old control and Arg1-KOTie2 mice with streptozotocin, and vasomotor responses were studied 10 weeks later. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in normoglycemic control and Arg1-KOTie2 mice. The relaxing response to acetylcholine was dependent on the availability of extracellular l-arginine. In the diabetic mice, arterial relaxation responses to endothelium-dependent hyperpolarization and to exogenous nitric oxide were impaired. The data show that endothelial ablation of arginase 1 in mice does not markedly modify smooth muscle and endothelial functions of a resistance artery under normo- and hyperglycemic conditions.
Collapse
Affiliation(s)
- Ramesh Chennupati
- Departments of Anatomy & EmbryologyMaastricht UniversityMaastrichtthe Netherlands
- Department of Pharmacology & ToxicologyMaastricht UniversityMaastrichtthe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
- Nutrim ‐ School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands
| | - Merlijn J. Meens
- Department of Pharmacology & ToxicologyMaastricht UniversityMaastrichtthe Netherlands
- Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
| | - Ben J. Janssen
- Department of Pharmacology & ToxicologyMaastricht UniversityMaastrichtthe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Paul van Dijk
- Departments of Anatomy & EmbryologyMaastricht UniversityMaastrichtthe Netherlands
| | | | - Wouter H. Lamers
- Departments of Anatomy & EmbryologyMaastricht UniversityMaastrichtthe Netherlands
- Nutrim ‐ School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands
| | - Jo G. R. De Mey
- Department of Pharmacology & ToxicologyMaastricht UniversityMaastrichtthe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
- Department of Cardiovascular and Renal ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Department of CardiacThoracic and Vascular SurgeryOdense University HospitalOdenseDenmark
| | - S. Eleonore Koehler
- Departments of Anatomy & EmbryologyMaastricht UniversityMaastrichtthe Netherlands
- Nutrim ‐ School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands
| |
Collapse
|
22
|
Brasen JC, de Wit C, Sorensen CM. Myoendothelial coupling through Cx40 contributes to EDH-induced vasodilation in murine renal arteries: evidence from experiments and modelling. Acta Physiol (Oxf) 2018; 222. [PMID: 28613412 DOI: 10.1111/apha.12906] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/25/2016] [Accepted: 06/07/2017] [Indexed: 02/06/2023]
Abstract
Regulation of renal vascular resistance plays a major role in controlling arterial blood pressure. The endothelium participates in this regulation as endothelial derived hyperpolarization plays a significant role in smaller renal arteries and arterioles, but the exact mechanisms are still unknown. AIM To investigate the role of vascular gap junctions and potassium channels in the renal endothelial derived hyperpolarization. METHODS In interlobar arteries from wild-type and connexin40 knockout mice, we assessed the role of calcium-activated small (SK) and intermediate (IK) conductance potassium channels. The role of inward rectifier potassium channels (Kir) and Na+ /K+ -ATPases was evaluated as was the contribution from gap junctions. Mathematical models estimating diffusion of ions and electrical coupling in myoendothelial gap junctions were used to interpret the results. RESULTS Lack of connexin40 significantly reduces renal endothelial hyperpolarization. Inhibition of SK and IK channels significantly attenuated renal EDH to a similar degree in wild-type and knockout mice. Inhibition of Kir and Na+ /K+ -ATPases affected the response in wild-type and knockout mice but at different levels of stimulation. The model confirms that activation of endothelial SK and IK channels generates a hyperpolarizing current that enters the vascular smooth muscle cells. Also, extracellular potassium increases sufficiently to activate Kir and Na+ /K+ -ATPases. CONCLUSION Renal endothelial hyperpolarization is mainly initiated by activation of IK and SK channels. The model shows that hyperpolarization can spread through myoendothelial gap junctions but enough potassium is released to activate Kir and Na+ /K+ -ATPases. Reduced coupling seems to shift the signalling pathway towards release of potassium. However, an alternative pathway also exists and needs to be investigated.
Collapse
Affiliation(s)
- J C Brasen
- Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - C de Wit
- Physiologisches Institut, Universität zu Lübeck, Lübeck, Germany
| | - C M Sorensen
- Division of Renal and Vascular Physiology, Institute of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Pogoda K, Mannell H, Blodow S, Schneider H, Schubert KM, Qiu J, Schmidt A, Imhof A, Beck H, Tanase LI, Pfeifer A, Pohl U, Kameritsch P. NO Augments Endothelial Reactivity by Reducing Myoendothelial Calcium Signal Spreading: A Novel Role for Cx37 (Connexin 37) and the Protein Tyrosine Phosphatase SHP-2. Arterioscler Thromb Vasc Biol 2017; 37:2280-2290. [PMID: 29025706 DOI: 10.1161/atvbaha.117.309913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/26/2017] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Because of its strategic position between endothelial and smooth muscle cells in microvessels, Cx37 (Connexin 37) plays an important role in myoendothelial gap junctional intercellular communication. We have shown before that NO inhibits gap junctional intercellular communication through gap junctions containing Cx37. However, the underlying mechanism is not yet identified. APPROACH AND RESULTS Using channel-forming Cx37 mutants exhibiting partial deletions or amino acid exchanges in their C-terminal loops, we now show that the phosphorylation state of a tyrosine residue at position 332 (Y332) in the C-terminus of Cx37 controls the gap junction-dependent spread of calcium signals. Mass spectra revealed that NO protects Cx37 from dephosphorylation at Y332 by inhibition of the protein tyrosine phosphatase SHP-2. Functionally, the inhibition of gap junctional intercellular communication by NO decreased the spread of the calcium signal (induced by mechanical stimulation of individual endothelial cells) from endothelial to smooth muscle cells in intact vessels, while, at the same time, augmenting the calcium signal spreading within the endothelium. Consequently, preincubation of small resistance arteries with exogenous NO enhanced the endothelium-dependent dilator response to acetylcholine in spite of a pharmacological blockade of NO-dependent cGMP formation by the soluable guanylyl cyclase inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one). CONCLUSIONS Our results identify a novel mechanism by which NO can increase the efficacy of calcium, rising vasoactive agonists in the microvascular endothelium.
Collapse
Affiliation(s)
- Kristin Pogoda
- From the Walter Brendel Centre of Experimental Medicine, University Hospital, Biomedical Center, Munich, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., L.I.T., U.P., P.K.); Protein Analysis Unit, Biomedical Center, Munich, Germany (A.S., A.I.); DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., U.P., P.K.); Munich Cluster for Systems Neurology (SyNergY), Germany (A.I., U.P.); and Institute of Pharmacology and Toxicology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany (A.P.)
| | - Hanna Mannell
- From the Walter Brendel Centre of Experimental Medicine, University Hospital, Biomedical Center, Munich, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., L.I.T., U.P., P.K.); Protein Analysis Unit, Biomedical Center, Munich, Germany (A.S., A.I.); DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., U.P., P.K.); Munich Cluster for Systems Neurology (SyNergY), Germany (A.I., U.P.); and Institute of Pharmacology and Toxicology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany (A.P.)
| | - Stephanie Blodow
- From the Walter Brendel Centre of Experimental Medicine, University Hospital, Biomedical Center, Munich, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., L.I.T., U.P., P.K.); Protein Analysis Unit, Biomedical Center, Munich, Germany (A.S., A.I.); DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., U.P., P.K.); Munich Cluster for Systems Neurology (SyNergY), Germany (A.I., U.P.); and Institute of Pharmacology and Toxicology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany (A.P.)
| | - Holger Schneider
- From the Walter Brendel Centre of Experimental Medicine, University Hospital, Biomedical Center, Munich, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., L.I.T., U.P., P.K.); Protein Analysis Unit, Biomedical Center, Munich, Germany (A.S., A.I.); DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., U.P., P.K.); Munich Cluster for Systems Neurology (SyNergY), Germany (A.I., U.P.); and Institute of Pharmacology and Toxicology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany (A.P.)
| | - Kai Michael Schubert
- From the Walter Brendel Centre of Experimental Medicine, University Hospital, Biomedical Center, Munich, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., L.I.T., U.P., P.K.); Protein Analysis Unit, Biomedical Center, Munich, Germany (A.S., A.I.); DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., U.P., P.K.); Munich Cluster for Systems Neurology (SyNergY), Germany (A.I., U.P.); and Institute of Pharmacology and Toxicology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany (A.P.)
| | - Jiehua Qiu
- From the Walter Brendel Centre of Experimental Medicine, University Hospital, Biomedical Center, Munich, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., L.I.T., U.P., P.K.); Protein Analysis Unit, Biomedical Center, Munich, Germany (A.S., A.I.); DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., U.P., P.K.); Munich Cluster for Systems Neurology (SyNergY), Germany (A.I., U.P.); and Institute of Pharmacology and Toxicology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany (A.P.)
| | - Andreas Schmidt
- From the Walter Brendel Centre of Experimental Medicine, University Hospital, Biomedical Center, Munich, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., L.I.T., U.P., P.K.); Protein Analysis Unit, Biomedical Center, Munich, Germany (A.S., A.I.); DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., U.P., P.K.); Munich Cluster for Systems Neurology (SyNergY), Germany (A.I., U.P.); and Institute of Pharmacology and Toxicology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany (A.P.)
| | - Axel Imhof
- From the Walter Brendel Centre of Experimental Medicine, University Hospital, Biomedical Center, Munich, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., L.I.T., U.P., P.K.); Protein Analysis Unit, Biomedical Center, Munich, Germany (A.S., A.I.); DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., U.P., P.K.); Munich Cluster for Systems Neurology (SyNergY), Germany (A.I., U.P.); and Institute of Pharmacology and Toxicology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany (A.P.)
| | - Heike Beck
- From the Walter Brendel Centre of Experimental Medicine, University Hospital, Biomedical Center, Munich, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., L.I.T., U.P., P.K.); Protein Analysis Unit, Biomedical Center, Munich, Germany (A.S., A.I.); DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., U.P., P.K.); Munich Cluster for Systems Neurology (SyNergY), Germany (A.I., U.P.); and Institute of Pharmacology and Toxicology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany (A.P.)
| | - Laurentia Irina Tanase
- From the Walter Brendel Centre of Experimental Medicine, University Hospital, Biomedical Center, Munich, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., L.I.T., U.P., P.K.); Protein Analysis Unit, Biomedical Center, Munich, Germany (A.S., A.I.); DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., U.P., P.K.); Munich Cluster for Systems Neurology (SyNergY), Germany (A.I., U.P.); and Institute of Pharmacology and Toxicology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany (A.P.)
| | - Alexander Pfeifer
- From the Walter Brendel Centre of Experimental Medicine, University Hospital, Biomedical Center, Munich, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., L.I.T., U.P., P.K.); Protein Analysis Unit, Biomedical Center, Munich, Germany (A.S., A.I.); DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., U.P., P.K.); Munich Cluster for Systems Neurology (SyNergY), Germany (A.I., U.P.); and Institute of Pharmacology and Toxicology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany (A.P.)
| | - Ulrich Pohl
- From the Walter Brendel Centre of Experimental Medicine, University Hospital, Biomedical Center, Munich, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., L.I.T., U.P., P.K.); Protein Analysis Unit, Biomedical Center, Munich, Germany (A.S., A.I.); DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., U.P., P.K.); Munich Cluster for Systems Neurology (SyNergY), Germany (A.I., U.P.); and Institute of Pharmacology and Toxicology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany (A.P.).
| | - Petra Kameritsch
- From the Walter Brendel Centre of Experimental Medicine, University Hospital, Biomedical Center, Munich, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., L.I.T., U.P., P.K.); Protein Analysis Unit, Biomedical Center, Munich, Germany (A.S., A.I.); DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., U.P., P.K.); Munich Cluster for Systems Neurology (SyNergY), Germany (A.I., U.P.); and Institute of Pharmacology and Toxicology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany (A.P.)
| |
Collapse
|
24
|
Kawamura M, Paulsen MJ, Goldstone AB, Shudo Y, Wang H, Steele AN, Stapleton LM, Edwards BB, Eskandari A, Truong VN, Jaatinen KJ, Ingason AB, Miyagawa S, Sawa Y, Woo YJ. Tissue-engineered smooth muscle cell and endothelial progenitor cell bi-level cell sheets prevent progression of cardiac dysfunction, microvascular dysfunction, and interstitial fibrosis in a rodent model of type 1 diabetes-induced cardiomyopathy. Cardiovasc Diabetol 2017; 16:142. [PMID: 29096622 PMCID: PMC5668999 DOI: 10.1186/s12933-017-0625-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
Background Diabetes mellitus is a risk factor for coronary artery disease and diabetic cardiomyopathy, and adversely impacts outcomes following coronary artery bypass grafting. Current treatments focus on macro-revascularization and neglect the microvascular disease typical of diabetes mellitus-induced cardiomyopathy (DMCM). We hypothesized that engineered smooth muscle cell (SMC)-endothelial progenitor cell (EPC) bi-level cell sheets could improve ventricular dysfunction in DMCM. Methods Primary mesenchymal stem cells (MSCs) and EPCs were isolated from the bone marrow of Wistar rats, and MSCs were differentiated into SMCs by culturing on a fibronectin-coated dish. SMCs topped with EPCs were detached from a temperature-responsive culture dish to create an SMC-EPC bi-level cell sheet. A DMCM model was induced by intraperitoneal streptozotocin injection. Four weeks after induction, rats were randomized into 3 groups: control (no DMCM induction), untreated DMCM, and treated DMCM (cell sheet transplant covering the anterior surface of the left ventricle). Results SMC-EPC cell sheet therapy preserved cardiac function and halted adverse ventricular remodeling, as demonstrated by echocardiography and cardiac magnetic resonance imaging at 8 weeks after DMCM induction. Myocardial contrast echocardiography demonstrated that myocardial perfusion and microvascular function were preserved in the treatment group compared with untreated animals. Histological analysis demonstrated decreased interstitial fibrosis and increased microvascular density in the SMC-EPC cell sheet-treated group. Conclusions Treatment of DMCM with tissue-engineered SMC-EPC bi-level cell sheets prevented cardiac dysfunction and microvascular disease associated with DMCM. This multi-lineage cellular therapy is a novel, translatable approach to improve microvascular disease and prevent heart failure in diabetic patients.
Collapse
Affiliation(s)
- Masashi Kawamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.,Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Andrew B Goldstone
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.,Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Amanda N Steele
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Lyndsay M Stapleton
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Bryan B Edwards
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Anahita Eskandari
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Vi N Truong
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Kevin J Jaatinen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Arnar B Ingason
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
25
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
26
|
Vascular structural and functional changes: their association with causality in hypertension: models, remodeling and relevance. Hypertens Res 2016; 40:311-323. [PMID: 27784889 DOI: 10.1038/hr.2016.145] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
Essential hypertension is a complex multifactorial disease process that involves the interaction of multiple genes at various loci throughout the genome, and the influence of environmental factors such as diet and lifestyle, to ultimately determine long-term arterial pressure. These factors converge with physiological signaling pathways to regulate the set-point of long-term blood pressure. In hypertension, structural changes in arteries occur and show differences within and between vascular beds, between species, models and sexes. Such changes can also reflect the development of hypertension, and the levels of circulating humoral and vasoactive compounds. The role of perivascular adipose tissue in the modulation of vascular structure under various disease states such as hypertension, obesity and metabolic syndrome is an emerging area of research, and is likely to contribute to the heterogeneity described in this review. Diversity in structure and related function is the norm, with morphological changes being causative in some beds and states, and in others, a consequence of hypertension. Specific animal models of hypertension have advantages and limitations, each with factors influencing the relevance of the model to the human hypertensive state/s. However, understanding the fundamental properties of artery function and how these relate to signalling mechanisms in real (intact) tissues is key for translating isolated cell and model data to have an impact and relevance in human disease etiology. Indeed, the ultimate aim of developing new treatments to correct vascular dysfunction requires understanding and recognition of the limitations of the methodologies used.
Collapse
|
27
|
Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol 2016; 594:5749-5768. [PMID: 27219461 PMCID: PMC5063934 DOI: 10.1113/jp272088] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Joshua P Scallan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | | | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
28
|
Ellinsworth DC, Sandow SL, Shukla N, Liu Y, Jeremy JY, Gutterman DD. Endothelium-Derived Hyperpolarization and Coronary Vasodilation: Diverse and Integrated Roles of Epoxyeicosatrienoic Acids, Hydrogen Peroxide, and Gap Junctions. Microcirculation 2016; 23:15-32. [PMID: 26541094 DOI: 10.1111/micc.12255] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022]
Abstract
Myocardial perfusion and coronary vascular resistance are regulated by signaling metabolites released from the local myocardium that act either directly on the VSMC or indirectly via stimulation of the endothelium. A prominent mechanism of vasodilation is EDH of the arteriolar smooth muscle, with EETs and H(2)O(2) playing important roles in EDH in the coronary microcirculation. In some cases, EETs and H(2)O(2) are released as transferable hyperpolarizing factors (EDHFs) that act directly on the VSMCs. By contrast, EETs and H(2)O(2) can also promote endothelial KCa activity secondary to the amplification of extracellular Ca(2+) influx and Ca(2+) mobilization from intracellular stores, respectively. The resulting endothelial hyperpolarization may subsequently conduct to the media via myoendothelial gap junctions or potentially lead to the release of a chemically distinct factor(s). Furthermore, in human isolated coronary arterioles dilator signaling involving EETs and H(2)O(2) may be integrated, being either complimentary or inhibitory depending on the stimulus. With an emphasis on the human coronary microcirculation, this review addresses the diverse and integrated mechanisms by which EETs and H(2)O(2) regulate vessel tone and also examines the hypothesis that myoendothelial microdomain signaling facilitates EDH activity in the human heart.
Collapse
Affiliation(s)
| | - Shaun L Sandow
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nilima Shukla
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Yanping Liu
- Division of Research Infrastructure, National Center for Research Resources, National Institutes of Health, Bethesda, Maryland, USA
| | - Jamie Y Jeremy
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | - David D Gutterman
- Division of Cardiovascular Medicine, Departments of Medicine, Physiology and Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
29
|
Leo CH, Jelinic M, Ng HH, Marshall SA, Novak J, Tare M, Conrad KP, Parry LJ. Vascular actions of relaxin: nitric oxide and beyond. Br J Pharmacol 2016; 174:1002-1014. [PMID: 27590257 DOI: 10.1111/bph.13614] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 12/28/2022] Open
Abstract
The peptide hormone relaxin regulates the essential maternal haemodynamic adaptations in early pregnancy through direct actions on the renal and systemic vasculature. These vascular actions of relaxin occur mainly through endothelium-derived NO-mediated vasodilator pathways and improvements in arterial compliance in small resistance-size arteries. This work catalysed a plethora of studies which revealed quite heterogeneous responses across the different regions of the vasculature, and also uncovered NO-independent mechanisms of relaxin action. In this review, we first describe the role of endogenous relaxin in maintaining normal vascular function, largely referring to work in pregnant and male relaxin-deficient animals. We then discuss the diversity of mechanisms mediating relaxin action in different vascular beds, including the involvement of prostanoids, VEGF, endothelium-derived hyperpolarisation and antioxidant activity in addition to the classic NO-mediated vasodilatory pathway. We conclude the review with current perspectives on the vascular remodelling capabilities of relaxin. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- C H Leo
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - M Jelinic
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - H H Ng
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - S A Marshall
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - J Novak
- Division of Mathematics and Science, Walsh University, North Canton, OH, USA
| | - M Tare
- Department of Physiology, Monash University, Clayton, VIC, Australia.,School of Rural Health, Monash University, Clayton, VIC, Australia
| | - K P Conrad
- Department of Physiology and Functional Genomics, Department of Obstetrics and Gynaecology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - L J Parry
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
30
|
Gao Y, Chen T, Raj JU. Endothelial and Smooth Muscle Cell Interactions in the Pathobiology of Pulmonary Hypertension. Am J Respir Cell Mol Biol 2016; 54:451-60. [PMID: 26744837 DOI: 10.1165/rcmb.2015-0323tr] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the pulmonary vasculature, the endothelial and smooth muscle cells are two key cell types that play a major role in the pathobiology of pulmonary vascular disease and pulmonary hypertension. The normal interactions between these two cell types are important for the homeostasis of the pulmonary circulation, and any aberrant interaction between them may lead to various disease states including pulmonary vascular remodeling and pulmonary hypertension. It is well recognized that the endothelial cell can regulate the function of the underlying smooth muscle cell by releasing various bioactive agents such as nitric oxide and endothelin-1. In addition to such paracrine regulation, other mechanisms exist by which there is cross-talk between these two cell types, including communication via the myoendothelial injunctions and information transfer via extracellular vesicles. Emerging evidence suggests that these nonparacrine mechanisms play an important role in the regulation of pulmonary vascular tone and the determination of cell phenotype and that they are critically involved in the pathobiology of pulmonary hypertension.
Collapse
Affiliation(s)
- Yuansheng Gao
- 1 Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, China; and
| | - Tianji Chen
- 2 Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - J Usha Raj
- 2 Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
31
|
Padilla J, Ramirez-Perez FI, Habibi J, Bostick B, Aroor AR, Hayden MR, Jia G, Garro M, DeMarco VG, Manrique C, Booth FW, Martinez-Lemus LA, Sowers JR. Regular Exercise Reduces Endothelial Cortical Stiffness in Western Diet-Fed Female Mice. Hypertension 2016; 68:1236-1244. [PMID: 27572153 DOI: 10.1161/hypertensionaha.116.07954] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022]
Abstract
We recently showed that Western diet-induced obesity and insulin resistance promotes endothelial cortical stiffness in young female mice. Herein, we tested the hypothesis that regular aerobic exercise would attenuate the development of endothelial and whole artery stiffness in female Western diet-fed mice. Four-week-old C57BL/6 mice were randomized into sedentary (ie, caged confined, n=6) or regular exercise (ie, access to running wheels, n=7) conditions for 16 weeks. Exercise training improved glucose tolerance in the absence of changes in body weight and body composition. Compared with sedentary mice, exercise-trained mice exhibited reduced endothelial cortical stiffness in aortic explants (sedentary 11.9±1.7 kPa versus exercise 5.5±1.0 kPa; P<0.05), as assessed by atomic force microscopy. This effect of exercise was not accompanied by changes in aortic pulse wave velocity (P>0.05), an in vivo measure of aortic stiffness. In comparison, exercise reduced femoral artery stiffness in isolated pressurized arteries and led to an increase in femoral internal artery diameter and wall cross-sectional area (P<0.05), indicative of outward hypertrophic remodeling. These effects of exercise were associated with an increase in femoral artery elastin content and increased number of fenestrae in the internal elastic lamina (P<0.05). Collectively, these data demonstrate for the first time that the aortic endothelium is highly plastic and, thus, amenable to reductions in stiffness with regular aerobic exercise in the absence of changes in in vivo whole aortic stiffness. Comparatively, the same level of exercise caused destiffening effects in peripheral muscular arteries, such as the femoral artery, that perfuse the working limbs.
Collapse
Affiliation(s)
- Jaume Padilla
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Francisco I Ramirez-Perez
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Javad Habibi
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Brian Bostick
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Annayya R Aroor
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Melvin R Hayden
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Guanghong Jia
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Mona Garro
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Vincent G DeMarco
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Camila Manrique
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Frank W Booth
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - Luis A Martinez-Lemus
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.)
| | - James R Sowers
- From the Department of Nutrition and Exercise Physiology (J.P., F.W.B.), Dalton Cardiovascular Research Center (J.P., F.I.R.-P., L.A.M.-L., J.R.S.), Department of Child Health (J.P.), Department of Biological Engineering (F.I.R.-P., L.A.M.-L.); Division of Cardiovascular Medicine, Department of Medicine (B.B.), Diabetes and Cardiovascular Research Center (J.H., A.R.A., M.R.H., G.J., M.G., V.G.D., C.M., J.R.S.), Department of Medical Pharmacology and Physiology (L.A.M.-L., J.R.S.), and Biomedical Sciences (F.W.B.), University of Missouri; and Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (J.R.S.).
| |
Collapse
|
32
|
Sonkusare SK, Dalsgaard T, Bonev AD, Nelson MT. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators. J Physiol 2016; 594:3271-85. [PMID: 26840527 DOI: 10.1113/jp271652] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/20/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Increase in endothelial cell (EC) calcium activates calcium-sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium-dependent vasodilatation. Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium-dependent vasodilatation is not clear. In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform. Endothelium-dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown. These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. ABSTRACT Endothelium-dependent vasodilators, such as acetylcholine, increase intracellular Ca(2+) through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca(2+) -sensitive intermediate and small conductance K(+) (IK and SK, respectively) channels. Although strong inward rectifier K(+) (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC-dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC-dependent vasodilatation of resistance-sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC-specific Kir2.1 knockdown (EC-Kir2.1(-/-) ) mice. Elevation of extracellular K(+) to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel inhibitors (Ba(2+) , ML-133) or in the arteries from EC-Kir2.1(-/-) mice. Potassium-induced dilatations were unaffected by inhibitors of TRPV4, IK and SK channels. The Kir channel blocker, Ba(2+) , did not affect currents through TRPV4, IK or SK channels. Endothelial cell-dependent vasodilatations in response to activation of muscarinic receptors, TRPV4 channels or IK/SK channels were reduced, but not eliminated, by Kir channel inhibitors or EC-Kir2.1(-/-) . In angiotensin II-induced hypertension, the Kir channel function was not altered, although the endothelium-dependent vasodilatation was severely impaired. Our results support the concept that EC Kir2 channels boost vasodilatory signals that are generated by Ca(2+) -dependent activation of IK and SK channels.
Collapse
Affiliation(s)
- Swapnil K Sonkusare
- Department of Pharmacology, University of Vermont, VT, USA.,Department of Molecular Physiology and Biological Physics, University of Virginia, VA, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, VA, USA
| | | | - Adrian D Bonev
- Department of Pharmacology, University of Vermont, VT, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, VT, USA.,Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
33
|
Sgouralis I, Layton AT. Conduction of feedback-mediated signal in a computational model of coupled nephrons. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2016; 33:87-106. [PMID: 25795767 PMCID: PMC4803228 DOI: 10.1093/imammb/dqv005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/14/2015] [Accepted: 02/17/2015] [Indexed: 12/12/2022]
Abstract
The nephron in the kidney regulates its fluid flow by several autoregulatory mechanisms. Two primary mechanisms are the myogenic response and the tubuloglomerular feedback (TGF). The myogenic response is a property of the pre-glomerular vasculature in which a rise in intravascular pressure elicits vasoconstriction that generates a compensatory increase in vascular resistance. TGF is a negative feedback response that balances glomerular filtration with tubular reabsorptive capacity. While each nephron has its own autoregulatory response, the responses of the kidney's many nephrons do not act autonomously but are instead coupled through the pre-glomerular vasculature. To better understand the conduction of these signals along the pre-glomerular arterioles and the impacts of internephron coupling on nephron flow dynamics, we developed a mathematical model of renal haemodynamics of two neighbouring nephrons that are coupled in that their afferent arterioles arise from a common cortical radial artery. Simulations were conducted to estimate internephron coupling strength, determine its dependence on vascular properties and to investigate the effect of coupling on TGF-mediated flow oscillations. Simulation results suggest that reduced gap-junctional conductances may yield stronger internephron TGF coupling and highly irregular TGF-mediated oscillations in nephron dynamics, both of which experimentally have been associated with hypertensive rats.
Collapse
Affiliation(s)
- Ioannis Sgouralis
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, USA
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, NC, USA
| |
Collapse
|
34
|
Wang Z, Du Z, Chan JKY, Teoh SH, Thian ES, Hong M. Direct Laser Microperforation of Bioresponsive Surface-Patterned Films with Through-Hole Arrays for Vascular Tissue-Engineering Application. ACS Biomater Sci Eng 2015; 1:1239-1249. [DOI: 10.1021/acsbiomaterials.5b00455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zuyong Wang
- Department
of Mechanical Engineering, National University of Singapore, 9 Engineering
Drive 1, Singapore 117576, Singapore
- Department
of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
| | - Zheren Du
- Department
of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
| | - Jerry Kok Yen Chan
- Department
of Reproductive Medicine, KK Women’s and Children’s Hospital, 100 Buikit Timah Road, Singapore 229899, Singapore
- Department
of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Cancer
and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College
Road, Singapore 169857, Singapore
| | - Swee Hin Teoh
- School of
Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Eng San Thian
- Department
of Mechanical Engineering, National University of Singapore, 9 Engineering
Drive 1, Singapore 117576, Singapore
| | - Minghui Hong
- Department
of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
| |
Collapse
|
35
|
Murrant CL, Sarelius IH. Local control of blood flow during active hyperaemia: what kinds of integration are important? J Physiol 2015; 593:4699-711. [PMID: 26314391 DOI: 10.1113/jp270205] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/05/2015] [Indexed: 01/06/2023] Open
Abstract
The focus of this review is on local mechanisms modifying arteriolar resistance to match blood flow to metabolism. In skeletal muscle many local mediators are known, including K(+) , nitric oxide (NO), purines and prostaglandins. Each accounts for about 30% of the response; it is widely held that these act redundantly: this concept awaits systematic testing. Understanding signal integration also requires consideration of microvascular network morphology in relation to local communication pathways between endothelial and smooth muscle cells (which are critical for many local responses, including dilatation to skeletal muscle contraction) and in relation to the spread of vasodilator signals up- and downstream throughout the network. Mechanisms mediating the spread of dilatation from local to remote sites have been well studied using acetylcholine (ACh), but remote dilatations to contraction of skeletal muscle fibres also occur. Importantly, these mechanisms clearly differ from those initiated by ACh, but much remains undefined. Furthermore, capillaries contribute to metabolic dilatation as they dilate arterioles directly upstream in response to vasoactive agents or contraction of adjacent muscle fibres. Given the dispersed arrangement of motor units, precise matching of flow to metabolism is not attainable unless signals are initiated only by 'active' capillaries. As motor units are recruited, signals that direct blood flow towards these active fibres will eventually be supported by local and spreading responses in the arterioles associated with those fibres. Thus, mechanisms of integration of vasodilator signalling across elements of the microvasculature remain an important area of focus for new studies.
Collapse
Affiliation(s)
- Coral L Murrant
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
| | - Ingrid H Sarelius
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
36
|
Meens MJ, Kwak BR, Duffy HS. Role of connexins and pannexins in cardiovascular physiology. Cell Mol Life Sci 2015; 72:2779-92. [PMID: 26091747 PMCID: PMC11113959 DOI: 10.1007/s00018-015-1959-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/26/2022]
Abstract
Connexins and pannexins form connexons, pannexons and membrane channels, which are critically involved in many aspects of cardiovascular physiology. For that reason, a vast number of studies have addressed the role of connexins and pannexins in the arterial and venous systems as well as in the heart. Moreover, a role for connexins in lymphatics has recently also been suggested. This review provides an overview of the current knowledge regarding the involvement of connexins and pannexins in cardiovascular physiology.
Collapse
Affiliation(s)
- Merlijn J. Meens
- Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Department of Medical Specializations-Cardiology, University of Geneva, Geneva, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Department of Medical Specializations-Cardiology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
37
|
Hald BO, Welsh DG, Holstein-Rathlou NH, Jacobsen JCB. Gap junctions suppress electrical but not [Ca(2+)] heterogeneity in resistance arteries. Biophys J 2015; 107:2467-76. [PMID: 25418315 DOI: 10.1016/j.bpj.2014.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/03/2014] [Accepted: 09/30/2014] [Indexed: 01/03/2023] Open
Abstract
Despite stochastic variation in the molecular composition and morphology of individual smooth muscle and endothelial cells, the membrane potential along intact microvessels is remarkably uniform. This is crucial for coordinated vasomotor responses. To investigate how this electrical homogeneity arises, a virtual arteriole was developed that introduces variation in the activities of ion-transport proteins between cells. By varying the level of heterogeneity and subpopulations of gap junctions (GJs), the resulting simulations shows that GJs suppress electrical variation but can only reduce cytosolic [Ca(2+)] variation. The process of electrical smoothing, however, introduces an energetic cost due to permanent currents, one which is proportional to the level of heterogeneity. This cost is particularly large when electrochemically different endothelial-cell and smooth-muscle-cell layers are coupled. Collectively, we show that homocellular GJs in a passively open state are crucial for electrical uniformity within the given cell layer, but homogenization may be limited by biophysical or energetic constraints. Owing to the ubiquitous presence of ion transport-proteins and cell-cell heterogeneity in biological tissues, these findings generalize across most biological fields.
Collapse
Affiliation(s)
- Bjørn Olav Hald
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Donald G Welsh
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
38
|
Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, Escaned J, Koller A, Piek JJ, de Wit C. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J 2015; 36:3134-46. [DOI: 10.1093/eurheartj/ehv100] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 03/13/2015] [Indexed: 12/31/2022] Open
|
39
|
Wang Z, Teoh SH, Hong M, Luo F, Teo EY, Chan JKY, Thian ES. Dual-Microstructured Porous, Anisotropic Film for Biomimicking of Endothelial Basement Membrane. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13445-13456. [PMID: 26030777 DOI: 10.1021/acsami.5b02464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Human endothelial basement membrane (BM) plays a pivotal role in vascular development and homeostasis. Here, a bioresponsive film with dual-microstructured geometries was engineered to mimic the structural roles of the endothelial BM in developing vessels, for vascular tissue engineering (TE) application. Flexible poly(ε-caprolactone) (PCL) thin film was fabricated with microscale anisotropic ridges/grooves and through-holes using a combination of uniaxial thermal stretching and direct laser perforation, respectively. Through optimizing the interhole distance, human mesenchymal stem cells (MSCs) cultured on the PCL film's ridges/grooves obtained an intact cell alignment efficiency. With prolonged culturing for 8 days, these cells formed aligned cell multilayers as found in native tunica media. By coculturing human umbilical vein endothelial cells (HUVECs) on the opposite side of the film, HUVECs were observed to build up transmural interdigitation cell-cell contact with MSCs via the through-holes, leading to a rapid endothelialization on the PCL film surface. Furthermore, vascular tissue construction based on the PCL film showed enhanced bioactivity with an elevated total nitric oxide level as compared to single MSCs or HUVECs culturing and indirect MSCs/HUVECs coculturing systems. These results suggested that the dual-microstructured porous and anisotropic film could simulate the structural roles of endothelial BM for vascular reconstruction, with aligned stromal cell multilayers, rapid endothelialization, and direct cell-cell interaction between the engineered stromal and endothelial components. This study has implications of recapitulating endothelial BM architecture for the de novo design of vascular TE scaffolds.
Collapse
Affiliation(s)
- Zuyong Wang
- †Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Swee Hin Teoh
- ‡School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Minghui Hong
- §Department of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
| | - Fangfang Luo
- §Department of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
| | - Erin Yiling Teo
- ⊥Department of Reproductive Medicine, KK Women's and Children's Hospital, 100 Buikit Timah Road, Singapore 229899, Singapore
| | - Jerry Kok Yen Chan
- ⊥Department of Reproductive Medicine, KK Women's and Children's Hospital, 100 Buikit Timah Road, Singapore 229899, Singapore
- ∥Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- ⊗Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Eng San Thian
- †Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
40
|
Straub AC, Zeigler AC, Isakson BE. The myoendothelial junction: connections that deliver the message. Physiology (Bethesda) 2015; 29:242-9. [PMID: 24985328 DOI: 10.1152/physiol.00042.2013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A vast amount of investigation has centered on how the endothelium and smooth muscle communicate. From this evidence, myoendothelial junctions have emerged as critical anatomical structures to regulate heterocellular cross talk. Indeed, there is now evidence that the myoendothelial junction serves as a signaling microdomain to organize proteins used to facilitate vascular heterocellular communication. This review highlights the evolving role of myoendothelial junctions in the context of vascular cell-cell communication.
Collapse
Affiliation(s)
- Adam C Straub
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Angela C Zeigler
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia; and
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia; and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
41
|
Bloksgaard M, Leurgans TM, Nissen I, Jensen PS, Hansen ML, Brewer JR, Bagatolli LA, Marcussen N, Irmukhamedov A, Rasmussen LM, De Mey JG. Elastin Organization in Pig and Cardiovascular Disease Patients' Pericardial Resistance Arteries. J Vasc Res 2015; 52:1-11. [DOI: 10.1159/000376548] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
|
42
|
Hennessey JC, Stuyvers BD, McGuire JJ. Small caliber arterial endothelial cells calcium signals elicited by PAR2 are preserved from endothelial dysfunction. Pharmacol Res Perspect 2015; 3:e00112. [PMID: 25729579 PMCID: PMC4324686 DOI: 10.1002/prp2.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/24/2014] [Indexed: 12/05/2022] Open
Abstract
Endothelial cell (EC)-dependent vasodilation by proteinase-activated receptor 2 (PAR2) is preserved in small caliber arteries in disease states where vasodilation by muscarinic receptors is decreased. In this study, we identified and characterized the PAR2-mediated intracellular calcium (Ca2+)-release mechanisms in EC from small caliber arteries in healthy and diseased states. Mesenteric arterial EC were isolated from PAR2 wild-type (WT) and null mice, after saline (controls) or angiotensin II (AngII) infusion, for imaging intracellular calcium and characterizing the calcium-release system by immunofluorescence. EC Ca2+ signals comprised two forms of Ca2+-release events that had distinct spatial-temporal properties and occurred near either the plasmalemma (peripheral) or center of EC. In healthy EC, PAR2-dependent increases in the densities and firing rates of both forms of Ca2+-release were abolished by inositol 1,4,5- trisphosphate receptor (IP3R) inhibitor, but partially reduced by transient potential vanilloid channels inhibitor ruthenium red (RR). Acetylcholine (ACh)-induced less overall Ca2+-release than PAR2 activation, but enhanced selectively the incidence of central events. PAR2-dependent Ca2+-activity, inhibitors sensitivities, IP3R, small- and intermediate-conductance Ca2+-activated potassium channels expressions were unchanged in EC from AngII WT. However, the same cells exhibited decreases in ACh-induced Ca2+-release, RR sensitivity, and endothelial nitric oxide synthase expression, indicating AngII-induced dysfunction was differentiated by receptor, Ca2+-release, and downstream targets of EC activation. We conclude that PAR2 and muscarinic receptors selectively elicit two elementary Ca2+ signals in single EC. PAR2-selective IP3R-dependent peripheral Ca2+-release mechanisms are identical between healthy and diseased states. Further study of PAR2-selective Ca2+-release for eliciting pathological and/or normal EC functions is warranted.
Collapse
Affiliation(s)
- John C Hennessey
- Cardiovascular Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University St. John's, Newfoundland, Canada
| | - Bruno D Stuyvers
- Cardiovascular Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University St. John's, Newfoundland, Canada
| | - John J McGuire
- Cardiovascular Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University St. John's, Newfoundland, Canada
| |
Collapse
|
43
|
Mazzuca MQ, Mata KM, Li W, Rangan SS, Khalil RA. Estrogen receptor subtypes mediate distinct microvascular dilation and reduction in [Ca2+]I in mesenteric microvessels of female rat. J Pharmacol Exp Ther 2015; 352:291-304. [PMID: 25472954 PMCID: PMC4293436 DOI: 10.1124/jpet.114.219865] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/02/2014] [Indexed: 01/11/2023] Open
Abstract
Estrogen interacts with estrogen receptors (ERs) to induce vasodilation, but the ER subtype and post-ER relaxation pathways are unclear. We tested if ER subtypes mediate distinct vasodilator and intracellular free Ca(2+) concentration ([Ca(2+)]i) responses via specific relaxation pathways in the endothelium and vascular smooth muscle (VSM). Pressurized mesenteric microvessels from female Sprague-Dawley rats were loaded with fura-2, and the changes in diameter and [Ca(2+)]i in response to 17β-estradiol (E2) (all ERs), PPT (4,4',4''-[4-propyl-(1H)-pyrazole-1,3,5-triyl]-tris-phenol) (ERα), diarylpropionitrile (DPN) (ERβ), and G1 [(±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro:3H-cyclopenta(c)quinolin-8-yl]-ethanon] (GPR30) were measured. In microvessels preconstricted with phenylephrine, ER agonists caused relaxation and decrease in [Ca(2+)]i that were with E2 = PPT > DPN > G1, suggesting that E2-induced vasodilation involves ERα > ERβ > GPR30. Acetylcholine caused vasodilation and decreased [Ca(2+)]i, which were abolished by endothelium removal or treatment with the nitric oxide synthase blocker Nω-nitro-l-arginine methyl ester (L-NAME) and the K(+) channel blockers tetraethylammonium (nonspecific) or apamin (small conductance Ca(2+)-activated K(+) channel) plus TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole) (intermediate conductance Ca(2+)-activated K(+) channel), suggesting endothelium-derived hyperpolarizing factor-dependent activation of KCa channels. E2-, PPT-, DPN-, and G1-induced vasodilation and decreased [Ca(2+)]i were not blocked by L-NAME, TEA, apamin plus TRAM-34, iberiotoxin (large conductance Ca(2+)- and voltage-activated K(+) channel), 4-aminopyridine (voltage-dependent K(+) channel), glibenclamide (ATP-sensitive K(+) channel), or endothelium removal, suggesting an endothelium- and K(+) channel-independent mechanism. In endothelium-denuded vessels preconstricted with phenylephrine, high KCl, or the Ca(2+) channel activator Bay K 8644 (1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-3-pyridinecarboxylic acid methyl ester), ER agonist-induced relaxation and decreased [Ca(2+)]i were with E2 = PPT > DPN > G1 and not inhibited by the guanylate cyclase inhibitor ODQ [1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one], and showed a similar relationship between decreased [Ca(2+)]i and vasorelaxation, supporting direct effects on Ca(2+) entry in VSM. Immunohistochemistry revealed ERα, ERβ, and GPR30 mainly in the vessel media and VSM. Thus, in mesenteric microvessels, ER subtypes mediate distinct vasodilation and decreased [Ca(2+)]i (ERα > ERβ > GPR30) through endothelium- and K(+) channel-independent inhibition of Ca(2+) entry mechanisms of VSM contraction.
Collapse
Affiliation(s)
- Marc Q Mazzuca
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Karina M Mata
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wei Li
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sridhar S Rangan
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
Straub AC, Butcher JT, Billaud M, Mutchler SM, Artamonov MV, Nguyen AT, Johnson T, Best AK, Miller MP, Palmer LA, Columbus L, Somlyo AV, Le TH, Isakson BE. Hemoglobin α/eNOS coupling at myoendothelial junctions is required for nitric oxide scavenging during vasoconstriction. Arterioscler Thromb Vasc Biol 2014; 34:2594-600. [PMID: 25278292 DOI: 10.1161/atvbaha.114.303974] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Hemoglobin α (Hb α) and endothelial nitric oxide synthase (eNOS) form a macromolecular complex at myoendothelial junctions; the functional role of this interaction remains undefined. To test if coupling of eNOS and Hb α regulates nitric oxide signaling, vascular reactivity, and blood pressure using a mimetic peptide of Hb α to disrupt this interaction. APPROACH AND RESULTS In silico modeling of Hb α and eNOS identified a conserved sequence of interaction. By mutating portions of Hb α, we identified a specific sequence that binds eNOS. A mimetic peptide of the Hb α sequence (Hb α X) was generated to disrupt this complex. Using in vitro binding assays with purified Hb α and eNOS and ex vivo proximity ligation assays on resistance arteries, we have demonstrated that Hb α X significantly decreased interaction between eNOS and Hb α. Fluorescein isothiocyanate labeling of Hb α X revealed localization to holes in the internal elastic lamina (ie, myoendothelial junctions). To test the functional effects of Hb α X, we measured cyclic guanosine monophosphate and vascular reactivity. Our results reveal augmented cyclic guanosine monophosphate production and altered vasoconstriction with Hb α X. To test the in vivo effects of these peptides on blood pressure, normotensive and hypertensive mice were injected with Hb α X, which caused a significant decrease in blood pressure; injection of Hb α X into eNOS(-/-) mice had no effect. CONCLUSIONS These results identify a novel sequence on Hb α that is important for Hb α/eNOS complex formation and is critical for nitric oxide signaling at myoendothelial junctions.
Collapse
Affiliation(s)
- Adam C Straub
- From the Department of Pharmacology and Chemical Biology (A.C.S.) and Heart, Lung, Blood and Vascular Medicine Institute (A.C.S., A.T.N., M.P.M.), University of Pittsburgh, PA; Robert M. Berne Cardiovascular Research Center (J.T.B., M.B., S.M.M., T.J., A.K.B., B.E.I.), Department of Molecular Physiology and Biophysics (M.B., M.V.A., A.V.S., B.E.I.), Deparment of Pediatrics (L.A.P.), Department of Chemistry (L.C.), and Department of Medicine (T.H.L.), University of Virginia, Charlottesville
| | - Joshua T Butcher
- From the Department of Pharmacology and Chemical Biology (A.C.S.) and Heart, Lung, Blood and Vascular Medicine Institute (A.C.S., A.T.N., M.P.M.), University of Pittsburgh, PA; Robert M. Berne Cardiovascular Research Center (J.T.B., M.B., S.M.M., T.J., A.K.B., B.E.I.), Department of Molecular Physiology and Biophysics (M.B., M.V.A., A.V.S., B.E.I.), Deparment of Pediatrics (L.A.P.), Department of Chemistry (L.C.), and Department of Medicine (T.H.L.), University of Virginia, Charlottesville
| | - Marie Billaud
- From the Department of Pharmacology and Chemical Biology (A.C.S.) and Heart, Lung, Blood and Vascular Medicine Institute (A.C.S., A.T.N., M.P.M.), University of Pittsburgh, PA; Robert M. Berne Cardiovascular Research Center (J.T.B., M.B., S.M.M., T.J., A.K.B., B.E.I.), Department of Molecular Physiology and Biophysics (M.B., M.V.A., A.V.S., B.E.I.), Deparment of Pediatrics (L.A.P.), Department of Chemistry (L.C.), and Department of Medicine (T.H.L.), University of Virginia, Charlottesville
| | - Stephanie M Mutchler
- From the Department of Pharmacology and Chemical Biology (A.C.S.) and Heart, Lung, Blood and Vascular Medicine Institute (A.C.S., A.T.N., M.P.M.), University of Pittsburgh, PA; Robert M. Berne Cardiovascular Research Center (J.T.B., M.B., S.M.M., T.J., A.K.B., B.E.I.), Department of Molecular Physiology and Biophysics (M.B., M.V.A., A.V.S., B.E.I.), Deparment of Pediatrics (L.A.P.), Department of Chemistry (L.C.), and Department of Medicine (T.H.L.), University of Virginia, Charlottesville
| | - Mykhaylo V Artamonov
- From the Department of Pharmacology and Chemical Biology (A.C.S.) and Heart, Lung, Blood and Vascular Medicine Institute (A.C.S., A.T.N., M.P.M.), University of Pittsburgh, PA; Robert M. Berne Cardiovascular Research Center (J.T.B., M.B., S.M.M., T.J., A.K.B., B.E.I.), Department of Molecular Physiology and Biophysics (M.B., M.V.A., A.V.S., B.E.I.), Deparment of Pediatrics (L.A.P.), Department of Chemistry (L.C.), and Department of Medicine (T.H.L.), University of Virginia, Charlottesville
| | - Anh T Nguyen
- From the Department of Pharmacology and Chemical Biology (A.C.S.) and Heart, Lung, Blood and Vascular Medicine Institute (A.C.S., A.T.N., M.P.M.), University of Pittsburgh, PA; Robert M. Berne Cardiovascular Research Center (J.T.B., M.B., S.M.M., T.J., A.K.B., B.E.I.), Department of Molecular Physiology and Biophysics (M.B., M.V.A., A.V.S., B.E.I.), Deparment of Pediatrics (L.A.P.), Department of Chemistry (L.C.), and Department of Medicine (T.H.L.), University of Virginia, Charlottesville
| | - Tyler Johnson
- From the Department of Pharmacology and Chemical Biology (A.C.S.) and Heart, Lung, Blood and Vascular Medicine Institute (A.C.S., A.T.N., M.P.M.), University of Pittsburgh, PA; Robert M. Berne Cardiovascular Research Center (J.T.B., M.B., S.M.M., T.J., A.K.B., B.E.I.), Department of Molecular Physiology and Biophysics (M.B., M.V.A., A.V.S., B.E.I.), Deparment of Pediatrics (L.A.P.), Department of Chemistry (L.C.), and Department of Medicine (T.H.L.), University of Virginia, Charlottesville
| | - Angela K Best
- From the Department of Pharmacology and Chemical Biology (A.C.S.) and Heart, Lung, Blood and Vascular Medicine Institute (A.C.S., A.T.N., M.P.M.), University of Pittsburgh, PA; Robert M. Berne Cardiovascular Research Center (J.T.B., M.B., S.M.M., T.J., A.K.B., B.E.I.), Department of Molecular Physiology and Biophysics (M.B., M.V.A., A.V.S., B.E.I.), Deparment of Pediatrics (L.A.P.), Department of Chemistry (L.C.), and Department of Medicine (T.H.L.), University of Virginia, Charlottesville
| | - Megan P Miller
- From the Department of Pharmacology and Chemical Biology (A.C.S.) and Heart, Lung, Blood and Vascular Medicine Institute (A.C.S., A.T.N., M.P.M.), University of Pittsburgh, PA; Robert M. Berne Cardiovascular Research Center (J.T.B., M.B., S.M.M., T.J., A.K.B., B.E.I.), Department of Molecular Physiology and Biophysics (M.B., M.V.A., A.V.S., B.E.I.), Deparment of Pediatrics (L.A.P.), Department of Chemistry (L.C.), and Department of Medicine (T.H.L.), University of Virginia, Charlottesville
| | - Lisa A Palmer
- From the Department of Pharmacology and Chemical Biology (A.C.S.) and Heart, Lung, Blood and Vascular Medicine Institute (A.C.S., A.T.N., M.P.M.), University of Pittsburgh, PA; Robert M. Berne Cardiovascular Research Center (J.T.B., M.B., S.M.M., T.J., A.K.B., B.E.I.), Department of Molecular Physiology and Biophysics (M.B., M.V.A., A.V.S., B.E.I.), Deparment of Pediatrics (L.A.P.), Department of Chemistry (L.C.), and Department of Medicine (T.H.L.), University of Virginia, Charlottesville
| | - Linda Columbus
- From the Department of Pharmacology and Chemical Biology (A.C.S.) and Heart, Lung, Blood and Vascular Medicine Institute (A.C.S., A.T.N., M.P.M.), University of Pittsburgh, PA; Robert M. Berne Cardiovascular Research Center (J.T.B., M.B., S.M.M., T.J., A.K.B., B.E.I.), Department of Molecular Physiology and Biophysics (M.B., M.V.A., A.V.S., B.E.I.), Deparment of Pediatrics (L.A.P.), Department of Chemistry (L.C.), and Department of Medicine (T.H.L.), University of Virginia, Charlottesville
| | - Avril V Somlyo
- From the Department of Pharmacology and Chemical Biology (A.C.S.) and Heart, Lung, Blood and Vascular Medicine Institute (A.C.S., A.T.N., M.P.M.), University of Pittsburgh, PA; Robert M. Berne Cardiovascular Research Center (J.T.B., M.B., S.M.M., T.J., A.K.B., B.E.I.), Department of Molecular Physiology and Biophysics (M.B., M.V.A., A.V.S., B.E.I.), Deparment of Pediatrics (L.A.P.), Department of Chemistry (L.C.), and Department of Medicine (T.H.L.), University of Virginia, Charlottesville
| | - Thu H Le
- From the Department of Pharmacology and Chemical Biology (A.C.S.) and Heart, Lung, Blood and Vascular Medicine Institute (A.C.S., A.T.N., M.P.M.), University of Pittsburgh, PA; Robert M. Berne Cardiovascular Research Center (J.T.B., M.B., S.M.M., T.J., A.K.B., B.E.I.), Department of Molecular Physiology and Biophysics (M.B., M.V.A., A.V.S., B.E.I.), Deparment of Pediatrics (L.A.P.), Department of Chemistry (L.C.), and Department of Medicine (T.H.L.), University of Virginia, Charlottesville
| | - Brant E Isakson
- From the Department of Pharmacology and Chemical Biology (A.C.S.) and Heart, Lung, Blood and Vascular Medicine Institute (A.C.S., A.T.N., M.P.M.), University of Pittsburgh, PA; Robert M. Berne Cardiovascular Research Center (J.T.B., M.B., S.M.M., T.J., A.K.B., B.E.I.), Department of Molecular Physiology and Biophysics (M.B., M.V.A., A.V.S., B.E.I.), Deparment of Pediatrics (L.A.P.), Department of Chemistry (L.C.), and Department of Medicine (T.H.L.), University of Virginia, Charlottesville.
| |
Collapse
|
45
|
Kapsokalyvas D, Schiffers PM, Maij N, Suylen DP, Hackeng TM, van Zandvoort MA, De Mey JG. Imaging evidence for endothelin ETA/ETB receptor heterodimers in isolated rat mesenteric resistance arteries. Life Sci 2014; 111:36-41. [DOI: 10.1016/j.lfs.2014.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/16/2014] [Accepted: 07/02/2014] [Indexed: 01/25/2023]
|
46
|
Sonkusare SK, Dalsgaard T, Bonev AD, Hill-Eubanks DC, Kotlikoff MI, Scott JD, Santana LF, Nelson MT. AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension. Sci Signal 2014; 7:ra66. [PMID: 25005230 DOI: 10.1126/scisignal.2005052] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endothelial cell dysfunction, characterized by a diminished response to endothelial cell-dependent vasodilators, is a hallmark of hypertension. TRPV4 channels play a major role in endothelial-dependent vasodilation, a function mediated by local Ca(2+) influx through clusters of functionally coupled TRPV4 channels rather than by a global increase in endothelial cell Ca(2+). We showed that stimulation of muscarinic acetylcholine receptors on endothelial cells of mouse arteries exclusively activated TRPV4 channels that were localized at myoendothelial projections (MEPs), specialized regions of endothelial cells that contact smooth muscle cells. Muscarinic receptor-mediated activation of TRPV4 depended on protein kinase C (PKC) and the PKC-anchoring protein AKAP150, which was concentrated at MEPs. Cooperative opening of clustered TRPV4 channels specifically amplified Ca(2+) influx at MEPs. Cooperativity of TRPV4 channels at non-MEP sites was much lower, and cooperativity at MEPs was greatly reduced by chelation of intracellular Ca(2+) or AKAP150 knockout, suggesting that Ca(2+) entering through adjacent channels underlies the AKAP150-dependent potentiation of TRPV4 activity. In a mouse model of angiotensin II-induced hypertension, MEP localization of AKAP150 was disrupted, muscarinic receptor stimulation did not activate TRPV4 channels, cooperativity among TRPV4 channels at MEPs was weaker, and vasodilation in response to muscarinic receptor stimulation was reduced. Thus, endothelial-dependent dilation of resistance arteries is enabled by MEP-localized AKAP150, which ensures the proximity of PKC to TRPV4 channels and the coupled channel gating necessary for efficient communication from endothelial to smooth muscle cells in arteries. Disruption of this molecular assembly may contribute to altered blood flow in hypertension.
Collapse
Affiliation(s)
- Swapnil K Sonkusare
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05403, USA
| | - Thomas Dalsgaard
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05403, USA
| | - Adrian D Bonev
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05403, USA
| | - David C Hill-Eubanks
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05403, USA
| | - Michael I Kotlikoff
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - John D Scott
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Luis F Santana
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Mark T Nelson
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05403, USA. Institute of Cardiovascular Sciences, University of Manchester, Manchester M13 9NT, UK.
| |
Collapse
|
47
|
Hald BO, Jacobsen JCB, Sandow SL, Holstein-Rathlou NH, Welsh DG. Less is more: minimal expression of myoendothelial gap junctions optimizes cell-cell communication in virtual arterioles. J Physiol 2014; 592:3243-55. [PMID: 24907303 DOI: 10.1113/jphysiol.2014.272815] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dysfunctional electrical signalling within the arteriolar wall is a major cause of cardiovascular disease. The endothelial cell layer constitutes the primary electrical pathway, co-ordinating contraction of the overlying smooth muscle cell (SMC) layer. As myoendothelial gap junctions (MEGJs) provide direct contact between the cell layers, proper vasomotor responses are thought to depend on a high, uniform MEGJ density. However, MEGJs are observed to be expressed heterogeneously within and among vascular beds. This discrepancy is addressed in the present study. As no direct measures of MEGJ conductance exist, we employed a computational modelling approach to vary the number, conductance and distribution of MEGJs. Our simulations demonstrate that a minimal number of randomly distributed MEGJs augment arteriolar cell-cell communication by increasing conduction efficiency and ensuring appropriate membrane potential responses in SMCs. We show that electrical coupling between SMCs must be tailored to the particular MEGJ distribution. Finally, observation of non-decaying mechanical conduction in arterioles without regeneration has been a long-standing controversy in the microvascular field. As heterogeneous MEGJ distributions provide for different conduction profiles along the cell layers, we demonstrate that a non-decaying conduction profile is possible in the SMC layer of a vessel with passive electrical properties. These intriguing findings redefine the concept of efficient electrical communication in the microcirculation, illustrating how heterogeneous properties, ubiquitous in biological systems, may have a profound impact on system behaviour and how acute local and global flow control is explained from the biophysical foundations.
Collapse
Affiliation(s)
- Bjørn Olav Hald
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | - Shaun L Sandow
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Donald G Welsh
- Department of Physiology & Pharmacology, University of Calgary, Alberta, Canada
| |
Collapse
|
48
|
Zhang Z, Payne K, Pallone TL. Syncytial communication in descending vasa recta includes myoendothelial coupling. Am J Physiol Renal Physiol 2014; 307:F41-52. [PMID: 24785189 DOI: 10.1152/ajprenal.00178.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using dual cell patch-clamp recording, we examined pericyte, endothelial, and myoendothelial cell-to-cell communication in descending vasa recta. Graded current injections into pericytes or endothelia yielded input resistances of 220 ± 21 and 128 ± 20 MΩ, respectively (P < 0.05). Injection of positive or negative current into an endothelial cell depolarized and hyperpolarized adjacent endothelial cells, respectively. Similarly, current injection into a pericyte depolarized and hyperpolarized adjacent pericytes. During myoendothelial studies, current injection into a pericyte or an endothelial cell yielded small, variable, but significant change of membrane potential in heterologous cells. Membrane potentials of paired pericytes or paired endothelia were highly correlated and identical. Paired measurements of resting potentials in heterologous cells were also correlated, but with slight hyperpolarization of the endothelium relative to the pericyte, -55.2 ± 1.8 vs. -52.9 ± 2.2 mV (P < 0.05). During dual recordings, angiotensin II or bradykinin stimulated temporally identical variations of pericyte and endothelial membrane potential. Similarly, voltage clamp depolarization of pericytes or endothelial cells induced parallel changes of membrane potential in the heterologous cell type. We conclude that the descending vasa recta endothelial syncytium is of lower resistance than the pericyte syncytium and that high-resistance myoendothelial coupling also exists. The myoendothelial communication between pericytes and endothelium maintains near identity of membrane potentials at rest and during agonist stimulation. Finally, endothelia membrane potential lies slightly below pericyte membrane potential, suggesting a tonic role for the former to hyperpolarize the latter and provide a brake on vasoconstriction.
Collapse
Affiliation(s)
- Zhong Zhang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kristie Payne
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Thomas L Pallone
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
49
|
Maimon N, Titus PA, Sarelius IH. Pre-exposure to adenosine, acting via A(2A) receptors on endothelial cells, alters the protein kinase A dependence of adenosine-induced dilation in skeletal muscle resistance arterioles. J Physiol 2014; 592:2575-90. [PMID: 24687580 DOI: 10.1113/jphysiol.2013.265835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine (ADO) is an endogenous vasodilatory purine widely recognized to be a significant contributor to functional hyperaemia. Despite this, many aspects of the mechanisms by which ADO induces dilation in small resistance arterioles are not established, or appear contradictory. These include: identification of the primary receptor subtype; its location on endothelial (EC) or vascular smooth muscle cells; whether ADO acts on KATP channels in these resistance vessels; and the contribution of cAMP/protein kinase A (PKA) signalling to the response. In intravital microscopy studies of intact or EC-denuded skeletal muscle arterioles, we show that ADO acts via A2A receptors located on ECs to produce vasodilation via activation of KATP channels located on vascular smooth muscle cells. Importantly, we found that the signalling pathway involves cAMP as expected, but that a requirement for PKA activation is demonstrable only if the vessel is not pre-exposed to ADO. That is, PKA-dependent signalling varies with pre-exposure to ADO. Further, we show that PKA activation alone is not sufficient to dilate these arterioles; an additional EC calcium-dependent signalling mechanism is required for vasodilation to ADO. The ability of arterioles in situ to respond to occupancy of a specific receptor by utilizing different cell signalling pathways under different conditions to produce the same response allows the arteriole to respond to key homeostatic requirements using more than a single signalling mechanism. Clearly, this is likely to be physiologically advantageous, but the role for this signalling flexibility in the integrated arteriolar response that underlies functional hyperaemia will require further exploration.
Collapse
Affiliation(s)
- Nir Maimon
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Patricia A Titus
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Ingrid H Sarelius
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
50
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 PMCID: PMC3973613 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|