1
|
TgAP2IX-5 is a key transcriptional regulator of the asexual cell cycle division in Toxoplasma gondii. Nat Commun 2021; 12:116. [PMID: 33414462 PMCID: PMC7791101 DOI: 10.1038/s41467-020-20216-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/18/2020] [Indexed: 01/22/2023] Open
Abstract
Apicomplexan parasites have evolved efficient and distinctive strategies for intracellular replication where the timing of emergence of the daughter cells (budding) is a decisive element. However, the molecular mechanisms that provide the proper timing of parasite budding remain unknown. Using Toxoplasma gondii as a model Apicomplexan, we identified a master regulator that controls the timing of the budding process. We show that an ApiAP2 transcription factor, TgAP2IX-5, controls cell cycle events downstream of centrosome duplication. TgAP2IX-5 binds to the promoter of hundreds of genes and controls the activation of the budding-specific cell cycle expression program. TgAP2IX-5 regulates the expression of specific transcription factors that are necessary for the completion of the budding cycle. Moreover, TgAP2IX-5 acts as a limiting factor that ensures that asexual proliferation continues by promoting the inhibition of the differentiation pathway. Therefore, TgAP2IX-5 is a master regulator that controls both cell cycle and developmental pathways. The control of the proper timing of emergence of apicomplexan parasite daughter cells during replication is crucial for their proliferation. Here, Khelifa et al. identify a key transcriptional regulator in the model Apicomplexa Toxoplasma gondii, which regulates the expression of transcription factors necessary for completion of the budding cycle.
Collapse
|
2
|
Prasad A, Mastud P, Patankar S. Dually localised proteins found in both the apicoplast and mitochondrion utilize the Golgi-dependent pathway for apicoplast targeting in Toxoplasma gondii. Biol Cell 2020; 113:58-78. [PMID: 33112425 DOI: 10.1111/boc.202000050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND INFORMATION Like other apicomplexan parasites, Toxoplasma gondii harbours a four-membraned endosymbiotic organelle - the apicoplast. Apicoplast proteins are nuclear encoded and trafficked to the organelle through the endoplasmic reticulum (ER). From the ER to the apicoplast, two distinct protein trafficking pathways can be used. One such pathway is the cell's secretory pathway involving the Golgi, whereas the other is a unique Golgi-independent pathway. Using different experimental approaches, many apicoplast proteins have been shown to utilize the Golgi-independent pathway, whereas a handful of reports show that a few proteins use the Golgi-dependent pathway. This has led to an emphasis towards the unique Golgi-independent pathway when apicoplast protein trafficking is discussed in the literature. Additionally, the molecular features that drive proteins to each pathway are not known. RESULTS In this report, we systematically test eight apicoplast proteins, using a C-terminal HDEL sequence to assess the role of the Golgi in their transport. We demonstrate that dually localised proteins of the apicoplast and mitochondrion (TgSOD2, TgTPx1/2 and TgACN/IRP) are trafficked through the Golgi, whereas proteins localised exclusively to the apicoplast are trafficked independent of the Golgi. Mutants of the dually localised proteins that localised exclusively to the apicoplast also showed trafficking through the Golgi. Phylogenetic analysis of TgSOD2, TgTPx1/2 and TgACN/IRP suggested that the evolutionary origins of TgSOD2 and TgTPx1/2 lie in the mitochondrion, whereas TgACN/IRP appears to have originated from the apicoplast. CONCLUSIONS AND SIGNIFICANCE Collectively, with these results, for the first time, we establish that the driver of the Golgi-dependent trafficking route to the apicoplast is the dual localisation of the protein to the apicoplast and the mitochondrion.
Collapse
Affiliation(s)
- Aparna Prasad
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Pragati Mastud
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Swati Patankar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
3
|
There Is Treasure Everywhere: Reductive Plastid Evolution in Apicomplexa in Light of Their Close Relatives. Biomolecules 2019; 9:biom9080378. [PMID: 31430853 PMCID: PMC6722601 DOI: 10.3390/biom9080378] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
The phylum Apicomplexa (Alveolates) comprises a group of host-associated protists, predominately intracellular parasites, including devastating parasites like Plasmodium falciparum, the causative agent of malaria. One of the more fascinating characteristics of Apicomplexa is their highly reduced (and occasionally lost) remnant plastid, termed the apicoplast. Four core metabolic pathways are retained in the apicoplast: heme synthesis, iron–sulfur cluster synthesis, isoprenoid synthesis, and fatty acid synthesis. It has been suggested that one or more of these pathways are essential for plastid and plastid genome retention. The past decade has witnessed the discovery of several apicomplexan relatives, and next-generation sequencing efforts are revealing that they retain variable plastid metabolic capacities. These data are providing clues about the core genes and pathways of reduced plastids, while at the same time further confounding our view on the evolutionary history of the apicoplast. Here, we examine the evolutionary history of the apicoplast, explore plastid metabolism in Apicomplexa and their close relatives, and propose that the differences among reduced plastids result from a game of endosymbiotic roulette. Continued exploration of the Apicomplexa and their relatives is sure to provide new insights into the evolution of the apicoplast and apicomplexans as a whole.
Collapse
|
4
|
Mastud P, Patankar S. An ambiguous N-terminus drives the dual targeting of an antioxidant protein Thioredoxin peroxidase (TgTPx1/2) to endosymbiotic organelles in Toxoplasma gondii. PeerJ 2019; 7:e7215. [PMID: 31346496 PMCID: PMC6642795 DOI: 10.7717/peerj.7215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii harbors two endosymbiotic organelles: a relict plastid, the apicoplast, and a mitochondrion. The parasite expresses an antioxidant protein, thioredoxin peroxidase 1/2 (TgTPx1/2), that is dually targeted to these organelles. Nuclear-encoded proteins such as TgTPx1/2 are trafficked to the apicoplast via a secretory route through the endoplasmic reticulum (ER) and to the mitochondrion via a non-secretory pathway comprising of translocon uptake. Given the two distinct trafficking pathways for localization to the two organelles, the signals in TgTPx1/2 for this dual targeting are open areas of investigation. Here we show that the signals for apicoplast and mitochondrial trafficking lie in the N-terminal 50 amino acids of the protein and are overlapping. Interestingly, mutational analysis of the overlapping stretch shows that despite this overlap, the signals for individual organellar uptake can be easily separated. Further, deletions in the N-terminus also reveal a 10 amino acid stretch that is responsible for targeting the protein from punctate structures surrounding the apicoplast into the organelle itself. Collectively, results presented in this report suggest that an ambiguous signal sequence for organellar uptake combined with a hierarchy of recognition by the protein trafficking machinery drives the dual targeting of TgTPx1/2.
Collapse
Affiliation(s)
- Pragati Mastud
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
5
|
Molecular phylogenetics of eimeriid coccidia (Eimeriidae, Eimeriorina, Apicomplexa, Alveolata): A preliminary multi-gene and multi-genome approach. Parasitol Res 2015; 114:4149-60. [PMID: 26319519 DOI: 10.1007/s00436-015-4646-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Coccidia possess three distinct genomes: nuclear, mitochondrial, and plastid. Sequences from five genes located on these three genomes were used to reconstruct the phylogenetic relationships of members of the phylum Apicomplexa: 18S rDNA sequences from the nuclear (nu) genome, partial cytochrome c oxidase subunit I sequences from the mitochondrial (mt) genome, and partial 16S and 23S rDNA sequences and RNA polymerase B sequences from plastid (pl) genomes. Maximum parsimony, maximum likelihood, and Bayesian inference were used in conjunction with nuclear substitution models generated from data subsets in the analyses. Major groups within the Apicomplexa were well supported with the mitochondrial, nuclear, and a combination of mitochondrial, nuclear and concatenated plastid gene sequences. However, the genus Eimeria was paraphyletic in phylogenetic trees based on the nuclear gene. Analyses using the individual genes (18S rDNA and cytochrome c oxidase subunit I) resolved the various apicomplexan groups with high Bayesian posterior probabilities. The multi-gene, multi-genome analyses based on concatenated nu 18S rDNA, pl 16S, pl 23S, pl rPoB, pl rPoB1, and mt COI sequences appeared useful in resolving phylogenetic relationships within the phylum Apicomplexa. Genus-level relationships, or higher, appear best supported by 18S rDNA analyses, and species-level analyses are best investigated using mt COI sequences; for parasites for which both loci are available, nuclear 18S rDNA sequences combined with mitochondrial COI sequences provide a compact and informative molecular dataset for inferring the evolutionary relationships taxa in the Apicomplexa.
Collapse
|
6
|
Arisue N, Hashimoto T. Phylogeny and evolution of apicoplasts and apicomplexan parasites. Parasitol Int 2015; 64:254-9. [DOI: 10.1016/j.parint.2014.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 12/31/2022]
|
7
|
Cell biology of chromerids: autotrophic relatives to apicomplexan parasites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:333-69. [PMID: 24016529 DOI: 10.1016/b978-0-12-407694-5.00008-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chromerida are algae possessing a complex plastid surrounded by four membranes. Although isolated originally from stony corals in Australia, they seem to be globally distributed. According to their molecular phylogeny, morphology, ultrastructure, structure of organellar genomes, and noncanonical pathway for tetrapyrrole synthesis, these algae are thought to be the closest known phototrophic relatives to apicomplexan parasites. Here, we summarize the current knowledge of cell biology and evolution of this novel group of algae, which contains only two formally described species, but is apparently highly diverse and virtually ubiquitous in marine environments.
Collapse
|
8
|
Abstract
We have developed a semi-automatic methodology to reconstruct the phylogenetic species tree in Protozoa, integrating different phylogenetic algorithms and programs, and demonstrating the utility of a supermatrix approach to construct phylogenomics-based trees using 31 universal orthologs (UO). The species tree obtained was formed by three major clades that were related to three groups of data: i) Species containing at least 80% of UO (25/31) in the concatenated multiple alignment or supermatrix, this clade was called C1, ii) Species containing between 50%–79% (15–24/31) of UO called C2, and iii) Species containing less than 50% (1–14/31) of UO called C3. C1 was composed by only protozoan species, C2 was composed by species related to Protozoa, and C3 was composed by some species of C1 (Protozoa) and C2 (related to Protozoa). Our phylogenomics-based methodology using a supermatrix approach proved to be reliable with protozoan genome data and using at least 25 UO, suggesting that (a) the more UO used the better, (b) using the entire UO sequence or just a conserved block of it for the supermatrix produced similar phylogenomic trees.
Collapse
|
9
|
Atkinson GC, Baldauf SL. Evolution of elongation factor G and the origins of mitochondrial and chloroplast forms. Mol Biol Evol 2010; 28:1281-92. [PMID: 21097998 DOI: 10.1093/molbev/msq316] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein synthesis elongation factor G (EF-G) is an essential protein with central roles in both the elongation and ribosome recycling phases of protein synthesis. Although EF-G evolution is predicted to be conservative, recent reports suggest otherwise. We have characterized EF-G in terms of its molecular phylogeny, genomic context, and patterns of amino acid substitution. We find that most bacteria carry a single "canonical" EF-G, which is phylogenetically conservative and encoded in an str operon. However, we also find a number of EF-G paralogs. These include a pair of EF-Gs that are mostly found together and in an eclectic subset of bacteria, specifically δ-proteobacteria, spirochaetes, and planctomycetes (the "spd" bacteria). These spdEFGs have also given rise to the mitochondrial factors mtEFG1 and mtEFG2, which probably arrived in eukaryotes before the eukaryotic last common ancestor. Meanwhile, chloroplasts apparently use an α-proteobacterial-derived EF-G rather than the expected cyanobacterial form. The long-term comaintenance of the spd/mtEFGs may be related to their subfunctionalization for translocation and ribosome recycling. Consistent with this, patterns of sequence conservation and site-specific evolutionary rate shifts suggest that the faster evolving spd/mtEFG2 has lost translocation function, but surprisingly, the protein also shows little conservation of sites related to recycling activity. On the other hand, spd/mtEFG1, although more slowly evolving, shows signs of substantial remodeling. This is particularly extensive in the GTPase domain, including a highly conserved three amino acid insertion in switch I. We suggest that subfunctionalization of the spd/mtEFGs is not a simple case of specialization for subsets of original activities. Rather, the duplication allows the release of one paralog from the selective constraints imposed by dual functionality, thus allowing it to become more highly specialized. Thus, the potential for fine tuning afforded by subfunctionalization may explain the maintenance of EF-G paralogs.
Collapse
Affiliation(s)
- Gemma C Atkinson
- Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
10
|
A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A 2010; 107:10949-54. [PMID: 20534454 DOI: 10.1073/pnas.1003335107] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The discovery of a nonphotosynthetic plastid in malaria and other apicomplexan parasites has sparked a contentious debate about its evolutionary origin. Molecular data have led to conflicting conclusions supporting either its green algal origin or red algal origin, perhaps in common with the plastid of related dinoflagellates. This distinction is critical to our understanding of apicomplexan evolution and the evolutionary history of endosymbiosis and photosynthesis; however, the two plastids are nearly impossible to compare due to their nonoverlapping information content. Here we describe the complete plastid genome sequences and plastid-associated data from two independent photosynthetic lineages represented by Chromera velia and an undescribed alga CCMP3155 that we show are closely related to apicomplexans. These plastids contain a suite of features retained in either apicomplexan (four plastid membranes, the ribosomal superoperon, conserved gene order) or dinoflagellate plastids (form II Rubisco acquired by horizontal transfer, transcript polyuridylylation, thylakoids stacked in triplets) and encode a full collective complement of their reduced gene sets. Together with whole plastid genome phylogenies, these characteristics provide multiple lines of evidence that the extant plastids of apicomplexans and dinoflagellates were inherited by linear descent from a common red algal endosymbiont. Our phylogenetic analyses also support their close relationship to plastids of heterokont algae, indicating they all derive from the same endosymbiosis. Altogether, these findings support a relatively simple path of linear descent for the evolution of photosynthesis in a large proportion of algae and emphasize plastid loss in several lineages (e.g., ciliates, Cryptosporidium, and Phytophthora).
Collapse
|
11
|
Lim L, McFadden GI. The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc Lond B Biol Sci 2010; 365:749-63. [PMID: 20124342 PMCID: PMC2817234 DOI: 10.1098/rstb.2009.0273] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The malaria parasite, Plasmodium falciparum, harbours a relict plastid known as the ‘apicoplast’. The discovery of the apicoplast ushered in an exciting new prospect for drug development against the parasite. The eubacterial ancestry of the organelle offers a wealth of opportunities for the development of therapeutic interventions. Morphological, biochemical and bioinformatic studies of the apicoplast have further reinforced its ‘plant-like’ characteristics and potential as a drug target. However, we are still not sure why the apicoplast is essential for the parasite's survival. This review explores the origins and metabolic functions of the apicoplast. In an attempt to decipher the role of the organelle within the parasite we also take a closer look at the transporters decorating the plastid to better understand the metabolic exchanges between the apicoplast and the rest of the parasite cell.
Collapse
Affiliation(s)
- Liting Lim
- School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
12
|
Lau AOT, McElwain TF, Brayton KA, Knowles DP, Roalson EH. Babesia bovis: a comprehensive phylogenetic analysis of plastid-encoded genes supports green algal origin of apicoplasts. Exp Parasitol 2009; 123:236-43. [PMID: 19646439 DOI: 10.1016/j.exppara.2009.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/23/2009] [Accepted: 07/24/2009] [Indexed: 11/26/2022]
Abstract
Apicomplexan parasites commonly contain a unique, non-photosynthetic plastid-like organelle termed the apicoplast. Previous analyses of other plastid-containing organisms suggest that apicoplasts were derived from a red algal ancestor. In this report, we present an extensive phylogenetic study of apicoplast origins using multiple previously reported apicoplast sequences as well as several sequences recently reported. Phylogenetic analysis of amino acid sequences was used to determine the evolutionary origin of the organelle. A total of nine plastid genes from 37 species were incorporated in our study. The data strongly support a green algal origin for apicoplasts and Euglenozoan plastids. Further, the nearest green algae lineage to the Apicomplexans is the parasite Helicosporidium, suggesting that apicoplasts may have originated by lateral transfer from green algal parasite lineages. The results also substantiate earlier findings that plastids found in Heterokonts such as Odontella and Thalassiosira were derived from a separate secondary endosymbiotic event likely originating from a red algal lineage.
Collapse
Affiliation(s)
- Audrey O T Lau
- Program in Genomics, Department of Veterinary Microbiology & Pathology, School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
13
|
Oborník M, Janouškovec J, Chrudimský T, Lukeš J. Evolution of the apicoplast and its hosts: From heterotrophy to autotrophy and back again. Int J Parasitol 2009; 39:1-12. [DOI: 10.1016/j.ijpara.2008.07.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/23/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
|
14
|
Rider SD, Zhu G. An apicomplexan ankyrin-repeat histone deacetylase with relatives in photosynthetic eukaryotes. Int J Parasitol 2008; 39:747-54. [PMID: 19136004 DOI: 10.1016/j.ijpara.2008.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/21/2008] [Accepted: 11/23/2008] [Indexed: 11/19/2022]
Abstract
Cryptosporidium parvum is a member of the Apicomplexa that lacks a plastid and associated nuclear-encoded genes, which has hampered its use in evolutionary comparisons with algae and eliminated a pool of potentially useful drug targets. Here we show that apicomplexan parasites possess an unusual family of class II histone deacetylase (HDAC) proteins with orthologues that are present in other chromalveolates and primitive algae. A striking feature of these HDAC proteins is the presence of ankyrin repeats in the amino-terminus that appear to be required for enzyme activity. In vitro and in vivo analyses of the C. parvum orthologue indicate that this subclass of chromatin-remodelling proteins is targeted by the anti-cancer drug suberoylanilide hydroxamic acid and that these proteins are most likely involved in the essential process of H4 histone deacetylation that coincides with DNA replication. We propose that members of this novel class of histone deacetylase can serve as promising new targets for treatments against debilitating diseases such as cryptosporidosis, toxoplasmosis and malaria.
Collapse
Affiliation(s)
- S Dean Rider
- Department of Pathobiology, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
15
|
Kim E, Archibald JM. Diversity and Evolution of Plastids and Their Genomes. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/978-3-540-68696-5_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Lau AOT. An overview of the Babesia, Plasmodium and Theileria genomes: a comparative perspective. Mol Biochem Parasitol 2008; 164:1-8. [PMID: 19110007 DOI: 10.1016/j.molbiopara.2008.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 11/30/2022]
Abstract
Babesia, Plasmodium and Theileria form a triad of apicomplexan hemoparasites and are accountable for significant mortality and morbidity to humans and animals globally. Understanding the pathobiology of these three genera is crucial as multiple drug resistant strains continue to arise in endemic areas along with pesticide and acaricide resistant vector hosts. Vastly improved sequencing technology has produced whole genome sequences of several apicomplexan species and subsequent comparative analyses of these genomes have identified unique as well as common features among the different species, information that will help in the pursuit of alternative therapies, management and perhaps elimination of the disease. This review, therefore, summarizes comparisons of genome structure, protein families, metabolic pathways and organelle biology in these three apicomplexans and how such knowledge has and will continue to enhance the field.
Collapse
Affiliation(s)
- Audrey O T Lau
- Program in Genomics, Department of Veterinary Microbiology and Pathology, School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| |
Collapse
|
17
|
Sanchez-Puerta MV, Delwiche CF. A HYPOTHESIS FOR PLASTID EVOLUTION IN CHROMALVEOLATES(1). JOURNAL OF PHYCOLOGY 2008; 44:1097-1107. [PMID: 27041706 DOI: 10.1111/j.1529-8817.2008.00559.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Four eukaryotic lineages, namely, haptophytes, alveolates, cryptophytes, and heterokonts, contain in most cases photosynthetic and nonphotosynthetic members-the photosynthetic ones with secondary plastids with chl c as the main photosynthetic pigment. These four photosynthetic lineages were grouped together on the basis of their pigmentation and called chromalveolates, which is usually understood to imply loss of plastids in the nonphotosynthetic members. Despite the ecological and economic importance of this group of organisms, the phylogenetic relationships among these algae are only partially understood, and the so-called chromalveolate hypothesis is very controversial. This review evaluates the evidence for and against this grouping and summarizes the present understanding of chromalveolate evolution. We also describe a testable hypothesis that is intended to accommodate current knowledge based on plastid and nuclear genomic data, discuss the implications of this model, and comment on areas that require further examination.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- Department of Biology, Indiana University, 1001 E 3rd St., Bloomington, Indiana 47405, USADepartment of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742-5815, USA
| | - Charles F Delwiche
- Department of Biology, Indiana University, 1001 E 3rd St., Bloomington, Indiana 47405, USADepartment of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742-5815, USA
| |
Collapse
|
18
|
|
19
|
Iida K, Takishita K, Ohshima K, Inagaki Y. Assessing the monophyly of chlorophyll-c containing plastids by multi-gene phylogenies under the unlinked model conditions. Mol Phylogenet Evol 2007; 45:227-38. [PMID: 17591448 DOI: 10.1016/j.ympev.2007.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 05/09/2007] [Accepted: 05/10/2007] [Indexed: 11/29/2022]
Abstract
Recent multi-gene phylogenetic analyses of plastid-encoded genes have recovered a robust monophyly of chlorophyll-c containing plastids (Chl-c palstids) in cryptophytes, haptophytes, photosynthetic stramenopiles, and dinoflagellates. However, all the plastid multi-gene phylogenies published to date utilized the "linked" model, which ignores the heterogeneity of sequence evolution across genes in alignments. Both empirical and simulation studies show that, compared to the linked model, the "unlinked" model, which accounts for gene-specific evolution, can greatly improve multi-gene estimations. Here we newly sequenced 46 genes of Chl-c plastids, and examined the Chl-c plastid evolution by multi-gene analyses under the unlinked model. Unexpectedly, Chl-c plastid monophyly received only low to medium support in our analyses based on multi-gene data sets including up to 4829 alignment positions. Although we systematically surveyed and excluded the genes that could mislead estimation, the (inconclusive) support for Chl-c plastid monophyly was not significantly altered. We conclude that the estimates from the current plastid-encoded gene data are insufficient to resolve Chl-c plastid evolution with confidence, and are highly affected by genes subjected to the analyses, and methods for tree reconstruction applied. Thus, future data analyses of larger multi-gene data sets, preferentially under the unlinked model, are required to conclusively understand Chl-c plastid evolution.
Collapse
Affiliation(s)
- Kei Iida
- Faculty of Bio-science, Nagahama Institute of Bio-science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | | | | | | |
Collapse
|
20
|
Bodył A, Mackiewicz P. Analysis of the targeting sequences of an iron-containing superoxide dismutase (SOD) of the dinoflagellate Lingulodinium polyedrum suggests function in multiple cellular compartments. Arch Microbiol 2006; 187:281-96. [PMID: 17143625 DOI: 10.1007/s00203-006-0194-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 11/06/2006] [Indexed: 01/19/2023]
Abstract
One of the proteins targeted to the peridinin plastid of the dinoflagellate Lingulodinium polyedrum is the iron-containing superoxide dismutase (LpSOD). Like dinoflagellate plastid proteins of class II, LpSOD carries a bipartite presequence comprising a signal peptide followed by a transit peptide. Our bioinformatic studies suggest that its signal peptide is atypical, however, and that the entire presequence may function as a mitochondrial targeting signal. It is possible that LpSOD represents a new class of proteins in algae with complex plastids, which are co-targeted to the plastid and mitochondrion. In addition to the ambiguous N-terminal targeting signal, LpSOD contains a potential type-1 peroxisome-targeting signal (PTS1) located at its C-terminus. In accordance with a peroxisome localization of this dismutase, its mRNA has two in-frame AUG codons. Our bioinformatic analyses indicate that the first start codon resides in a much weaker oligonucleotide context than the second one. This suggests that synthesis of the plastid/mitochondrion-targeted and peroxisome-targeted isoforms could proceed through so-called leaky scanning. Moreover, our results show that expression of the two isoforms could be regulated by a 'hairpin' structure located between the first and second start codons.
Collapse
Affiliation(s)
- Andrzej Bodył
- Department of Biodiversity and Evolutionary Taxonomy, Zoological Institute, University of Wrocław, ul. Przybyszewskiego 63/77, 51-148 Wrocław, Poland.
| | | |
Collapse
|
21
|
Waller RF, Keeling PJ. Alveolate and chlorophycean mitochondrial cox2 genes split twice independently. Gene 2006; 383:33-7. [PMID: 16987614 DOI: 10.1016/j.gene.2006.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 06/20/2006] [Accepted: 07/06/2006] [Indexed: 10/24/2022]
Abstract
The mitochondrial gene for COXII is typically encoded in the organelle genome, however in some members of two unrelated groups, Apicomplexa and Chlorophyceae, cox2 is split into two genes, and both are encoded in the nucleus. Rare genomic changes (RGCs) have acquired popularity as phylogenetic markers, and accordingly this rearrangement of cox2 has been used to infer a possible source of the apicomplexan plastid, the apicoplast, a topic that continues to attract much debate. Accurate interpretation of RGCs, however, is critically dependent on appropriate sampling of the character state of interest amongst relevant taxa. Dinoflagellates form the sister taxon to Apicomplexa, and therefore the state of their cox2 is essential to the interpretation of this apparent RGC. Here we present the first complete cox2 data from dinoflagellates, that suggests despite the remarkable similarity of cox2 seen in Alveolates and Chlorophyceae, this gene reorganization arose independently in these two groups, not through lateral transfer as previously suggested.
Collapse
Affiliation(s)
- Ross F Waller
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4.
| | | |
Collapse
|
22
|
Waller RF, Patron NJ, Keeling PJ. Phylogenetic history of plastid-targeted proteins in the peridinin-containing dinoflagellate Heterocapsa triquetra. Int J Syst Evol Microbiol 2006; 56:1439-1447. [PMID: 16738125 DOI: 10.1099/ijs.0.64061-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolutionary history and relationship between plastids of dinoflagellate algae and apicomplexan parasites have been controversial both because the organelles are unusual and because their genomes contain few comparable genes. However, most plastid proteins are encoded in the host nucleus and targeted to the organelle, and several of these genes have proved to have interesting and informative evolutionary histories. We have used expressed sequence tag (EST) sequencing to generate gene sequence data from the nuclear genome of the dinoflagellate Heterocapsa triquetra and inferred phylogenies for the complete set of identified plastid-targeted proteins. Overall, dinoflagellate plastid proteins are most consistently related to homologues from the red algal plastid lineage (not green) and, in many of the most robust cases, they branch with other chromalveolate algae. In resolved phylogenies where apicomplexan data are available, dinoflagellates and apicomplexans are related. We also identified two cases of apparent lateral, or horizontal, gene transfer, one from the green plastid lineage and one from a bacterial lineage unrelated to plastids or cyanobacteria.
Collapse
Affiliation(s)
- Ross F Waller
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Nicola J Patron
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
23
|
Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, McFadden GI. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2005; 2:203-16. [PMID: 15083156 DOI: 10.1038/nrmicro843] [Citation(s) in RCA: 444] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stuart A Ralph
- Institut Pasteur, Biology of Host-Parasite Interactions, 25 Rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Harper JT, Waanders E, Keeling PJ. On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. Int J Syst Evol Microbiol 2005; 55:487-496. [PMID: 15653923 DOI: 10.1099/ijs.0.63216-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A global phylogeny of major eukaryotic lineages is a significant and ongoing challenge to molecular phylogenetics. Currently, there are five hypothesized major lineages or ‘supergroups' of eukaryotes. One of these, the chromalveolates, represents a large fraction of protist and algal diversity. The chromalveolate hypothesis was originally based on similarities between the photosynthetic organelles (plastids) found in many of its members and has been supported by analyses of plastid-related genes. However, since plastids can move between eukaryotic lineages, it is important to provide additional support from data generated from the nuclear-cytosolic host lineage. Genes coding for six different cytosolic proteins from a variety of chromalveolates (yielding 68 new gene sequences) have been characterized so that multiple gene analyses, including all six major lineages of chromalveolates, could be compared and concatenated with data representing all five hypothesized supergroups. Overall support for much of the phylogenies is decreased over previous analyses that concatenated fewer genes for fewer taxa. Nevertheless, four of the six chromalveolate lineages (apicomplexans, ciliates, dinoflagellates and heterokonts) consistently form a monophyletic assemblage, whereas the remaining two (cryptomonads and haptophytes) form a weakly supported group. Whereas these results are consistent with the monophyly of chromalveolates inferred from plastid data, testing this hypothesis is going to require a substantial increase in data from a wide variety of organisms.
Collapse
Affiliation(s)
- James T Harper
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | - Esmé Waanders
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
25
|
Abstract
Over the past several decades, our knowledge of the origin and evolution of mitochondria has been greatly advanced by determination of complete mitochondrial genome sequences. Among the most informative mitochondrial genomes have been those of protists (primarily unicellular eukaryotes), some of which harbor the most gene-rich and most eubacteria-like mitochondrial DNAs (mtDNAs) known. Comparison of mtDNA sequence data has provided insights into the radically diverse trends in mitochondrial genome evolution exhibited by different phylogenetically coherent groupings of eukaryotes, and has allowed us to pinpoint specific protist relatives of the multicellular eukaryotic lineages (animals, plants, and fungi). This comparative genomics approach has also revealed unique and fascinating aspects of mitochondrial gene expression, highlighting the mitochondrion as an evolutionary playground par excellence.
Collapse
Affiliation(s)
- Michael W Gray
- Robert Cedergren Center, Program in Evolutionary Biology, Canadian Institute for Advanced Research, Canada.
| | | | | |
Collapse
|
26
|
Keeling PJ. Diversity and evolutionary history of plastids and their hosts. AMERICAN JOURNAL OF BOTANY 2004; 91:1481-93. [PMID: 21652304 DOI: 10.3732/ajb.91.10.1481] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
By synthesizing data from individual gene phylogenies, large concatenated gene trees, and other kinds of molecular, morphological, and biochemical markers, we begin to see the broad outlines of a global phylogenetic tree of eukaryotes. This tree is apparently composed of five large assemblages, or "supergroups." Plants and algae, or more generally eukaryotes with plastids (the photosynthetic organelle of plants and algae and their nonphotosynthetic derivatives) are scattered among four of the five supergroups. This is because plastids have had a complex evolutionary history involving several endosymbiotic events that have led to their transmission from one group to another. Here, the history of the plastid and of its various hosts is reviewed with particular attention to the number and nature of the endosymbiotic events that led to the current distribution of plastids. There is accumulating evidence to support a single primary origin of plastids from a cyanobacterium (with one intriguing possible exception in the little-studied amoeba Paulinella), followed by the diversification of glaucophytes, red and green algae, with plants evolving from green algae. Following this, some of these algae were themselves involved in secondary endosymbiotic events. The best current evidence indicates that two independent secondary endosymbioses involving green algae gave rise to euglenids and chlorarachniophytes, whereas a single endosymbiosis with a red algae gave rise to the chromalveolates, a diverse group including cryptomonads, haptophytes, heterokonts, and alveolates. Dinoflagellates (alveolates) have since taken up other algae in serial secondary and tertiary endosymbioses, raising a number of controversies over the origin of their plastids, and by extension, the recently discovered cryptic plastid of the closely related apicomplexan parasites.
Collapse
Affiliation(s)
- Patrick J Keeling
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4 Canada
| |
Collapse
|
27
|
Funes S, Reyes-Prieto A, Pérez-Martínez X, González-Halphen D. On the evolutionary origins of apicoplasts: revisiting the rhodophyte vs. chlorophyte controversy. Microbes Infect 2004; 6:305-11. [PMID: 15065552 DOI: 10.1016/j.micinf.2003.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Apicomplexans are parasites of great medical and veterinary importance. They contain a vestigial plastid, the apicoplast, that originated through the secondary endosymbiosis of the photosynthetic unicellular alga. The nature of this alga remains controversial. Here, we revisit the available evidence and critically summarize the "green vs. red" debate.
Collapse
Affiliation(s)
- Soledad Funes
- Institut fur Physiologische Chemie, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
28
|
Abstract
Unicellular apicomplexans possess an algal-originated plastid referred to as an apicoplast. Although apicomplexan parasites are comprised of highly diverse protists, the complete apicoplast genome sequences have only been determined from the hematozoan Plasmodium falciparum and cyst-forming coccidian Toxoplasma gondii. Here, we report the third complete sequence of apicoplast genome from the intestinal coccidian Eimeria tenella that may serve as a new drug target against coccidiosis in the livestock. The AT-rich E. tenella plastid genome is a 35-kb circular element. Its gene organization resembles more closely that of T. gondii than P. falciparum. Although the E. tenella plastid genome contains an almost identical set of genes to that found in P. falciparum and T. gondii, its encoded genes share low or moderate homologies with their counterparts in the other two apicomplexans. With the addition of this coccidian plastid genome sequence, we attempted to reexamine the apicoplast genome evolution and performed phylogenetic reconstructions using maximum likelihood and Bayesian inference (BI) methods based on a concatenated dataset of plastid-encoded rpoB, rpoC1 and rpoC2 proteins. All resulting rpo protein trees placed apicoplast as a sister to Euglena within the green lineage. On the other hand, many recent studies based on the organization of plastid genes and some nuclear-encoded plastid proteins have supported a common red algal ancestry of apicomplexan and dinoflagellate plastids. If the apicoplast indeed originated from a red ancestor, the green relationship of apicomplexan genes would probably imply that the ancestral host that gave rise to the (red) apicoplast might have already contained some primary green plastid genes.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Veterinary Pathobiology, College of Veterinary Medicine, College Station, TX 77843-4467, USA
| | | | | | | |
Collapse
|
29
|
Foth BJ, McFadden GI. The apicoplast: a plastid in Plasmodium falciparum and other Apicomplexan parasites. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:57-110. [PMID: 12722949 DOI: 10.1016/s0074-7696(05)24003-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apicomplexan parasites cause severe diseases such as malaria, toxoplasmosis, and coccidiosis (caused by Plasmodium spp., Toxoplasma, and Eimeria, respectively). These parasites contain a relict plastid-termed "apicoplast"--that originated from the engulfment of an organism of the red algal lineage. The apicoplast is indispensable but its exact role in parasites is unknown. The apicoplast has its own genome and expresses a small number of genes, but the vast majority of the apicoplast proteome is encoded in the nuclear genome. The products of these nuclear genes are posttranslationally targeted to the organelle via the secretory pathway courtesy of a bipartite N-terminal leader sequence. Apicoplasts are nonphotosynthetic but retain other typical plastid functions such as fatty acid, isoprenoid and heme synthesis, and products of these pathways might be exported from the apicoplast for use by the parasite. Apicoplast pathways are essentially prokaryotic and therefore excellent drug targets. Some antibiotics inhibiting these molecular processes are already in chemotherapeutic use, whereas many new drugs will hopefully spring from our growing understanding of this intriguing organelle.
Collapse
Affiliation(s)
- Bernardo J Foth
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
30
|
Waller RF, Keeling PJ, van Dooren GG, McFadden GI. Comment on "A green algal apicoplast ancestor". Science 2003. [PMID: 12843377 DOI: 10.1126/science.1083647] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ross F Waller
- Department of Biochemistry and, Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
31
|
Abstract
Nucleomorphs of cryptomonad and chlorarachnean algae are the relict, miniaturised nuclei of formerly independent red and green algae enslaved by separate eukaryote hosts over 500 million years ago. The complete 551 kb genome sequence of a cryptomonad nucleomorph confirms that cryptomonads are eukaryote-eukaryote chimeras and greatly illuminates the symbiogenetic event that created the kingdom Chromista and their alveolate protozoan sisters. Nucleomorph membranes may, like plasma membranes, be more enduring after secondary symbiogenesis than are their genomes. Partial sequences of chlorarachnean nucleomorphs indicate that genomic streamlining is limited by the mutational difficulty of removing useless introns. Nucleomorph miniaturisation emphasises that selection can dramatically reduce eukaryote genome size and eliminate most non-functional nuclear non-coding DNA. Given the differential scaling of nuclear and nucleomorph genomes with cell size, it follows that most non-coding nuclear DNA must have a bulk-sequence-independent function related to cell volume.
Collapse
Affiliation(s)
- T Cavalier-Smith
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
32
|
Abstract
Secondary endosymbiosis is the process that drives the spread of plastids (chloroplasts) from one eukaryote to another. The number of times that this has occurred and the kinds of cells involved are now becoming clear. Reconstructions of plastid history using molecular data suggest that secondary endosymbiosis is very rare and that perhaps as few as three endosymbioses have resulted in a large proportion of algal diversity. The significance of these events extends beyond photosynthesis, however, because non-photosynthetic organisms such as ciliates appear to have evolved from photosynthetic ancestors and could still harbor plastid-derived genes or relict plastids.
Collapse
Affiliation(s)
- John M Archibald
- Canadian Institute for Advanced Research, Dept Botany, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
33
|
Abstract
This review offers a snapshot of our current understanding of the origin, biology, and metabolic significance of the non-photosynthetic plastid organelle found in apicomplexan parasites. These protists are of considerable medical and veterinary importance world-wide, Plasmodium spp., the causative agent of malaria being foremost in terms of human disease. It has been estimated that approximately 8% of the genes currently recognized by the malarial genome sequencing project (now nearing completion) are of bacterial/plastid origin. The bipartite presequences directing the products of these genes back to the plastid have provided fresh evidence that secondary endosymbiosis accounts for this organelle's presence in these parasites. Mounting phylogenetic evidence has strengthened the likelihood that the plastid originated from a red algal cell. Most importantly, we now have a broad understanding of several bacterial metabolic systems confined within the boundaries of the parasite plastid. The primary ones are type II fatty acid biosynthesis and isoprenoid biosynthesis. Some aspects of heme biosynthesis also might take place there. Retention of the plastid's relict genome and its still ill-defined capacity to participate in protein synthesis might be linked to an important house-keeping process, i.e. guarding the type II fatty acid biosynthetic pathway from oxidative damage. Fascinating observations have shown the parasite plastid does not divide by constriction as in typical plants, and that plastid-less parasites fail to thrive after invading a new cell. The modes of plastid DNA replication within the phylum also have provided surprises. Besides indicating the potential of the parasite plastid for therapeutic intervention, this review exposes many gaps remaining in our knowledge of this intriguing organelle. The rapid progress being made shows no sign of slackening.
Collapse
Affiliation(s)
- R J M Iain Wilson
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
34
|
Oborník M, Van de Peer Y, Hypsa V, Frickey T, Slapeta JR, Meyer A, Lukes J. Phylogenetic analyses suggest lateral gene transfer from the mitochondrion to the apicoplast. Gene 2002; 285:109-18. [PMID: 12039037 DOI: 10.1016/s0378-1119(02)00427-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apicomplexan protozoa contain a single mitochondrion and a multimembranous plastid-like organelle termed apicoplast. The size of the apicomplexan plastid genome is extremely small (35 kb) thus offering a limited number of genes for phylogenetic analysis. Moreover, the sequences of apicoplast genes are highly adenosine+thymidine-rich and rapidly evolving. Due to these facts, phylogenetic analyses based on different genes or the structure of the ribosomal operon show conflicting results and the evolutionary history of this exciting organelle remains unclear. Although it is evident that the apicoplast and its genome is plastid-derived, our detailed phylogenetic analysis of amino acid and nucleotide sequences of selected apicoplast ribosomal protein genes rpl2, rpl14 and rps12 show their possible mitochondrial origin. The affinity of apicoplast ribosomal proteins to their mitochondrial homologs is very stable and well supported. Based on our results we propose that apicoplasts might contain both plastid and mitochondrial genes, thus constituting a hybrid assembly.
Collapse
Affiliation(s)
- Miroslav Oborník
- Institute of Parasitology, Czech Academy of Sciences, Branisovská 31, 370 05, Ceské Budejovice, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
35
|
Roos DS, Crawford MJ, Donald RGK, Fraunholz M, Harb OS, He CY, Kissinger JC, Shaw MK, Striepen B. Mining the Plasmodium genome database to define organellar function: what does the apicoplast do? Philos Trans R Soc Lond B Biol Sci 2002; 357:35-46. [PMID: 11839180 PMCID: PMC1692924 DOI: 10.1098/rstb.2001.1047] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Apicomplexan species constitute a diverse group of parasitic protozoa, which are responsible for a wide range of diseases in many organisms. Despite differences in the diseases they cause, these parasites share an underlying biology, from the genetic controls used to differentiate through the complex parasite life cycle, to the basic biochemical pathways employed for intracellular survival, to the distinctive cell biology necessary for host cell attachment and invasion. Different parasites lend themselves to the study of different aspects of parasite biology: Eimeria for biochemical studies, Toxoplasma for molecular genetic and cell biological investigation, etc. The Plasmodium falciparum Genome Project contributes the first large-scale genomic sequence for an apicomplexan parasite. The Plasmodium Genome Database (http://PlasmoDB.org) has been designed to permit individual investigators to ask their own questions, even prior to formal release of the reference P. falciparum genome sequence. As a case in point, PlasmoDB has been exploited to identify metabolic pathways associated with the apicomplexan plastid, or 'apicoplast' - an essential organelle derived by secondary endosymbiosis of an alga, and retention of the algal plastid.
Collapse
Affiliation(s)
- David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
van Dooren GG, Schwartzbach SD, Osafune T, McFadden GI. Translocation of proteins across the multiple membranes of complex plastids. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1541:34-53. [PMID: 11750661 DOI: 10.1016/s0167-4889(01)00154-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secondary endosymbiosis describes the origin of plastids in several major algal groups such as dinoflagellates, euglenoids, heterokonts, haptophytes, cryptomonads, chlorarachniophytes and parasites such as apicomplexa. An integral part of secondary endosymbiosis has been the transfer of genes for plastid proteins from the endosymbiont to the host nucleus. Targeting of the encoded proteins back to the plastid from their new site of synthesis in the host involves targeting across the multiple membranes surrounding these complex plastids. Although this process shows many overall similarities in the different algal groups, it is emerging that differences exist in the mechanisms adopted.
Collapse
Affiliation(s)
- G G van Dooren
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Australia
| | | | | | | |
Collapse
|
37
|
Moreira D, Philippe H. Sure facts and open questions about the origin and evolution of photosynthetic plastids. Res Microbiol 2001; 152:771-80. [PMID: 11763237 DOI: 10.1016/s0923-2508(01)01260-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Some eukaryotic groups carry out photosynthesis thanks to plastids, which are endosymbiotic organelles derived from cyanobacteria. Increasing evidence suggests that the plastids from green plants, red algae, and glaucophytes arose directly from a single common primary symbiotic event between a cyanobacterium and a phagotrophic eukaryotic host. They are therefore known as primary plastids. All other lineages of photosynthetic eukaryotes seem to have acquired their plastids by secondary or tertiary endosymbioses, which are established between eukaryotic algae, already containing plastids, and other eukaryotic hosts. Both primary and secondary symbioses have been followed by extensive plastid genome reduction through gene loss and gene transfer to the host nucleus. All this makes the reconstruction of the evolutionary history of plastids a very complex task, indissoluble from the resolution of the general phylogeny of eukaryotes.
Collapse
Affiliation(s)
- D Moreira
- Equipe Phylogénie, Bioinformatique et Génome, UMR CNRS 7622, Université Pierre et Marie Curie, Paris, France.
| | | |
Collapse
|
38
|
Keeling PJ, Palmer JD. Lateral transfer at the gene and subgenic levels in the evolution of eukaryotic enolase. Proc Natl Acad Sci U S A 2001; 98:10745-50. [PMID: 11526220 PMCID: PMC58546 DOI: 10.1073/pnas.191337098] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enolase genes from land plants and apicomplexa (intracellular parasites, including the malarial parasite, Plasmodium) share two short insertions. This observation has led to the suggestion that the apicomplexan enolase is the product of a lateral transfer event involving the algal endosymbiont from which the apicomplexan plastid is derived. We have examined enolases from a wide variety of algae, as well as ciliates (close relatives of apicomplexa), to determine whether lateral transfer can account for the origin of the apicomplexan enolase. We find that lateral gene transfer, likely occurring intracellularly between endosymbiont and host nucleus, does account for the evolution of cryptomonad and chlorarachniophyte algal enolases but fails to explain the apicomplexan enolase. This failure is because the phylogenetic distribution of the insertions--which we find in apicomplexa, ciliates, land plants, and charophyte green algae--directly conflicts with the phylogeny of the gene itself. Protein insertions have traditionally been treated as reliable markers of evolutionary events; however, these enolase insertions do not seem to reflect accurately the evolutionary history of the molecule. The lack of congruence between insertions and phylogeny could be because of the parallel loss of both insertions in two or more lineages, or what is more likely, because the insertions were transmitted between distantly related genes by lateral transfer and fine-scale recombination, resulting in a mosaic gene. This latter process would be difficult to detect without such insertions to act as markers, and such mosaic genes could blur the "tree of life" beyond the extent to which whole-gene lateral transfer is already known to confound evolutionary reconstruction.
Collapse
Affiliation(s)
- P J Keeling
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
39
|
Fast NM, Kissinger JC, Roos DS, Keeling PJ. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 2001; 18:418-26. [PMID: 11230543 DOI: 10.1093/oxfordjournals.molbev.a003818] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The phylum Apicomplexa encompasses a large number of intracellular protozoan parasites, including the causative agents of malaria (Plasmodium), toxoplasmosis (Toxoplasma), and many other human and animal diseases. Apicomplexa have recently been found to contain a relic, nonphotosynthetic plastid that has attracted considerable interest as a possible target for therapeutics. This plastid is known to have been acquired by secondary endosymbiosis, but when this occurred and from which type of alga it was acquired remain uncertain. Based on the molecular phylogeny of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes, we provide evidence that the apicomplexan plastid is homologous to plastids found in dinoflagellates-close relatives of apicomplexa that contain secondary plastids of red algal origin. Surprisingly, apicomplexan and dinoflagellate plastid-targeted GAPDH sequences were also found to be closely related to the plastid-targeted GAPDH genes of heterokonts and cryptomonads, two other groups that contain secondary plastids of red algal origin. These results address several outstanding issues: (1) apicomplexan and dinoflagellate plastids appear to be the result of a single endosymbiotic event which occurred relatively early in eukaryotic evolution, also giving rise to the plastids of heterokonts and perhaps cryptomonads; (2) apicomplexan plastids are derived from a red algal ancestor; and (3) the ancestral state of apicomplexan parasites was photosynthetic.
Collapse
Affiliation(s)
- N M Fast
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
40
|
Vollmer M, Thomsen N, Wiek S, Seeber F. Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. J Biol Chem 2001; 276:5483-90. [PMID: 11056177 DOI: 10.1074/jbc.m009452200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In searching for nuclear-encoded, apicoplast-localized proteins we have cloned ferredoxin-NADP(+) reductase from Toxoplasma gondii and a [2Fe-2S] ferredoxin from Plasmodium falciparum. This chloroplast-localized redox system has been extensively studied in photosynthetic organisms and is responsible for the electron transfer from photosystem I to NADP+. Besides this light-dependent reaction in nonphotosynthetic plastids (e.g. from roots), electrons can also flow in the reverse direction, from NADPH to ferredoxin, which then serves as an important reductant for various plastid-localized enzymes. These plastids possess related, but distinct, ferredoxin-NADP+ reductase and ferredoxin isoforms for this purpose. We provide phylogenetic evidence that the T. gondii reductase is similar to such nonphotosynthetic isoforms. Both the P. falciparum [2Fe-2S] ferredoxin and the T. gondii ferredoxin-NADP+ reductase possess an N-terminal bipartite transit peptide domain typical for apicoplast-localized proteins. The recombinant proteins were obtained in active form, and antibodies raised against the reductase recognized two bands on Western blots of T. gondii tachyzoite lysates, indicative of the unprocessed and native form, respectively. We propose that the role of this redox system is to provide reduced ferredoxin, which might then be used for fatty acid desaturation or other biosynthetic processes yet to be defined. Thus, the interaction of these two proteins offers an attractive target for drug intervention.
Collapse
Affiliation(s)
- M Vollmer
- Fachbereich Biologie/Parasitologie, Philipps-Universität Marburg, Karl-von-Frisch-Strasse, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
41
|
He CY, Shaw MK, Pletcher CH, Striepen B, Tilney LG, Roos DS. A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J 2001; 20:330-9. [PMID: 11157740 PMCID: PMC133478 DOI: 10.1093/emboj/20.3.330] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Apicomplexan parasites--including the causative agents of malaria (Plasmodium sp.) and toxoplasmosis (Toxoplasma gondii)--harbor a secondary endosymbiotic plastid, acquired by lateral genetic transfer from a eukaryotic alga. The apicoplast has attracted considerable attention, both as an evolutionary novelty and as a potential target for chemotherapy. We report a recombinant fusion (between a nuclear-encoded apicoplast protein, the green fluorescent protein and a rhoptry protein) that targets to the apicoplast but grossly alters its morphology, preventing organellar segregation during parasite division. Apicoplast-deficient parasites replicate normally in the first infectious cycle and can be isolated by fluorescence-activated cell sorting, but die in the subsequent host cell, confirming the 'delayed death' phenotype previously described pharmacologically, and validating the apicoplast as essential for parasite viability.
Collapse
Affiliation(s)
| | | | - Charles H. Pletcher
- Department of Biology, 305 Goddard Laboratories and
Cancer Center Flow Cytometry Shared Resource, University of Pennsylvania, Philadelphia, PA 19104, USA Present address: Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA Corresponding author e-mail:
| | - Boris Striepen
- Department of Biology, 305 Goddard Laboratories and
Cancer Center Flow Cytometry Shared Resource, University of Pennsylvania, Philadelphia, PA 19104, USA Present address: Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA Corresponding author e-mail:
| | | | - David S. Roos
- Department of Biology, 305 Goddard Laboratories and
Cancer Center Flow Cytometry Shared Resource, University of Pennsylvania, Philadelphia, PA 19104, USA Present address: Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA Corresponding author e-mail:
| |
Collapse
|
42
|
Matsuzaki M, Kikuchi T, Kita K, Kojima S, Kuroiwa T. Large amounts of apicoplast nucleoid DNA and its segregation in Toxoplasma gondii. PROTOPLASMA 2001; 218:180-191. [PMID: 11770434 DOI: 10.1007/bf01306607] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Apicoplasts (apicomplexan plastids) are nonphotosynthetic, secondary endosymbiotic plastids that are found in most apicomplexans. Although these organelles are essential for parasite survival, their functions, activities, and structures are not well understood. We examined the apicoplast nucleoid of Toxoplasma gondii from a morphological aspect by high-resolution epifluorescence microscopy and electron microscopy. We found unexpectedly large amounts of DNA in the nucleoid and the presence of several division-related structures. Initially, we identified the organellar nucleoids by staining with the DNA-specific dye 4',6-diamidino-2-phenylindole. A single nucleoid was observed per apicoplast, and the fluorescent spot representing the nucleoid was bright and spherical in contrast to the weak and filamentous spot representing the mitochondrial nucleoid. We also measured the DNA content of each apicoplast nucleoid by a video-intensified microscope photon-counting system and determined that the genomic copy number was at least 25, a figure over four times greater than that reported previously. Moreover, several groups of apicoplasts had significantly higher genomic copy numbers. The DNA molecules were accurately divided into two daughter apicoplasts just before nuclear division. In addition, we examined nucleoid segregation and the division apparatus using electron microscopy. However, we failed to observe nucleoid structures, suggesting that the apicoplasts are predominantly composed of nucleoid material. In addition, we observed "cap" structures at the termini of dividing apicoplasts, a possible plastid-dividing ring, and a microbody-like granule around the constriction. These structures may be involved in apicoplast division.
Collapse
Affiliation(s)
- M Matsuzaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
43
|
Law AE, Mullineaux CW, Hirst EM, Saldanha J, Wilson RJ. Bacterial orthologues indicate the malarial plastid gene ycf24 is essential. Protist 2000; 151:317-27. [PMID: 11212892 DOI: 10.1078/s1434-4610(04)70030-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ycf24 is a well conserved gene found in all major groups of bacteria, as well as on red algal plastid genomes and the vestigal plastid genome of apicomplexan pathogens like the malaria parasite Plasmodium falciparum (ORF470). Some database annotations describe Ycf24 as an ABC transporter subunit, but we find the level of significance is low. To investigate ycf24's function we disrupted it in the cyanobacterium Synechocystis sp., strain PCC6803 which has a multi-copy genome. This showed ycf24 is essential, partial loss producing a terminal phenotype of chlorosis, reduced cell size, loss of DNA, and a striking arrest in cytokinesis. Attempts to disrupt the single copy of ycf24 in E. coli failed to give stable transformants. When Ycf24 was over-expressed in E. coli as a soluble fusion protein, it localized mostly as a band on either side of the nucleoid and nucleoid partitioning was aberrant. We propose the relict plastid organelle of apicomplexans retains its capacity for protein synthesis because Ycf24 is essential.
Collapse
Affiliation(s)
- A E Law
- National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|
44
|
Abstract
An extrachromosomal genome of between 27 and 35 kb has been described in several apicomplexan parasites including Plasmodium falciparum and Toxoplasma gondii. Examination of sequence data proved the genomes to be a remnant plastid genome, from which all genes encoding photosynthetic functions had been lost. Localisation studies had shown that the genome was located within a multi-walled organelle, anterior to the nucleus. This organelle had been previously described in ultrastructural studies of several genera of apicomplexa, but no function had been attributed to it. This invited review describes the evolution of knowledge on the apicomplexan plastid, then discusses current research findings on the likely role of the plastid in the Apicomplexa. How the plastid may be used to effect better drug treatments for apicomplexan diseases, and its potential as a marker for investigating phylogenetic relationships among the Apicomplexa, are discussed.
Collapse
Affiliation(s)
- M T Gleeson
- Department of Cell and Molecular Biology, Faculty of Science, University of Technology, Westbourne Street, Gore Hill NSW 2065, Sydney, Australia.
| |
Collapse
|
45
|
Abstract
Both the chromosomal and extrachromosomal components of the apicomplexan genome have been supplemented by genes from a plastid-bearing endocytobiont: probably an algal cell. The sequence of the apicomplexan plastid's vestigial genome indicates that a large number (>100) of genes of endocytobiotic origin must have transferred laterally to the host cell nucleus where they control maintenance of the plastid organelle and supply its functional components by means of post-translational protein trafficking. Should the nuclear genes prove to be less divergent phylogenetically than those left on the plastid genome, they might give better clues than we have at present to the origin of the plastid-bearing endocytobiont. Most of these nuclear genes still await discovery, but the on-going genome sequencing project will reveal the function of the organelle, as well as many "housekeeping" processes of interest on a wider front. The plastid's own protein synthetic machinery, being cyanobacterial in origin, offers conventional targets for antibiotic intervention, and this is discussed here using a structural model of elongation factor Tu. Uncovering the vital function(s) of the plastid organelle will provide new drug targets.
Collapse
Affiliation(s)
- S Sato
- National Institute for Medical Research, Mill Hill, London, UK
| | | | | |
Collapse
|
46
|
Abstract
Membrane heredity was central to the unique symbiogenetic origin from cyanobacteria of chloroplasts in the ancestor of Plantae (green plants, red algae, glaucophytes) and to subsequent lateral transfers of plastids to form even more complex photosynthetic chimeras. Each symbiogenesis integrated disparate genomes and several radically different genetic membranes into a more complex cell. The common ancestor of Plantae evolved transit machinery for plastid protein import. In later secondary symbiogeneses, signal sequences were added to target proteins across host perialgal membranes: independently into green algal plastids (euglenoids, chlorarachneans) and red algal plastids (alveolates, chromists). Conservatism and innovation during early plastid diversification are discussed.
Collapse
|
47
|
Zhu G, Marchewka MJ, Keithly JS. Cryptosporidium parvum appears to lack a plastid genome. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 2):315-321. [PMID: 10708370 DOI: 10.1099/00221287-146-2-315] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Surprisingly, unlike most Apicomplexa, Cryptosporidium parvum appears to lack a plastid genome. Primers based upon the highly conserved plastid small- or large-subunit rRNA (SSU/LSU rRNA) and the tufA-tRNAPhe genes of other members of the phylum Apicomplexa failed to amplify products from intracellular stages of C. parvum, whereas products were obtained from the plastid-containing apicomplexans Eimeria bovis and Toxoplasma gondii, as well as the plants Allium stellatum and Spinacia oleracea. Dot-blot hybridization of sporozoite genomic DNA (gDNA) supported these PCR results. A T. gondii plastid-specific set of probes containing SSU/LSU rRNA and tufA-tRNA(Phe) genes strongly hybridized to gDNA from a diverse group of plastid-containing organisms including three Apicomplexa, two plants, and Euglena gracilis, but not to those without this organelle including C. parvum, three kinetoplastids, the yeast Saccharomyces cerevisiae, mammals and the eubacterium Escherichia coli. Since the origin of the plastid in other apicomplexans is postulated to be the result of a secondary symbiogenesis of either a red or a green alga, the most parsimonious explanation for its absence in C. parvum is that it has been secondarily lost. If confirmed, this would indicate an alternative evolutionary fate for this organelle in one member of the Apicomplexa. It also suggests that unlike the situation with other diseases caused by members of the Apicomplexa, drug development against cryptosporidiosis targeting a plastid genome or metabolic pathways associated with it may not be useful.
Collapse
Affiliation(s)
- Guan Zhu
- Wadsworth Center, New York State Department of Health, PO Box 22002, Albany, NY 12201-2002, USA1
| | - Mary J Marchewka
- Wadsworth Center, New York State Department of Health, PO Box 22002, Albany, NY 12201-2002, USA1
| | - Janet S Keithly
- Wadsworth Center, New York State Department of Health, PO Box 22002, Albany, NY 12201-2002, USA1
| |
Collapse
|
48
|
Abstract
The origin of the relict chloroplast recently identified in malarial parasites has been mysterious. Several new papers suggest that the parasites obtained their chloroplasts in an ancient endosymbiotic event that also created some major algal groups.
Collapse
Affiliation(s)
- G I McFadden
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, 3052 Melbourne, Australia.
| |
Collapse
|
49
|
Delwiche CF. Tracing the Thread of Plastid Diversity through the Tapestry of Life. Am Nat 1999; 154:S164-S177. [PMID: 10527925 DOI: 10.1086/303291] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plastids (chloroplasts) are endosymbiotic organelles derived from previously free-living cyanobacteria. They are dependent on their host cell to the degree that the majority of the proteins expressed in the plastid are encoded in the nuclear genome of the host cell, and it is this genetic dependency that distinguishes organelles from obligate endosymbionts. Reduction in the size of the plastid genome has occurred via gene loss, substitution of nuclear genes, and gene transfer. The plastids of Chlorophyta and plants, Rhodophyta, and Glaucocystophyta are primary plastids (i.e., derived directly from a cyanobacterium). These three lineages may or may not be descended from a single endosymbiotic event. All other lineages of plastids have acquired their plastids by secondary (or tertiary) endosymbiosis, in which a eukaryote already equipped with plastids is preyed upon by a second eukaryote. Considerable gene transfer has occurred among genomes and, at times, between organisms. The eukaryotic crown group Alveolata has a particularly complex history of plastid acquisition.
Collapse
|
50
|
CAVALIER-SMITH TOM. Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree,2. J Eukaryot Microbiol 1999; 46:347-66. [DOI: 10.1111/j.1550-7408.1999.tb04614.x] [Citation(s) in RCA: 492] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|